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The review summarizes the development of Skyrme’s soliton approach to the description of
baryon structure. In contrast to existing literature on this subject, the principal attention is
devoted not to the pragmatic aspects of the model, but rather toits initial ideas, to its deep
topological content and to such subtle problems as the existence of solutions, the attainability of
the absolute energy minimum based on the hedgehog ansatz, and so on. It is exactly these features
of the Skyrme approach that are, in the authors’ opinion, the main advantages compared to other
schemes used in strong-interaction physics. The material assembled in the review will, first,
enable the reader to gain a deeper understanding of the structure and special features of the
Skyrme model and, second, will serve as an adequate base for further modifications and for
development of more realistic scenarios of processes in low-energy QCD, the need for which is

beyond any doubt.

1.INTRODUCTION

The distinguished English physicist Tony Hilton Royle
Skyrme (1922-1987) is now widely recognized for his out-
standing and far-reaching contributions to modern nuclear
physics. Until 1982 he was chiefly known among nuclear
physicists as one of the authors of the Bethe—Rose—Elliott—
Skyrme theorem in nuclear shell theory and of phenomeno-
logical Skyrme forces in the theory of nuclear matter. But his
main creation, that attracted all his thoughts, was the model
of baryons as topological solitons. The approach suggested
by Skyrme was based on deep topological ideas, to which
physicists had been so unaccustomed at that time. Possibly,
this explains the fact, that for more than two decades this
direction was developed mainly by Skyrme himself and by
his few followers. The situation changed drastically in the
early 1980’s after the realization that the Skyrme model
could be considered as the possible low-energy limit of QCD.
This circumstance initiated an increased interest in the mod-
el. It turned out that in the limit of a large number of colors
Quantum Chromodynamics is equivalent to an effective me-
son theory, well approximated by a nonlinear o-model at low
energies. The term ““Skyrmion” became a colloquial one. It
symbolizes an image of an extended baryon, being regarded
as a topological soliton, made up of bosons but possessing
fermion features. The topological charge was interpreted by
Skyrme as the baryon number.

The Skyrme model turned out to be a rather successful
image in the low-energy physics of strong interactions. In its
framework one succeeds to describe the nucleon-nucleon in-
teraction and the main statistic characteristics of baryons.
Exceptional interest in the Skyrme model can be explained
as follows: this is the first realistic model, which being rela-
tively simple provides on the whole an accurate reflection of
the symmetry and structural properties of hadrons.

Thereisa vast literature concerning the practical imple-
mentation of the Skyrme model to describe the properties of
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baryons and their interactions, including some papers of a
review character (Refs. 60, 72, 111, 120, 121 and 124).
Therefore we mainly concentrate on the background ideas of
the Skyrme approach as well as on some methods, which
might be found applicable in other branches of nonlinear
physics.

2.PHYSICAL AND MATHEMATICAL FOUNDATIONS OF THE
SKYRME MODEL

Asnoted in the introduction, the approach suggested by
T. Skyrme to describe nuclear matter differed strikingly
from the schemes, generally adopted in the early 50s. There-
fore it seems appropriate to focus first of all on the physical
ideas, taken by Skyrme as the basis for his nucleon model,
and as far as possible to elucidate their sources. Then we
follow the evolution of Skyrme’s initial notions up to the
final version of the model. Along the way we shall note the
original hypotheses, ideas and conjectures, contained in
Skyrme’s earlier papers (Refs. 1-6) and which have become
part of the “arsenal” of present-day elementary particle
physics. Among them one can find “nuclear democracy”
and “super-democracy” hypotheses, the soliton mechanism
idea, which allows one to construct massive fermion states
out of boson fields, etc. In existing reviews on the Skyrme
model this material has not been reflected to the extent it
merits, so we hope to fill this gap.

2.1. Kelvin’s “vortex atoms” and the “pion fluid” modelin
nuclear physics

One can deduce from Skyrme’s papers'? that he turned
to model notions on nuclear structure in connection with the
problem that arose in nuclear physics at the beginning of
1950s. The calculations on the basis of a-decay and heavy
particle scattering experimental data for the radius of the
nucleus gave the value R = 1.54 '* fm (where 4 is the mass
number), while the fast electron scattering data led to a
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much smaller value, i.e., R’ = 1.24 > fm. In Ref. | Skyrme
succeeded to give a qualitative explanation of the observed
difference, using the following model concepts:
—the nucleus is considered to be a drop on incompressible
electrically neutral “‘pion fluid,” which occupies a region
of radius R, i.e., at any point of the nucleus, the mean
densities of #* and 7w~ components would be equal to
each other. In the standard hydrodynamical manner the
state of this fluid at any point can be characterized by
some density and a vector in isospace;
—the nucleons are immersed in the *‘pion fluid”’ and occu-
py in the nucleus a region of smaller radius R '.
Therefore in the first kind of experiments, where the pion
interaction is substantial, one obtains R for the radius of the
nucleus. In turn, in experiments with electrically charged
particles when only the region occupied by sources is essen-
tial one obtains the mean square radius R '.
Skyrme in Ref. 2 describes the “pion fluid”’ model dynam-
ics by the Lagrangian density:

2 _
L=7 (3,4 - @+ Tapo, +ignmd)y, (21D

where & is the isovector pseudoscalar pion field; T are the
isospin Pauli matrices, g is the pion-nucleon coupling con-
stant and the spinor-isospinor W describes nucleon fields.
Note that in contrast to standard Lagrangians of pseudosca-
lar meson theories,’ there is no mass term of “bare” nucleons
in (2.1.1). This difference is fundamental, as according to
Skyrme the nucleon mass is of pion origin, i.e., it arises as a
result of “pion fluid” density fluctuations. Essentially, this
suggestion is one of the first mentions of the idea of the “soli-
ton mechanism,” expressed in a clearer form more than 20
years later by L. D. Faddeev:®

—strongly interacting massive particles could be de-

scribed in the framework of a nonlinear field theory as

collective excitations in the system of weakly coupled fun-
damental fields;

—the theory should admit the existence of particlelike

(soliton) solutions, describing the entire hierarchy of ob-

served particles.

The Skyrme model was designed as an attempt to realize
these requirements. But let us turn back to the ideas, which,
according to his own words, inspired the author of the model
of Ref. 9.

First, Skyrme handled the notion of a fermion state with
great care, as a concept which does not have a clear analogy
in classical physics. In particular, he regarded fermions only
as a convenient tool of mathematical description. In
Skyrme’s opinion a successful search for a method of con-
structing fermion states (nucleons) out of boson fields
(pions) would result in an alternative scheme to the de Brog-
lie-Heisenberg scheme of coalescence (bosons out of fer-
mions). Secondly, Skyrme regarded as inadmissible any
pointlike description of particles and considered the renor-
malization theory as a temporary and forced concession, en-
abling us to live with our ignorance of processes which actu-
ally go on at short distances. As is well known, a description
of the aforementioned particles as extended objects is possi-
ble only in the framework of a nonlinear field theory.

Apparently the decisive role in the process of realization
of the above ideas was played by Skyrme turning to W.

Thomson’s (Lord Kelvin) work on the “vortex model” of
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atoms.'? Recall that Kelvin, following H. Helmholtz’s ideas,
considered atoms as “vortex rings” in the ether, which fills
the Universe and has the property of a “perfect fluid.” He
was one of the first to introduce topological concepts into
physics, explaining distinctions between different sorts of
atoms by the different number of intersections of vortex
rings. There even exists an opinion,'! that Kelvin was the
first who made attempts to construct a “soliton (in current
terminology) theory of particles.” It is curious, that he also
for the first time introduced the term “chirality,” using it for
description of vortex orientations (Kelvin’s “ovals”). In
what follows we will show, how these ideas and discoveries
of Kelvin were used by Skyrme in the process of modifica-
tion of the “pion fluid”” model and will explain in what sense
Skyrme’s baryon can be understood as a vortex in a “pion
fluid.”

2.2.Chiralinvarlance

To realize the idea of the pion origin of the nucleon
mass, Skyrme? used the unitary transformation of fields ¥ in
the form

W= (1/V2)(1 + iysen)¥, (2.2.1)

where n = ¢/|é| is a unit pseudovector in isotopic space.
According to Skyrme’s idea, taking pion fluctuations into
account should effectively lead to just such a transforma-
tion. As a result in the nucleon part of the Lagrangian den-
sity (2.1.1) an additional “mass” term arises in the form
gpvV:

Ly = Bloka, - gp + 25 +imypra,emw.  (222)
It is also possible to regard the chiral transformation (2.2.1)
as the massless form of Foldy’s transformation, or as the
strong-coupling method transformation, which diagonalizes
the interaction.

The discoveries (1956,1957) of ‘“‘strange” K-mesons
{the “@ — 1 puzzle resolution) and of the parity noncon-
servation in weak interactions led to realization that the iso-
topic internal symmetry in hadron physics had to be en-
larged. In addition to the three SU(2) generators of isotopic
rotations T;, which do not change the parity of states, an
enlarged group of internal symmetries has to incorporate
transformations which do mix up states with different pari-
ties (one can find more details in Appendix A of the lecture
notes of Ref. 12). Such an enlargement has been discussed in
studies of W. Pauli and C. N. Yang, J. Schwinger, R. Feyn-
man and M. Gell-Mann (Refs. 13-15) and the appropriate
symmetry acquired the name of “chiral symmetry.”” In his
paper® Skyrme proposed the chiral-invariant modification
of the “pion fluid”” model, which turned to be one of the first
nonlinear realizations of the chiral SU(2) & SU(2) group,
known as the nonlinear o-model.

As G =SU(2) ® SU(2) is a 6-parameter group [three
generators of isotopic rotations T, and three generators of
chiral rotations (boosts) K; ], and there is no linear realiza-
tion of such a group in the 3-dimensional isotopic space, one
can either extend the isotopic space to be 4-dimensional or
construct a nonlinear realization of G in 3-space. Choosing
the first possibility, one can proceed by analogy with the
extension of the SO(3) rotation group to the homogeneous
Lorentz group (see Ref. 16, Ch. 5). To the 3-isovector ¢ one
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can add a fourth component ¢, and consider (¢,,¢) as a
vector in 4-isospace. The generators of isorotations T, will
mix components of ¢ only and will not affect #,. At thesame
time the chiral boost generators K; will mix ¢, with compo-
nents of ¢. The algebra of generators is specified by the rela-
tions:

[Tp T] = wl]ka’ [Ti’ K/] = IEU,CK/‘, [Ki’ K/] = “:Uka

(2.2.3)

and is locally isomorphic to the Lie algebra of the O(4)
group. Introducing the left and right generators

L=ST - Ky, Ry=3(T;+K), (2.2.4)
we obtain the commutation relations
[L‘, Lj] = iel]kLk' [R,'w Rj] = iEI-ijk, [Lp Rj] =0, (225)

indicating that the initial algebra (2.2.3) splits into two in-
dependent SU(2) subalgebras (whence the notation
SU(2), ®SU(2)g originates for the chiral group).

The generators of isorotations T, commute with the
parity operator P, and the chiral rotations generators K;
anticommute:

[P,T,1=0, (P.K], =0, (2.2.6)

Let us also exhibit the commutation relations between the
SU(2) ® Su(2) generators in the vector representation and
the components of the 4-isovector (¢, ):

[T,'» ¢]] = ieijlc¢k’ [T,., ¢0] = 0,
[K,-y ¢I] = _iaij¢0’ [KI’ ¢0] = l¢j’

(2.2.7a)
(2.2.7b)
and correspondingly for left and right chiral generators

[Ljr ¢0] = - —;.¢jy [L,', ¢I] = %(aij¢0 + eijlc¢lc)’ (2283)
[ij ¢0] = —;¢jy [RL’ ¢I}"= - %(alpo - eijk¢k); (228b)

Here in classical theory one has to understand the bracket
{,] as the Poisson bracket, multiplied by ( — £), and in quan-
tum theory as the commutator. T, and K; are integrals of
motion, i.e., the functionals of fields and canonical mo-
menta, with the structure defined by the Noether theorem.

The relations (2.2.7) and (2.2.8) can be rewritten in a
compact form, using the quaternion representation of the 4-
isovector

U=¢,+ ipr (2.2.9)
for example
, 1 _1
(L, Ul= - 37U, [R,U]= FUt; (2.2.10)

It proves to be convenient first to divide the isospinor fields
¥ into the left and right components

1 1
W =51 - 7%, Wp=o(1 +y9¥,

transforming according to the fundamental representations
of the SU(2), ® Su(2)y group. Acting on them by left and
right generators, we have

(2.2.11)

[Li:\PL] = __;'Tr'\llL’ [Rf'\PL] =0, (2.2.12a)
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1

[Ro¥a]= — 2 r¥%, [L¥a]=0. (2.2.12b)

When constructing a nonlinear realization of the
SU(2), ® SU(2)y chiral symmetry we impose the follow-
ing additional constraint:

$h+o7=1,

on the components of the 4-isovector ¢, = (dy,d), thereby
leaving only three components ¢; independent. According
to S. Weinberg'’ under chiral boosts they transform in the
following manner:

(K81 = —i6, 1§7) — ig,8(4™) ;

(2.2.13)

(2.2.14)

Here f($?) is an arbitrary regular function, and g(¢*) is
givenin terms of /(&*) due to the Jacobi identity for commu-
tators:
2y _ 1+2f(¢2)f'(¢2) (2215)
€@ F(%) —26%'(6?)
The relations (2.2.3) and (2.2.7a) remain unaltered, and

spinor fields commute with K; according to

1 Eii TP

= v
2 f(¢2) _ (f2+ ¢'2)1/2

(K, W] = (2.2.16)

Here we touched upon only the algebraic aspects of chiral
symmetry, without any connection with its physical content.
We find it more convenient to do that in Sec. 4 taking into
account modern notions of the quark structure of hadrons.

Now we are ready to come back to the chiral-invariant
modification of the “pion fluid” model. As already noted, in
his paper* Skyrme chose the nonlinear realization variant,
and imposed on ¢,, the constraint (2.2.13). But under such a
restriction the natural generalization of the pion mass term
in the Lagrangian (2.1.1):

3
PR
i=1

appears to be meaningless.

To avoid the difficulty that has arisen there are two
possibilities: either to introduce into the Lagrangian a fourth
order term (1/4)y*2, ¢ ¥ = const, or to assume that the
pion mass is generated through pion-nucleon interactions.
This idea, considered by Skyrme in Ref. 4, together with the
previous assumption concerning the pion generation of the
nucleon mass, has been formulated later by other authors as
the hypothesis of “nuclear democracy:” ftuctuations of pion
fields give rise to the nucleon mass, and in turn pions obtain
their mass through their interaction with nucleons.

In Refs. 4, 5 Skyrme dwells on the introduction into the
Lagrangian of the fourth order term and arrives at the modi-
fied Lagrangian in the form:

2

vl
|,

3
E ¢§ = const.
a=0

3
1 1 =
L= 720 [(aﬂ¢a)2 + 572"’3] + WIDH9, + 8@y + ivstd) 19,

(2.2.17)

which produces qualitative agreement with data on pion-
nucleon interaction. Next Skyrme proceeded to study possi-
ble simplifications of the model. If one restricts oneself to
only two field components ¢, and ¢,, which depend only on
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the single spatial variable x and the time ¢, the resulting
“two-dimensionalized”’ model turns out to be a rather inter-
esting one and in the next subsection 2.3 we will convince
ourselves of this.

2.3. The two-dimensional simplification, sine-Gordon and the
idea of topological charge

In the case of only two field components ¢, the analog
of the constraint (2.2.13) is fulfilled by the transition to the
angular variable 8(x,t):

$o=cosf, ¢, =sinb. (2.3.1)

The meson part of the Lagrangian density (2.2.17) after
some redefinition of variables takes the form of

Ly = 510H)* = (0,621~ ek¥(1 - cos 0),

where ¢ is a constant setting the energy scale, and & is a
reciprocal length.
The corresponding Euler-Lagrange equation:

328 — %P = k’sin 6,

(2.3.2)

(2.3.3)

is known by the name “‘the sine-Gordon equation,” and is
completely integrable. The equation (2.3.3) describes nu-
merous phenomena of nonlinear physics. Methods of solving
and applications of this equation are well described in the
literature.'®?* We not here only Skyrme’s contribution to
the investigation of its properties, together with the conclu-
sions he made. Not being acquainted with the geometrical
papers by Biclund, Steurwald et al., Skyrme in Refs. 4, 6 and
23 found independently three kinds of solutions of this equa-
tion (in modern terms these solutions correspond to 27-
king, 47-kink and breathers). Moreover, in Ref. 23 Skyrme
and Perring considered the head-on collision of two kinks,
moving towards each other with equal velocities and discov-
ered their “particle-like”” behavior, i.e., kinks were neither
destroyed nor scattered, but instead they passed one through
another without any alternation in their forms or velocities.
Itis remarkable, that this result predated by several years the
famous Zabusky and Kruskal paper,?* which had launched
the “soliton boom.”

In the framework of a two-dimensional model® Skyrme
made his first step towards an understanding of a mecha-
nism for constructing fermion states out of boson ones. He
succeeded in proving that the sine-Gordon quantum soli-
tons, arising in an essentially boson field model, might be-
have in the same way as fermions participating in a four-
fermion interaction. About 14 years later S. Coleman?® in
the framework of perturbation theory rigorously demon-
strated the equivalence between the quantum sine-Gordon
model and the zero fermion charge sector of the massive
Thirring model.

Still one more, and may be the most impressive, disclo-
sure was the discovery by Skyrme of a conserved current #
(z = 0;1) with components:

, 1 , 1
10=Eaxa! ]] = _Eaﬁ-
and with the conservation law d,,/ = 0, which holds inde-
pendently of the equation of motion (2.3.3), only because of
the continuity of the angular variable 8(x,t). Skyrme pro-
posed to interpret the integral conserved quantity

(2.3.4)
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Q= [/%x =5 2,00x = 5 (@(=, = 6(-=,0) (23.5)

as the “‘number of particles” by analogy with classical me-
chanics, where one can relate the conservation of the number
of particles with the continuity of particle trajectories. Al-
most simultaneously with D. Finkelstein and Ch. Misner,?¢
Skyrme introduced in physics the topological classification
of solutions of the field equations, together with a new kind
of conservation laws, which acquired the name “topologi-
cal” or “homotopical.” The conserved quantity (2.3.5) was
called the topological charge.

- The meaning of conserved topological characteristics
(charges) is easy to understand either in the framework of
an algebraic approach?” or in a geometrical way, using the
principal concepts of homotopy theory.?’*® Choosing the
second possibility, one can regard the sine-Gordon model as
the theory of scalar fields ¢ (x,t) = exp[if(x,t) ], which due
to condition (2.2.13) take on values on the circle S'—the
field manifold of the model. At any fixed moment of time one
can regard these fields as a map

#(x): R!» s, (2.3.6)

If one requires the field energy, corresponding to the La-
grangian (2.3.2), to be finite-valued, this leads to the bound-
ary condition

6(x) » O(mod 2) as

|x| = e. (2.3.7)
In this condition, first, the multivaluedness in the definition
of the angle field variable 8(x) is reflected. To obviate it one
should deem identical angles, which differ by 27n in value,
where n is an integer. Secondly, under condition (2.3.7) the
real R! axis is naturally compactified, as the points at infinity
(x = 4+ «) are mapped into the “‘north pole” of the circle
S§'. Thus the mapping (2.3.6) with the boundary condition
(2.3.7) due to the fact that R'U{« } = S' can be replaced
by the equivalent mapping of circles:

p(a(x)) = exp(B(a(x))): S' =5,

where a(x) is the inverse stereographic projection R! - §!,
which parametrizes the “‘spatial” circle S'.

Two subsequent states of the system at moments of time
t, and ¢,, as described by fields ¢, =¢(x,,) and
¢, = ¢(xt,), respectively, are to be linked by the time evolu-
tion, i.e., by a continuous solution ¢(x,t) of the field equa-
tion. Formally, this obvious physical fact in the language of
homotopy theory reads as follows: two continuous maps ¢,
and ¢, are homotopic with each other (¢, ~¢,), when there
exists a continuous function ¢ (x,#)—the homotopy, which
takes on the value ¢, at the moment ¢ =¢, and ¢, at the
moment ¢ = £,. Since an assignment of a homotopy relation
on a set of maps is equivalent to an assignment of an equiv-
alence relation, this face means that the entire space of maps
(2.3.6). Map (R',S$') can be divided into disjoint classes of
equivalent or mutually homotopic maps, ie., Map
(R,S") = U, [R',S'];, where for the ith homotopic class
the standard notation [R',S']; is adopted. If such a decom-
position exists, (this can be established through the well-
developed methods of homotopy theory) and theinitial state
function of the system belongs to one of the homotopy
classes, then at any subsequent moment of time this function

(2.3.8)
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2 + 6(x)

FIG. 1.

has to stay in the same class. In this sense the problem of
finding a homotopy is equivalent to that of finding evolu-
tionary solutions of the field equation.

Among all possible mappings from the space Map
(R',S") we shall be interested only in those which fulfil the
condition (2.3.7), i.e., we restrict ourselves to the subspace
Map®(R',S"), and will give a descriptive picture of the split-
ting of the latter into homotopy classes. If the angle variable
6(x) takes on the value zero at points x = + o, then the
corresponding solution of the sine-Gordon equation is a
traveling wave or a breather, and the image of R' on §' under
the map (2.3.6) will be a closed loop, which does not cover
the whole circle §', and which could be shrunk in a contin-
uous way to a point on §' (see Fig. 1a).

In the case 8( — o0 ) = 0,68( + ) = 27 the image of
R’ will be the loop, which covers the whole circle §' and
cannot be shrunk in any continuous way to a point (see Fig.
1b). These maps correspond to the 27-kink solution. Under
the choice of  conditions in the form:
0( — ») =0,6( + o) = 47, theimage of R’ the axis winds
around the circle §' twice and the corresponding map can-
not be continuously deformed into either of the two former
ones. This situation is displayed in Fig. 1¢ and corresponds
to two separated kinks (the bion solution).

It is clear that the considered solutions belong to differ-
ent homotopy classes. As the characteristic Q (topological
charge) of these classes it seems natural to take the number
of times the image of R! winds around the circle §' under the
map (2.3.6). Taking this map in the form (2.3.8) it is not
difficult to rewrite the expression (2.3.5) for the topological
charge in another way:

2
1 98
Q =7n.{ 3299, (2.3.9)

where the integrand is just the Jacobian of the passage from
the coordinate az(x) on the “spatial” circle §' to the coordi-
nate 8(x) on the field manifold S'. It is easy to recognize in
(2.3.9) a particular case of the well-known mathematical
concept called the degree of mapping or the Brauer degree,
defined for a smooth map fiM" — N” between two connected
oriented manifolds at a regular point geN". Under these
conditions the full preimage f~ ' (¢) consists of a finite num-
ber of points p;, with the degree of mapping defined as
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ox

. 2.3.
2y, (2.3.10)

Q=deg (f) = sgn det
1 p,»E%(a)

(see Ref. 31 for details). The topological charge Q in each
homotopy class takes on a definite integer value, and for the
sine-Gordon model this fact is almost an obvious one. How-
ever, in view of further applications in more general cases,
this concept of a topological characteristic can be further
formalized, by endowing the set of homotopy classes
{[8",S'],} with a group structure. To do that it is enough to
define an algebraic composition law (see, for example, Ap-
pendix B in lecture notes of Ref. 12), which converts the
homotopy classes into elements of the Poincaré fundamental
group 7,(S") for the manifold S' (the first homotopy
group). To compute this group means to establish an iso-
morphism between 7,(S') and the group (or a subgroup) of
integers Z. The topological charge Q of Egs. (2.3.5) or
(2.3.9) is just what realizes this isomorphism Q:7,(S') - Z.

2.4. The structure of the Skyrme model

The appearance of the quantity Q is the two-dimension-
alized model, which is conserved independently of the model
dynamics and is interpreted as the number of “particles”
minus ‘““antiparticles,” prompted Skyrme to further modifi-
cations of the (3 4+ 1)-dimensional model (2.2.17). If one
were to be lucky, then the analogous quantity Q might be
interpreted as the baryon charge and one could suggest an
explanation of the experimentally established fact of conser-
vation of the baryon-antibaryon number difference in all ob-
served processes. The baryon number conservation law,
which has been empirically introduced by E. Wigner and E.
Stiickelberg in analogy with the electric charge conservation
law, is usually related with the U(1)-symmetry of the La-
grangian. The formality of such an approach evidently fol-
lows from the physical difference between the electric charge
and the baryon number. While the electric charge e does
determine the electromagnetic coupling constant ¢?/#c, in
contrast the coupling constants of strong interactions
&.,NN 8»na »--- do not depend on the value of the baryon num-
ber. This means that the baryon number does not determine
the dynamics of baryons. The requirement of the baryon
number conservation only restricts the possible types of re-
actions in strong interactions.

To generalize the concept of topological charge in the
(3 + 1)-dimensional case Skyrme in Ref. 32 used the fact
that due to the condition (2.2.13) the field ¢, takes on val-
ues on the manifold of the 3-dimensional sphere §*, which is
isomorphic to the group SU(2). Therefore to perform the
analogous change to “angle’’-variables it proves convenient
to make use of the quaternion representation of the group
SU(2) with elements in the form (2.2.9), for which the con-
dition (2.2.13) reduces to the equality U-U* = I. An ana-
log of the “angular’ variable 8(x,t) in the (3 4 1)-dimen-
sional case will be the quantities L, defined by the relations

G“U = iUtdL““, a=1,2,3, (24.1)

in virtue of which we have
! = abe,
L%, = 5 U™ 0,U) = ¢09,8° — $°9,80 + ¢P4,0, 0.
The quantities L}, are components of the vector field L,, with
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values in the Lie algebra of the group SU(2), which has been
named the left chiral current:

= 77-1 = #
L,=U""9,U=ril". (2.4.2)
The compatibility condition for the definitions (2.4.1) and
(2.4.2) requires the equality of mixed derivatives d,d,U
=4d,d, U, whence

oL, —a,L, + (L, L]1=0, (2.4.3)
or in the components Lj :
9,L% - 9,12, — 2e%LP 1€, =0, (2.4.4)

By analogy with the two-dimensional model one can
write down the conserved topological current:

N | abcya rb
M= - lznzd'”‘f’e 1°L%1°,

1
= e P8 ,0,9508,3, 95 (2.4.5)
Its time component defines the density of the conserved top-
ological charge

= I S 3
Q= fJOd3x = - 12nzfdet L% dx. (2.4.6)

Skyrme chose the Lagrangian density in the form:

1 z v
L= gL, L) + Ter(iL, LUK, L), (24.7)

where € and A are scale parameters. Note, that in contrast to
previous variants (2.1.1) and (2.2.17) the Lagrangian is ex-
pressed through meson fields only, i.e., nucleons have to ap-
pear in accord with the above stated hypotheses, as collective
excitations or solitons. A naive scenario of appearance of
these excitations can be imagined as follows.**** In the
framework of the hydrodynamical analogy the chiral cur-
rent components L7 can be treated as those of the *“pion
fluid” generalized velocity, and the commutator term in
(2.4.7) as a squared generalized vorticity. Then an appear-
ance of a collective excitation, say of a nucleon, can be re-
garded as an appearance of a ““vortex” in the pion fluid. At
an intuitive level, the problem of the existence of these “vor-
tices” in nontrivial homotopy classes can be clarified by
means of graphic topological reasoning. As the currents L,
define a vector field on a sphere in isotopic space specified by
the condition (2.2.13), then according to the ““hairy ball”
theorem such a field has to contain at least one singularity
(in the sense that its direction is ill defined at this point).In a
colloquial manner the latter statement means, that the
“hairy ball” cannot be ‘“‘combed” without a “top” in its
“hairdo.” In a sense one can identify the nucleon source in
the Skyrme model with this ‘“top” on the sphere in isotopic
space. In this way Kelvin’s “vortex atoms” ideas have been
transfigured in the Skyrme model.

For the model with the Lagrangian (2.4.7) we write
down the Euler-Lagrange equation

3,QL¢ - eNi(L,, (¢, L"}]) =0, (2.4.8)

which has the form of a local conservation law. Since the
Lagrangian (2.4.7) is invariant under the chiral SU(2),
®Su(2)y transformations, there exist conserved Noether
currents:
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2

Poa= tr{it“ [#L” -, i, L,]]] ] (2.4.92)
2

P, = "{na [#R” -Zw, &, Rv]]J } (2.4.9b)

where R, = d,U-U ™! is the right chiral current. The con-
served isovector current, related with rotations in isotopic
space in accordance with (2.2.4) has the form
F,=Fg+F, =V, (2.4.10)
The presented version of the model of a baryon as a
soliton was proposed by Skyrme in his papers of Refs. 32, 33.
Before passing to a more detailed treatment of the model and
an explanation of its connection with modern concepts in the
physics of strong interactions, based on ideas of Quantum
Chromodynamics (QCD), we conclude this historical sur-
vey by listing here the significant results, obtained initially
by Skyrme and rediscovered later by other investigators:
1. To describe a nucleon as a soliton Skyrme suggested
the “hedgehog*‘ ansatz

X.
P =cosb(r), ¢ = 7’sin 6(r), 6(0) = Nm, (2.4.11)

which corresponds to the topological charge Q = N, if
@(x ) =0. As will be shown below, based on this ansatz the
absolute minimum of energy is realized in the class of fields
with unit topological charge Q = + 1 (skyrmion).

2. A lower bound was obtained of the energy functional
in terms of the topological charge Q, which leads one to the
conclusion of skyrmion stability.

3. In his paper®’ Skyrme considered the two-skyrmion
interaction problem and proposed to describe two-skyrmion
states by the “product-ansatz” (for details see Sec. 4.7).

However, there remained an open question, which has
troubled Skyrme from the very beginning. This is the prob-
lem of the fermion properties of the skyrmion. After 10 years
Skyrme returned to this problem in Ref. 36 and proposed the
method of specifying collective coordinates to describe the
skyrmion motion in a quasi-classical approximation. He suc-
ceeded to show that in lower orders of perturbation theory
the skyrmion motion is governed by an equation of the Dirac
type. We will acquaint the reader in section 4.5 with the
current state of this problem as well as with an answer to the
question in what cases may a skyrmion be regarded as a fer-
mion.

3.SOLITONS IN THE SKYRME MODEL
3.1.Chiral solitons and topological stability

In accordance with Skyrme’s main idea, a nucleon can
be regarded as a vortex in the “pion fluid,” the existence of
which is prompted by topological considerations of the
structure of vector fields on a sphere, as has been outlined
earlier. The image of a nucleon as a chiral soliton proved to
be attractive from the point of view of stability theory. The
point is that, broadly speaking, multi-dimensional solitons,
i.e., defined in D>»2 dimensional space, are unstable.’”*

Let us say, that the field ¢ = u(r): R* - R" has a soliton
behavior, i.e., for r— «

|Vu| = 0[F~®/2*)) 450, (3.1.1)

and the function 4 (r) is the critical point of the Hamiltonian
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H = [ Fg, v9) d*s,

(3.1.2)
i.e., it satisfies the Euler—Lagrange equations
F,—,F =0, s=Tn; i=12,3, (3.1.3)
where the notation is used
aF ; aF
=—, F = .
FS a¢s s 6(6'¢8)

Let us construct the second variation of the Hamiltonian
S = [[(F B + P a0 8 + 26 9878 dx,

where £ > = 8¢, and take a particular excitation in the form

£ = f( r)d,u’. Then we shall find

62H=f[a;‘Afk,jak/f+ @f Y -ofrhB1d%,  (3.14)

where the notation is used

Ak =op F aus, 2B = 2B =5 Floyu. (3.15)
Note, that the second term in (3.1.4) can change sign, and
by virtue of equation (3.1.3) the following equality

9B, =0,
holds, and it implies

28 = % "y,0,, (3.1.6)
where, in turn,

1 i -
Gt = s | B F = ) @ (3.1.7)
Substituting (3.1.6) into (3.1.4) we find after integration by
parts
82H = fa‘.f’(AZ.‘ +ema ), /1 dx. (3.1.8)
To study the integrand sign-definiteness in (3.1.8) consider

the asymptotical region - . Then from (3.1.1) and
(3.1.5) it follows, that

Alf = 0(=C+2),  Blj=0(C*™),

and from (3.1.7) it is easy to deduce the estimate

8yt = o).

Thus, it has been proved, that the Hamiltonian (3.1.2)
has a sign alternating second variation in the neighborhood
of a soliton solution. This proof can be extended with ease to
the case of space dimension D>2, as well as to soliton solu-
tions with harmonic dependence on time. The obtained re-
sult can be regarded as a generalization of the well-known
Hobart-Derrick criterion®**® and it proves that only condi-
tionally stable solitons are possible, i.e., they can be stable
under some restrictions on admissible perturbations. Such
restrictions emerge in the case of chiral solitons, endowed
with the topological charge Q.

Recalling, that

Ltk [tr(L,iL, L) &, (3.1.9)

and the static Hamiltonian in the Skyrme model

61 Sov. Phys. Usp. 35 (2), February 1992

H= —f{4i2tr L2+ tr[Lk, L] }d3
=~ f {4A2tr L2+ tr(e’/‘/[Lk, L) }

we easily find the estimate

H=z fltr(

or in accordance with (3.1.9)

H z 622V21]0Q).

kL Ly, L. 1) |d%x,

(3.1.10)

The estimate (3.1.10) means, that in a given homotopy
class,i.e., for Q = N #0theenergy of system has a nontrivial
lower bound. If this bound is attainable at a soliton solution,
the latter would be stable in the Lyapunov sense, since
8°H>0. Note, that the equality in (3.1.10) never holds in
reality, as it requires that

1

uhi= 4\/’2 Citj
But here the latter relation is definitely broken, since it im-
plies d;L, = 0, which contradicts the equations of motion

(2.4.8).

€
L, Lj] =F ms,.kjaij .

3.2. The Coleman-Palais theorem and the dimensional
reduction

In the search for multi-dimensional solitons a possibil-
ity to separate out angular variables, i.e., to perform a di-
mensional reduction in the equations of motion is very im-
portant. In a favorable case, one can obtain ordinary
differential equations for the radial functions. In many phys-
ical problems to perform such a dimensional reduction the
symmetry principle, with the most clear formulation due to
S. Coleman (Refs. 12, 41), is frequently exploited.

Let the Hamiltonian H[¢] be invariant with respect to
the action of some group G. Then we introduce a concept of
invariant (more precisely, equivariant or covariantly con-
stant) field ¢,(x), given by the condition

#°(x) = T 8% 1),

here T, is an operator in a representation of the group G3g.
Coleman proposed to look for the extremum of the Hamilto-
nian in the class of invariant fields ®,{¢,(x)}, and after
doing that to check whether the obtained invariant configu-
ration is the solution of the equations of motion, i.e., the true
extremal of the functional H[ ¢]. It turns out that for almost
all cases, which are interesting in view of physics applica-
tions, i.e., when we deal with symmetry transformations
from compact groups, semisimple groups, and with unitary
representations of noncompact groups the Coleman princi-
pleis valid, in a sense that invariant extremals are true extre-
mals. This statement was proved by Palais*’ and later on
generalized by many authors.*?

To elucidate the idea of Palais’ proof, we start by intro-
ducing the notation X=86H /8P [¢,] for the variational de-
rivative, and write down the condition for the Hamiltonian
to have an extremum in the class of invariant fields [ or invar-
iant set]

(3.2.1)

(X, 6¢% = 0 for anydg? € D, (3.2.2)
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where the angular brackets have been used to denote a linear
functional. On the other hand the G-invariance of the Ham-
iltonian means, that

8H = (X, 8¢) = (X,, 53 ),

where X, and 6¢, denote the quantities X and 54, as trans-
formed under the action of the element geG. At the same
time

OH = HI¢® + 8¢,1 - HIg"1 = (X, &g ).

(3.2.3)

(3.2.4)

Taking into account the arbitrariness of 5¢, and comparing
(3.2.3) and (3.2.4) we find that

X, =X. (3.2.5)

Let us denote by 60 the subset of fields from X, which
satisfy the invariance condition (3.2.5). Let us stress that in
general the set d, and its dual set ®, are different. The condi-
tion (3.2.2) means that X simultaneously belongs to the an-
nihilator of the set ®,, i.e., Xed¥. Now it is not difficult to
conclude that ¢, would be the true extremal, if &,N & = &
(the empty set), since in this case X = 0 or §H = 0. Thus the
following theorem is shown to be valid.

Theorem 3.2.1. (Coleman-Palals)

Let H[¢#] be a functional, invariant under the action of
the group G. ®, is the set of invariant fields, ® is the annihi-
lator set of ®,, and ®, is the set dual to ®,. Then the field
d,e®, being the extremal of H on the invariant set, is simul-
taneously the true extremal, i.e., the extremal with respect to
noninvariant perturbations, if the Palais condition

B, N =2. (3.2.6)
holds.

Let us illustrate the significance of condition (3.2.6) by
the example due to O. Ladyzhenskaya.** Consider on the
plane R? = {x',x?} a function H = f(x?), which is invariant
under the action of group G: {x',x*} - {x' + 7x?,x*}, witha
parameter 7eR’. The invariant set in this case if ®, = {x',0},
so it coincides with the axis x'. To construct the set ®, we
have to determine how the group G acts in the dual set
{X,,X,} = {6H /6x',6H /6x*}. To achieve this we write the
invariance condition (3.2.3)

X 8x' + X 0x% = X[8x'1 + X;8x'2,

where 8x'! = 6x! + 76x%,6x"* = 6x?, whence we deduce the
transformation law {X,,X,} - {X,,X, — 7X,} and the struc-
ture of the set ®, = {0,X,}. Finally, one finds the annihila-
tor ®F from the condition (3.2.2):

Xléxl =0,

so that ®* = {0,X,} = ®,. Thus the condition (3.2.6) does
not hold and the Coleman principle does not work in this
case. Indeed, if we put £ (0) #0, then df(0) = f'(0)dx?5£0,
although on the invariant set {x',0} we have df = d,fdx'=0.

Now we apply the Coleman-Palais theorem to the
Skyrme model. We take the principal chiral field UeSU(2)

in the form
U(r) = exp[i(n7)6(r) ], (3.2.7)

where n(r) is a unit vector, 8(r) is the chiral angle, satisfy-
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ing the condition at the spatial infinite @( 00 ) = 0, as a result
of which all the fields (3.2.7) are divided into homotopy
classes, specified by the value Q =N of the topological
charge (3.1.9). The Hamiltonian in the Skyrme model ad-
mits the group of spatial rotations SO(3)¢ and the group of
isotopic rotations SO(3),, corresponding to transforma-
tions of the form U— ¥V-U-¥~!, PeSU(2). Thus, the invar-
iance group of the Hamiltonian is

G = 50(3),850(3),. (3.2.8)

However, it is clear, that the fields U, which would be invar-
iant with respect to transformations from the group (3.2.8),
do not exist. Therefore we have to consider its subgroups:

G, = diag[SO(3),850(3), ], (3.2.9)
G, = diag[SO(2),®50(2), ], (3.2.10)

where diag means that the parameters of the multiplied
groups either coincide or are proportional to each other, and
the groups SO(2)s and SO(2); correspond to rotations
around the third axis in space or isospace, respectively.

To find the structure of G,-invariant fields, let us write
the condition (3.2.1) for infinitesimal transformations

—i[rV]U+% [+,U]=0. (3.2.11)

Taking the scalar product of the vector relation (3.2.11) and
r, we obtain [7,,U] =0, where 7, = (r-r)/r. Hence, it fol-
lows that in (3.2.7) n =r/r. Then taking the trace of the
expression (3.2.11) one finds

[rv ]f:os 6=0,
whence @ = 6(r) and this leads to the “hedgehog” ansatz

Uy(r) = exp(ir,B(r)) = cos 6(r) + it sin 6(r), (3.2.12)"

suggested by Skyrme in Ref. 33. As will become clear in a
moment, the configuration (3.2.12) realizes the absolute
minimum of the energy in the first homotopy class, i.e.,
among fields with |Q| = 1.

Finally, for G,-invariant fields it is convenient to write
the condition (3.2.1) in terms of spherical coordinates
(r,d,a):

iU + Slr3, U1 =0, (3.2.13)

where k is an integer, with its value determined from the
requirement on U to be a periodic function in a. Taking the
trace of (3.2.13) wefind 3,8 =0, 0or 8 = 0(r,3). Asaresult
the equation (3.2.13) is simplified:

— 4, (nr) +§[1'3,(n-r)] —0. (3.2.14)

Making use of the relation [ 7,7, | = 2igy;7;, from (3.2.14)
we derive the equations for n,:

o 53 = 0, o.n = —kn,, n,= knl,
Introducing the polar coordinates £,y of the vector n by
setting

ny=cosf, n, +in,=sinp-é, (3.2.15)

we get the following structure for the G,-invariant chiral
fields:

6=06(r,), PB=p(r,9), y=ka, kEL (3.2.16)
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In physical literature G,-invariant fields are frequently
named as spherically-symmetric or “hedgehog” fields, and
G,-invariant fields are called axially-symmetric fields. As
will be shown below, G,-invariant fields realize the energy
minimum in higher homotopy classes, that is for |Q|> 1.

3.3.Skyrme’s “hedgehog’ ansatz (Skyrmion) and absolute
minimum of the energy

Now we are going to look for the minimum of the Ham-
iltonian in the Skyrme model in a given homotopy class, that
is, for Q = N. Then the method of minimization in the ex-
tended phase space proves to be useful (see Refs. 45, 46 and
in detail Ref. 12). The method is based on the following
obvious property, that the minimum of a function of several
variables can only increase after imposing some constraints
on these variables. In particular, one might first minimize
the energy density, regarding there the derivatives of the
field functions J; ¢ and the fields themselves as mutually in-
dependent variables. This is the quintessence of extending
the phase space. Naturally, after performing such a proce-
dure of minimization one should verify whether the obtained
limiting configurations are solutions of the equations of mo-
tion.

If one introduces the auxiliary quantities:
X = V6, Y=sin0-vV,B, Z = sin 0-sin 8- Vy, (3.3.1)

then the static Hamiltonian H, shifted by a constant, can be
represented in the form

H - 6x%2%|Q] = fd3x 2

1 2
(—X +¢' [YZ ])

2 2
__1_. ! L ’
+ (an+e [ZX]) + (lnz+e [XY]) },

(3.3.2)

where £ = e5gnQ. For the sake of definiteness we choose
Q>0 ie, € =¢, and go over to dimensionless variables
r—eAr. Then it is not difficult to deduce from (3.3.2), that
the minimum of A is attained in the case when the following
pairs of vectors: X and (YXZ), Y and (ZXX), Z and
(XX Y) turn out to be antiparallel. This means that the vec-

tors (3.3.1) are orthogonal or, equivalently,
(V6 VB) = (V6 Vy) = (VB Vy) = 0. (3.3.3)

Then in virtue of the condition (3.3.3) H takes the form:

H =ffd3x{(V0)2 [% +sin%- ((VB)2 + Siﬂzﬂ'(v")2)]

+ %sin20~((V,B)2 +sin28-(Vy)?) + sin40-sin2ﬂ-(Vﬂ)2(Vy)2}.

(3.3.4)

Noting, that now the expression for the charge Q is
Q=- ﬁ f sin%9sin B(VO[VS Vy dx, (3.3.5)
one can minimize H with respect to the quantity § = |V/3|

— sinf |Vy/|, assuming that sin 8 |VS3 || V| is fixed. As a re-
sult from (3.3.4) one finds, that & = 0, or in another form

(VB)? = sin?B- (Vy)2. (3.3.6)
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Taking (3.3.6) into account the Hamiltonian simplifies:
1 .
H= ; f [(V8)? (7 +2 sm20-(V,B)2)

+ sin%6- (VB)(1 + sin%0) 1d3x. (3.3.7)
Let us turn now to formula (3.3.5), which expresses the
topological charge Q as the degree of mapping R*— 83, i.e.,

an integer equal to the number of times one passes over the
manifold $?, which is parametrized in our case by polar an-
gles 8,8,y, when the point r covers the whole space R* once.

In terms of spherical coordinates (7,4,a), in order to insure
that the field manifold S* has been covered at least once, the
following boundary conditions are to be imposed:

Bloern =7 Blygeg=0, ¥Ylgazy =k +7],- (3.3.8)
where keZ. From (3.3.8) it follows, that
B=F+d, y=ka+7, kE€1Z, (3.3.9)

where the function 3 is periodic in ¢ with the period , and
the function ¥ is periodic in a with the period 2. It is not
difficult to see, that due to its periodicity the function f/does
not contribute to Q, and therefore from (3.3.4) one finds
that the Hamiltonian depends on this function only through
the combination (kVa + Vy)? = (Vy)?and attains its min-
imum if the vectors kVa and Vy are antiparallel. This
means, that ¥ = ¥(a). But in that case from (3.3.3) it fol-
lows, that the functions @ and S do not depend on @ and as a
consequence the Euler-Lagrange equation for the function ¥
has the form d2y = 0. Hence, in accordance with (3.3.9),
we find

y = ka. (3.3.10)

Substituting (3.3.10) into the condition (3.3.6) we obtain
the following equation for 3:

B = o, 2 + (3 B 31D

The equation (3.3.11) has an obvious integral

rd, f = const.

(3.3.12)

The unique finite solution of equations (3.3.11) and
(3.3.12), in accordance with (3.3.9), is

Bg=19, (3.3.13)

which corresponds to k = 1in (3.3.11) and (3.3.10). Final-
ly, from (3.3.3), (3.3.10) and (3.3.13) we deduce the fol-
lowing structure of the field configuration

=9,

Thus we have come to Skyrme’s ‘‘hedgehog” ansatz
(3.2.12). However, if sin6(0) 0, the mapping (3.3.12) is
not single-valued at the point » = 0. To improve this it is
necessary to impose the boundary conditions

6(0) = Nx,

6 =6(r), (3.3.14)

y=a.

NEeZ, (3.3.15)

which corresponds to the value of topological charge Q = N,
in accordance with (3.3.5).

For N = + 1, the obtained configuration (3.3.14) is
unique and for this reason realizes the absolute minimum of
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the energy (Refs. 12, 44-47), but it is not the case for
N # 4 1, when states with lower energy are possible. Intu-
itively it is clear, that if one considers a system of N far sepa-
rated skyrmions with unit topological charge, then its ener-
gy appears to be lower, i.e.,
Ey > |N|E|, (3.3.16)
where E, is the energy of the ““hedgehog” configuration
withQ = N,
In order to prove the inequality (3.3.16), we write
down the Hamiltonian (3.3.7) using the ansatz (3.3.14) for
Q = N [in units of 47 (e/4) ]

-] . R 4
H[@]:fdr{e'2(522—+2sin2e) +sin29+%q]. (3.3.17)
0

Let us pick out the points r,, where the condition
0(r.) = km, k= O,N holds, with 7, = «, ry = 0 and de-
fine the following functions

6(r) - (k= lym, T€ Iy I

6,(r) =10, 7> ey
7, rSrk.

We rewrite the Hamiltonian (3.3.17) in the form

N
H=Y Hib] (3.3.18)
k=1

and note, that the introduced functions &(r, ) and solutions
of the equation of motion for the skyrmion with Q = N do
satisfy the same boundary conditions, and because of that
they belong to the first homotopy class. But there in the first
homotopy class the absolute minimum of the energy is real-
ized for the skyrmion configuration, and therefore we have
H[6,]> E,. Insuchacase the inequality (3.3.16) follows at
once from (3.3.18).

Numerical calculations support the validity of this in-
equality. In particular, for N < 10 the mass spectrum of the
spherically-symmetric configurations of the ‘““hedgehog”
type is described with an accuracy ~ 1% by the following
formula:*®

1
Ey = ZN(N + 1)E;. (3.3.19)

For N> 1 the following asymptotic representation of the
mass spectrum [in units of 477(e/4)] is valid*®

Ey = [8,310N(N + 0,8726)/21+ O(1). (3.3.20)

It is easy to see that the inequality (3.3.16) follows from
(3.3.19) and (3.3.20) with a good margin. In particular
E,=3E,, and this leads to a strong repulsion between skyr-
mions at small distances and allows one to explain the effect
of saturation of nuclear forces.

Let us write the basic equation for the chiral angle 8(r):

2
6''(r + 4 sin20) = ~2r9" + sin 26 (1 _ g2 4 25070 S:;‘ 9].

(3.3.21)

Unfortunately, until now no one has succeeded in obtaining
an exact solution of equation (3.3.21). The function 8(r)
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shows a linear behavior for r<1: () ~Nm — r/r,, and for
r> 1 (in the linear regime) it falls off at the rate 8(r) = g/r*.
The numerical value for the skyrmion energy is
E,~8.206749.

A rather good approximation of the solution with
Q = 1 is provided by the Atiyah-Manton trial function:*°

-1/2
2
0=n|:1—[1+%] } . =42 (3.3.22)

By making use of it one obtains E, ~ 8.285. If one uses a
more complicated two-parametric trial function

6 =2arctgly (1 + 5?21, y=rla,

it results in £, ~8.239 for a = 1.495, b = 0.6984. It is inter-
esting to compare the above values for £, with the estimate
(3.1.10)

E, = 62%V251,231445.

Thus the excess over the estimate corresponds to the factor
1.23for N=1.

3.4. The direct minimization methods and the proof of the
existence of the Skyrmion

To prove the existence of skyrmions with Q = N as de-
scribed by the chiral angle 6(r), satisfying the equation
(3.3.21) and the boundary conditions

6(0) = Nm, 6(w) =0, (3.4.1)

it is possible by means of the direct method in the calculus of
variations (see Refs. 45, 46 and for more details Ref. 12).
Indeed, from the estimate (3.1.10) follows the existence of a
lower bound for the Hamiltonian H[#]. In units of 47 (g/A)
it takes the form

@ ] 2 X 4
H= f #dr= f %(F + 4 5in%0) + sin’0 + % dr.

0 0
(3.4.2)

Therefore one may regard the existence of skyrmions as a
consequence of the attainability of this lower bound of H on
some set M, made up of functions @(r) satisfying the bound-
ary conditions (3.4.1). Recall that the direct method con-
sists of the construction of a minimizing sequence 8, (r)eM;
of the proof of the convergence of this sequence to a limiting
point 8,eM, and of the proof that

inf H[6] = lim H[6,]= HI6,].

n—»w

(3.4.3)

Note, that (3.4.3) follows from the semicontinuity from be-
low of the functional H[ 8], i.e., from the following property
lim 16,1 = H(6,],

n—+ o

since in accordance with the definition of the lower bound
inf H[@]<H[6,]. Therefore it is enough to convince oneself
of the semicontinuity from below of H[f]. )

To construct a minimizing sequence we establish some
a priori estimates of the limiting function 8,(r). First, we
show the boundedness of its derivative at zero, i.e.,

164(0)| = C < oo. (3.4.4)
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Putting Nm — 6(r) =y(r) we assume the opposite, that as
r—0, |y’| = «, although the conditions (3.4.1) tell us that
y—0. Then from the equation (3.3.21) we derive for r—0:

W'+ yt= 2 (3.4.5)

The solution of this equation is y = Cr, which contradicts
the previous assumption and proves (3.4.4).

Let us also establish some limitations on the behavior of
6(r)and ' (r) for r— . Itis clear that the functional H[ 9]
is bounded from above, since when constructing a minimiz-
ing sequence one can take as the first term &,(r)

= Nmexp( — r), which gives H[8,] < . Therefore from
(3.4.2) follows the limitation:

fr2962dr503<w,
0

whence, for b > 0 we have according to the Schwarz inequali-
ty
1/2 1/2

|90(b)| =< fl@dldrs f% f,.2962 dr < Cob-l/Z,
b b b

(3.4.6)

Now we rewrite (3.3.21) as an integral equation (with

variable limits a,b):
b
sin%6,
+
2
a

sin290
2 .

(3.4.7)

Then, setting in (3.4.7) a—0, b> 1 and taking into account
(3.4.4) and (3.4.6) we find

165(8)| = 05~ %?).

[,66202 + 4 sin%) — 2r sin%, - [1

b
= f drl:—rz%z + 2sin%,- (2962 -1+

a

(3.4.8)

Finally, notice that the linearized equation (3.3.21),
ie., 0} =20, — 2r8}, has the Green’s function

s4
G(r>s)=- 32

G(r<s)=—’3—s.

Therefore (3.3.21) is equivalent to the integral equation

8y(r) = | ds G(r, )(s? + 4 sin%p) !
0

9 [
X [8 sin9,- (—sg) — 25in 26,

5 sin2g, )
x |6p° - 2 +sin 26, — 20, |.

By making use of (3.4.8) we derive from (3.4.9) a more
precise estimate for b — oo

349
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8,(8) = O(b™3), 16| = O(d~?). (3.4.10)

Now we consider the problem of minimization of a
Hamiltonian auxiliary for (3.4.2):

b
H,4101= f #.dr,
a

specified on a finite interval [a,b] in the class of smooth
functions o(r), satisfying the conditions
@(a) = Nm,0(b)=0. Then in accordance with estimates
(3.4.5) and (3.4.6) these functions belong to the Sobolev
space H, (a,b) with the norm

b 1/2
— 2012 2
ol = | [arPo2+6%1)|

a

a<l<h,

We choose the set M to be a sphere in H,(a,b), which in
accordance with the Banakha-Alaoglu theorem®! has tobe a
weakly compact one, and therefore the sequence 6,eM is
weakly convergent in this sphere to some limiting function
G,(r).

Next we prove that the functional H,, [€] is weakly
semicontinuous from below. To this end we use the fact that
any Hilbert space, including L, (a,b) in particular, possesses
a scalar product of positive functions, which is weakly semi-
continuous from below.’?> Denoting by ||*|| the norm in
L,(a,b), we represent H,, [8] as a sum of squared norms of
some vectors from L, (a,b):

4
H""m:kz A 012,
=]

where we have set

h =rl6'|/V2, h,=V2|0'sin 6],

hy=|sin 8|, h,=(sin%)/r.

Now we take into consideration that the Sobolev space, i.e.,
H, (a,b) is compactly embedded in the space of continuous
functions,®® H,(a,b) GC(a,b). This means that the se-
quence On(r) is strongly convergent to an element ,(r) in
C(a,b). Since the functions 4 {™ and 4 {™ are continuous
with respect to 8, this means they converge to their limits.
Furthermore, the sequence € , is weakly convergent to 4§ in
L,(a,b), whence h{"’ is weakly convergent in L, (a,b) to the
limit vector 4,(8 ). Finally, 4 {" is the product of two se-
quences: v20 ;,, which is weakly convergent in L,(a,b), and
sind,, which in its turn is strongly convergent in C(a,b).
Therefore 4 ™ would be weakly convergent in L,(a,b).
Thus we have found that all vectors 4 (™ are weakly
convergent in H,(a,b) & C(a,b) to the corresponding limits,
and consequently the functional H,, is weakly semicontin-
uous from below in H, (a,b). Finally, by performing the limit
transition to a— 0, b— «, we convince ourselves that

lim Hab =H,
a0,
b+

since in accord with (3.4.4) and (3.4.10)
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f #dr = O(a®), f Hdr = 0@®73).
0 b

Thus, the weak attainability of the lower bound of the Ham-
iltonian H in the space H, (0, o0 ) for Q = N has been proven.
It remains only to check the regularity of the limiting func-
tion 6,(r). The latter follows directly from the presentation
of (3.3.21) in the form

6y(r) = - fdrF(r, 6y, 0p),

r

since from (3.4.4) and (3.4.10) it is straightforward to de-
duce that FeL,(0, ).

3.5. The structure of topological solitons in higher homotopy
classes

As was stated above, the “hedgehog” ansatz does not
realize the minima of energy in higher homotopy classes. For
this reason, we shall minimize the Hamiltonian in a less ex-
tended (compared with that in Sec. 3.3) phase space. If, for
example, in (3.3.2) we vary only the direction of the vector
Z, then instead of (3.3.3) there would remain only two con-
ditions:

(V6 Vy) = (VB Vy) = (3.5.1)

The combination ( Vy)? will still appear in the Hamiltonian
[see the expression (3.3.4)] and this will lead to the condi-
tion (3.3.10). Substituting (3.3.10) into (3.5.1) we arrive at
the axially-symmetric configuration (3.2.16). These are the
basic facts, giving rise to the conclusion, that the G,-invar-
iant fields do realize the minima of energy in higher homo-
topy classes.

This property is not an accidental one, and is supported
by the statement of the following theorem:**

Theorem 3.5.1.

Assume that a G-invariant field ¢, where G = G, (or
G,) realizes the minimum of a G-invariant functional H[4]
in the class of invariant fields. Then if the functional H[#] is
convex with respect to derivatives taken at the point ¢, then
the field ¢, realizes the true minimum of H[#], i.e., it is the
minimum with respect to noninvariant perturbations as
well.
Proof. Let us take the second variation of H at the point &,
and present it in the form of a scalar product in the Hilbert
space L,:

y=¢(x) — %),

where K is the Jacobi operator of the functional H. From the
convexity of H with respect to derivatives it follows, that X is
an elliptic operator and from the G-invariance of H we de-
duce that

R = TR 077,

where T, is the operator of the group G representation. The
relation (3.5.2) tells us that the operator X is a G-invariant
one and therefore can be expressed in terms of the Casimir
operators C of G.
Taking, for instance, G = Gl,

82 = (v, K(x)y),

(3.5.2)

(J+T)2 where J
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are the angular momentum operators, T are isospin opera-
tors. Finally, from the properties of the elliptic operator K
follows the monotonic dependence of K on C,, which im-
plies that the eigenvalues A of the operator K increase with
increasing eigenvalues a, of the Casimir operator. In other
words dA /da, >0 when a, >0 (in virtue of ellipticity one
can restrict oneself to the positive branch of the spectrum).
On the other hand, for an invariant eigenfunction y, of K we
will have Cyo =0, and for noninvariant eigenfunctions y,
the eigenvalue equation is Cy, = a,y,,a; >0. With the as-
sumption that the spectrum of K is positive on invariant
functions, i.e., 4,> 0, it follows that A > 4,> 0.

The application of theorem 3.5.1 to the G,-invariant
solutions of the Skyrme model has been already illustrated in
previous sections. As far as G,-invariant configurations are
concerned we have at our disposal only the numerical data
on the dibaryons (Refs. 55, 56), i.e., the states with Q = 2,
when k = 2,6(0) = 7and E, = 1.92E,. The available infor-
mation on the states with Q>3 is contradictory, since it is
obtained as a rule under assumption of discrete symmetry,
when H is minimized in a certain sector of space, and config-
urations in other sectors are reconstructed by a continuation
procedure. Nevertheless, in each of these sectors the axial
symmetry of minimal-energy configurations is confirmed
(Ref. 57, see also Ref. 111).

We note an interesting method of approximating soli-
ton configurations with higher values of topological charge
Q =k, as suggested in Ref. 50. Consider Euclidean Yang-
Mills fields

= traqa
A= TGA o
which satisfy the self-duality equation
A, + [4,, 4,

F,=F,=04 (3.5.3)

Wy =

"and possess a finite action. This means, that F,, -0 as

[x} — o0. For this reason at infinity these fields are just pure
gauge fields:
~1

» le—: - U 6 U= L
The corresponding solutions are called instantons and are
classified by means of topological charge Q = k, which coin-
cides numerically with the degree of mapping -8 and
can be calculated by the formula (3.1.9). The vacuum states
(F,, =0), as is obvious from (3.5.3), are also pure gauge
expressions and are characterized by the same topological
charge Q. Formally, the instanton solution links (in time)
two vacuum states with charges Q = nand Q' = n + k. One
can readily see that, if one imposed the gauge condition
A, =0.

Let us suppose that a found instanton solution (4,,4;)
does not satisfy this gauge condition, i.e., let its time compo-
nent be nonzero (A4, £0). Then we perform the gauge trans-
formation

= 1 1 =
Ay=V'aAV+ Vvl =0,

wherefrom we obtain an “evolution” equation

9V =—Ay,
with a formal solution (in the form of a holonomy along the
time axis)
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t

1
V(x, 1) =Texp|~ fAt(x, 1) dt| V(x, ty).

fy

(3.5.4)

Putting V(x — « ) = I, we find V(x, + o) = U(x). If 4,
falls off fast enough for {x| - co, then for its solution we have
U(x)—>7as |x| - «. The thus constructed field U(x) is the
required chiral field with the topological charge Q = k.

If we take, for example, the t’Hooft’s formula for in-
stantons:

i k

4= Wp, p=1+3akx-X)"%
, i=1

then from (3.5.4) we find the soliton configuration

vy = Texp|- [agx . (3.5.5)

In particular, for k = 1 and X, = T, = O we have
Ay = i(xT) [(t2 +2 4+ o2+ r2)“‘] ,

on substitution of which into (3.5.5) we obtain the trial
function (3.3.22). Calculations for k> 1 are much more
complicated, but use of the algorithm presented here allows
one to obtain good enough approximations to soliton config-
urations in higher homotopy classes.

3.6. The rotating Skyrmion

The semiclassical quantization method, known also as
the method of collective coordinates, forms the basis for at-
tempts to describe the static properties of baryons in the
framework of the Skyrme model. The method itself is based
on the assumption, that the main contributions to the spec-
trum of excitations are those of rotational modes, given by
Witten’s ansatz:

U(t, ) = A()Uy (A~ (), (3.6.1)
where A(1)eSU(2) and Uy(r) is the hedgehog ansatz
(3.2.12). The substitution (3.6.1) describes the rigid-body-
like rotation of the skyrmion in isospace, which is not consis-
tent with the equation of motion and can be regarded as
admissible only under assumption of slow rotations.’® A
more rigorous description of steady-state rotations, for in-
stance, around the z axis might be undertaken using field
functions with the following characteristic dependence on
coordinates: a — wt, where w is the angular velocity. How-
ever, such an approach leads to equations, that do not pos-
sess soliton solutions, since one obtains typical radiative
asymptotic behavior exp(iwr)/r. Such a result can be pre-
dicted from physical considerations, as a rotating Skyrmion
becomes deformed and starts to radiate pions, which are re-
garded as massless in the chiral limit. To improve such a
shortcoming, let us include into Lagrangian the pion mass
term

Lo (3.62)
m=—1—2(1—cose), -
which destroys chiral invariance.
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In order to separate the time variable we perform the
substitution d, = — wd,, and, for the G,-invariant ansatz
(3.6.1), obtain the Lagrangian density:

L=-— [# + e%sin29-sin?8(r~ %sin "% - w?)

X [(3,0)% + r~}(9,0)% + sin?B-((3,8) + r~ (3, £)D)]
129 02 - 2 _ M2
- ﬁisin 6-sin8(r~2sin" % — w?) - F(l — cos )

— 27 %sin%0- (3,9 9,8 — 0,8 9, 6)%. (3.6.3)

If we make a transition to dimensionless variables

reer, w-o>w/e, m, - m/eA,

then the typical combination 1 — w*7*sin’¢, which appears
in (3.6.3), shows that for wr <1 one can perform a decompo-
sition in terms of w?, taking the latter as a small parameter
and the “hedgehog” ansatz as a first approximation.

Then one can present the functions 8 and S in the form

8=0y(r) +w¥,, B=0+0?B,. (3.6.4)

The perturbations 6, and 8, in (3.6.4) might be taken as
expansions in terms of the Legendre polynomials:

'Bl = 2 bn(r)P;n(ﬂ)‘
n=1

el = 2 an(’)PZn(a)’

n=0

(3.6.5)

Finally, notice that for rw > 1 the corresponding equations of
motion are nearly linear in terms of field variables

X =sinf-cosfB, Y =sin6-sinp.

Therefore, if we restrict ourselves to the amplitudes a,.a,,b,,
then the solutions of equations for X and Y would be consis-
tent with the expansion (3.6.5), if one chooses:

X=cos? (a+bcos®), Y=sind-(c+dcosD), (3.6.6)

where a,b,c,d, are radial functions with the asymptotic be-
havior given by

—mr

| e e
a, b~ 5

c,d ~ )

m' = (m?-wd'2 (3.6.7)

Thus, for @ ~m the transverse component of the isovector
field falls off slowly at large distances. This is a manifestation
of the centrifugal effect.’” Asis clear from (3.6.7), the angu-
lar velocity @ = m (the pion mass) is the critical one. When
the skyrmion attains this velocity it will be unstable and will
start to radiate pions. Appropriate calculations show, that
taking into account deformations of the rotating skyrmion
allows one to improve the Skyrme model predictions.®®

3.7. Toroidal and string-like vortex solutions. The relation
between the Skyrme model and Faddeev’s o-model nonlinear
ons§?

If one sets 8 = #/2 in the Skyrme model which corre-
sponds to the condition of electrical neutrality of the “pion
fluid”,**** the remaining angle variables 6 and y will deter-
mine the field with values on the 82 sphere, or the so-called n-
field. The Hamiltonian takes the form
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H= f d‘-‘x‘ﬁli((ve)2 + 5in%0- (Vy)?) + £%5in%0- (V6 X Vy]?

(3.7.1)

and corresponds to Faddeev’s S? nonlinear o-model.®!
Fields, which satisfy the boundary condition 8( ) =0,
split into homotopy classes, characterized by the value of the
specific topological invariant, known as the Hopf index Q.
It turns out that the Hopf index reduces to the degree of
mapping S* - S, if one introduces the auxiliary $* manifold,
parametrized by the angles 4,B,C in such a way that
n =g * 1o, where @ is a two-component spinor, given by

¢T = (cos A + isin A-cos B, sin A-sin B&C).

In this case Qp is defined by the formula (3.3.5) with the
following relabeling of angles 6,5,y —4,B,C. A minimum
estimate of the Hamiltonian (3.7.1) in terms of | Q |** is:®'

H>u|Qyl, u=ei-8a2v2-3%8

Minimizing the functional H — |Qy |** in the extended
phase space, as has been performed in Sec. 3.5, we obtain a
G,-invariant configuration in terms of 4,B,C. Going back to
variables 6,7, we obtain the following structure:

(3.7.2)

8=0(r,9), y=ka+ur?d), k€ELZ (3.7.3)
The Hopf index takes the form
«© E 4
Qu= %fdrfdﬂ(l = w)(9,w dyv — dgw 3,1),
o o
and the Hamiltonian is equal to
1 . %
H= fd%lw l:(Vl))2 + sin%- [;2- + (Vv)zj]
(3.7.4)

+ e25in%- [!‘_z%ﬁ + [vo XVv]z] ],
where p = rsind.

As one can see from (3.7.4), the corresponding regular
solutions are to behave so that sin6—0 for p—0. It means
that they have to be of toroidal structure,® and one can ima-
gine them as closed twisted strings (or vortices, smoke rings,
etc.%?). The additional twist of the n-field along the string is
described by the function v(r,?)€[ — nw/2,nw/2], nek, so
that Q,; = kn. Since the n-field manifests a toroidal struc-
ture, one can make an attempt to approximate it by a string-
like (vortex) solution, by taking a segment of the string and
joining its endpoints. The string-like solutions for the Ham-
iltonian (3.7.4) have the form

6 =6(p),

where we have used the cylindrical coordinates p,z, with z
being the coordinate along the string. The existence of these
solutions can be proven by the direct variational method.®
In Ref. 62 there are also given numerical data for the func-
tion 8(p) for m = 1. The Hopf index for the closed segment
of string of length / is determined by the formula

v==wxz, 6(0)=mn,

»l

QH=E=

The following estimate of the energy for such a configu-
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(3.7.5)

ration (in units of 47e/A) was obtained in Ref. 62:

E = 23,65N. (3.7.6)

Since the baryon charge of configurations in question is
equal to zero, they should be interpreted as heavy mesons
(torons). Let us also note, that in Ref. 64 a simple trial func-
tion was suggested to approximate the solution (3.7.3) with
k=1:

cosf=1-2sin?W-sin®, v=arctg(tg W-cosd), (3.7.7)

where ¥ = W(r) is an unknown radial function. Substitut-
ing (3.7.7) into (3.7.4), integrating over angle variables and
performing the change of the radial variable r —~£A7v2, one
finds

HIW]= (3202/30) f dr[\P'z(é + sinzlll)
0

+sin?W + 25—,

sin*W¥
2
Thus, the Skyrme Hamiltonian Hg (3.3.17) was obtained
for a new chiral angle W(r) with the following relation
H = (8v2/3)Hy. If one restricts oneself to the approxima-
tion (3.3.19) of the spectrum, then it implies the following
value for the energy

E = 30,95N(N + 1)/2. (3.7.8)

One can see that the estimate (3.7.8) much exceeds (3.7.6),
obtained in the string approximation. The latter works well
for N> 1, when the toroid has a big radius. At the same time
for small values of N, the approximation (3.7.6) gives values
that are definitely too low, and therefore one can indicate an
approximate value for the toron mass with Q; = 1:

2.88F,=23.65<FE , <30.95=3.77E,,
where E, = 8.206749 is the skyrmion mass.

4. THE SKYRME MODEL AND HADRON PHYSICS

Formulated in the early 1970s Quantum Chromodyna-
mics (QCD), the SU(3)-gauge theory of quarks and gluons,
is at present widely accepted as an indisputable candidate to
become the strong interaction theory. However, using build-
ers’ terminology, one can say that until now there is only a
general plan of a future building, and with respect to many
subdivisions of QCD, one can say, that things are far from a
completion of even drafts of working drawings. As a matter
of fact, as of now we are provided neither with sufficient
experimental data, nor with sufficiently reliable methods of
calculation. At present distinct contours are seen only in the
high energy QCD region, i.e., for short distances between
quarks. Here QCD possesses the asymptotic freedom prop-
erty and the description of quarks as of almost free particles
appears to be a good approximation in this region, and the
running coupling constant a,; appears to be a natural expan-
sion parameter. Since methods of renormalization group
analysis and of perturbation theory in powers of a; provide a
reliable calculation scheme for this region, this theory is
called the perturbative QCD. The current study of phenom-
ena in this high energy region encounters mostly technical
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difficulties. However, we are mostly interested in the non-
perturbative QCD region which refers to the low energies.

Let us note one more problem of an independent char-
acter, and, possibly, the most difficult problem in QCD. This
is the problem to study QCD dynamics in the region of inter-
mediate energies. Here both quark-gluon and hadron de-
grees of freedom are essential, and this makes it rather diffi-
cult to develop effective methods for this region.

4.1. The low-energy sector of QCD, methods of investigation,
and unsolved problems

The low-energy region of QCD is characterized by
strong interactions between quarks, when the standard per-
turbation theory does not work. It is generally assumed that
quarks are here in the confinement phase. However, in con-
trast to the asymptotic freedom property of quarks at short
distances, which has been proved rigorously, the confine-
ment phase of quarks is not a consequence of the QCD basic
elements and is considered only as a likely hypothesis, which
is not in contradiction with the QCD principles. In accord
with this hypothesis, in the low-energy QCD there are signif-
icant only colorless (hadronic) degrees of freedom, i.e.,
QCD can be reduced to an effective theory of mesons and
baryons. Along these lines, there arise two problems: 1) how
to derive the Lagrangian of this effective theory from the
QCD fundamental Lagrangian; 2) how to extract all the re-
quired information on the hadron properties out of the effec-
tive Lagrangian.

A possible way to solve the first problem has been sug-
gested by t"Hooft®® when he attempted to find an implicit
expansion parameter for the low-energy QCD. It turned out
that as an effective expansion parameter one can use the
quantity 1/N,, where N, is the number of color degrees of
freedom. The only essential restriction here is the required
existence in the theory of a continuous limit transition from
large N, values to the three-dimensional case. If such an
expansion is an appropriate one, then for N, — « the theory
simplifies drastically, which allows one to obtain reasonable
predictions for N, = 3. We give a more detailed account of
this method in the next section. Here we just note that the
suggested scheme of the 1/N,-expansion has its rigorous
grounds only in the two-dimensional QCD.% In Sec. 4.3 we
shall consider some schemes of derivation of effective La-
grangians from QCD (such as the Andrianov—Novozhilov
bosonization and so on), which are based on additional as-
sumptions.

Asis clear in advance, a Lagrangian of such an effective
theory will be essentially nonlinear with a rather complicat-
ed structure.®’ Therefore different model concepts of hadron
structure, which allow one to calculate the hadron charac-
teristics and the hadron processes, appear to be rather topi-
cal. Among them let us mention the quark potentials model
and various types of bag models. Starting from the middle
1980s, the Skyrme model joined this group. Great hopes are
associated with the so-called hybrid models, which unite
within themselves the attractive features of the bag models
and of the soliton model of baryons—the Skyrme model (see
Sec. 4.4). Some intermediate chiral quark models''? are also
being developed.
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4.2. ' Hooft-Witten's 1/N-expansion and renaissance of
Skyrme’sideas

The idea of 1/N-expansion appeared in physics in the
early 1950s, almost simultaneously with Skyrme’s model of
“pion fluid.””®® It is well-known, that there are some prob-
lems in physics where a perturbation expansion in powers of
a coupling constant is a meaningless one. Let us show this,
taking as an example the hydrogen atom problem with the
Hamiltonian

2 ¢

=P _ &
H_2m re

N

(4.2.1)

Since ¢” is small enough, it seems that one can treat the po-

tential energy term — e°/r as a perturbation, but after a re-

scaling r—r/me?; p—p-me® the expression (4.2.1) becomes
2

H=me (% - l) ,

. (4.2.2)
where the overall factor me* can be used to determine an
energy scale. Therefore we have to look for another small
parameter. It was found, that in these situations one can use
as a parameter the reciprocal dimension of an extended
physical space. If we write down the Schrédinger equation
for an s-state of an N dimensional hydrogen atom

_l(e N-14d)_¢
[ 2”'[dr2+ r 57]_7‘"11:.5‘1}’

and eliminate the term with the first derivative in (4.2.3) by
means of redefinition of the wave function ¥ — Wp®— 172,
and perform the rescaling r = (N — 1)2R we obtain the
equation

(4.2.3)

1 -1 d2 N-3 &2
— & |y
(N - 1)2 [2m(N -1)2dR? " 8m(N- 1)R? R V= Ev.

(424)

The equation (4.2.4) is the equation of motion for a
particle with an effective mass M_q = m(N — 1)2, moving
in an effective potential

— (4.2.5)

2
=_7 4
Ven(R) = 8mR: R’

The problem simplifies drastically for large N, since the ef-
fective mass M,; becomes very large and because of that it
will not be a great mistake to assume that the particle simply
sits at the bottom of the effective potential well (4.2.5). The
ground state energy is assumed to be the absolute minimum
of Vg for y = 1, and all the excited levels can be obtained by
an 1/N expansion. Then, in accordance with (4.2.4), we will
find '

Ey= —2me*(N - 1)72, (4.2.6)
so that for N =3 we get E, = — me*/2, i.e., the exact bind-
ing energy value. Experience proves that the above method is
a rather effective one.®

Let us note the common features of the above simple
example and of the nonperturbative QCD, which in the limit
of a large number of colors (N, — o ) simplifies essentially
(Refs. 65, 70). To clarify the reason for this simplification,
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recal], that the QCD fundamental Lagrangian for the N,
color case can be written as

Lo = - %tr(GﬂvG‘“’) + WD - ma, (4.2.7)

where the quark fields ¢2 transform according to the funda-
mental representation of the color group SU(¥,) (corre-
spondingly, the color label a takes on the values
a=123,..N,.) and of the flavor group U(X¥,) (the flavor
label is a = u,d,s,...N;). Gluon vector fields 4, =A;4°
take on values in the Lie algebra of the SU (N, ) group. Here
c=12,.N?— 1,A° are the generators of SU(¥,); G,,,
= (3,4, — 9, A, +gf™A,4;)A° is the gluon field
strength tensor, f,,. are the structure constants for the
SU(XN,) group, D, = 6# —igA, is the covariant derivative
g is the color coupling constant (the color charge), m is the
current quark mass.

Since the quark ¢* and antiquark g° fields (here for the
sake of simplicity we omit the flavor index) both have N,
colored components, then it is convenient to describe the
gluon fields by a traceless N, X N, matrix (A4,)j with N2
— 1 components, where (4, ); =4}, (A ©)i. Therefore even
after a specification of the color quantum numbers of the
initial and the final gluon states we have at least N, possibili-
ties of choosing the values of the quantum numbers of the
intermediate gluon fields. In other words, this fact leads to
the appearance of large combinatoric factors in Feynman
diagrams when we sum up over all intermediate states. The
values of these factors are determined by the number of
closed gluon loops in a particular diagram. The technique of
those calculations in terms of the graphic double-line nota-
tions is presented in Refs. 65, 70. Here we give as an illustra-
tion the diagram of the one-loop contribution of gluon fields
to the gluon vacuum polarization (see Fig. 2), for brevity
omitting vector indices in it.

In this diagram there are two three-gluon vertices with
the contribution 4,;4,29#4 *;, where the index ¢ corre-
sponds to the closed gluon loop and runs over N, possible
values. The summation over all possible states gives the com-
binatoric factor of NV . To provide the existence ofa N, — oo,
it is convenient to redefine the charge g—»g/\/TC , then the
factor of N, would be canceled out. Then the resulting factor
N, (g/+[N.)* = g would not depend on N, . After examina-
tion of all possible types of diagrams 't Hooft® came to the
conclusion, that for N, —» « only some diagrams, which
were called planar diagrams, would survive. They can be
distinguished as those which can be drawn on the plane with-
out line crossing or without an exit into the third dimension.
The contributions of diagrams, which contain such an exit
into the third dimension, fall off as N [ 2, and of diagrams
with internal quark loops fall offas N [~ .

A further simplification results from the hypothesis
that the confinement of quarks continues to hold in the limit
oflarge N, so that only colorless objects are observable. The
detailed analysis of dominating diagrams, performed by
Witten,’® resulted in the following conclusions:

a. Mesons for large N, might be regarded as stable and
noninteracting particles, since their decay amplitudes
are of order N 7 '/2.

b. Meson-meson elastic scattering amplitudes are of or-
der N 7! and are determined by contributions of tree
diagrams only.
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¢. Baryonic states might arise in the effective theory of
mesons with a small coupling constant N ~ ! ¢ as soli-
tons with masses of the order of the reciprocal cou-
pling constant, i.e., V..

As the main result of performed investigations one can
regard the proof of the equivalence of QCD at the limit of N,
— o to the theory of meson fields (and glueballs) with an
effective interaction of the order 1/N,. In this way at a new
level Skyrme’s idea was revived to consider a baryon as a
soliton state, appearing as a result of collective excitations of
meson fields. Of course, in such an approach there remain
unclear questions concerning the meson masses and their
coupling constants. Other problems are those of the struc-
ture of an effective meson Lagrangian and of fermion, the
properties of baryons, regarded as chiral solitons. We intend
to discuss all these questions and problems in the subsequent
sections. Now let us explain how in the framework of QCD
one can obtain a confirmation of Skyrme’s idea that the top-
ological charge can be identified with the baryon number.

The latter result has been obtained in the Balachandran
group’! and we reproduce it on the basis of the lecture notes
of Ref. 72. Physically the idea consists of the study of the
“polarization” of the Dirac “sea” of quarks in the presence
of an external classical chiral field U. It turns out that the
baryon current of quarks, averaged over the fermion states,
has exactly the same form as the topological current in the
Skyrme model. To start we present the baryon current J \*
in the form which is standard for QCD with N, colors:

I® = N'gy,0, (4.2.8)

where the factor 1/N, reflects the fact that each quark has
the baryon number 1/N,. Let us calculate the expectation
value (J(P) = B, (U) in the ground state, when the quark
field ¢ is coupled to the external field U. In the Lagrangian
(4.2.7) we preserve only the quark part

L = ig/ 9,9 — m(7 Ugg +hc), (4.2.9)
where
1 1
=31 +r99 dag=7(1~-r9e (4.2.10)

If one assumes that the baryon current conservation law
d, B" = 0 holds independently of the dynamics of the exter-
nal field U(x)eSU(X,), then in general such a current B,,
as defined on the U-manifold, should be of the form

BHU) = BIHU) + a0, (4.2.11)

where S is a constant, ¥, is any smooth function of U and
J* (U) is the conserved (topological) current. From general
considerations it should be clear, that B* cannot be reduced
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to the last term in (4.2.11) only, since the corresponding
charge density would have the form of a divergence
ik
el ai‘ij
and due to the boundary condition W, (r— ) —const, it
would not contribute to the baryon charge.

From the above considerations it follows, that the bary-
on number of the Dirac sea

[ Byw) a* =0 (4.2.12)

is completely determined by the proportionality constant 3,
which has to be fixed from the QCD fundamentals. In order
to achieve this, let us change variables in (4.2.9) as follows:
up, =g, ug = Ugg:

Ly = iugy "9,y + iugy'(9, — A ug — m(upug +he.),

where 4, = — UJd,U". As a result of interaction, the right
hand currents acquire the anomaly'"?

Oﬂ(ERy/‘uR) — im(ugup — upu;)
NC waf 2
=52 O,Mr(A,0,45 + 34,4,4p), (4.2.13)

while for the left hand currents we have the standard relation

6”(17,_7 Pu ) — im(uguy - upug) =0, (4.2.14)
which follows from the equations of motion.
On adding (4.2.13) and (4.2.14), we find
®»=1,G
3, "®) = o, (@*a)
1 2
= -8—3—2—9““‘66#&(11,6014# + 34440 (42.15)

The expectation value of the baryon current of the Dirac sea
one obtains from (4.2.15) by averaging it over the fermion
states:

(#®) = glie“”ﬂtr(Aya Ag + %A,A Ag)-

Taking into account the definitions for 4, and for the topo-
logical current in the Skyrme model [see (2.4.5) and
(3.1.9) ] we obtain the expression

(B = ﬁeﬂmﬂtr@q AgAg) = I,

which supports the Skyrme hypothesis on the interpretation
of topological charge as the baryon number. Hence, in
(4.2.12) one should set B = 1 (Refs. 73-75).

4.3. Andrianov-Novozhilovbosonization and other
approaches to derivation of o-model Lagranglan from QCD

The problem of transition from a fundamental (micro-
scopic) description to an effective (macroscopic) one is not
new in theoretical physics. To this end let us recall the “low-
energy” dynamics in solid state physics, where the funda-
mental objects are ions in the centers of a crystalline lattice
and electrons, which interact via the Coulomb law. Never-
theless an adequate description of low-temperature phenom-
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ena is given in terms of electrons with an effective mass (po-
larons) and phonons. It is remarkable that in this case these
effective degrees of freedom arise as a consequence of the
spontaneous breaking of the translational invariance. Com-
ing back to a description of the low-energy dynamics in
QCD, it is easy to note some analogy with the above exam-
ple. Here we also have to pass in the fundamental Lagran-
gian (4.2.7) from quark and gluon degrees of freedom,
which prove to be essential only at distances of the order 0.3
fm to hadron degrees of freedom describing the physics of
strong interactions at distances of 1-2 fm. In the process of
formation of this sector (hypothetically) there arise such
essentially nonperturbative phenomena as color confine-
ment and spontaneous breaking of chiral symmetry. If the
latter effect can be subject to some description, the situation
with understanding confinement is in a much worse state. To
date even a concrete statement of the problem is lacking.
Moreover, there are some examples of calculations of had-
ron properties based on sum rules without any use of the
confinement hypothesis (Refs. 76, 77). This hypothesis is
also not used for the explanation of existence of pions, which
appear as Goldstone bosons due to the spontaneous breaking
of chiral symmetry. One can deduce the main pion charac-
teristics from the partial conservation of axial current
(PCAC).

We note that frequently there appear opposite views on
the problem of an effective Lagrangian derivation from
QCD. On the one hand, the problem can be formulated as
that of finding an appropriate “‘change of variables” in the
functional integral

f dA dg dg exp (;I;; f dx Loco (@, @ A))
= de exp (%fdx Lc“(U)).

where .7 ocp is given by the formula (4.2.7), Uis the chiral
field, parametrized by meson fields, and .7 is the effective
Lagrangian being sought which depends only on meson
fields.

Actually, in its full extent this problem is equivalent to
that of the low-energy QCD solvability. Even if one were to
be successful, it would result in a meson Lagrangian rather
complicated for further study and special efforts would be
necessary to extract information out of such a Lagrangian.®’
Such methods are being actively developed now, and they
are being tested on those effective Lagrangians, which either
can be derived under additional assumptions, or can be con-
structed in a plausible manner. The construction of reason-
able approximations to the effective Lagrangian is regarded
at present as an alternative approach, since as will be shown

a direct derivation without any simplification is still impossi-
ble.

(4.3.1)

Besides purely meson effective Lagrangians, the so-
called quark-meson, or hybrid models where the quark de-
grees of freedom are not regarded as suppressed, are under
intensive study. Such an approach is justified by different
phenomenological considerations, and in particular, by the
lack in our understanding of the confinement problem. We
shall return to these problems in Sec. 4.4, and here we will
list some symmetry considerations, which are accepted by
most researchers (see, for example, Ref. 12). We shall also
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pay attention to some approaches and approximations,
which are used in attempts to solve the problem of (4.3.1).

A rather reliable approximation in the low-energy re-
gion of QCD turns out to be the chiral limit, when the cur-
rent quarks are taken to be massless. This is based on the
fact, that the masses of u- and d-quarks (m, ~4 MeV,
m, = 7MeV), and to a much lesser extent the mass of the s-
quark m_ ~ 130 MeV are small compared to the energy scale
Agcp =300 MeV characteristic of this region. Calculations
show, that the baryon masses and almost all meson masses
practically do not change under transition to this limit. The
exceptions are the pions, which in virtue of the Gell Mann—
Oaks—Renner relation m?%~(m, + my)Aqcp, become
massless.

Substituting (4.2.10) into (4.2.7), it is easy to see that
for m—0 the QCD Lagrangian possesses the global
U(N;), @ U(N,)p symmetry with respect to the left and
right rotations in the flavor space. More precisely, we are
dealing with transformations from the group

U3),® UB), = SUEB), ®SUB) ® U(l), ® U(l),, (4.3.2)

where U(1)y and U(1), are the one-parametric subgroups
of vector and axial-vector transformations with generators
q—exp(ia)q,q—exp(iysa)q, respectively. The above con-
siderations prove that it is unreasonable to extend the chiral
symmetry to the case of N, >3, and therefore we restrict
ourselves to N, =3 in (4.3.2). At the quantum level the
U(1) 4 -symmetry turns out to be explicitly broken in virtue
of the Adler—Bell-Jackiw—Bardeen anomaly:’®

3, (@r'ysqa) = 62 15(G,,,Gy,)- (4.3.3)

The remaining symmetry group
SU@3), ©SU@E), ®U1),

includes transformations of the type

. 4.3.4
o oof-n) w3

which mixes states with different parities. Here 7* are chiral
phases, A% are the SU(3) generators. For the left and the
right quark fields (4.2.10) the transformation (4.3.4) takes
the form

g U2 + U2, U= exp(in®l9). (4.3.5)

The spontaneous breaking of the global SU(3).

@ SU(3)x symmetry means that the relative chiral phases
of the left and right handed quarks became locally fixed so
that phase functions 7* (x) might be related with the octet of
pseudo-Goldstone bosons (7°,7* ,7,K ®,K* ,K°). Since at
spatial infinity the meson fields vanish, then for the principal
chiral field U(x) it is equivalent to the boundary condition
Jm U =1 (4.3.6)

From the transformation laws of quark fields:

a > Wa, az=>Va, W,VeSUQ),

follows the transformation law for the principal chiral field
U(x) under the group SU(3), ® SU3)g:
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U(x) = VU(x)W™!. (4.3.7)
Consequently, the vacuum state U = 1 is invariant only un-
der transformations from the subgroup of G, picked out by
the condition ¥ = W, i.e., under transformations from the
vector subgroup

Gy = diag(SU(3), ® SU(3)g) = SU(3),. (4.3.8)

One will come to the analogous conclusion under as-
sumption that in the vacuum state quarks form a condensate
(9..95) = (§,9)6,5/3, which is not invariant with respect
to chiral transformations (4.3.4). This leads to the sponta-
neous breaking of the chiral symmetry G—SU(3)y . A more
detailed discussion of the scenario of spontaneous chiral
symmetry breaking one can find in Ref. 79. '

Thus, one can consider that the field U(x) determines
the orbit of the group G passing through the unit element J
and therefore takes on the values in the homogeneous coset
space G /Gy ~SU(3), realizing a one-to-one correspon-
dence between the weak (phase) vacuum excitations, which
parametrize the field U(x) in virtue of (4.3.5), and elements
of the SU(3) group manifold. Now, if one takes into account
the validity of the chiral limit with acceptable accuracy only
for light u- and d-quarks, which corresponds to SU(2)_
® SU(2)g -symmetry, that breaks down according to the
same scenario to SU(2)y, then it is possible to regard the
above consideration as one more manifestation of Skyrme’s
deep intuition. Actually, long before the appearance of the
concepts of quarks and QCD, Skyrme suggested that the
chiral field has to take on values on the §* ~ SU(2) manifold.
On the other hand, since the above considerations are repre-
sented as being valid for any approach to the derivation of
the effective Lagrangian then as a probable result one would
obtain a nonlinear o-model with spontaneous chiral symme-
try breaking.

As a result of a more detailed QCD symmetry analysis,
Witten’ and the Syracuse group’' came to the conclusion
that the sought effective action of the o-model must neces-
sarily contain the kinetic term, (known as the Weinberg—
Giirsey action) and the Wess—-Zumino term®® related to the

Adler-Bell-Jackiw-Bardeen axial anomaly in QCD
(4.3.3):
F2 iN,
=— %] g4 . s
§= - qg) a1 - b f &Sx e or(L L L L L),
D

3

(4.3.9)

where F, is the pion decay constant and D in 5-disc with the
Minkowski spacetime as its boundary. This conclusion was
rigorously confirmed by Karchev and Slavnov®!, where the
chiral phase of quarks has been picked out on the basis of the
Faddeev—Popov procedure. It was shown that after making
the change of variables:

qU= U_ZGR + qL’ Et’= ERUZ + EL (4'3'10)

In the generating functional (4.3.1) with the massless var-
iant of the Lagrangian (4.2.7), and after the calculation of
the Jacobian of this transformation the Wess—Zumino term
arises in the effective Lagrangian.

The next step in the procedure is the integration over
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the color variables. Without going into details of the path
integration technique in gauge theories (cf. the well-known
monographs of Refs. 20, 82), we note that to date this proce-
dure cannot be carried through to the end. The limitation is
mostly related to the need to sum up all planar gluon dia-
grams. The latter problem requires the extension of the tech-
nique of the 1/N-expansion to matrix fields. This still re-
mains an unsolved problem. Therefore one cannot uniquely
reproduce the higher order terms (in powers of L,, ) in the
effective Lagrangian, calculate the constant F, in terms of
the quark-gluon parameters, and so on.

At the present it is possible to answer the above ques-
tions only under some additional assumptions, using, for ex-
ample, the Andrianov—Novozhilov bosonization (Refs. 83,
84). Spontaneous chiral symmetry breaking is admitted in
this bosonization method, and due to the assumption of the
presence of the quark (g,q) and gluon (TrG,,) condensate
parameters of the low-energy sector are fixed in a self-consis-
tent manner. Leaving aside any possible correlations be-
tween the flavor and color phases of quarks, one can deal
with the following quark part of the Lagrangian (4.2.7):

L,=3Dq = ig#3, ~ ¥, - vsA)a = US + vsP)a,

where D is the Dirac operator and it is assumed that the
system of quarks is in the following external fields: vector
V, . pseudovector 4,,, scalar S and pseudoscalar P. If one
ignores the quark masses, then the Dirac operator spectrum:
Dg, = Kq, is symmetrical and a gauge-invariant definition
of the low energy region employs only the QCD scale param-
eter Agep : [K | < Agep - For massive current quarks, in or-
der to limit the corresponding spectrum, it is necessary to
introduce an additional parameter M, which accounts for
the asymmetry of the Dirac operator spectrum. Then one
can define the low energy region by the condition

IK=M| s Ay, MET0, Agep ], (4.3.11)
which leads to the quark condensate density
N, 3
(Ea)=—5[%(A%,CDM-MT)., (43.12)

Thus the Andrianov—Novozhilov bosonization method is
based on the assumption that in the low-energy region of
QCD the nonperturbative quark fluctuations dominate, vio-
lating the chiral symmetry and leading to the formation of
the quark condensate.

The main difficulty of this approach consists in the deri-
vation of the path integral in the left-hand side of (4.3.1),
when integrating over the quark degrees of freedom, taking
into account the restrictions on the Dirac operator spec-
trum. Utilizing the finite-mode regularization technique,?®
the authors of the presented method calculate the Adler—
Bell-Jackiw—Bardeen anomaly and reproduce the Wess—
Zumino—Witten action (4.3.9). Moreover, making use of a
change of variables, analogous to (4.3.10), they succeeded
in obtaining the explicit form of the fourth order terms in the
chiral currents L, in the effective Lagrangian

N
@y = e y
LEHW) = gamatrliLy, LILK, 2]

- m2 -1
2(L”L ) +4aﬂaf‘uaﬂaf‘u ) (4.3.13)
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(The more complete expression also depends on introduced
external fields and one can find it in Ref. 84). Finally, the
above approach allows one to establish that the stability con-
dition on the quark condensate with respect to fluctuations
is the positive definiteness of the gluon condensate, given by
the expression
6N
(tr(G,wG"”)) =—" (6A3cpM? — Abep —M*,

32

Note also, that in (4.3.13) besides the Skyrme term, which is
necessary for a description at the classical level of a stable
extended particle, there are tachion corrections, violating
the positive definiteness of the energy functional. On the oth-
er hand, the developed approach leads to an effective poten-
tial allowing one to describe on an equal footing the low-
energy region and the asymptotic freedom phase in QCD, as
well. We discuss this topic a little further in the next section.

In conclusion it should be noted that there are some
other methods of derivation of an effective meson Lagran-
gian in QCD.”’

(4.3.14)

4.4. Hybrid models: quark bags and skyrmions

As already mentioned above, besides the effective me-
son Lagrangians to describe the low-energy QCD region var-
ious bag models are used (the Dubna bag, the MIT-bag and
soon). Quarks are regarded as relativistic particles with spin
1/2, which are situated inside a bounded volume—a bag,
with dimensions that have to correspond to the characteris-
tic scale of confinement. Inside the bag quarks can be consid-
ered as free particles, in accordance with the asymptotic
freedom property, and their confinement is provided by im-
posed boundary conditions. For instance, in the MIT-bag
model®® with the Lagrangian:

Ly = (% 67’“‘_3,“1 — mgq — B)on(x - %E@B(X) (4.4.1)

the confinement of quarks is provided by the step function
6y (x), which equals 1 inside the bag and vanishes outside
the bag. The surface 5-function 55 (x) arises here due to the
relation d, 8, = n, 5y, where n, is the outer normal to the
bag surface. The bag stability is provided by the “vacuum”
pressure B. Since quarks are free inside the bag, their behav-
ior is governed by the Dirac equation

(r*3, — m)g =0, (4.4.2)
with the boundary conditions on the surface
inyhq=q. (4.4.3)

Though the idea of an artificial quark confinement in-
side the bag allows one to employ the usual methods of de-
scription of point-like particles, nevertheless it is clear that
in a consistent theory the confinement itself must appear asa
result of quark interactions. Therefore, in order to avoid the
image of a bag, whose dimensions are taken from consider-
ations external to the model, it was suggested in Ref. 87 to
consider the bag as a defect in the sigma-model field configu-
ration. As such a configuration, in particular, one can con-
sider the “hedgehog” skyrmion configuration or a more
complicated one, which includes fields of vector p- and w-
mesons.*® For these models, which are known as chiral or
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hybrid bag models, in their (1 + 1)-dimensional variant,®® a
curious phenomenon was discovered. The results of calcula-
tions in the framework of such bag models show that the bag
might be considered not as a physical substance, but rather
as a way to divide the space into the “inside” and “outside”
parts. In this case the boundary conditions (on the “bag”
surface) are not inserted into the model, but instead are de-
rived from the bosonization condition

%P =Vrqy,rse. (4.4.4)
One can divide the space region, occupied by a hadron, into
any number of pieces, so that in some of these pieces only the
quark degrees of freedom would be essential, while in other
pieces only meson degrees of freedom would be essential. It
turns out that if one imposes appropriate boundary condi-
tions on the boundaries of these pieces and takes into ac-
count the Casimir effect, then the physically significant re-
sults will not depend on the concrete method of division.
This phenomenon acquired the name—the “Cheshire cat”
principle, which, as people say, was able to disappear in such
a way, that his smile remained after disappearance of the cat
itself. Here we have a similar situation, there is no bag in
essence, but one can still exploit the corresponding formal-
ism.%®

Strictly speaking, an extension of this scheme to the
(3 + 10)-dimensional chiral bag model meets with the same
difficulty that was encountered in the process of derivation
of an effective Lagrangian from QCD: the lack of an exact
bosonization scheme for fermions in the (3 + 1)-dimension-
al case. Nevertheless, as has been demonstrated by publica-
tions of the Stony Brook group,®' in the (3 + 1) hybrid mod-
el an approximate Cheshire cat principle proves to be valid,
which leads to a reasonable value for a spherical bag of radi-
us R <0.5 fm.

On the basis of hybrid models one succeeds in calculat-
ing static characteristics of hadrons and parameters of their
interactions. What is even more important, in this frame-
work one can obtain a unified description of phenomena
both in the hadron sector of QCD and in the asymptotic
freedom region. The latter is accomplished mostly thanks to
the Cheshire cat principle, which allows one to perform an
arbitrary division of space into pieces. consequently one can
consider bags (defects) of an arbitrary radius R. Taking
R — 0 we should obtain the Skyrme model (or any other ef-
fective o-model) and for large R we should obtain the stan-
dard bag model of the type (4.4.1).

We note that such an interpolation can be obtained be-
yond the scope of hybrid models as well, for instance, on the
basis of some bosonization scheme. In this manner, using the
Andrianov-Novozhilov bosonization one can get the
V(U,S) potential, which is a function of chiral U and scalar
S fields, where S one can regard as a characteristic of quar-
konium with the effective coupling constant g.. In the re-
gion of high energies the latter constant coincides with the
running coupling constant &, and in the low-energy region
g.q =const. These two regions correspond to two distinct
minima of the V(U,S) potential, corresponding to different
values of S. Calculations based on this interpolating poten-
tial yield the reasonable value for the bag of radius
R = (0.42 4+ 0.27) fm.
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4.5.The Berry phase and skyrmion as a fermion

The effects mentioned in the heading are under inten-
sive study during the last decade and, as it turned out, they
have in fact the same origin. The Berry phase and the emer-
gence of fermion states within the framework of a purely
boson field theory were at first sight considered as exotic
phenomena, but gradually their deep topological nature was
elucidated together with the universality and the general
character of these effects. Of the numerous articles on this
subject we would like to mention here the reviews of Refs.
92-94 and the proceedings of recent conferences (Refs,
95,96) devoted to these problems. In accordance with the
aims of this paper stated previously, we would like to focus
our attention on the background ideas, with a special empha-
sis on the fermion properties of the skyrmion. Here is the
right place to stress that in recent years the term “skyrmion”
has acquired a more general meaning, denoting states in bo-
son field theories [ not necessarily (3 + 1)-dimensional ones
and frequently without any relevance to the original Skyrme
model], which are quantized as fermions.’* Since the phe-
nomena in question are in close connection with the topolog-
ical properties of models, their most adequate description
requires an intensive use of algebraic topology concepts and
techniques. Lacking such a possibility in the framework of
this review, we shall concentrate on the exposition of the
principal results, leaving technical details aside.

As has been outlined in Sec. 2.3, the first hope to realize
the idea of construction of fermions from bosons occurred to
Skyrme after the discovery of the topological charge in the
sine-Gordon model. We recall that this quantity represents
the number of kinks minus antikinks. Let x] denote the co-
ordinates of localization of a kink (antikink) center. Then it
is possible to write the following distribution function for the
system of kinks and antikinks along the real axis:

a(x) =%(Ee+(x-xfo) +26‘(x—x{))), (4.5.1)
i J

where 8% (x) are 27-kink solutions of the sine-Gordon
equation (2.3.3), which are increasing or decreasing ones,
respectively. In virtue of the expression (2.3.3), the topolog-
ical charge Q can be presented in the form

Q=a(+=) —a(-w)= > n* —Zn;. (4.5.2)
i ]

Skyrme interpreted the conserved quantity (4.5.2) as the
number of fermions minus antifermions. In support of this
interpretation he quantized the sine-Gordon model,® giving
the explicit form of creation and annihilation operators,
which obey anticommutation relations. On the basis of ob-
tained results Skyrme concluded that quantum sine-Gordon
solitons are equivalent to fermions, interacting via the four-
fermionic type of interaction (such a model has been consid-
ered independently by Thirring). Later this result, on the
basis of a different approach, was rigorously confirmed by
Coleman?’ (see the book of Ref. 20 for details). This is the
right place to note that in (1 4+ 1)-dimensional theories
there is no difference in spins of bosons and fermions, and
therefore the bosonization process, i.e., the process of trans-
formation of a fermion theory into a boson theory has a clear
scenario (see Sec. 2.3). Skyrme made an attempt to extend
this result to a (3 + 1)-dimensional model,*® but a strict jus-
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tification of his hypothesis on the fermion properties of a
skyrmion has been achieved only on the basis of a topologi-
cal treatment of spin, due to Finkelstein (Refs. 27, 97).

The essence of this approach can be presented briefly as
follows. In contrast to tensor fields, which transform ac-
cording to single-valued representations of the Poincaré
group, in particular the SO(3) group of spatial rotations,
spinors are characterized by their double-valuedness under
27 rotations. In homotopy language this fact can be stated in
the following way: the group SO(3) is a doubly-connected
one, i.e., its fundamental group (the group of closed loops)
7,(SO(3)) is isomorphic to the abelian group of integers
(modulo 2) Z,, which consists of two elements. In quantum
physics this leads to two possible quantizations according
either to the Fermi-Dirac or to the Bose—Einstein scheme.

Topological treatment of spin, according to Finkel-
stein, consists in construction of double-valued functionals
on the set of classical fields ®. These fields can be regarded
(at any fixed moment of time ¢) as mappings ¢ (x):R>— .
The space of all such continuous maps Map (R>;®), denoted
in short by M, is not, in general, a pathwise-connected one
and its connected components can be thought of as elements
of the zeroth homotopy group 7,(M). On the other hand,
the homotopy classes [R? ®]; of maps ¢ (x) form the third
homotopy group (@) and it is clear that these two groups
can be regarded as identical. Moreover, there is an isomor-
phism between the higher homotopy groups of the space M
and the manifold ®: 7, (M) =, ;(®). The field
¢ = ¢(x,t), t,<t<¢; can be considered as a path p in M con-
necting the points ¢,(x) = ¢(x,¢,) and ¢,(x) = $(x,1,).
The amplitude 4 of the probability of a quantum transition
from the state ¥ [¢,(x)] to the state ¥[#,(x) ] can be writ-
ten according to Feynman as a complex-valued functional,
taking path integral of exp{{ f L [¢]1d}} over the space
M(#,,6,) of paths connecting the points ¢, (x) and ¢, (x) in
M. Since in general M(¢,,4,) is not pathwise-connected,
then denoting its connected components by M, (¢,,4,) one
can present the transition amplitude as

A > p) =D, x(a)fexp{%fL[sﬂ d4x}d,u gl (4.5.3)

where L[@] is the Lagrangian density of classical theory;
dulé#] is a quasimeasure in the functional space, and the
coefficients y(a) determine a one-dimensional representa-
tion of 7, (M) (Ref. 99). The sum in (4.5.3) runs over the
set of connected components {M, (¢,,4,)} of the space
M(¢,,0,). It turns out that without any loss of generality the
paths {¢(x,r)} = {p} might be considered as closed ones,
i.e., ¢, = &,. This allows one to identify the set of compo-
nents {M, (¢,,6,)} with 7, (M) = 75, ($). The coeffi-
cients y(a) in this case obey the composition law:
y(af) = y(a)y (). The calculation of y () in the general
case can be reduced also to that of the case ¢, = ¢,, and
therefore the result is of a general character.

Let us now give the definition of the double-valuedness
of the functionals A(¢4,—¢,) according to Finkelstein,
which is just a translation into the homotopy language of the
property of spinors to change their sign under a 27 rotation.
Taking a point ¢,€[R;,D];, then to the same homotopy class
there should belong a closed path p, starting and ending at
this point ¢,, such that the values of ¥[¢&(x,s)] along the
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path p vary continuously and do not attain the original value
at the end point. After going twice around the same path p,
i.e., after going around the path p? the functional ¥[¢(x,¢) ]
must be led to the initial value. In other words, the path p in
the homotopy class [R;,®]; should be a nontrivial one,
while the path p? should be a trivial one.

The answer to the question when is such a situation
possible can be obtained on the basis of calculation of coeffi-
cients y(a).® In the skyrmion case, we denote by A (v) the
homotopy class of the composition of consecutive mappings:
¥,: §°-8° and ¢,: -9, ie, A(v) =v'p, where
ver;(P), and p is a nontrivial element of the group
74(S*) = Z,. In accordance with the homotopical definition
of a fermion state one can assert, that when the identity
A(v)=0holds, all the above mappings would correspond to
bosons, and to fermions in the opposite situation. More pre-
cisely, this statement can be formulated as follows: if a skyr-
mion is characterized by a quantum number ver;(®) and
y[A(v)] =1, then it obeys the Bose—Einstein statistics, and
if y[A(v)] = — 1 it corresponds to Fermi-Dirac statistics
(Ref. 100). In Ref. 99 calculations are performed for the
cases, when the field manifold is ® = G /H, here Gis asimple
Lie group and H is its subgroup. Both can be replaced re-
spectively by their maximal compact subgroups and this
does not lead to a change of homotopy groups 7, ($). For
the case of the Skyrme model we are interested in
® =G =SU(2) and 7;(SU(2)) = Z. If Gis locally isomor-
phic to the group SO(n), where n =3 or n>S5, then
74(G) =Z,. In this case A(v) =0 for all even numbers
very(G) = Z,and A (v) = | forall odd numbers v. If g is not
locally isomorphic to SO(n), then 7,(G) = Oand A(v) =0,
i.e., in such theories only boson states are possible. Before
turning to a description of a dynamical realization of this
formalism, let us note that all the above statements com-
pletely agree with the results of papers of Refs. 97, 98, where
necessary and sufficient conditions for the existence of
“spinor structures” on field manifolds ¢ have been formu-
lated. In this context we consciously leave aside the problem
related with the SU(3) generalization of the Skyrme model.
It is known, that for the SU(3) group 7,(SU(3)) =0,
therefore we shall consider the statistics of skyrmions in this
case within the framework of a dynamical realization of dou-
ble-valued functionals, which is the next topic in our exposi-
tion.

A dynamical realization of Finkelstein’s scheme has
been suggested in a series of papers by Witten''4 and by Bala-
chandran et al. (Refs. 71, 101-103), which revived interest
in the Skyrme model and demonstrated its applicability to
the QCD low-energy limit. In particular, Witten noted that
there are a number of processes with pseudoscalar mesons,
which are allowed by the QCD symmetries, but are prohibit-
ed in the framework of an effective low-energy theory of the
Skyrme type. The reason for such a discrepancy is that the
effective vertices in the description of processes, typical for
this region, contain as a rule the Levi-Civita symbol ¢,,,,.,, .
For example, a typical process K K~ -7 " 77~ is de-
fined by the vertex of the form:

e#"en0 K*o K omta .

Calculations of this vertex in the framework of the chiral
Skyrme model lead to combinations £**?L,, L, L, L,, which
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are identically equal to zero by virtue of the invariance of the
trace operation under cyclic permutations. Therefore the
vertices of this type are prohibited in the framework of chiral
models and one can understand this as a consequence of an
extra conservation law.

Witten noted the fact, that the presence of an extra con-
servation law in the chiral models is related with an extra
discrete symmetry of the effective Lagrangian, which is ab-
sent in the QCD fundamental Lagrangian. This extra sym-
metry can be easily discovered from the explicit form of the
chiral field U(x,?), modeling the low-energy limit of QCD
with three flavors:

U, 9= exp(%l"n"(x. 1)), a=13, (4.5.4)

where A? are the Gell-Mann matrices, and 7° (x,t) are
fields, describing the pseudoscalar octet of mesons. Noticing
that under a space reflection

P n9(x, 1) » —a%(-Xx, 1), (4.5.5)

we derive from (4.5.4) the transformation law for the chiral
field U(x,t):

P U, ) > Ut (-x, 0. (4.5.6)

But the operation (4.5.6) can be represented as a product of
two operations P = Py ( — | )™, where

Py X=X, (=1 -1y vt (4.5.7)
Thenotation ( — 1) adopted here for the second operation
is related with the fact that the operation U—-U * is equiva-
lent to 7 — — 7 and thus counts modulo 2 the number of
bosons, N. The indicated symmetry causes the special se-
lection rule: all Green’s functions must be invariant under
the replacement 7° (x) - — 7 (x), and hence they should
vanish for all combinations, which include an odd number of
fields 7. In other words, all reactions with an odd number
of pseudoscalar participants must be suppressed.
Fortunately, the general recipe is known how to avoid
this kind of trouble (Refs. 101, 102), which had occurred
already, for instance in the description of the dynamics of
“the charge-monopole” system. The equation of motion of
an electric charge e on a unit sphere > = {r> = 1} and in the
Dirac monopole field with the magnetic charge u, which is
localized at the origin, has the form (in units ¢ = 1):

. . Xk .
mx; = eye,jkxjﬁ - mxl.rz. (4.5.8)
We note that the Lorentz force on the right-hand side of Eq.
(4.5.8) excludes the extra discrete symmetries, namely:
t— — t;r— — r, which are characteristic of the system in the
absence of a magnetic field, leaving as an admissable symme-
try only their product. But in this case the problem arises of
how to reconstruct a Lagrangian of the system, which would
correspond to the equation (4.5.8), since an introduction of
a vector potential A such that

curl A=g (4.5.9)

definitely forces A to be a singular function at some points
along some line passing through the origin (a filament or a
Dirac string), and consequently to a singular interaction
term in the Lagrangian e(r-A).
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Perhaps this is an appropriate place to recall the Berry
phase.'™ The point is that M. Berry faced an analogous
problem when investigating the applicability of the Born-
Oppenheimer adiabatic approximation to quantum systems,
where it is possible to separate the “fast” and the “slow”
variables. Then, as is known, the solution of the problem can
be divided into two stages. At first one has to consider the
motion of the “fast” subsystem under the assumption that
the “slow” coordinates are fixed. Next one has to take into
account the motion of the “slow” subsystem. If one rejects
the Born—-Oppenheimer assumption, that coupling between
the “fast” and “slow” variables in the adiabatic approxima-
tion can be neglected, then as a result of decoupling of the
“fast” degrees of freedom in the space of the “slow” vari-
ables R a nontrivial structure—a peculiar “gauge potential”
A(R) is formed.

Furthermore, if in the energy spectrum of the eigenval-
ue problem for the “fast” variables there is a degeneracy (the
“slow”’ variables are considered as parameters in this case),
then the gauge potential A (R) acquires a singularity. As has
been shown by Berry, % if the electronic degrees of freedom
are treated as ““fast” variables (an electron in a magnetic
field B(7)), then in the space of the “slow” variables a singu-
lar potential of the monopole type will be induced. In its
turn, the problem of calculation of the phase of the wave
function (the Berry phase) is similar to the problem of re-
construction of an interaction Lagrangian for the ‘“‘charge-
monopole” system. On this basis Aitchison'®® emphasized
the analogy between the Berry phase and the Wess—Zumino
term. As it will be clear from what follows, the latter concept
allows one to solve the problem of reconstruction of a regu-
lar Lagrangian for the *“‘charge-monopole” system, solves
the problem of elimination of extra symmetries in an effec-
tive chiral Lagrangian, and provides us with a treatment of a
skyrmion as a fermion as well.

In order to eliminate singularities from the interaction
Lagrangian e(r-A), one can note, for example, that the equa-
tion (4.5.9) is insensitive with respect to gradient transfor-
mation A’ = A + V3, which lead to the following change in
the action:

t

2 2
s -5 =efdqivy) =e[dy.

4 1

(4.5.10)

It is known that such an ambiguity of the action is quite
undesirable in a quantum description. Let us estimate it, for
example, for a closed path of an electron on the sphere
§% = {r? = 1} setting r(¢,) = r(1,) and calculating the con-
tribution of the interaction term in two different gauges [see
Eq. (4.5.10)]

12
e[ atin) = ef(aar). (4.5.11)
I ¥
Here v is a closed contour, which separates two distinct re-
gionsD* and D~ on§*=D* UD~ (Fig. 3).

It is possible to apply Stokes’ theorem and to convert
the line integral (4.5.10) into a surface integral if, and only
if, the integrand is non-singular. Therefore when integrating
over D * we relegate the singularities of A to the other disc
D~ and vice versa. Then we will find
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$a, an = [, as),
-

b4

Sﬁ(Az dr) = — f(B2 ds), (4.5.12)
4 D™

where the minus sign is related to the choice of opposite
orientation, and B = curl A is the magnetic induction of a
monopole. In passing from one gauge to the other we obtain
the action ambiguity as

AS=e f (BdS)—efd3xde 4rep, (4.5.13)

D*uD”

where V is the volume bounded by the S? surface. Since the
quantum transition amplitude

()

a1 = [ dutry ]exp{%S [x(r) ]}
(t)

must not be gauge-dependent, we obtain the condition
exp{% f B dS)] - exp'— z f B dS),,
o* D

from where, and taking into account Eq. (4.5.13), we get the
Dirac quantization condition

exp(iAs) =1, AS=2nk, eu==h (4.5.14)

A 2

We have met here with a rather widespread situation, when
multivalued functionals appear, and an elimination of their
ambiguity leads to quantization of physical parameters.'®®

Another way out, suggested by Balachandran et al.
(Refs. 101, 102), provides the possibility to obtain a nonsin-
gular action, and, as will be shown below, leads to some in-
teresting generalizations. It was proposed to extend the con-
figuration space Q to the space of paths PQ over Q, which is
defined as follows. Let x, be a fixed reference point in Q (an
arbitrary one). Then as an element of PQ one can take a path
p from x, into x, defined by a parameter o:

= {p(o), p0) = x5 p(l) = x}.

The time dependence p(o,?) is introduced in the same man-
ner. Then a singular-free action has the form:

Lo . ,
_ ap'(o, 1) ap/(a, 1)
Sm—ef dtfdaFij[p] o0 or
t 0

0<o=xl,

(4.5.15)

where
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k a, l

The integrand in (4.5.15) can be regarded as a closed 2-form
= 2F,[pldp' Adp/

with the closedness condition dw = 0, which coincides with
the Bianchi identity
O Fy+ 0,Fy + O.F, .= 0.

The further development of this approach can be found in
papers of Refs. 93, 107. Here we summarize briefly the main
results. Since a wave function, which describes a (pure)
state of a quantum system, is always determined up to the
phase, then it might be regarded as not a function on @, but
rather as a function on the corresponding U(1) bundle over
Q, denoted by Q. This Q one can imagine as obtained by
associating a circle S' to each point of Q. Thus obtained Q
would be trivial or nontrivial, depending on the way these
fibers S! are attached to points of Q. If @ = 0 ® S, then the
bundle would be a trivial one, or, in other words, will not
contain a twist. In the opposite case the bundle Q would be
nontrivial and one can determine the Wess—Zumino action
Swz onit.

A general method of constructing wave functions in the
presence of the nontrivial Wess—Zumino term is described in
Refs. 93 and 101. If the group of transformations G is defined
on a configuration space so that the action S, including S,
is invariant under tr/z\msformations from G, then on the cor-
responding bundle Q there would act a different, quantum
group G. The latter, in general, does not coincide with G, and
at times even does not contain G as a subgroup. For example,
in the above discussed ‘“charge-monopole” system
G = S0(3), while for ey = #i(n + 1/2),neZ one can choose
the SU(2) group to be the quantum group G. It is because of
this replacement of the group of classical symmetries G by
the quantum group G that the fermion-boson transmuta-
tions predicted by Skyrme appear to be possible.

To eliminate the redundant symmetries in the o model
it is possible, as has been shown by Witten,''* to add to the
equations of motion (2.4.8) a term, analogous to the Lor-
entz force in (4.5.8), that is of the type "L, L, L, L ,. But
once again here arises the problem with reconstruction of the
Lagrangian since the simplest possible term
e“*Tr(L,L,L,L,) is a trivial one. Exploiting further the
analogy with the “‘charge-monopole’ system, instead of the
path S' on S we introduce the “path” S* on §°, i.e., we
extend the domain of definition of chiral fields and consider
mappings of the form U(x): §*-SU(3) = G and the exten-
sion corresponding to the space of paths PQ, U(x,0):
$*—SU(3). It turns out, that such an extension can be per-
formed only under the condition 7,(G) = 0, which fortu-
nately is satisfied in our case. By virtue of the other well-
known isomorphism 75 (SU(3)) = Z for mappings U(x,0)
it is possible to construct a topological invariant:

= fdsx
s

where x® = ¢. It is not difficult to verify that the integrand in
(4.5.16) is the 5-form

5
——1240n2fd (L LLLL), (45.16)
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_i
P = H
wg >4 2trl5, ! Lydx,

which proves to be closed and inexact. Following the argu-
mentation used in the description of the “charge-monopole”
system, we obtain the explicit form of S, for the SU(3)
Skyrme model:

Suz =1 f dSxeRenr(L L L L L), (45.17)
240n%

s

where 7 = const. In order to make the value of Xy, inde-
pendent with respect to a choice of discs D ;" of D; as in
(4.5.14), we impose the condition

q(fw5+fws)=qfw5=27mn=2n7in'.

o}  Dbf s
where n,n'eZ and the Gauss theorem generalized for S° has
been used.''* Once again we obtain quantization of the pa-
rameter 7, and comparing (4.5.17) and the formula (4.3.9),
derived from QCD taking axial anomaly into account, we
obtain Witten’s result: 7 = AN, .

Now it remains to adduce some arguments to prove that
skyrmions might in this case behave as fermions. With this in
mind we consider the vacuum-to-vacuum transition ampli-
tude for a skyrmion at rest:

(SK(T)|SK(D) = exp(~ £4T)1 + O,

where H is the Hamiltonian of the system, and T is a time
interval. Now, if we rotate the skyrmion adiabatically
through 27 around some axis, then according to quantum
mechanics rules, the amplitude acquires the phase factor of
the form exp( — i2#J /#), where J is the total spin of the
skyrmion:

{Sk(T)|Sk(0)),, = exp (— %HT) exp (- —;—27:1) (1 + O()).

(4.5.18)

To evaluate this factor we have to embed the static SU(2)
skyrmion (3.2.12) into a SU(3)-valued chiral field, i.e., to
deal with the classical chiral fields of the form
exp(ir 8(r)) . 0
U x) = - 0], (4.5.19)

and to choose the rotated field U in the form U(x,?)
=A(t)-U(x)-4 T (t), where A(¢) is an SU(3) matrix of

rotation around a spatial axis. We write the amplitude as a
Feynman path integral

+
t=T(A* U A)

(SK(T) Sk = v, Dlexs (k5] (45209

t=0(V)
where
s=-mr- B _[yp (4.5.21)
240u2D+

5
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M is the skyrmion mass, and the 1-form / = L, dx* is calcu-
lated for fields U(x,t,0), obtained as the extension of fields
U(x,t) on Ds by means of the replacement 4(t) - A(t,0).
Here we have set A(1,1) = A(¢),3,4(1,0) =0,4(t + T,0)
= A(t,0). Calculations in (4.5.20) and (4.5.21) yield the
following result:

i
tr ¥ = nQ,
2407:2Df+

5 .

(S(T)|Sk(0)),,, = exp (— %MT) exp(iN 7Q)(1 + O(R)),

(4.5.22)

where Q is the topological charge of the skyrmion.

From a comparison of the expected answer (4.5.18)
with the obtained answer (4.5.22), we conclude, that for
Q = 1 the spin of the SU(3) skyrmion is equal to

A
J= ENC’

i.e., that for an even number of colors a skyrmion has an
integer spin, and for an odd number—a half-integer spin.
The above considerations do not provide one with an
answer for the SU(2) skyrmion spin, since the Wess—Zu-
mino term is trivial in this case. The answer, which however
can be obtained in the “Cheshire cat’ spirit, is as follows.
Indeed, the Wess-Zumino term vanishes in the transition
from the case N, =3 to the N, = 2 case, but its “smile”
remains in the form of the discrete group Z,. It is often said
that in the latter case the discrete version of the Wess—Zu-
mino term (Refs. 72, 93) does work, and, in particular, it
picks out the possible methods or types of quantization for
the given system. The point is, that, when applying the col-
lective coordinates method as a quantization scheme, there
exist three possible types of quantization (see lecture notes
of Ref. 72, and also Ref. 108): a purely boson, a purely fer-
mion, and mixed (both boson and fermion) types. The stan-
dard procedure is the following: after embedding the Skyrme
ansatz into the SU(3)-valued chiral field as in (4.5.19) and
introducing the collective coordinates A(t) we obtain the
Lagrangian L(A4,4), which admits a gauge symmetry, i.e.,
the group of time-dependent transformations which changes
L(A,)i) by a total derivative: L—»L + dy/dt. As usual, the
availability of time-dependent symmetries does not lead toa
conservation law, but instead imposes some restrictions on
the phase space of the classical system as well as on admissi-
ble states in corresponding quantum theory. It is just these
additional constraints that remove the freedom in the choice
of the quantization scheme for the SU(3) skyrmion. The
time-dependent transformations of the collective coordi-
nates, which leave invariant the field U(x,?)
=A* (t)U,(x)A4(t) and the corresponding equation, can
be easily found from (4.5.19) assuming, for example,

A() = A()exp(iYa(f)) where3Y = diag(l, 1, =2). (4.5.23)

Since ¥ commutes with U,, then U will be invariant with
respect to transformations (4.5.23), which represent the
one-parameter U(1) subgroup of hypercharge.

For the SU(2) Skyrme model the existence of alterna-
tive quantization schemes reflects the fact that physical
states in this case might belong to any one of two possible
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irreducible representations of Z,. [t means that state vectors
can be either even or odd function of the collective variable
A. One can regard the SU(2) model as obtained from the
SU(3) model after imposing an appropriate constraint.
Since

exp(i3xY) = diag(—1, -1, 1),

then the reduction of the group of gauge invariance for the
SU(3) model to the two-flavor case will contain Z,. The
gauge condition in the SU(3) model leads to the unique val-
ueof exp ({37 Y) for physical states. In this respect, the ambi-
guity in the quantization of the two-flavor Skyrme model
can be eliminated if one regards the latter as some contrac-
tion of the three-flavor model.

Finally, one more effect should be mentioned here. This
effect was discovered recently and is relevant, in a sense, to
the fermion properties of the skyrmion. We are referring to
the results of the European Muon Collaboration (EMC)
experiment'®® on the measurement of the spin-dependent
structure function for protons, and to the explanation of this
result in Ref. 110 based on the Skyrme model. As it turned
out, the results of these calculations are confirmed with high
accuracy by the experimental data. The attempts to obtain
these results by lattice QCD calculations, using the most
powerful of modern computers, are still unsuccessful. We
are not going into the details of this effect any further, but
just note that it proves once again the necessity to develop
dynamical scenarios in order to extract definite answers
from QCD. As is becoming apparent, the Skyrme model
copes rather successfully with such functions in the low-en-
ergy sector. The explanation of the above effect within the
framework of the Diakonov-Petrov chiral quark model
(Refs. 112, 116) was given in the paper of Ref. 117.

4.6. Skyrmion interactions and internucleon forces

When considering hadron interactions in the frame-
work of the Skyrme model, the following should be taken
into account. This model, regarded as a low-energy approxi-
mation to QCD up to the leading order terms in a 1/N,-
expansion, provides only an effective account of the ex-
change between hadrons of massive vector and scalar
mesons. Therefore there could not be any claim of obtaining
a complete picture of hadron interactions. Nevertheless, in
spite of its relative simplicity, in many cases the Skyrme
model produces a correct qualitative (and sometimes even
quantitative) description of hadronic processes. In particu-
lar, this is the case when one deals with distant interactions,
i.e., with low-energy phenomena, where this model works
rather well.

First, we give a graphic topological description of the
system of two interacting SU(2) skyrmions, i.e., the Q =2
configurations, in the adiabatic approximation. The latter
means that we are going to minimize the energy of the con-
figuration after fixing the geometrical centers of the skyr-
mions at some points, say r; and r,, determined by the condi-
tion 8(r;) = 7, or

U(r) = U(ry) = ~1. (4.6.1)

The condition (4.6.1) means that the field configuration U
in the neighborhoods of points r, and r, coincides with the
field U, of a single skyrmion (3.2.12). Therefore the surfaces
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FIG. 4.

d(r;) = const~ 7 are close to spherical surfaces (see Fig.
4). Further, there exists the surface 6 = , homeomorphic
to a connected sum of two spheres §?, which divides the
space R? into three parts: two internal ones (6> 6,), with
points r, and r,, and one outer region (8 < §,). Each surface
6 = const is mapped into some region 2 CSU(2), which is
homeomorphic to the sphere §% if 6 is fixed, then the unit
vector neS? remains free in U. From Fig. 4 it is clear that all
the connected parts of the constant 8 surfaces with 6 > 6, are
mapped into S with the degree 1. On the other hand all the
constant @ surfaces with 8 < 8, are mapped into the sphere §*
with degree 2. For this reason the topology of the field con-
figurations in the region 8 < 8, coincide with the topology of
the G,-invariant fields (3.2.16) with k = 2. As the skyr-
mions approach each other 6, #. The field configuration
obtained in this way is identical to an axisymmetric one
(3.2.16), which, however, does not yet correspond to the
closest possible approach of the skyrmions, since we have a
toroidal distribution for the energy density of this state. A
still closer approach would mean a draining of the “pion
fluid” into the central region, and this process would lead to
the formation of a region with 8 > . Growth of this region
would finally lead to the formation of a G,-invariant field
configuration with Q = 2, and since the energy of such a
configuration is three times greater than the energy £, of a
single skyrmion, there would be a strong repulsion between
the skyrmions (with an energy of the order of E).

The standard description of the skyrmion interaction is
based on the product ansatz approximation

Upy = Ut — r))UB(r - 1), (4.6.2)

where

U§ = AUAY, UB=BUB*Y;, 4,BeSUQ).

If the matrices 4 and B are different, then (4.6.2) describes
skyrmions with a relative angular displacement in isospace.
In particular, from Fig. 4 it follows that the maximal attrac-
tion between skyrmions arises when the relative rotation is
through an angle 7 about an axis perpendicular to the line of
separation of the two skyrmions. Indeed, the spherical con-
stant & surfaces in the limit 6 -» 8, must touch each other at
points that are mapped to the same SU(2) element, so that
precisely the rotation of the spheres through angle 7 is ob-
tained (Refs. 47, 118, 119). From the above considerations
it is clear that the configuration (4.6.2) faithfully repro-
duces the interactions between skyrmions at large distances
and gives only a qualitatively correct description at small
distances. At the same time, one cannot extract from that
kind of description, for example, a formation of a G,-invar-
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iant configuration at the intermediate distances (Refs. 55,
57).

To calculate the interaction one usually proceeds as fol-
lows. From the energy value computed for the configuration
U,, is subtracted the energy of the two widely separated
skyrmions, i.e., 2 E,. The obtained result is declared to be the
skyrmion-skyrmion potential V(R; 4,8, where R=r, —r,.
In a quantum description the matrices 4 and B are random
and one has to average over them. It turns out that the result
of averaging would be the same, if one were to average some
products of the Pauli matrices ¢, and 7,, /j = 1,2 over the
standard spin-isospin states of a nucleon |N ), where ¢; and
7; are spin and isospin operators of individual nucleons
(Refs. 60, 120, 121). In particular, the following relation
holds (cf. Ref. 60):

(N'[tr(r, A% T5) [N = = 2N’ (0,24 IN),

Taking it into account leads to the potential for the NN-
interaction

AN — V. + (-rl-rz)[(o‘]cz)Vm + 5,V ), (4.6.3)

where §,, = 3(n-0,) (n*0¢,) — (0,°0,) is the conventional
tensor operator, with n=R/R. A comparison of (4.6.3)
with the widely accepted “Paris”’ phenomenological poten-
tial of Ref. 122 shows a satisfactory agreement in the distant
region (R > 2 fm) and a qualitative agreement at intermedi-
ate distances (1 fm < R <2 fm). However, the central poten-
tial ¥, comes out to be purely repulsive, although the “Par-
is” potential does contain in the intermediate range an
attraction, which is small (in comparison with the nucleon
mass), but plays a crucial role in nuclear physics, forming
the binding energy of nuclei. In the standard boson-ex-
change theory this attractive potential is explained by an
isoscalar wm-exchange (an exchange of an effective o-me-
son), and can be obtained within the framework of the
Skyrme model, if one accounts for skyrmion perturbation in
the course of interaction.’?® This problem in the intermedi-
ate-range attraction is, in our opinion, mostly related with
the shortcomings of the product-ansatz approximation
(4.6.2).

We note that in a relatively simple way one can extract
from (4.6.3) the one-pion-exchange potential, which is re-
lated with the skyrmion structure in the asymptotic (r— )
region

3y, ANN

- -2
Sim, (1 + m_ryexp(—m,r)yr-*, (4.6.4)

6(r) =

where f nn—a numerical constant, A =2/F,, F, =186
MeV. By making use of (4.6.4) one obtains the following
potential:

m
e = ﬁtmlyz(mnr)slz + Yo(mn)(e0) 1 (rim)

=

where the Yukawa functions were used, defined as
Yo(x) =e~%/x;  Yo(x)=[14 (3/x) + (3/x?)] Yy(x).
Thus, the one-pion-exchange interaction evidently contrib-
utes into the components V,, and V... One should say, that
a satisfactory agreement with the ‘“Paris” potential is not
only due to the one-pion-exchange. For example, at R < 1.5
fm the contribution of V'~ is less than 30%. Therefore the
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Skyrme model qualitatively gives a correct account also of
the multi-pion-exchange process.

But the phenomenological “Paris” potential, besides
terms of the kind of (4.6.3), also contains other terms of
considerable importance. Among them, for example, is the
spin-orbit interaction, which has the form

[V g +(17,) V g, JLS), (4.6.5)

where now S = (¢, + 0,)/r, L= — i(RX V). To derive
the spin-orbit interaction in the Skyrme model'?* one has to
account for the kinetical non-steady-state part of the Hamil-
tonian, related with TrL2. However, the isospin-indepen-
dent component V¢ in (4.6.5) is obtained with the incor-
rect sign. To improve the situation it is possible by the
inclusion in the Skyrme Lagrangian of the term

Lg =20, (4.6.6)
where J,, is the topological current density. The term (4.6.6)
in the Lagrangian is quadratic in velocities and does not vio-
late the skyrmion stability.

4.7. Meson-baryon processes

In the course of analyzing interaction processes be-
tween mesons and baryons there were revealed hitherto un-
known phenomenlogically useful relations, which are in
good agreement with experiment and first appeared due to
attempts to describe 7N-scattering in the framework of the
Skyrme model. Later on it became clear, that these relations
are to some extent model-independent ones and are relevant
to the approximate conservation law of the K-spin, namely:

K=L+T, (4.7.1)

where L is the total angular momentum of mesons (here
only 0~ -multiplets are considered) and T is their total iso-
spin. The conservation law for the K-spin manifests the
availability of the so-called K-symmetry of baryons, which is
relevant to the G,-invariance of the skyrmion configuration.
It is useful to stress here the analogy with the central poten-
tial scattering in quantum mechanics, when the orbital angu-
lar momentum is conserved.

We note that thus defined the K-symmetry holds only in
the adiabatic approximation, at a relatively high energy of
incident particles in the absence of resonances with low-ly-
ing excitations of skyrmions. Roughly speaking, the scatter-
ing time has to be small compared with the period of rota-
tion. As one of the consequences of the K-symmetry there
appear linear relations between partial amplitudes, the so-
called Mattis—Peskin—Karliner relations.'?’ So, if we consid-
er the 7N-scattering, including the N- and A-states, then the
T-matrix can be brought tothe form (cf. Ref. 125):

T, r; = T{LST)} = {L's"TI})

I8

= (_l)s’—S(zs + 1)”2(23' + 1)1/2

x; (2K + 1){52‘.’1}{;?}’&'0 (4.7.2)

where 7, ., is the reduced 7-matrix, L and L’ are the initial
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and final pion angular momenta, s and s’ are the initial and
final values of baryon spins (equal to isospins), T is the total
isospin, and J is the total angular momentum. In (4.7.2) the
K values range in accordance with the restrictions
|IL —1|<K<L + 1,|L" — 1|<K<L' + 1. Equation (4.7.2)
implies two linear relations:

(4L + 2)TL3/2.L—I/2 - (- I)TLI/Z.L—l/Z
= 4.7.3
(L+ 3)TL1/2.L+1/2’ ( )
L+ 2)TL3/2,L+1/2 - 3LTL1/2,L—1/2 =L+ 2)TL1/2.L+1/2'

Comparison with experiments shows a fairly good fulfill-
ment of the relations (4.7.3) in the F-channel,®® and a worse
agreement in the D-channel. This should have been expect-
ed, since the higher values of L correspond to higher ener-
gies.

Recently, it became clear that the Mattis—Peskin—-Kar-
liner relations can be generalized also to the SU(3) case.'?®
Moreover, the K-symmetry conservation approach is suc-
cessfully applied also in the analysis of baryon-baryon inter-
action process (Refs. 126, 127).

Asfar as calculations of the scattering amplitudes in the
framework of the Skyrme model are concerned, usually this
is performed by considering configurations of the form

U=expli(nt)8(r) + itw(r)], n=r1/r,

where 8(r) describes the skyrmion and m(r) describes the
meson field. Now in the Lagrangian there are left only terms
quadratic in 7 and this leads to linear equations for the pion
field with coefficients dependent on the ‘“hedgehog’ profile.
Expanding the mr-field in spherical harmonics taking the K-
symmetry into account, we obtain a set of equations for the
radial field functions. The solutions of this set enable us to
define the scattering matrix.®

4.8. The Skyrme model and nuclear matter

The first attempts to describe dense nuclear matter by
means of effective mesonic fields were made by Skyrme.**

Introducing, in accordance with Sec. 3.3, the vecotrs
X=V8, Y-=sin8-VB, Z=sinb sinf-Vy,

we can write for the energy density u = E /¥ and for the
baryon density n = |N |/V = |Q|/¥ the following expres-
sions:

u =$(x2 + Y2+ ZY) + XY+ [YZP + [ZXTY),
(4.8.1)

=$|(X[YZD|. (4.8.2)

Recalling that a geometric average does not exceed an arith-
metic average, one obtains the inequalities:

%(X2+Y2+Z2) = (|1X]- Y[ 1Zz)?3 = |(XTY ZD)|?P,
%([x YR+ (YZ1P+ (Z X3 = [(X(YZ]|*A.

Using these inequalities we deduce from (4.8.1) and (4.8.2)
an estimate of the energy density of nuclear matter:
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uz _2'11_2 (21!2")2/3 + e2(2n2n)4/3. (4.8.3)

In the dense matter limit the second term in (4.8.4) becomes

the dominant one, whence:
u > e2(2n2n)*3 = 160e2n4/3. (4.8.4)

It is of interest to compare Skyrme’s estimate (4.8.4) with
that obtained in the bag approximation of the quark-gluon

plasma theory,'?® namely
2a
u=B+—3—n2/3(1 +?‘)n4/3, (4.8.5)

where B is a quark bag constant and «, is the running QCD
constant. It is evident that estimates (4.8.4) and (4.8.5) are
in good agreement with each other. This fact tells us that the
Skyrme model accounts quite well for high-energy hadron
physics as well.

Numerical calculations of Ref. 129 show that if one
considers a system of isolated skyrmions then as its density is
increased they would form a structure similar to a face-cen-
tered cubic lattice with a spacing a and a symmetry of the
form:

Ulx + 2 y+ %, z) = 1,U(x, y, 2)75; (4.8.6)
where dots stand for transformations obtained by cyclic per-
mutations of (4.8.6). The symmetry (4.8.6) means that situ-
ated at the center of a face a skyrmion is turned in isospace by
an angle 7 around the outward normal to the face. Under
further condensation skyrmions expand in size losing their
individuality. Therefore a phase transition to a condensed
medium takes place. If we set U = o + i(m-7), then for this
phase transition the parabolic approximation to the mean-
field value is valid, i.e.,

(o) ~(a—a,)?

thus indicating that the above phase transition is of the sec-
ond kind. The field configuration itself acquires an addi-
tional symmetry at the phase transition point:

0&+%»n=-dmx¢
a

7 (x+ 5, 9 2) = —x(%, ), 2),
a

(X + 35 ¥, 2) = Mo(x, ¥, 2),

a
73(x + 3, 3, 2) = 713(x%, ¥, 2);

and so on by cyclic permutations.

Finally, with a further decrease of the spacing a < a.,,
the energy per individual skyrmion continues to decrease, its
minimal value at some a = a,,, where the field configuration
is approximately described by the following functions:

o = cos kx-cos ky-cos kz, k=2n/a,
) )
my = sin kx-(1 - ﬂ%ﬂ - &2—]2 + % sinZky-sinZkz)1/2;

and so on by cyclic permutations. Thus, the surfaces defined
by o=0 are orthogonal planes with [xy,z
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= (a/4) + m(a/2)], meZ. We note this leads to a consider-
able diminution of the mass per skyrmion (with a factor
= (5/6)) compared with that for a free one.

An interesting interpretation of this effect was suggest-
ed by N. Manton,'*° who considered the Skyrme model as
defined not on the flat space R?, but instead on an S* sphere
of some radius R. Since the metric element on $* in terms of

- spherical coordinates (u,2,a) is

d5? = R2[du?® + sin%u(dd? + sin®da?)], u€ [0, 7],

the transition from R> to S*-model is equivalent to the fol-
lowing replacement of variables in the Skyrme Hamiltonian:
r—R sinu, dr—du. As the result, with the “hedgehog” an-
satz the Hamiltonian takes the form

n 2
in 2
H =225 [ du sin? H(Qﬁ) Zsin 26
I{d[l sin‘u & + sinp

2
202 .2 "]
+1-1|sind i, ("—") + 30 487
(sinzp du sin u ( )
where we have set L = R /AeV2. It is not difficult to see that

minimization of (4.8.7) leads to the Euler-Lagrange equa-
tion, which admits the simple uniform solution

=m—pu (4.8.8)

with the associated energy

E=3WIF(L+L).

For L = 1, the solution (4.8.8) realizes the absolute mini-
mum of the energy and, moreover, it saturates the topologi-
cal lower bound E~ 6v27*(e/A), while this is impossible in
R? (see Sec. 3.1).

Itis straightforward to see that the solution (4.8.8) cor-
responds to uniform distribution of matter on §° that is to a
condensed phase. As has been shown in Ref. 131 this solu-
tion turns out to be stable for L < v2,i.e.,forR = R, =24ca
phase transition should occur. Therefore in the Skyrme-
Manton model the radius R of the spatial sphere S* should
depend on the baryon density: R ~n~ '3, If L > V2, the con-
densed phase becomes unstable and in the limit L — « isolat-
ed skyrmions should be formed. In the latter case it is possi-
ble to obtain L-dependent corrections to the skyrmion
mass:'3!

E, = 6x25(1,231445 - 2419 1) 4.8.9
! 1 ( 12 4r? (4.8.9)
The expression (4.8.9) implies the skyrmion mass diminu-
tion effect, correlated with the nuclear matter density.

5.CONCLUSION

One of the tasks, which we had set for ourselves when
writing this review, was a graphic demonstration of the effi-
ciency of topological methods, especially in the study of es-
sentially nonlinear phenomena. The Skyrme model appears
to be a clear illustration of such an approach in theoretical
physics, which has evolved from the hydrodynamical Helm-
holz-Kelvin notions at the end of the last century to the
modern models for particles and nuclear matter. Among
other examples of the development of this approach, the the-
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ory of defects in solids, the liquid crystals theory, the theory
of strong excitations in magnetic materials, superfluidity
and superconductivity theories should be mentioned. All
theories listed here are at present at different stages of their
development, but nevertheless, it is already possible to no-
tice their common features. This is the similar structure of
model Hamiltonians, the deep topological origin of nonlin-
ear phenomena and so on. Let us hope that the methods
presented in this review and tested in applications to the
Skyrme model will find successful applications in all the the-
ories listed above as well, and that the methods developed in
these theories will be useful in the physics of skyrmions. If
this will come to pass, then the aim of this paper will have
been achieved.

6. ABRIEF OUTLINE OF THE LIFE AND WORK OF T.H.R.
SKYRME

Tony Hilton Royle Skyrme was born on 5 December
1922. After graduation from Trinity college, Cambridge,
U.K. in 1943, he worked during three years at Los Alamos
(U.S.A.) as a theorist. Then he returned to Trinity College
and continue with his studies in theoretical nuclear physics.
During the period 1950-1961 he worked in the Atomic Cen-
ter in Harwell (U.K.), being the Head of the Nuclear Phys-
ics group,which specialized in the theory of nuclei. It is just
during this period that his principal results appeared, which
made him known worldwide.

From 1962 Skyrme devoted himself to teaching activ-
ity. For two years he worked in the Department of Math-
ematics, University of Malaya at Kuala Lumpur before re-
turning in 1964 to Birmingham University, first as Professor
and Head of the Department of Mathematical Physics, and
latterly as Professor of Applied Mathematics in the Depart-
ment of Mathematics.

In 1985 the Royal society awarded Tony Skyrme the
Hughes medal in recognition of his contribution to theoreti-
cal particle and nuclear physics.

T. H. R. Skyrme died on 25 June 1987.
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