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The properties of systems consisting of classical atoms with a short-range interaction and the
processes occurring in them are studied. An asymptotic theory is presented for the transport
coefficients and other parameters of a gas, which exploits the steepness of the interaction potential
of the atoms in the repulsive region. A comparison of the parameters of various condensed inert
gases shows that these parameters can be expressed in terms of the interaction potential between
two atoms. On the basis of a model of close-packing of the atoms analyses are made of the
properties of large clusters, the surface energy of condensed and porous systems, the surface
tension of liquids and liquid metals, and of the solid-liquid phase transition.

1.INTRODUCTION

An interaction between atoms and molecules is regard-
ed as short-range when it comes into play only when the
distance between the particles is small. In a bound system of
many atoms and molecules the short-range interaction oc-
curs between atoms that are nearest neighbors. Ordinarily, it
is the short-range interaction that acts between the atoms
and molecules of a gas. For example, inert gas atoms have a
closed electron shell, so that the exchange interaction be-
tween two atoms due to the overlap of the electron shells
causes a strong repulsion. The attraction at large internu-
clear distances is due to weak dispersion forces. Therefore,
the interaction potential between two atoms is characterized
by a strong repulsion when the atoms are close together and
a shallow well at distances comparable to atomic dimen-
sions. In denoting this interaction as short range, we assume
that in the region of attraction the interaction potential is
characterized by a narrow well and the absence of any long-
range interaction.

This form of the interaction potential is reflected in var-
ious properties of atomic systems. Such a system of atoms is
well described by models in which atoms are replaced by
balls. Then the properties of a gas that are determined by
atomic collisions (such as the transport coefficients) can be
analyzed with the use of a hard-ball or hard-sphere model for
the colliding atoms.'* In the analysis of the properties of
bound systems of atoms (polyatomic molecules, clusters,
the condensed state), it is convenient to model the atoms as
balls, considering only the interaction between nearest
neighbors. In this case, the short-range interaction corre-
sponds to pairwise interactions between atoms in the con-
densed system.

There is still another property of a condensed system of
atoms with this type of interaction. Because of the absence of
long-range interactions no stresses arise in such a system.
Moreover, because of the shallowness of the well in the inter-
action potential, the interaction between two neighboring
atoms does not depend on whether these atoms interact with
other atoms. This means that vacancies in the system have
no effect on the interaction of the atoms adjacent to them,
and consequently the vacancies do not interact among them-
selves until they have a common boundary. All these factors
underscore the simplicity and convenience of this model.

Therefore, in the analysis of the properties of a system
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of atoms with a short-range interaction, these atoms can
conveniently be described by ball models. The accumulated
experience in this regard can be summarized as follows.
First, the short-range interaction of atoms applies to real
systems, the interaction of inert gas atoms and gas mole-
cules. For these cases the ball models can be modified by
means of a small parameter that takes into account either the
steepness of the repulsive potential or the smallness of the
depth and width of the well in the interaction potential of the
two atoms. In this way this model is able to describe real
systems of atoms. Second, the results of the ball models are
relatively simple, and therefore they can be used to estimate
the properties of more complicated systems.

This review presents an analysis of the properties of sys-
tems that are composed of atoms with a short range interac-
tion, and a number of models that describe these systems are
considered. These models are used to analyze the properties
of various atomic systems.

2.GAS SYSTEMS
2.1. Interaction potentiai of the atoms

In the analysis of gas systems consisting of atoms with a
short-range interaction, the item of foremost interest is the
collision of two atoms. In examining these collision pro-
cesses we assume that in the collision the atoms behave as
classical particles. This assumption is valid, for example, in
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FIG. 1. Interaction potential between two atoms. The dashed line is the
model potential corresponding to the hard-sphere model.
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TABLE I Internuclear distance R, (A) corresponding to the minimum of the interaction

potentials.*~'?

‘Interacting He Ne Ar Kr Xe T

atoms
He 2.97 3,2 3,5 3.8 4,1
Ne - 3,09 3,5 3,7 3.8
Ar — — 3,76 3,9 4,1
Kr — — — 4,01 4,3

_ Xe — — — — 4,36

the calculation of the transport coefficients in any inert gas
or molecular gas under normal conditions (i.e., a pressure of
1 atm and a temperature 7 =273 K).

The parameters of the gas system are determined by the
interaction potential of its atoms. Figure 1 shows the shape
of the interaction potential between two atoms. The features
of the potential for the short-range interaction between the
atoms are associated with the shallowness of the potential
well and the steep variation of the potential as a function of
the internuclear distance in the repulsive part of the poten-
tial. Since we shall henceforth be concerned mainly with in-
ert gases as a real case corresponding to the short-range in-
teraction of the atoms, Tables I-III list the parameters of
molecules consisting of two atoms of an inert gas.*'* It can
be seen that the depth of the well is small compared to char-
acteristic atomic energies (me®/# = 27.2 eV) and to the
characteristic dissociation energies of stable molecules,
while the equilibrium distance is large compared to charac-
teristic atomic dimensions (#%/me®> =0.53-10"% cm). The
accuracy in the listed parameters is better than 10% for the
binding energies and better than 3% for the equilibrium in-
ternuclear distances.

Table I11 lists the logarithmic derivative in the repulsive
region of the potential

_ dinU(R)
n="GqInR * (D

where U(R) is the interaction potential at a distance R be-
tween the nuclei. This quantity is given for an energy where
the interaction potential is 0.3 eV, which is considerably
more than the depth of the well in the interaction potential of
the atoms considered. The values listed were obtained from
the data of Leonas.'* As is shown, n> 1. This result can be

obtained from general considerations. The basic function in
the potential of the exchange interaction is an exponential
dependence for two identical atoms at large internuclear dis-
tances proportional to ¢* (R /2) (Refs. 15-17), where ¢ (r)
is the wave function of a valence electron at a distance r from
the nucleus. Thus,

U(R) exp(—¥R), (2)

where the parameter ¥ in atomic units is equal to (27)'/? and
I is the ionization potential of the atom. Since ¥~ 1 and the
characteristic internuclear distance in atomic units is some-
what greater than unity, the logarithmic derivative is rela-
tively large. This result comes from the fact that in the region
of interest the exchange interaction potential is much
smaller than characteristic atomic energies. Therefore, the
argument of the exponential is relatively large. Table IV lists
the values of the parameter 2¥R,, where R, is the equilibri-
um internuclear spacing in a molecule consisting of identical
atoms with a repulsive interaction potential of 0.3 eV.

2.2.Cross section for collisions of atoms

The transport processes in gases are controlled by colli-
sions of the atoms, with the collision cross section being re-
lated to the repulsive part of the interaction potential. Since
the potential varies rapidly with distance in this region, it
can be replaced by an infinitely high wall in the zero-order
approximation (Fig. 1). The corresponding model of scat-
tering of the atoms is called the hard-sphere model.' In this
model the relative motion of the atoms is free at internuclear
distances R > R,, where R, is the radius of the hard sphere.
The spheres are reflected at R = R, (Fig. 2).

Let us determine the differential scattering cross sec-
tion of the atoms in the hard-sphere model. Figure 2 shows
that the impact parameter p of the collision is related to the
scattering angle # by the relationp = R, cos(#? /2). The cor-

TABLE II. Depth of well, D, (meV) in the potential of the interacting atoms.*"'?

Interacting He Ne Ar Kr Xe
atoms
He 0.93 1,6 1.8 2,5 2,5
Ne — 37 6,0 6,0 6,1
Ar — — 12,2 15 15
Kr — — — 17,2 19
Xe - — -~ — 24
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TABLE IIIL Values of the parameter n in formula (1) of a repulsive potential equal to 0.3 eV
(data of Leonas'*). The parentheses indicate the internuclear distances for the potential in units

of 0.1 nm.
Interacting He Ne Ar Kr Xe
atoms
He 5.86 5,61 5,15 5,52 52
(1,58) (1,87) 2,31 (2,48) 2,50)
Ne 7,65 6,58 7,65 6,76
— ,0m (2,42) 2,59 (2,64)
Ar — — 6,06 6,92 59
(2,85) (3,16) (3,44)
Kr — — — 7.7 7,1
2,99 (3,08)
Xe — - — — 6,35
(3,18)

responding differential scattering cross section is
2
R
da=27tpd,o=——2—0dcosﬁ. 3)

As can be seen, the differential scattering cross section de-
pends on the scattering angle. Using formula (3) one can
find the integrated large-angle scattering cross section, in
terms of which the kinetic transport coefficients are ex-
pressed. The transport, or diffusion scattering cross section
is

o =I(l — cos 9) do = nR2. 4)

The scattering cross section that figures in the expression for
the heat conductivity and viscosity of a gas is

@ = I(l - cos?d) do = 27ng/3. (5)
Within the hard-sphere model the integrated collision cross
sections do not depend on the velocities of the colliding par-
ticles. Therefore, the properties of the hard-sphere model are
related to the fact that the differential cross section for the
scattering of particles in this model does not depend on the
scattering angle or on the velocities of the particles, while the
integrated scattering cross sections do not depend on the
velocities of the particles.

From the scattering cross section it is possible to deter-
mine the kinetic transport coefficients in gases. Let us repre-
sent the most commonly used transport coefficients, the dif-
fusion coefficient D, the thermal conductivity x, and the
viscosity 7 in the Chapman—-Enskog approximation. The er-
ror incurred in this approximation is considerably less than

the errors due to the indeterminacy in the interaction poten-
tial of real atoms. For this reason, the error in the Chapman-—
Enskog approximation will not be discussed. We have”*

D = 3(xT)"/%/8Nay (21)"?, (6)
x =25@T)2/32M %, @)
7 = S(xTM)"%/240, (8)

Here T'is the gas temperature, N is the atomic density of the
gas, M is the mass of a gas atom, u is the reduced mass of the
diffusing atoms and the gas atom (in the case of self-diffu-
sion, u = M /2). Here and below, the temperature will be
expressed in energy unity, and so the Boltzmann constant
will be omitted. For the averaged cross sections o, and o, the
following formula is used for averaging over the Maxwellian
distribution of the velocities of the atom (i = 1,2):

0= 3Jxe T O(x)dx, 9

where x = uv?/2T is the dimensionless energy, and for the
integrated cross sections o'’ and o?’ the following method

is used for integrating over the angle in accordance with for-
mulas (4) and (5):

oM = _[(1 - cos 9) da,

o = I(l — cos?9) do.

(10)

(11)

For the hard-sphere model the integrated scattering
cross sections are given by formulas (4) and (5);
o =7R}, and 0¥ = 27R }/3. Because these cross sec-

TABLE 1V. Values of the exponent in the exchange interaction potential corresponding to a

repulsive potential of 0.3 eV for two identical atoms.

He Ne Ar Kr Xe
2;'Re 18.0 9,8 11,5 11,5 11,3
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FIG. 2. Scattering of atoms in the hard-sphere model. The heavy lines
with arrows are the trajectories of the atoms in the center of mass system.
R, is the radius of the hard sphere, p is the impact parameter, and # is the
scattering angle.

tions do not depend on the velocity of collision, the averaged
cross sections that enter into the expression for the kinetic
coefficients are

o, = JTR%, oy = 27:R%/3. (12)

In this way, by substituting the interaction potential between
the atoms by an infinite-wall potential (Fig. 1), we can de-
termine the transport coefficients in a gas.

2.3. Modified hard-sphere model

The use of the hard-sphere model brings up the question
of how to choose the radius of the sphere. If we start from the
real interaction potential, it is obvious that this radius is giv-
en by the relation

U(Ry) = ae, (13)
where ¢ is the collision energy in the center of mass system
and the numerical parameter is a~ 1. We note that for a
steeply varying repulsive interaction potential the chosen in-
teraction radius R depends only weakly on the parameter a.
If this parameter is changed by a factor of k, the relative
changein the interaction radiusis In k /n, where n is given by
formula (1). It thus follows that when the interaction poten-
tial varies steeply, so that »> 1, this change in the interaction
radius is relatively small.

With these results in mind we can set up a perturbation
theory, using as the zero-order approximation the hard-
sphere model with an interaction radius given by formula
(13), with @ = 1 and with 1/#n as the small parameter. If we
retain only two terms in the perturbation theory so con-
structed, we obtain the so-called modified hard-sphere mod-
el.'® The modified model retains the simplicity of the hard-
sphere model. Its formulas have the same form, but the
coefficient a in formula (13) is quite distinct for each inte-
grated cross section.

It is clear that in the modified hard-sphere model the
differential scattering cross section (3) retains the same
form but the interaction radius R, now becomes
R, + (F(&)/n), where the first term does not depend on the
scattering angle ¢. Accordingly, the integrated cross sec-
tions in the modified hard-sphere model have the same form
as in the hard-sphere model, with the interaction radius of
these cross sections being given by formula (13) with the
numerical value of the coefficient a specific for each type of
cross section.

In the Appendix the scattering angle and the integrated
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scattering cross sections are calculated for the modified
hard-sphere model. Although this derivation has been car-
ried out previously,'®'® it is convenient to reproduce it here
in order to present a complete picture. The expressions for
the integrated cross sections in the modified hard-sphere
model are'*?!

A = j(l — cosd) do = 7R2, U(R)).= 0.89%, (14)

o® = j(l — cos? ) do = 21R/3, U(R,) = 0.23¢, (15)

o = Jrrf, U(r,) = 2.25T, (16)

o, = 21r3/3, U(r,) = 0.83T; (17)

where ¢ is the energy of the colliding atoms in the center of
mass system, T is the gas temperature, and the cross sections
0,(T) and 0,(T) are used in expressions (6)—(8) for the
kinetic coeflicients. The assumption that the average cross
sections Eq. (9) are determined by the repulsive part of the
interaction potential is equivalent to the fulfillment of the
criterion

D<<2T,

where D is the depth of the well in the attractive potential of
the atoms.

Within the modified hard-sphere model the exact form
of the repulsive potential is unimportant. The use of the loga-
rithmic derivative of the interaction potential means that we
are in fact assuming that the interaction potential is an expo-
nential function of the distance between atoms and that the
range of distances in which the interaction potential is com-
parable with the collision energy of the atoms is relatively
narrow. Since this is the interaction range and, consequent-
ly, range of distances between the atoms in which the trajec-
tories of the colliding atoms are altered, the specific form of
the interaction potential far from this region is unimportant.

Let us consider the contribution to the cross section
from the discarded terms, that is, the question of the accura-
cy of the modified hard-sphere model. To do so we compare
the results of an exact calculation of the scattering cross sec-
tion for the potential U(R) = CR ~" (Refs. 3, 22-25) with
formulas (13)—(16), which come from the modified hard-
sphere model. For this potential the dependence of the cross
section on the energy of the atoms (or the gas temperature
for the average cross sections) is of the form o ~ £ ~ *” where
this dependence also corresponds to the modified hard-
sphere model. Therefore, the ratio of the cross sections (the
accurate one and the approximate one) does not depend on
the collision energy. The ratios of the cross sections are given
in Table V, where the subscript as (asymptotic) is used for
the modified hard-sphere model and the subscript ex is used
for the exact calculations. As can be seen, for collisions of
inert gas atoms in the range of energies corresponding to the
data of Table III, the modified hard-sphere model is accu-
rate to about 5%. The cross sections that are averaged over
the Maxwellian energy distribution of the atoms have the
same accuracy.

Hence, the short-range interaction of the atoms pro-
vides a small parameter associated with the steep variation in
the interaction potential in the repulsive part of the poten-
tial. It is therefore possible to obtain simple expressions for
the scattering cross section, taking the hard-sphere model as
a basis and constructing a perturbation theory with a small

B. M. Smirnov 1055
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TABLE V. Ratio of the elastic scattering cross sections for the interaction potential
U(R) = CR ™" between two atoms, calculated by the modified hard-sphere model (formulas

(14)-(17)) to the exact values.’??-23

n=4 6 8 10 12 14
ol /o) 0,888 0,936 0,953 0,969 0,972 0,974
ol /e 1,127 1,056 1,025 1,016 1,010 1,008

parameter that is the inverse of the steepness of the interac-
tion potential between the atoms.

For a demonstration of the possibilities of the modified
hard sphere model Figs. 3—7 show the results of calculations
of transport coefficients using this method. The calculations
themselves are very simple. In particular, the heat conduc-
tivity x as a function of the temperature 7 in accordance
with formulas (7) and (17) is

x(T) = CT(/D) + @/n),

where 7 is the logarithmic derivative of the repulsive interac-
tion potential (1). The accuracy of the result is in general
determined by the accuracy of the specification of the poten-
tial, which is estimated to be about 30%. In these calcula-
tions the interaction potentials of the individual atoms were
obtained from the measurements of Leonas and his cowork-
ers’®?” and for the He-Ar interaction potential the data of
Danielson and Keil?® were used. In addition, a comparison
was made in the region of high temperatures corresponding
to the measured region of the interaction potential, and
where the attractive region of the interaction potential plays
no role whatever. The comparison was made with the recom-
mended values of Vargaftik and his coworkers,?*-*® obtained
with allowance for existing experiments and calculations.
The calculations within the modified hard-sphere model are
estimated to be accurate to 10%.

To summarize, the modified hard-sphere model em-

40
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FIG. 3. Thermal conductivity of helium and neon. The solid curves show
the values given in Ref. 29; 1) calculated from formulas (7) and (17); 2)
experiment of Ref. 34.
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ploys an expansion of the collision parameters in a small
parameter that is related to the steep variation of the repul-
sive potential as a function of the distance between the collid-
ing atoms. This model gives a good description of the various
kinetic coefficients for gases for which the exchange interac-
tion between the atoms is repulsive.

2.4. Parameters of a gas with a short-range interaction
between atoms

The steep variation of the repulsive interaction poten-
tial between the atoms makes it possible to analyze not only
the collisions of atoms, but also the cases where the result is
determined by the interaction itself. Let us consider an ex-
ample of this sort—the equation of state in a gas with a high
temperature and low density, which, when the first term is
retained in the expansion in the low density, has the form
(see, e.g., Ref. 35)

p=NT (1 + NB); (18)

where p is the gas pressure, T 'is the gas temperature, /Vis the
density of the atoms in the gas, and B is the second virial
coefficient

B(T) = (1/2)f [1 - exp( - U(R)/T)]dR, (19)
where U(R) is the interaction potential between two atoms,
and R is the distance between them. In this case, the thermal
energy of the atoms exceeds the depth of the well in their
interaction potential. Therefore, the virial coefficient is de-
termined by the repulsive part of the interaction, and accord-
ing to formula (19) is

B(T) = 2tRY/3, U(Ry) = cT (20)

and the value of the dimensionless coefficient ¢ is ~1. To
determine the value of the coefficient ¢ we calculate the inte-
gralin Eq. (19) for the interaction potential U(R) = AR —"
and go to the limit 7 — . We have

3/n
o-%(F) T+

so that the coefficient in formula (20) is

c=lim [T + (3/n))17"3 = exp(— y(1)) = ¢ = 1.78,,

n-» o
1
where (1) is the logarithmic derivative of the gamma func-
tion, and C = 0.577 is Euler’s constant. So we find that here
too, we arrive at the same form of result for the equation of
state of a gas, Eq. (20), as is given by the modified hard-
sphere model for the scattering of atoms.
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Up to this point we have considered the interaction of
atoms in a rarefied gas. There the effects are governed by the
pairwise interaction and the repulsive part of the potential.
In a dense gas the region of attraction of the atoms plays a
principal role. An important fact is that in such a system of
atoms with a short range interaction one can always limit the
analysis to pairwise interactions between the atoms, so that
the parameters of the gas can be expressed in terms of the
parameters of the pair potential of the interaction in the re-
gion of attraction between the atoms. To demonstrate this
fact, Table VI shows the values of the critical temperature,
pressure, and density of the inert gases.’*3® If it is assumed
that these parameters are determined in the region of attrac-
tion in the pair-wise interaction between the atoms, then the
critical parameters of the inert gas are expressed in terms of
the parameters of a diatomic molecule—the dissociation en-
ergy D, the equilibrium distance R, and the atomic mass m.
From these parameters we can construct only one combina-
tion of a given dimensionality, in particular, the pressure
Po=D /R and the density p, = m/R 2. The data in Table
VIshow that to a good precision these values are proportion-
al to the measured critical parameters of the inert gas. A
statistical analysis of the critical parameters of the inert gas-

L
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FIG. 4. Thermal conductivity of argon. The solid curve shows the
values given in Ref. 29; 1) calculated from formulas (7) and (17); 2)

experiment of Ref. 34.

es gives p., = (0.131 + 0.001)p,, T, = (1.04 4+ 0.02)D,
and p., = (0.301 1 0.001)p,.

Yet another example of this kind refers to the saturated
vapor pressure, which is determined by the parameters of the
interaction of the atoms at the surface of a condensed sys-
tem. Figure 8 shows the temperature dependence of the satu-
rated vapor pressure of inert gases in dimensionless vari-
ables. From this figure we can appreciate the degree to which
the scaling laws are satisfied in this case.

3.CONDENSED SYSTEMS OF ATOMS
3.1. The parameters and the structure of crystals

While the main properties and the behavior of a gas
consisting of atoms with a short-range interaction between
them are determined by the repulsive part of the interaction
potential, the behavior of a bound state of a system of these
atoms, on the contrary, is controlled by the more distant,
attractive part of the interaction potential. In the condensed
state the atoms with a short range interaction form struc-
tures that correspond to close packing of the atoms. In these
structures the atoms can be considered as balls with a radius
R,, where R, is the equilibrium distance between the atoms
in a dimer (a diatomic molecule). Since the parameters of

FIG. 5. Thermal conductivity of krypton. The solid curve shows the
values given in Ref. 29; /) calculated from formulas (7) and (17); 2)
experiment of Ref. 34.
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the condensed system of atoms are determined by their pair-
wise interaction, these parameters can be expressed in terms
of the parameters of the pair-wise interaction in the diatomic
molecule, the dissociation energy D of the dimer, and the
equilibrium internuclear distance R, .

In the subsequent analysis of a condensed system of
atoms we shall neglect quantum-mechanical effects and as-
sume that the temperature of the system is relatively low. It
is possible to neglect quantum-mechanical effects if
AH>» fioy, where fiwy, is the Debye energy corresponding to
the condensed system and AH is the energy of sublimation,
i.e., the energy per atom required for the transformation of
the condensed system into a gas of atoms. This condition is
violated in the case of helium and is fairly well satisfied for
neon. Nonetheless, we shall neglect quantum corrections
and assume that the systems are classical. The parameters of
the condensed state of the inert gases are listed in Table VIL.

D,cm?/s
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FIG. 6. Thermal conductivity of xenon. The solid curve shows the
values given in Ref. 29; /) calculated from formulas (7) and (17); 2)
experiment of Ref. 34.

These properties of a condensed system of atoms do not in-
clude the dependence of the parameters on the pressure, and
so the parameters that are analyzed in this paper refer to
atmospheric pressure of the inert gases.

Two consequences emerge from the model assumptions
that we use, according to which the condensed structures are
held together as a result of the interaction between nearest
neighbors. First, these atoms form close-packed structures.
Second, the nature of the interaction between atoms in the
condensed state is the same as that in the dimer. The validity
of the latter statement can be demonstrated by a comparison
of the interatomic distance (R, ) in a dimer with the distance
a between nearest neighbors in an inert gas crystal (Tables I
and VII). As can be seen, these values agree within 2%.
Since each atom in a crystal with close packing has 12 near-
est neighbors, the sublimation energy per atom of the crystal
in the case of a short-range interaction between atoms is

FIG. 7. Diffusion coefficient of helium in argon. The solid curve shows
the values given in Ref. 30; 7) calculated from formulas (6) and (16);
2) experiment of Refs. 31-33.
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TABLE VL. Critical parameters of inert gases’®3*.

Ne Ar Kr Xe
Critical temperature 7, K 44,4 150,7 20,4 289,8
Critical pressure p,, MPa 2,653 4,860 5,510 5,842
Critical density p,,, g/cm® 0,484 0,535 0,919 1,11
po = D/R., MPa 20,1 36,7 427 44,4
po = m/R, g/cm’ 1,606 1,764 3,051 3,718
T,./D 1,03 1,06 1,05 1,04
Pec /Py 0,132 0,132 0,129 0,132
Pee /Py 0,301 0,303 0,301 0,298

AH = 6D, where D is the dissociation energy of a diatomic
molecule. The discrepancy between the values of AH,, in
Table VII and the value of 6D, caused by the long-range
interaction, is only slightly larger than the statistical error of
the data for inert gas crystals.

From existing information on the parameters of con-
densed inert gases one can take into account the tempera-
ture-dependent variations of the interaction parameters of
the interacting atoms. An increase in the temperature of the
crystal excites vibrations. Here the effective binding energy
per bond, D, must decrease with increasing temperature,
while the distance between nearest-neighbor atoms must in-
crease. The latter is reflected in the lower density of the crys-
tal with increased temperature, which changes by 8% on the
average as the temperature goes from zero to the melting
temperature.

Table VIII lists the reduced parameters of the inert gas
crystals. The coincidence of the reduced parameters of the
condensed inert gases, and in particular, the reduced melting
and boiling temperatures, confirm the validity of the model
of atoms with a short range interaction in the analysis of
these objects.”

Let us turn to an analysis of the crystal structure of
these systems. A condensed system of atoms with a short-
range interaction must have a close-packed crystal structure
at low temperatures. Two such structures exist,**** the
face-centered cubic and hexagonal lattices. In each of them
an atom has 12 nearest neighbors. Allinert gas crystals have
the face-centered cubic structure.

Here we give the small amount of information about
these lattices*>** that will be required in the subsequent dis-
cussion. With g the distance between two nearest neighbors,
one can describe a face-centered lattice as two interpenetrat-
ing rectangular lattices. The atoms are situated on parallel
planes and form a square net on them with a side of length a.
The distance between the planesis a/y2. A hexagonal lattice
also can be constructed by placing the atoms on parallel
planes that are spaced a distance a2/3 part. On each plane
the atoms are arranged in parallel lines so that the distance
between the atoms in a single line is @ and the distance be-
tween lines is ay/3 /2.

Consequently, the density of atoms in each close-
packed lattice is y2/a®>. We shall next consider another
structure, the body-centered cubic lattice. Each atom in it

FIG. 8. Temperature dependence of the saturation vapor pressure of
inert gases,> plotted in dimensionless coordinates.
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TABLE VII. Parameters of condensed state of inert gases, %4

Ne Ar Kr Xe

‘Melting temperature, K" 24,6 83,7 115,8 161,2
Maximum phonon energy
fiwp , meV

longitudinal 6.8 8,6 6,2 5.4

trafisverse 4,6 5,9 4,3 3,8
Sublimation energy, meV/atom 20 80 116 170
Nearest-neighbor distance, A 3,156 3,755 3,992 4,335
Melting temperature T,,, K* 24,6 83,7 115,8 161,2
Crystal density at the melting
temperature p,, g/cm? 1,444 1,623 2,826 3,540
Liquid density at the melting
temperature p,, g/cm’ 1,247 1,418 2,441 3,076
Heat of fusion, cal/mole 80 281 391 549
Boiling temperature, T,,, K* 27,07 87,29 119,8 165,0
Density at the boiling
temperature, g/cm® 1,206 1,378 2,413 2,987
Evaporation energy at the boiling
temperature £, , kcal/mole 0,422 1,558 2,158 3,02
*'At atmospheric pressure.

has eight nearest neighbors, and the lattice can be obtained
from two interpenetrating rectangular lattices. On each
plane of the body-centered cubic lattice there is a square
array of atoms with a side 2a/y/3, with the distance a/\3
between neighboring planes, so that the density of atoms in
the body-centered cubic lattice is 33 /4a’, which is 8% low-
er than that in the lattice with close packing.

Let us analyze the structure of crystals of inert gases.
There are two structures with close packing (Fig. 9), in
which each atom has 12 nearest neighbors. One of these is
the hexagonal and the other is the cubic lattice with the face-
centered structure.

In order to understand the relation between the two
close-packed structures and the differences between them,
we build them up in an identical way. To do so we arrange
the atoms, which are assumed to be balls of radius &, on the
xy plane so that these balls are laid out in lines parallel to the
x axis. Then these lines are placed at a distance a3 /2 apart
and the centers of the balls of each succeeding line are shifted
along the x axis by a distance + a/2 relative to the centers of
the balls of the previous line.

We construct the next plane of balls and move it a dis-
tance a/y/2/3 along the z axis so that the balls of the follow-

TABLE VIII. Reduced parameters of the condensed state of inert gases.

ing plane fall into the hollows between the balls of the pre-
vious plane. To do so we shift the upper plane relative to the
lower plane by a distance a/y/3. So far, this construction
applies both to the face-centered cubic lattice and to the hex-
agonal lattice. The third plane can be constructed so that the
balls fall into the hollows of the previous plane in two dis-
tinct ways. If we displace the plane along the y axis by a
distance + a/+/3, we obtain the face-centered cubic struc-
ture, and if we shift it a distance — a/y/3, we get the hexa-
gonal structure.

The arrangement of nearest neighbors is different for
the two structures. It is possible to have both structures in a
single crystal, as shown, for example, in Fig. 10. In this case
the crystal is made up of individual planes on which the
atoms are situated, and starting with a particular plane the
direction of the displacement of the plane changes. Then, if
the structure of the system is characterized by the arrange-
ment of the nearest neighbors, the atoms of the lowest layers
of the crystal shown in the figure belong to the face-centered
cubic lattice and the upper atoms belong to the hexagonal
lattice, while the atoms of the transitional layer belong to
both. Here it is possible to go from one structure to the other
not only at the plane z = const, but at any of the 12 symme-

Ne Ar Kr Xe Average

SH_ /D 5.4 6,6 6.7 7,1 6,4 +0,7
T./D 0,57 0,59 0,58 0,58 6,58 £ 0,01
T.,/D’ 0,63 0,62 0,60 0,59 0,61 £ 0,02
P./Py 0,90 0,92 0,93 0,95 0,92 + 0,02
£, /6D 0.825 0,923 0,907 0,910 0,89 + 0,04
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try planes of the structure.

Another conclusion can be drawn from the above dis-
cussion. The transformation from one structure to the other
requires displacement of individual layers of atoms. It is
clear that for a solid system this operation must require an
enormous activation energy, proportional to the number of
atoms in a layer. Therefore, the actual transformation from
one structure to the other is possible only when there is a
high concentration of vacancies and apparently occurs ei-
ther in the liquid state or in the solid phase with a nonequilib-
rium concentration of vacancies. Therefore, in the analysis
of the structure of a crystal or a cluster in the solid state,
consisting of atoms with a short range interaction it would be
incorrect to draw conclusions concerning the structure
(hexagonal of face-centered cubic) only from consider-
ations of the energy of the system at a given temperature.
The type of structure also depends on the way it is generated.

In a crystal consisting of atoms or molecules with a
short range interaction it is thus possible to obtain either of
the close-packed structures, and by an appropriate method
obtain a crystal containing both structures. As an example,
one may cite the experimental results of Ichihashi et al.*°

Hexagonal <
Structure

Face-Centered .
Cubic Structure ~—

FIG. 10. The transition between the hexagonal and the face-centered cu-
bic structures in a crystal. The crystal is cut by a plane that is perpendicu-
lar to the plane of the preceding figure and intersects the latter plane along
the line Ox. The sketch shows the cross sections of the atoms—the balls—
whose centers lie on or below the sectioning plane.
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FIG. 9. Close-packed structures intersected by one of the symmetry
planes. The atoms are replaced by balls of radius a. The crosses indicate
the positions of the centers of the atoms on the lower plane, displaced

from the sectioning plane by a distance ay2/3. The centers of the
atoms on the upper plane, the latter also parallel to the sectioning plane

and displaced from it by a distance av2/3 are indicated by open circles
for the hexagonal structure and by the points for the face-centered
cubic structure of the crystal lattice.

where thin films of C4, were produced by deposition on alka-
li halide crystals (KCl, KBr, NaCl). An electron micro-
scope ( TEM) analysis showed that both structures, the hex-
agonal and the face-centered cubic, occurred in the films
that were formed. The Cg; clusters are closed molecules
whose atoms lie on the surface of a sphere. These molecules
interact through the atoms located at the regions of contact
of the molecules. Consequently, one can apply to the systems
composed of Cg, clusters all the conclusions regarding a sys-
tem of atoms with a short range interaction.

Let us clarify the role of the long-range interaction. For
simplicity we shall consider only the popular Lennard-
Jones interaction potential between the atoms

U = D[(a/r)12 -~ 2(a/r)6] , (22)

where ris the distance between the atoms. It will be assumed
that this potential also acts between distant atoms. Then,
according to the calculations in the monograph of Kittel,*°
we find that the energy of sublimation of the crystal with the
close-packed structure is equal to 8.61.D. For the hexagonal
lattice this is higher by 0.01% than for the face-centered
cubic lattice; that is, the sublimation energies of the two
structure are essentially identical, and a small perturbation
can change the optimum crystal structure.

The main difference from a crystal with a short range
interaction between the atoms is that the long-range interac-
tion produces stress in the crystal. The nearest-neighbor dis-
tance is different from that in a diatomic molecule, and in the
case of the Lennard-Jones potential, it is less than in a di-
atomic molecule by about 3%.

From this analysis it follows that the long-range inter-
action in a crystal can be of fundamental importance in the
selection of the optimum crystal structure. However, for real
inert gas crystals, according to their energies of sublimation,
these crystals are better described by a short-range interac-
tion between atoms than by the Lennard—Jones model. Ap-
parently the same can be said also about the distances be-
tween atoms in the crystal. Second, a comparison of the
sublimation energies listed in Tables VII and VIII indicates
that the long-range interaction contributes considerably less
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to the sublimation energy than is given by the Lennard-Jones
potential. Since in this case the contribution of the long-
range interaction is relatively small, we can neglect it in ana-
lyzing the various properties of these condensed systems.
This conclusion is supported by the fact that the scaling laws
for the various parameters of the inert gas crystals are
obeyed when these parameters are constructed as combina-
tions of two parameters of the diatomic inert gas molecules:
a, the equilibrium internuclear distance, and D the depth of
the well in the interaction potential.

The advantage of such a system of atoms with a short
range interaction is that the interaction between nearest
neighbors does not depend on other bonds. Consequently,
one can use such a system as a convenient model in other
problems. This model is useful, for example, in the study of
the behavior of vacancies in a condensed system of this kind.
The pair-wise nature of the interaction gives simple relations
for the interaction potential of the vacancies and makes it
possible to analyze the processes of joining of vacancies, the
way in which the energy of a vacancy changes as it ap-
proaches the surface, temperature effects, etc.

3.2. Surface energy of a condensed system

We define the surface energy of a condensed system of
atoms as the energy taken up in the formation of a surface
when the system is cut into pieces. First we consider an inert
gas crystal with a face-centered cubic lattice. We make a cut
along a plane parallel to a layer of atoms so that in each of the
layers the atoms form a square net with a square side a. Then
each atom of the surface layer has eight nearest neighbors
and each atom of the next layer has 12 nearest neighbors. In
this way, the energy required to form a unit area of the sur-
face (or the energy released in joining the surfaces) is

Eqy = 2D/ a2 (23a)

We then make a cut along another plane in which there
are six nearest neighbors (this plane is at an angle of 45° to
the previous plane). On this plane the atoms are arranged
along lines spaced apart by ay/3 /2, and the distance between
the atoms in a line is @. The number of atoms per unit area is
therefore 2/4*\3. Each atom of the surface layer has nine
nearest neighbors, and the next layer farther in has 12 near-
est neighbors. Hence we find that the specific surface energy
is

eqy = V3D/d?, (23b)

which is slightly lower than that given by formula (23a).

Let us rewrite formulas (23) in another form, introduc-
ing the sublimation energy per atom AH = 6D and the den-
sity of atoms in the crystal as N = 2 /a>. We obtain

€qur = (0,25+0,02)AH - N3 (28)

It should be mentioned that these expressions refer to the
crystal at zero temperature.

We now consider a disorder-type model of the surface
of the condensed system, in which the atoms are randomly
distributed over the surface of the system, with close-pack-
ing of the atoms and for an arbitrary temperature. It will be
assumed that the concentration of vacancies inside the crys-
tal is relatively low so that they can be neglected. We shall
then construct the surface of the crystal using a filled planar
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layer with the atoms on it arranged randomly according to
statistical rules. As we have seen, the surface energy of a
crystal depends somewhat on which symmetry plane of the
crystal is chosen as the surface. We shall do this for the two
possible variants.

We assume that the surface layer of atoms is a square
net with a distance @ between neighboring atoms. Then an
atom located in the next surface layer can have from four to
eight nearest neighbors. The probability P, that it has m
neighbors is given by the Boltzmann formula

P, =g, expe,/T) ( Z &n exp(em/T)) —1, (25)
m

wheree,, = mD is the energy of binding to the surface of an
atom having m neighbors, and g,, = C7 ~* is the statistical
weight of this state (the number of combinations of m with
m—4). Here,g, =g, =1,8,=g,=4,8,=06.

Using formula (25), we determine the average energy
expended in the evaporation of a single atom. We have

fov = X mDP 0y (ZP) (26)
m m

wherep,, is the probability of evaporation of an atom with m
nearest neighbors. Obviously, this probability is

Dpy = &y €XP(—¢,,/T).

Consequently, we obtain

to= T mg (28

m
and since g,, = &,, _ m» WE Obtain

€y = 6D. (27)

Now we shall examine how the specific surface energy
depends on the temperature. We note that the vacancy con-
centration within the crystal is low. Therefore, when the sur-
faces of the crystal are joined together the vacancies disap-
pear from the interface. It follows that the specific surface
energy increases with the temperature.

The dimensionless surface energy of a crystal is

deg/D= ¥, [6 - /D] Pp(ZPm)

(28)

where P, is the probability that a surface atom has m nearest
neighbors. At zero temperature we have P,, = §,,4, so that
£.,, = 2D /a*. For a finite temperature we have

2e pl= 2(1 +2X)

sur T+x ° (29)

where X = exp( — D /7). As can be seen, in this model the
specific surface energy varies from 2D /a* at zero tempera-
ture to 3D /a* at infinite temperature. At the melting tem-
perature (7, = 0.58 D) the value is 2.3D /a>.

Now let us go through the same operation for the case
where the plane is the other symmetry plane of the crystal.
Joining the nearest atoms in this plane, we obtain a net of
equilateral triangles with a side a—the nearest-neighbor dis-
tance. In this case the number of nearest neighbors of a sur-
face atom can vary from three to nine, and the statistical
weight for the state with a given number of nearest neighbors
is the number of combinations C? ~ ™. By virtue of symmetry
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(8., =812 m ), Wefind, as previously, that the average ener-
gy of an evaporating atom is £,, = 6D. The specific surface
energy of the crystal is

e = 2D(@VE) ' Y (6 - %) cymx
m

. ( z Cg—mx9—m) -1
m

_DV3I1+3X (30)
T2 1+Xx”
At the melting temperature this f‘ormula gives
Eour = 2.3 D/d?, (31)

which essentially coincides with the case where the surface
of the crystal was the other symmetry plane.

The energy per bond falls off with increasing tempera-
ture because of the excitation of atomic vibrations. Using the
measured heats of evaporation for the condensed inert gases,
we can determine the amount of this variation. Actually, in
the disorder model, the energy expended in removing one
atom from the surface is 6D (formula (27)). Table VIII
gives the reduced values of this quantity, referred to the boil-
ing temperature. A statistical analysis of the parameters of
the different inert gases shows that the ratio of the energy
required to break one bond at the boiling temperature to that
at zero temperature is 0.89 + 0.04.

The excitation of phonons also increases the distance
between nearest neighbors. This results in a decrease in the
density of the crystal with increasing temperature. Since the
concentration of vacancies in the crystal is relatively low, the
change in the density of the crystal with temperature is ulti-
mately due to this effect. The corresponding data are shown
in Table VII. A statistical analysis of the data for the differ-
ent inert gases gives a value 0f 0.94 + 0.02 for the ratio of the
density at the melting temperature to the density at zero
temperature.

Now let us determine the specific surface energy at the
melting temperature. For this purpose we use formula (31),
taking into account the variation of the energy for breaking
of a bond and the variation in the nearest-neighbor distance
due to the excitation of phonons. We find

£ = (1,95 £ 0,13) D/d?, (32)

where the parameters D and a refer to zero temperature. As
can be seen, the ratio of the surface energy at the melting
temperature to that at zero temperature is 1.05 + 0.15; that
is, within the error, the specific surface energy is indepen-
dent of the temperature. This analysis applies to the crystal-
line state of a system in which the vacancy concentration is
low.

Let us rewrite formula (32), introducing the sublima-
tion energy AH and the density of atoms in the system
N =2/2% In the new variables formula (32) takes the
form

gy = (0,23 = 0,02) AH-N*'3, (33)

These results pertain to a close packed structure. It is inter-
esting to compare them with the results of the disorder mod-
el, which takes into account the pairwise interaction between
the atoms randomly distributed in the system. To calculate
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the surface energy in this case we cut the element of the solid
into two parts, such that each side of the cut forms a surface
of area S. We assume that the nature of the interaction be-
tween atoms on the surface is the same as in the bulk. Assum-
ing that the arrangement of the atoms is random, we find
that each of the surfaces that have been formed contains
SN ?? atoms, for which half of the bonds are broken. The
energy expended in each surface atomis AH /2, and the total
energy expended in the formation of the surface is
SN**AH /2. Dividing this energy by the area of the surface
that was formed we obtain for the specific surface energy of
the system at zero temperature

€qur = OH-N*3/4, (34)

As can be seen, formulas (33) and (34) coincide within the
limits of their accuracy.

3.3. Surface tension of liquids

The relative simplicity of a bound system of a large
number of atoms with a pairwise interaction allows us to use
it as a model in the investigation of various properties of
condensed systems. This possibility will be demonstrated by
the examples of the surface tension of solids and liquids.

The surface tension is defined as**¢

a= ] (P9~ 09 ) 05 (35)
where p, (x) and p, (x) are the normal and tangential com-
ponents of the pressure, the direction of x is perpendicular to
the phase boundary, and the integration is carried out over
the transition region.

The value of the surface tension is identical to the spe-
cific surface energy at zero temperature when there are no
vacancies in the system. Thus, the surface tension at zero
temperature is given by formula (23). Accordingly, at other
temperatures its relation to the parameters of the problem
can be given in the form

€ = CAH-NY3, (36)
Formula (36) can be used to analyze the information
relating to the surface tension of liquids. We shall first ana-
lyze the data for the surface tension of condensed inert gases.
Table IX lists values of the surface tension «, of condensed
inert gases at the melting temperature, and the values of the
coefficient C in formula (36). Figure 11 shows the reduced
surface tension a/a; as a function of the reduced tempera-
ture T'/T,,. As can be seen, the scaling is well satisfied. With
this result taken into account, Fig. 12 shows the dependence
of the reduced surface tension on the reduced temperature,
where the dimensionless parameters are constructed from
the parameters of the diatomic molecule. Specifically, the
dimensionless temperature and surface tension have the
form T /D and aR %/D, where R, and D are the equilibrium
internuclear distance and the dissociation energy of the di-
atomic molecule. The experimental data from the review of
Baidakov®” were used in Table IX and Figs. 11 and 12.
These results can be used as model results for a wide
class of different materials and for non-pairwise interactions
between the atoms and molecules. However, for such sys-
tems it is still necessary that the nature of the interaction
between the atoms or molecules at the surface of the con-
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TABLE IX. Surface tension of liquid inert gases at the melting temperature.

Ne Ar Kr Xe
a,, ergs/cm’ 5,65 13,55 16,33 18,83
' 0,121 0,130 0,126 0,129
a,R./D 0,91 0,98 0,95 0,93

densed system be the same at that in the bulk. Of course, the
accuracy of the results will be lower, and in order to under-
stand what the error is, Table X gives the values of the sur-
face tension for metals of the first and second groups at the
melting temperature.**? These values are compared with
those corresponding to the model of a pair-wise interactions
between the atoms, given at the melting temperature (Table
IX) by the formula

o = AH -N¥3/8. (37)

A statistical analysis of the data of Table X yields for the
ratio a/a, the value 10°®® %7 This means that formula
(37) gives the surface tension of metals with an accuracy of
about 50%.

Let us make another comment of fundamental impor-
tance. The specific surface energy and the surface tension
have, generally speaking, distinct meanings. The specific
surface energy is the specific energy which is expended in the
formation of the surface. The surface tension is the force that

‘acts on a unit length of a contour of a liquid and tends to
decrease the enclosed surface area to a minimum under the
given conditions. At zero temperature these values areiden-
tical for a continuous medium and, in particular, for the
condensed systems of atoms studied here. For the liquid
state of the system, where the concentration of vacancies in
the bulk is appreciable, these quantities are different.

4.LARGE CLUSTERS
4.1. The structure of large clusters
Large clusters are understood to be clusters that con-

tain at least tens of atoms or molecules. These clusters are
not macroscopic particles, but constitute a transition state

between macroscopic and atomic systems. In the last decade
large clusters have been the object of exhaustive investiga-
tions (see, e.g., Refs. 53—-57), and a great deal of information
has been accumulated concerning their properties and be-
havior in physical systems. Below, a brief review is presented
concerning the structure of large clusters.

The structure of large clusters is governed by the nature
of the interactions of the atoms or molecules forming the
clusters. Therefore, in the analysis of the structure of large
clusters we examine individual groups of clusters in which
the nature of the interactions between the atoms is the same,
and which are described by the corresponding models. The
structure of clusters consisting of atoms of the alkali metals
have been studied in detail. Such clusters are well described
by the jellium model,*®>® which has been subjected to a se-
ries of experimental investigations.®*%’ The main idea of
this model is popular in plasma physics—positive changes
are uniformly spread out over a volume, which in this case is
a sphere of finite radius. Then the valence electrons deter-
mine the state of the cluster.

The state of each electron in the system, asin an atom, is
characterized by four quantum numbers, the principal quan-
tum number #, the orbital angular momentum /, the projec-
tion m of the orbital angular momentum and the projection
o of the electron spin. Because of the degeneracy with re-
spect to the projection of the angular momentum and of the
spin, the state of the electron in this model is described by
two quantum numbers n# and /, as in the atom. However,
unlike in the atom, there is no requirement to limit the value
of / for a given value of the principal quantum number #.

Thus, if we assume, as in the atom, that the quantum
numbers n and / are integral (with 2> 1 and /> 0) we can
arrange the electrons into shells, using the same notation as

FIG. 11. Ratio of the surface tension of liquid inert gases to their sur-
face tension at the melting temperature, plotted as a function of the
reduced temperature (the ratio of the temperature to the melting tem-
perature). The data are those recommended from the analysis of Ba-
idakov.’
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for the atom. Naturally, the lowest is the ls shell (2 elec-
trons) and then comes the lp shell (6 electrons). Starting
with some value of the angular momentum, the 2s shell be-
comes energetically more favorable than the 1/ shell. Figure
13 shows the sequence of the filling of the shells within the
framework of the jellium model, constructed according to
the experimental results.5>"%” The clusters with filled shells
are the most stable, so that the filled shells correspond to
magic numbers. It follows from the experimental results that
some electron shells of the cluster are filled simultaneously
(Fig. 13).

It is an interesting fact that the jellium model works for
a finite number of atoms in a cluster. According to the ex-
periments of Martin et al.,% who studied the structure of the
Na, cluster with n <22 000, the jellium model works when
the number of atoms in a cluster is 7 < 1500. Thereafter, the
fundamental factor is the pair interaction between the
atoms, and the magic numbers of the cluster correspond to
the structure of the icosahedron or the cube octahedron.

The carbon clusters Cgg, C,, Css, €tc. have found great
popularity (see, e.g., the reviews in Refs. 68 and 69). The
atoms in these clusters form a closed surface similar to the

1 1
0,55 0,60 0,65 0,70 0,75 0,60 085 0,50 0,.957_/171,00

covering of a soccer ball. It is interesting that the cluster Si,
has the structure of a pyramid,” even though the silicon
atom has the same electron structure as carbon.

Since the structure of the cluster is determined by the
nature of the interaction between the atoms in it, these struc-
tures are as varied as the structures of the crystal lattices. In
large clusters the arrangement of the nearest-neighbor
atoms is the same as in the corresponding crystal. The sur-
faces of large clusters containing hundreds or thousands of
atoms have surfaces with planar elements. For example,
Cleveland and Landman’' have analyzed the structures of
nickel clusters and found that when the number of atomsina
cluster is n <2300, then it is an icosahedron, while for
2300 <n <17 000 it is a dodecahedron. Similar results were
obtained previously for a cluster consisting of atoms with a
Lennard—Jones potential (see Sec. 4.3).

New possibilities for the formation of clusters, and,
consequently new possibilities for magic numbers are ob-
tained when the cluster consists of atoms with different va-
lence electrons or contains atoms of different types. For ex-
ample, in their investigation of clusters containing silver and
gold atoms, the authors of Ref. 72 determined their struc-

TABLE X. Surface tension of liquid metals of the first and second groups at the melting tempera-

ture.

Metal a,,l/m’ a,J/m?
Li 0,41 0,43
Be 1,14 1,68
Na 0,20 0.19
Mg 0,57 0,38
K 0,109 0,104
Ca 0,42 0,44
Cu 1,30 1,35
Zn 0,77 0,44
Rb 0,088 0,083
Sr 0,35 0,23
Ag 0,94 0,90
Cd 0,56 0,30
Cs 0,069 0,069
Ba 0,27 0,22
Hg 0,474 0,16
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FIG. 13. Sequence of filling the shells of clusters of alkali metals, based on
the jellium model and constructed according to the experimental results
of Refs. 62-67.

ture, which they called supraclusters. In this case, 13 atoms
have the structure of an icosahedron and are the central
block of a cluster on which clusters of another type are later
arranged.

4.2. Structure of large clusters with close packing

The above discussion of the pairwise interaction of
atoms is convenient to use for an analysis of the properties of
any bound system of atoms. We shall consider larger clusters
composed of atoms with a short-range interaction, that is, a
system of a finite (but large) number of atoms. To simplify
the analysis we shall assign to the cluster one of the previous-
ly discussed crystal structures.

Using this tactic in the construction of the cluster, a
system of n bound atoms with short-range interaction, we
proceed in the following manner. We take a crystal structure
as a basis and cut out from the interior an element containing
n atoms. This will be called a cluster. The cluster can also be
constructed in other ways, selecting the atoms so that they
have a given crystal structure. Then we count up the energy
of the cluster, which for a short range interaction is equal to
the number of bonds in it multiplied by the bond energy of a
dimer. Then we change the configuration of the atoms while
retaining the chosen crystal lattice. For each configuration
of atoms we calculate the corresponding energy. If the tem-
perature is zero, we select that configuration that corre-
sponds to the minimum energy. If the temperature is non-
zero, then we consider other configurations with a weak
perturbation. These operations are not so arduous, as can be
shown. For clusters with face-centered cubic and body-cen-
tered cubic lattices containing up to 1000 atoms, the calcula-
tions can even be done without a computer.

The operations are partially described in Ref. 73. Here
they will be demonstrated with the example of a cluster with
a body-centered cubic lattice. We place one of the atoms at
the origin of coordinates and choose as the unit of length the
length a/\/3 (where a is the nearest-neighbor distance).
Then the nearest neighbors of the atom with the coordinates
xyz are eight atoms, whose coordinates are x 4+ 1, y 4 1,
z 4 1 (Fig. 14).%0%

The cluster has two types of symmetry. One of them
corresponds to the transformations x sy sz and the other to
the transformations xs — x; yss — p; zs — z. Using this
fact, we can divide the cluster into shells so that the coordi-
nates of all the atoms of a given shell can be obtained from
the coordinates of one of them by the above transformations.
In this way one can thereafter limit the analysis to the posi-
tion of only one of the atoms of the shell. It is convenient to

1066 Sov. Phys. Usp. 35 (12), December 1992

4
| i? T+l y+1,z+17

x

x-1,y+1,z+1

Z-Ny=1,z2+17 z+1y-1,2+7

X,4,2
O

—_———— e

Z+1,y+l,z2-1

T-ly+?,z-1 A
e
e

e
”
I'd
7
”

x-1y-1,z-1 x+7,y-7,z-1

FIG. 14. Coordinates of the nearest neighbors of an atom with the coordi-
nates xyz in a system with the body-centered cubic structure. The spacing

between the nearest neighbors in the units used is y3. The coordinate
system used is in the upper left part of the figure.

choose as this atom the one with positive coordinates and
with z<x<y (the z axis is perpendicular to the plane in which
the atoms lie).

Then we count up the number of nearest neighbors of
the atoms of the given shell. This allows us to calculate the
energy of the cluster with a given number of atoms and speci-
fied filled shells. From this we can choose the optimum order
in which the shells of the cluster are filled and find the energy
of the cluster with a given number of atoms and the binding
energy of the cluster of connected atoms. Let us analyze the
results so obtained.

It might appear that as new atoms are added to the clus-
ter the latter should grow by filling the shell nearest to the
center of the cluster. In a rough approximation this is so, but
in a more detailed analysis we find that this principle is fre-
quently violated. Sometimes (i.e., for certain numbers n of
atoms in the cluster) the sequence of the filling of the shells
of the cluster changes. In other cases it is more favorable for
the cluster to grow with the participation of several shells.
Then the addition of new atoms to the cluster is accompa-
nied by the growth of the individual shells, which then can be
joined to each other.

An illustration of this process is given in Table XI,
which shows how a cluster with a body-centered cubic lat-
tice and a large number of atoms grows at the region where
the shell-wise manner of cluster growth is violated for the
first time. Table XII shows the manner of growth of a cluster
with a face-centered cubic structure over a wide range of
occupation numbers n. As can be seen, the simultaneous fill-
ing of several shells occurs quite frequently.

We shall derive an expression for the parameters of the
cluster at zero temperature. In the case considered, where
only pair interactions operate, the total energy of a cluster,
E(n), is proportional to the number m of bonds in the clus-
ter.

E(n) = - mD, (38)

where D is the dissociation energy of the dimer. For n— 0,
the number of bonds tends to nk, where 2k is the number of
nearest neighbors per atom in the given structure of the sys-
tem. We introduce the surface energy of a cluster as
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TABLE XI. The way atoms are attached to a cluster in the region where the shell-wise mode of

growth is first violated.

Number of atoms in Coordinate of the last atom | Surface energy of the cluster,
the cluster units of D
16 022 30 (30)%
17 113 32 (32)
13 202 33 (34)
19 220 35 (36)
20 131 36 (38)
21 222 37 (40)
22 311 37 (42)
23 202*%) 39 (44)
24 113 40 (46)
25 220 42 (48)
26 131 43 (50)
27 222 44 (52)
28 313 44 (53)
*'The values in the parentheses correspond to the sequential filling of the shells.
**'The overbar stands for a minus.

E,(n) = nkD + E(n). (39)
The binding energy of an attached atom is
e(n)=E(n—-1)-En)=kD+ E_ (n—1)— E  (n). (40)

By comparing the energy of clusters with the same giv-
en number of atoms but with different structures, one can
choose the optimum cluster structure. It is clear that this

cluster can have only one of the structures with close pack-
ing, the hexagonal or the face-centered cubic. Table XIII
lists the energy of a cluster with a short range interaction
between atoms in different structures for two values of the
occupation number. Although the optimum structure of the
cluster in both cases is the face-centered cubic structure, the
difference from the hexagonal lattice is so small that the in-
clusion of a small amount of long-range interaction could

TABLE XII. Order of growth of a cluster with face-centered cubic structure.

Filled shells® Range of variation Range of variation of
of 5 the surface energy,
units of D
011(1—95) 2—13 12— 42
004 (4) 13—19 42 — 54
112(3—35) + 022(5) 19 — 55 54 —114
013(4—6) 55—179 114 — 138
123(3—5) +222 (6) 79 — 135 138 — 210
033(5) 135 — 147 210 — 222
004(4) + 114(5) + 024(6) 147 — 201 222 — 258
233(3—5) +224(6) 201 — 249 258 — 330
015(4—6) + 134(5—6) + 125(5—6) 249 — 369 330 — 402
044(5) +035(6) 369 — 405 402 — 414
006(4) +116(5) +026(6) 405 — 459 414 — 450
334(3—3) +244(5) +235(5—6) +145(5—6) 459 — 603 450 — 570
226(5) +136(6) 603 — 675 570 — 594
055(5) +046(6) 675 — 711 594 — 606
017(4—6) + 127(5—6) + 037(6) 711 — 807 606 — 654
008(4) + 118(5) +028(6) 807 — 861 654 — 690
444(3) + 345(4—6) + 255(5) +336(5)
+246(6)+ 156(5—6) +237(5—6) + 147(6) 861 — 1157 690 — 858
066(5) + 057(6)**) 1157 — 1193 858 — 870
228(5) +138(6)*%) 1193 — 1265 870 —894
455(3—5) +446(5) + 356 (5—6) + 347(5—6) 1265 — 1409 894 --1014
366(5) +257(6) 1409 — 1481 1014 — 1038
*'The parentheses indicate the number of nearest neighbors for the atoms of that shell.
**The individual islands of these shells can be filled in any order.
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change the optimum structure of the cluster.

The cluster model considered here with a specific crys-
tal structure and pairwise interactions between the atoms
makes it possible to understand the various aspects of the
physics of large clusters. One question is: at what filling
number does the cluster become a macroscopic particle? By
definition, a cluster is considered a macroscopic particle if its
parameters are monotonic functions of the number of atoms
in the cluster. The answer to this question is the following.”
From the point of view of the energy of an atom bound to the
cluster, which is a power-law function of the number of
atoms, a cluster containing hundreds of atoms is not a mac-
roscopic particle. The surface energy of a cluster varies ap-
proximately as n** to an accuracy of a few per cent; that is, it
is proportional to the surface area of the cluster. In particu-
lar, Fig. 15 shows the variation of the surface energy of a
cluster with the face-centered cubic structure in the range of
n corresponding to the data of Table XII. Figure 16 shows as
afunction of the number of atoms in a cluster the variation of
the constant of proportionality B in the formula for the sur-
face energy of the cluster

By = Bn?3p, (41)

This formula was obtained from the data of Table XIII. Asis
apparent, B is an irregular function of the number of atoms

FIG. 15. Surface energy of a cluster with the face-centered cubic lattice
structure at zero temperature. Curve / takes into account the actual
way the cluster grows by filling of the separate islands; curve 2 corre-
sponds to the shell structure of the cluster, and curve 3 represents the
approximation of formula (41).

in a cluster. Therefore, the approximation (41) is possible,
but with limited accuracy, estimated to be a few per cent.

The possible validity of such an approximation can be
explained by the following argument. The surface energy of
a cluster containing tens or hundreds of atoms comes from
many shells and most of the atoms of a cluster containing
hundreds of atoms. At the same time, the binding energy of
an attached atom depends on which shell it belongs to, that
is, how many nearest neighborsit has. In this way, the energy
of an attached atom is quantized.

However, this same situation corresponds to a cluster
with any number of atoms. One can expect that this is a zero-
temperature effect. An increase in the temperature smooths
out the variation of the binding energy of an atom attached
to a cluster as a function of the number of atoms in the clus-
ter. Estimates’ show that this smoothing actually occurs,
although even for clusters with #~100-1000 at tempera-
tures up to the melting point of the crystal the binding energy
of an attached atom is not a monotonic function of » and
deviates from — d E(n)/dn, which applies to a macroscopic
cluster (E is the total energy of a cluster).

Thus, a large cluster consisting of atoms with a pairwise
interaction, i.e., a bound system of a large number of atoms
with a pairwise interaction, can be analyzed from the point
of view of the energy parameters of the system. Choosing a

FIG. 16. Dependence on the number of atoms in a cluster of the numerical
coefficient in formula (41) equal to B = E,,./Dn*">.
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TABLE XIII. Energies of clusters with different structures, in units of D.

Cluster structure n=257 n=349
Face-centered cubic - 1208 - 1691
Body-centered cubic - 808 ~ 1144
Hexagonal — 1204 — 1688

particular type of symmetry for the cluster, one can calculate
the total energy of the system for various configurations of
the atoms. It is thereby possible to find as a function of the
number of atoms in the cluster the optimum symmetry and
configuration of the atoms at zero temperature in a cluster
that contains a given number of atoms. The same operations
can be carried out for finite, relatively low temperatures for
which the number of vacancies in the filled shells is relatively
small. It should be emphasized that these results are very
intuitive because their derivation does not depend on tedious
and difficult mathematical methods even when the system
contains hundreds of atoms.

4.3. Clusters with the Lennard—Jones Interaction

A cluster in which the atoms interact through the Len-
nard-Jones potential, formula (22), have been studied very
thoroughly (see, e.g., Refs. 74-85). Below, those results will
be analyzed from two points of view. First, the results pro-
vide a deeper understanding of the structure of large clusters
and permit a choice of the optimum approach for the analy-
sis of their properties. Second, it is convenient on the basis of
these results to analyze the advantages and the drawbacks of
this method of constructing clusters consisting of atoms with
a short range interaction.

The Lennard-Jones potential for the interaction be-
tween atoms separated by a distance R is given by formula
(22)

UR=D[(a/R)'%-2 (a/BY], (42)

where the distance a between the atoms corresponds to the
minimum of the interaction potential, which is equal to D at
that distance. Let us construct a cluster consisting of atoms
with this interaction. The difference between it and a cluster
with a short-range interaction is that the long-range interac-
tion between atoms that are not nearest neighbors can create
stress in the cluster. This causes a shift of the distance be-
tween neighboring atoms from the interatomic distance in
the diatomic molecule.

FIG. 17. Thirteen-atom cluster with the structure of a cube octahedron. It
has three atoms each in the upper and lower layers and seven atoms in the
middle layer. The positions of the center of the atoms of the lower layer are
indicated. The crosses indicate the structure of the face-centered cubic
lattice and the filled circles indicate the hexagonal structure.
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For this same reason a cluster with along-range interac-
tion between the atoms admits of new structures, not avail-
able to a cluster with a short-range interaction between
atoms. Within this model the distances between nearest
neighbors atoms were strictly specified, and not subject to
small changes. However, if it is assumed that the distances
between nearest neighbors atoms are close to some value, but
can vary over a certain range near this value, then new struc-
tures can be obtained. The most important of these struc-
tures is the icosahedron.?

Let us discuss the general methods of the theoretical
analysis of the Lennard-Jones cluster, which has been the
subject of many investigations.”** It might appear that to
find the optimum configuration of the atoms in a cluster it
would be sufficient to choose some appropriate configura-
tion and then adjust the positions of the atoms until the ener-
gy of the cluster becomes a minimum. However, as it turns
out, this method does not work. Even for a Lennard-Jones
cluster containing 13 atoms there are at least 988 local ener-
gy minima,”*”® and one can expect that this number in-
creases rapidly with the number of atoms in the cluster.
Therefore, other approaches are used, based on an analysis
of the appropriate structures of the cluster. Such an analysis
is particularly suitable for clusters with filled shells.

We shall carry out this analysis for clusters containing
13 atoms. In this case a cluster with a close packed structure
has a cube octahedron structure (Fig. 17) and a filled first
shell. The number of bonds is 36, so that the total energy of
the crystal in terms of the short-range interaction between
atoms is 36D, while for the Lennard-Jones interaction in-
cluding the long-range interaction and a small reduction of
the interatomic distance on account of it, the energy is
40.48D.

In the case of the icosahedral structure (Fig. 18) the
number of bonds for an interatomic distance close to the

a

NTTUARTTTURTTTATTTA
\ N \ /N AN
/ / N/ \

\ \ \
/ 4 V4 4
\ N \ \
(VS V S V S V A
c

FIG. 18. Thirteen-atom cluster with the icosahedral structure. The filled
circles indicate the positions of the centers of the atoms. a) Side view; b)
top view; ¢) an unrolled cylinder with inscribed pentagons.
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TABLE XIV. Number #; of bonds in a cluster with #n = 13 atoms and the structure of an

icosahedron for a given distance R, between atoms.

R/a 0,964 1,014 1,640

1,928

ni 12 30 30

6

equilibrium distance in the molecule is 42 (Table XIV).
Therefore, the energy of this structure, 44.3D, is lower than
for the cube octahedron. The icosahedral structure is thus
optimum at zero temperature for a cluster with the Len-
nard-Jones potential. Table XIV gives the parameters of an
icosahedral cluster containing 13 atoms.

It is clear that the icosahedral and cube octahedral
structure are optimum for a cluster in which the short-range
interaction is dominant. In any case, this conclusion refers to
clusters with closed shell. Here the surface of the icosahe-
dron consists of 20 equilateral triangles, with the number #
of atoms in it given by the formula®®

n=10m3/3) + 5m*+ (11m/3) +1, (43)

when the mth shell is full. The surface of a cube octahedron
consists of eight equilateral triangles and six squares. It has
the same magic numbers, i.e., the numbers of atoms in the
filled shells as the icosahedron, but its volume is somewhat
greater. Let us consider, for example, a cluster consisting of
13 atoms. For both structures the centers of the atoms are on
a sphere whose center is the central atom. The radius of this
sphere in the case of a cube octahedron is 3.7% larger (and
the enclosed volume is 11.7% greater) than for the icosahe-
dron.

A comparison of these structures shows
when the number of atoms in a cluster is # < 1000 the favored
structure is the icosahedron. Thereafter, over a large range
of n the energies of these structures are nearly the same, and
for very large # the close packed structure is the optimum
one. Table XV shows the binding energies of the atoms in a
cluster for filled shells in the icosahedral and cube octahe-
dral structures.?? The transition from the icosahedral struc-
ture to the cube octahedral structure according to the data of
this investigation occurs in the 14th shell, when the number
ofatomsis n = 10 179. However, the exact size of the cluster
when the transformation occurs from one structure to the
other has no fundamental significance. In fact, the difference

78,80-82,85 that

in energy between these structures for n ~ 1000 is about 1%,
so that the sign of this difference can be changed with a small

‘change in the potential. This is all the more true, since in the

analysis of the parameters of the inert gas crystals it has been
shown that they are better described in terms of a short-
range interaction potential between the atoms than by the
Lennard-Jones potential.

Experimental analyses of the structure of large inert gas
clusters employ the method of electron diffraction by clus-
ters formed in the expansion of a gas in the space beyond the
nozzle. Investigations of argon clusters®*** have shown that
they are icosahedral for 50 < n < 800, while for n > 800 the
observed electron resonances are better described by the
face-centered cubic structure. According to the data of Ref.
835, clusters of argon, krypton, and xenon with » = 100-300
have the icosahedral structure. Measurements for large ar-
gon clusters have shown’ that for n < 1500 they have the
icosahedral structure, while in the range n = 1500-3500
there is a smooth transformation to the face-centered cubic
structure. The experiments thus confirm that inert gas clus-
ters containing tens and hundreds of atoms have the icosahe-
dral structure, while if the cluster contains thousands of
atoms the face-centered cubic lattice is the preferred one.

The question arises as to how sensitive the optimum
structure is to the shape of the interaction potential between
the atoms. To address this question, Table X VI presents the
values of the total binding energy in a cluster containing 13
atoms with the icosahedral structure (E; ) and the cube octa-
hedral structure (E, ), where the interaction potential be-
tween the atoms has the form

/Ry (@R 1 1!
-t

T ] (44)

(the notation is the same as in formula (22)). The calcula-
tions pertain to different values of the parameters / and k. It
follows from the data in the table that the choice of optimum

TABLE XV. Total binding energy of atoms in a cluster for the cube octahedron structure, E_,
and the icosahedral structure, E;, with the Lennard-Jones potential between the atoms.*?

Shell number Number of atoms, # Binding energy, units of D
Ei EC
1 13 44,33 40,88
2 55 279,2 268,3
3 147 876,5 854,4
4 309 2007 1972
K 561 3842 3792
6 923 6553 6488
7 1415 10309 10232
8 2057 15282 15196
9 2869 21641 21552
10 3871 29559 29473
11 5083 39205 39130
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TABLE XV1I. Binding energy of atoms in a cluster with » = 13.

k,l=4—8 6—12 §—12 8—16 1212 J

E,/D 50,23 44,33 42,45 43,60 39.56 |
E/D 4,27 40,80 38,79 38,10 36,62 |
—

structure of the filled shells of the cluster is not very sensitive
to the form of the interaction potential.

Figure 19 shows the binding energies of a surface atom
in a cluster for the case of the Lennard-Jones interaction
between the atoms as the second and third shells of the icosa-
hedron are filled.”” In a rough approximation the following
picture is obtained for a cluster with close packing. The bind-
ing energy does not change as one of the shells is filled or it
changes with a certain periodicity. Moreover, there are fea-
tures that are apparently related to the nature of the interato-
mic interaction. In the filling of the third atomic shell the
clusters with n = 70, 79, and 135 stand out. These values
must be the magic numbers of the cluster, i.e., in the gas
where the clusters are formed these clusters must be some-
what more numerous than for adjacent values of n. For com-
parison, the magic numbers of the Xe," clusters in this re-
gion of n are 71, 87, and 141 (Ref. 87).

A brief analysis of the experiments on charge clusters
A, (A=Ne, Ar, Kr, Xe)®* leads to the following conclu-
sions. The magic numbers of clusters of different kinds fre-
quently do not coincide, which indicates the sensitivity of
the structure of the cluster with unfilled shells and the nature
of the interaction in it. The same magic numbers are not
always obtained in different experiments with the same ele-
ment. This is evidence for the role of the conditions under
which the clusters are formed. In addition, all the experi-
ments corroborate the fact that the filled icosahedral struc-
ture is the most stable. The magic numbers observed in var-
ious experiments for the different elements correspond to

[\

(n)

Wb

15 20 25 30 35 40 45 50 55 60
n
a

55 60 65 70 75 80 B5 90 895 100 1057110 115 120 125 130 135 740 195 n

b
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this situation. These numbers are 13, 55, 147, 309, 561, and
923.2 Turning now to the method of constructing clusters
with close packing, let us analyze its merits and shortcom-
ings on the basis of the information obtained for the Len-
nard-Jones potential. As has been seen, the optimum struc-
ture of this cluster for not too large values of n is the
icosahedron. This structure does not fall into the category of
structures with close packing, with elements modeled by
hard spheres so that the spacings between neighboring
atoms are strictly specified. The icosahedron is modeled by
elastic balls and does not have the symmetry of the close
packed structures, which has previously helped to simplify
the problem. Therefore, one cannot by this method deter-
mine the optimum cluster energy at zero temperature.

A virtue of this method is its simplicity, which permits
analysis of the clusters with arbitrary (but not too large)
values of #. This makes possible an approximate analysis of
various properties of a large cluster, particularly with the use
of numerical methods.

4.4. Surface energy of clusters

Figure 15 shows the surface energy of a cluster with the
face-centered cubic lattice containing a large number » of
atoms. This curve refers to zero temperature. As can be seen,
the dependence on the number of atoms in the cluster is the
same as for a macroscopic cluster, where this energy is pro-
portional to the surface area, i.e., to n*/> (see formula (41)).
Figure 16 gives the constants of proportionality in formula
(41). The value of B is seen to be a random function of n,

FIG. 19. Binding energy of a surface atom (in units of D) in a
Lennard-Jones cluster at zero temperature.77 a) n=13-55;b)
n=>55-147.
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with oscillations that decrease in amplitude with increasing
n. A statistical analysis of the data in Fig. 16 gives

B=17.8=x0.2, (43)
and consequently, this quantity within a few per cent can be
considered as constant.

If we regard a cluster as a macroscopic particle, we ob-
tain the specific surface energy as

Eour = 1_‘7,‘su|/4.71:r2 = CD/a2, (46)

where C=A(187)"*. Formulas (45) and (46) yield
C =2.03 + 0.05, which agrees with the expression for the
specific surface energy of a crystal, formula (23), within the
limits of accuracy of these results.

As the temperature is raised, the surface energy of a
cluster increases, since some atoms of the cluster move into
shells with a lower atomic binding energy. Because there is a
release of surface energy of a cluster when two clusters are
joined together, not only is the temperature-dependent vari-
ation of the surface energy of the cluster important, but also
important is the fact that this quantity depends on the num-
ber of atoms in the cluster.

Figure 20 shows the relative temperature-dependent
variation of the surface energy for a number of clusters with
closed shells. An analysis of these data shows that the tem-
perature dependence of the surface energy of a cluster is an
irregular function of the number of atoms in a cluster. It
depends, first of all, on the number of atoms in a cluster with
binding energies 7D and 6D in the filled shells of the cluster
and the number of atoms with a binding energy 5D in the
unfilled shells, because the variation in the surface energy of
acluster is mainly related to transitions of the atoms between
these shells. Consequently, if two clusters are combined and
the excess surface energy is released, then the temperature
dependence of this difference in the surface energy can be
different depending on the structure of clusters that are
joined and the structure of the cluster that is formed.

In a demonstration of this statement, we assume that
the temperature dependence of the surface energy for clus-
ters with n~200 is the same as that for a cluster with
n = 201; that for clusters with n~ 400 is the same as that for
acluster with n = 405; and that for cluster with n ~ 800 is the
same as that for a cluster with n = 791. We then find that the
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energy released in the union of clusters with n ~200is 18%
higher at the melting temperature than at zero temperature,
and the energy released in the union of two clusters with
n~400 is 5% lower at the melting temperature than at zero
temperature.

A separate question is that of determining the surface
energy of a cluster when there are long-range interactions
between the atoms. If the total energy of a cluster is defined
according to the formulas (39) and (41)

E(n)=An+ an/a, 47)

the coefficient 4 is a smooth function of n since the contribu-
tion by the long-range interaction to the sublimation energy
of a cluster differs from the corresponding quantity for an
infinite crystal. It is therefore correct to introduce the sur-
face energy as the part of the energy that is released when
two clusters combine into a large cluster. Then the surface
energy of a cluster is given by the formula ‘

3 d(E/n
Esur=in an -

(48)
This formula works in a limited range of #. In accordance
with this formula, an expression for the surface energy of a
cluster is

E , =yAH - n?/3, (49)

where AH = A4 is the sublimation energy per atom of the
cluster. This quantity depends on the size of the cluster. For
a Lennard—Jones cluster the coefficient of proportionality y
is equal to 1.51 if we use the energy values obtained for clus-
ters with the icosahedral structure with n <3000 (Ref. 78)
and y = 1.43 if we use the results of a numerical calcula-
tion’” for clusters with n<150.

5.POROUS SYSTEMS
5.1. Surface energy of dilute porous systems

The results that have been obtained for the surface ener-
gy can be used as model results in the analysis of porous
materials, made up of small elements. A problem of this type
will be analyzed below. A porous material with an internal
surface of large specific area has a high surface energy. This
energy can be released and transformed into heat as the spe-
cific area of the interior surface is reduced. The release of the

FIG. 20. Temperature dependence of the relative variation in the sur-
face energy of a series of clusters with the face-centered cubic structure
and filled shells.
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heat increases the temperature of the sample and may acce-
lerate the reduction of the internal surface area of the sam-
ple. Under some conditions this can cause a thermal explo-
sion”” owing to the rapid transformation of surface energy
into heat. This process can propagate in porous material in
the form of a thermal wave.

Such a process for an aerogel'®'! and a fractal fila-
ment'%'% has been analyzed by the present author pre-
viously.*” A thermal explosion of an aerogel, caused by the
leakage and ignition of methyl alcohol, might have been the
cause of the explosion that occurred in 1984 in the Swedish
company AEROGLAS,'™ which used to produce silicon
dioxide aerogel in large quantities. However, this statement
and numerical estimates have provoked disagreement on the
part of specialists. Therefore, on the basis of the previously
obtained results, we shall analyze the threshold parameters
of the process.

The process proceeds in the following way. As the tem-
perature of the structure approaches the melting tempera-
ture, the structure decomposes into liquid droplets, which
then merge with one another. The energy liberated in this
way is transported into the adjacent elements of the con-
struction and cause the latter to melt. The formation of lig-
uid droplets accelerates the process by several orders of mag-
nitude, so that for a thermal wave to travel along a fractal
filament it is necessary that only a part of the material be-
come liquid. Otherwise, the characteristic time of heat trans-
fer is less than the time of reduction of the inner surface area,
so that the thermal wave cannot propagate along the fractal
filament. For an aerogel the conditions are not so stringent,
but the temperature at the thermal wave front must be quite
high for the reduction of the specific area to occur effective-
ly. Then we require that for the process to proceed the sur-
face energy of a simple system must be sufficient to heat the
material to the melting temperature.

The surface tension and the specific surface energy are
different characteristics, although they coincide at zero tem-
perature. The surface tension is characterized by a difference
in the normal and tangential forces acting on an atom as it
moves through the interface. This quantity is sensitive to the
formation of vacancies on the surface near the interface, so
that it decreases rapidly with increasing temperature, par-
ticularly in the liquid state of the material. For a liquid sys-
tem of atoms with a short range interaction the surface ten-
sion at the melting temperature is about half that at zero
temperature and falls off rapidly as the temperature is raised
above the melting point.

The specific surface energy for a system of atoms with a
short range interaction does not change so rapidly with the
temperature. Unlike the surface tension, this quantity is not
so sensitive to the vacancy concentration at the surface and
within the system. For a liquid at the melting temperature it
is given by formula (32) and is only slightly lower than the
value given by formula (24) at zero temperature. In this
analysis formula (32) will be used for the specific surface
energy of a simple system.

This formula (32) applies to systems with a short range
interaction between the atoms and can be used as a model for
other systems. In the latter case the accuracy of the formula
is estimated at ~50% on the basis of a comparison of the
actual values of the surface tension with those of the model
formula.
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Let us use formula (32) for an aerogel of silicon diox-
ide. From the parameters of silicon dioxide (AH = 133
keal/mole and p = 2.1 g/cm?)'® we obtain for the specific
source energy of this material £, = 1.6 J/m?. If we assume
that the specific heat of silicon is temperature independent,
then, using the room temperature value C, =0.75 J/g'K
(Ref. 105), we find that the threshold for this process corre-
sponds to a specific aerogel surface of 800 m?/g. We recall
that this result is accurate to a factor of about 2. The maxi-
mum specific area of a silicon dioxide aerogel is about double
that of the threshold value. We can therefore expect that
existing samples of the aerogel may be explosive materials,
although the reliability of this conclusion is limited.

Nonetheless, this result can be used as an estimate for a
more accurate determination of the parameters of the ther-
mal explosion of an aerogel. To make such a determination,
a piece of the aerogel can be heated and at various sample
temperatures one of its elements brought to the melting tem-
perature, by laser irradiation, for example. The sample tem-
perature at which the thermal explosion occurs provides in-
formation on its surface energy and thermophysical
parameters of the aerogel at high temperatures.

There is another circumstance related to this process.
Let us consider an aerogel with the maximum specific inter-
nal surface area § = 1500 m*/g (Ref. 106). We analyze this
aerogel using the well-known model of a collection of inde-
pendent balls. Each ball has a radius 7 = 0.41 nm, and since
the density of molecules in solid silicon dioxide is 2.1-10%2
cm~?, we find that each ball contains approximately 260
molecules. In this way, each ball is a medium-size cluster
and not a macroscopic particle. The phase transition to the
crystal is of a different nature, and this means that the cluster
has a larger specific surface energy than a macroscopic parti-
cle.

5.2. Bubbles and the solid-liquid phase transition

It is well known'?” that the solid-liquid phase transition

is associated with the formation of vacancies (voids) within
the condensed system. These vacancies cause loss of long
range order in the system. We shall investigate this problem
phenomenologically on the basis of the transition param-
eters measured for condensed inert gases (Table VII), using
the scaling laws, along with the idea of the formation of va-
cancies in the liquid state of a system with a short range
interaction between the atoms.

The concentration of vacancies is very low in the solid
state of the system. At the melting temperature, T,
= 0.58D, the Boltzmann factor in the probability of the
thermally-induced formation of a simple vacancy is
exp( — 12D /T) = 1-10~° and extremely low (12D is the
energy of formation of a simple vacancy, and is related to the
removal of a single atom from a close packed condensed
system). The change in the density of the crystal heated be-
low the melting point is also determined by the anharmoni-
city of the vibrations of the atoms. The increase in the tem-
perature results in an increase in the distance between
nearest neighbors. At zero temperature the density of the
crystal is p, = Y2 m/a’, where m is the atomic mass and a is
the interatomic distance in the diatomic molecule in the
ground state. The relative change in the density as the tem-
perature s raised from zero the melting point of the crystal is
1 — (p,/po) wherep, is the density of the crystal at the melt-
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TABLE XVII. Reduced parameters of the condensed state of inert gases at the melting tempera-

ture.
Ne Ar Kr Xe Average
1=(p/p) 0.137 0.126 0,136 0.131 0.132 + 0.005
AH /D 0.825 0.923 0.907 0.910 G.89 + 0.04
E,,/n 8.3 8.6 8,0 8.3 8302
n, Number of vacancies in a 45 37 59 45 46+ 9
bubble
7, Fraction of atoms on the 0.209 0,205 0.190 0.200 | 0.201 = 0.008
surface of a bubble
ing point. Table XVII lists the values of this parameter for where E,,, is the surface energy of the removed cluster con-

the various inert gases.

The solid-liquid phase transition results in the forma-
tion of vacancies—bubbles—within the condensed system of
atoms. Each bubble consists of one or more simple vacan-
cies, that is, it corresponds to the removal of one or several
atoms. This idea, which is taken here as the basic premise,
has been developed by specialists in the physics of phase
transitions (see, e.g., Ref. 108). We shall determine the aver-
age size of the bubbles that are formed in phase transitions of
various inert gases, using general information on this process
and the energy parameters of the clusters that are removed
from the condensed system of atoms.

For this purpose we determine first the energy ¢,.,.,, per
bond at the melting temperature. At zero temperature this
quantity is equal to D, the dissociation energy of a diatomic
molecule in the ground state. Since the melting temperature
and the boiling temperature are close together, we assume
that the energy per bond is the same at the two temperatures.
Previously, we have found (formula (27)) that for different
versions of the disorder model of the surface of a condensed
system of atoms the evaporation energy of a single atom is
€., = 6D. Therefore, €., /6 is the energy of a single bond at
the boiling temperature, and hence also at the melting tem-
perature. Table XVII gives the corresponding parameters
for the different inert gases.

We use the data in Table XVII to determine the average
parameters of the bubbles that are formed in the melting of a
crystal of an inert gas. We assume that the bubble contains n
simple vacancies, i.e., it is formed by the removal of n atoms
from the crystal. The energy of formation of the bubble is

Eyyp =6nD + Eg,, (50)

72,00 o
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11,00 o
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taining # atoms. The energy used in the formation of a simple
vacancy, that is, the energy associated with the removal of
one atom, is

€oub = Epup/n = 6D + (E, /n), (51)

where D is the energy per bond at the melting temperature.
Figure 21 shows the variation of ¢, as a function of »,
obtained from the data for clusters with a face-centered cu-
bic lattice.

On the other hand, it is possible to determine this quan-
tity from measurements of the parameters of the plane tran-
sition. Denoting the density of the condensed system of
atoms in the crystalline and the liquid states at the melting
temperature as p, and p,, respectively, we find that in the
phase transition the concentration of vacancies formed is
(p, —p;)/ps (where p; is the density of the liquid at the
melting temperature), so that the density of simple vacan-
cies (the number of atoms removed per unit volume of the
material) is

Nyge = (1 —p[/ps)'\/T/aa, (52)

where a is the nearest-neighbor distance at the melting tem-
perature (2/a> is the density of atoms in a close packed
structure). In addition, the heat of fusion AH_,, per unit
volume of the material is a measurable quantity. Using this
quantity, we find that the energy of formation of a simple
vacancy is

Ebub/n = A]{melt/Nv

ac’

(53)
Substituting expressions (51) and (52) into (53), we

FIG. 21. Energy expended in the formation of a single simple
vacancy (removal of one atom) as a function of the number of
simple vacancies in a bubble (the number of atoms removed
from the cluster) in a condensed system of atoms with close
packing.

- Ar
«—Ne,Xe
-—Kr
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determine the average number of simple vacancies in the
bubbles formed in the melting of inert gas crystals. The cor-
responding results are given in Table XVII and Fig. 21. The

number of vacancies in a bubble is surprising. This fact will
not be discussed here; we shall leave to more competent spe-
cialists to analyze this conclusion and find whether the large
number of vacancies in a bubble is a general result.

The result takes into account the features of the model
used, in which long-range interactions between atoms are
neglected. Therefore, no stresses exist in a condensed system
of atoms, including stresses incurred in the formation of the
vacancies, and moreover, the vacancies do not interact
among themselves. Above (in Sec. 3.1), it was shown that
the observed energies of sublimation of condensed inert gas-
es are closer to the energies given by this model than by the
model of a condensed system with the Lennard—Jones inter-
action between atoms. A determination of the average num-
ber of vacancies in a bubble in a model system with the Len-
nard-Jones interaction gives an even higher number » for
the number of simple vacancies in a bubble.

As can be seen, the liquid state corresponds to porous
matter, and these pores inside the material allow the atoms
to change their relative positions. From the parameters de-
rived for the bubbles, we shall determine the parameters of
this porous material. One of the basic characteristics of po-
rous matter is the specific area of its internal surface. We
shall introduce a similar characteristic that is convenient for
understanding this physical phenomenon—the concentra-
tion 5 of atoms on the surface of a bubble, i.e., the fraction of
the atoms situated on the surface of a bubble. A bubble is
considered to be a macroscopic formation of radius #, so that
if it contains » simple vacancies its radius can be found from
the expression

3
r

3
,,=47;f \/3__17!3&(;) , (54)

a

where2/a* = p,/m is the density of atoms in the system; p,
is the density of the crystal at the melting temperature and m
is the mass of an atom.

The relative number of atoms on the surface of a bubble
is

Py
-2
where p; and p, are, respectively, the densities of the system
in the solid and liquid state at the melting temperature of the
crystal, and # is the average number of simple vacancies in a
bubble. The numerical values of 7 for the different inert gas-
es are listed in Table XVII. As can be seen, in liquid inert
gases about 20% of the atoms are located on the surfaces of
bubbles.

The parameters of a liquid, which is a porous object,
change very rapidly with the temperature. For example,
when the temperature of a liquid inert gas goes from the
melting point to the boiling point at atmospheric pressure
the fraction of the volume occupied by vacancies goes from
(13.2 +0.5)% to (15.4 + 0.8)%. Since the melting tem-
perature and the boiling temperature are close together, we
assume that the change in the density of the liquid is due to
the formation of new vacancies.

The presence of pores in a liquid alters its surface prop-

4nrfa P\ (36avT '3
=|1-=| =] , (55
4nr’/3 Ps n

1075 Sov. Phys. Usp. 35 (12), December 1992

erties. Previously, we analyzed the surface tension, which is
characterized by the force acting on the liquid-gas inter-
phase surface.

Let us now analyze the change in the surface energy due
to the crystal-liquid transformation. If we approximate the
bubble by a sphere of definite radius and construct an arbi-
trary plane in the liquid, then the part of the area of this
plane that lies within bubbles is AV /¥, where AV'is the part
of the selected volume ¥ of liquid occupied by bubbles. This
implies that the crystal-liquid phase transition reduces the
specific surface energy of the condensed system of atoms
with a short range interaction by about 13%. As can be seen,
this change does not depend on the size of the bubbles that
are formed, but is expressed in terms of the concentration of
simple vacancies, that is, the number of atoms removed per
unit volume of the structure.

Thus, at the melting temperature we obtain for the spe-
cific surface energy of a liquid at the melting point, in addi-
tion to formula (32), the formula

e = (1,69 £ 0,12) D/d?, (56)

where D and a are the dissociation energy and the equilibri-
um internuclear distance of the diatomic molecule in the
ground state.

6. CONCLUSIONS

The analysis carried out here shows the virtues and
drawbacks of the model of a short range interaction between
atoms. The short-range interaction, which, in the absence of
a long-range interaction, has a steep variation in the poten-
tial in the repulsive part of the interaction and a shallow and
narrow potential well in the attractive region, allows us to
model the atoms by more or less hard balls. The model of the
short-range interaction between the atoms is described well
by a system of atoms with a repulsive exchange interaction.
The most appropriate systems of this sort are the inert gases
in the gaseous or the condensed states. Exotic systems of this
type are metastable crystals''® consisting of atoms of non-
zero electron spin with the spins of all the atoms parallel,
solid carbon consisting of Cq, clusters,*®*® etc. Systems of
atoms with non-short-range (and consequently non-pair-
wise) interactions between the atoms can employ the results
obtained for pairwise short range interactions as model sys-
tems.

However, the interest in atoms with a short range inter-
action is not due solely to the utility of the model. This model
poses a number of fundamental questions that are easier to
sort out within this simple model. It was shown above that
scaling laws are obeyed better for condensed systems of inert
gases than might be expected from general considerations.
According to this scaling the various parameters of con-
densed systems of atoms can be expressed in terms of the
parameter of the diatomic molecule, the dissociation energy,
and the equilibrium internuclear distance in the molecule.
However, the significant results that follow from an analysis
of the experimental data make it much simpler to under-
stand some fundamental regularities and obtain information
on a number of topics.

The first of these is melting, which occurs at a tempera-
ture of 0.58D (Table VIII) and is a phase transition related
to the loss of long-range order. The melting process is asso-
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ciated with the formation of vacancies within the condensed
system, and the transitions studied with the use of data on
the parameters of the process provide information about
these vacancies. Such information can be useful in a more
thorough analysis of the process. Another topic of this type
is the temperature dependence of the specific surface energy
and the surface tension at temperatures near the melting
point. Yet another problem is the transition to the critical
point. All these issues can be analyzed in detail on the basis
of the model studied here, which involves short-range (and
consequently pairwise) interactions between the atoms.

It is clear that specialists have their own answers to
questions of this sort, but the complexity of the methods that
are involved do not always make the answers convincing to
specialists in other fields of physics, while the fact that the
number of systems to which these methods are applicable is
limited makes the methods less than general. An under-
standing of these problems in the context of a simple model
like a system of atoms with a short range interaction can
make accessible to a broader range of scientists a simpler and
more general means of description.

Let us point out the methodological aspect of the prob-
lem. The results presented in this review were obtained by
analytical methods and from simple arguments. The incor-
poration of these ideas into present-day numerical meth-
ods''"''2 is a matter of fundamental importance. For exam-
ple, the methods of molecular dynamics show that for a
cluster the concept of a melting temperature is lost, because
at some temperatures the atoms of the cluster can move free-
ly near the surface of the cluster, whereas within the cluster
the atoms are immobile.'"® If the liquid state is associated
with the possibility that the atoms of the system can change
their locations more or less frequently, then in a cluster the
liquid and the solid state can coexist, and the melting tem-
perature and the freezing temperature can be different.'!*
The models presented here for the short-range interaction
are well adapted to modern computer methods, and in par-
ticular they can be readily joined with the method of molecu-
lar dynamics. The use of modern computer methods in the
context of the model described in this article opens up new
possibilities for the understanding of the fundamental prob-
lems of the physics of clusters.

I would like to thank V. B. Leonas for valuable com-
ments.

APPENDIX.SCATTERING CROSS SECTIONIN ASTEEPLY
VARYING POTENTIAL

We define the differential and average scattering cross
sections of atoms in the case of a steeply varying repulsive
interaction potential between classical particles by using as a
basis the potential of an infinite wall (Fig. 1). The scattering
angle ¢ of classical particles is given by the relation'®®

/2
pdR, (A1)

R, R

® -1
2
p=n—2f [1 —P———Q(e&]
T
Here p is the impact parameter of the collision, R is the dis-
tance between the particles, ¢ is the collision energy in the
center of mass system, U(R) is the interaction potential of
the atoms, and , is the distance of closest approach, which
satisfies the relation
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1 _p2 Uy

77 =0 (A2)

ro -
We expand the cross section in terms of the small pa-
rameter 1/n, where n = — d In U(R)/dR. In the zero-or-

der approximation we assume that U(R) =0, R>r,
U(R) = =, R<r, From this we obtain

ﬁ:n—Zarcsinrﬂ-—2A0, (A3)
0
B [( R 5)
To
(A4)

2 - dR
- (1_%2_) 1/2]%7'

Relations (A3) and (A4) are exact. The expression used for
the scattering angle is convenient, since in the present case
Ad ~1/n. To avoid divergences in the calculation of the inte-
gral in Eq. (A4) we use the relation

LI [(-5- 2 (-5 ar

Tdp R € R
To
__G . phin
=-3 (! ,(2))
o 2 _ 2 4R
(-G-8 -5
o

from which we obtain

=%;g(l_&:)1/z

To

AY

— 8

L0515 Y em. a9

"l

0

Taking into account that the last integral converges near
R=ry(R — ry~1/n), we determine the integral with an ac-
curacy to 1/n:

= 2 2
JTO-5)7- (-G-8 e

=]

N (1_%2?)1/2‘!'{1_ [1_ (%))n]uz} dR
]
. .
= (p*-7) l'lzj'i—'—ﬂ;")—l—/idx =%(1 - 1n2) (,g —p’)m.

where

U(R) 211
s (1—’:—5) 9

X =

From this result we obtain

dr 2 - 172
AD 0(1—&2)'/2+2§1 lnz)_d__(r(z)_pz) .

= (A6)
e\~ 2 n d
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Formulas (A2), (A3), and (A6) allow us to find an
expression for the scattering angle in the case where the re-
pulsive potential varies steeply. Introducing the variable
u = U(r,) /€, we have on the basis of those formulas

1/2
_ . 1/2 2—-(n=Dln2| [u(l-w]
¥ =2 arcsin u —2[ " T+ ((n = 2)u/2]
_ . 172 lu(l — w)})’? (A7
= 2 arcsin’ " — 2In2 L+ (/) )
where n = —dIn u/d In r,. This expression has an inde-

pendent meaning, allowing us to find the dependence of the
scattering angle on the collision impact parameter p, which
is related to the distance of closest approach r, by formula
(A2):

u=1- (pz/r(z)).

In the calculation of the differential scattering cross

section it is assumed that the main contribution to the cross

section comes from the range of values u ~ 1, where expres-
sion (A7) has the form

172 4In2 (l—u)l/z

(A8)

8 = 2arcsin !4 — (A9)
n u
Under the assumption that the second term is small, we have
with an accuracy to terms of order 1/n
o) = J- (1 — cos 9) - 2rpdp
0

=n_f2u [(1 —u)drg—rgdu]

1
1/2
|4n2 {1 —u . o2 2
+.TJ- " ( m ) 2[14(1 u)] rodu.
0
On the basis of formula (A8), we have used the relation
dp®> = (1 — u)dr} — ridu and have assumed that the first
term is by a factor of ~ 1/n smaller than the second. Carry-
ing out the integration over u in the first term by parts and
noting that p = 0 corresponds to ¥ =1 and p = « corre-
sponds to u = 0, we have
0
—J Z*rrgudu = JIR(Z)MZ l(l) - J.Jruz * 2rodry
1
1
= nR(Z) + J.Znur(z)du/n = JrR(Z) 1+ n_l) ,
0

where u(R,) = 1, i.e., U(R,) = ¢. Repeating these calcula-
tions for the other integrals and keeping only terms of order
~1/n, we obtain finally

o) = zR2 (1 +3—'in‘—“-2) (A10)

We write the differential cross section in the form

oV =7R3, ie,

R =Ry + [(1,.5—21n2)/n]‘

We have
u(R)) = (Ry/R))" = exp(—3/2 + 2In2)
=4 exp( - 3/2) = 0,89.
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Consequently, the differential cross section is'®'®

oD = R?
with

U(R

—(—Q = 0.89. (A1l)

&

Let us now average the cross section over a Maxwellian
distribution of the particles. We determine the average cross
section that figures in the expression for the diffusion coeffi-
cient (see formula (9))

o
o|(T) = %J.a(l)(e) e *xdx,
0

(A12)

where x = ¢/T and T is the gas temperature. From formula
(A11) it follows that oV (&) ~£ ~ %", so that

0(1)(5) _ 0(1)(50) (E 561)2/;1

= oW(ey) [1 - (%) In (eegl)].

This formula is valid in the region £ ~ £,, where the second
term is considerably smaller than the first. Substituting
(A13) into (A12) we obtain for the average cross section

(A13)

o(T) = a(l)(eo) 1+ %ln (eOT_l) - %J. x2In x e *dx|.
0

We choose the value of &, such that the second and third
terms cancel one another. We obtain &, = T exp ¢(3),
where ¥(3) = — C + (3/2) is the derivative of the gamma
function and C = 0.577 is Euler’s constant. Thus, we have

o,(T) = oM [Texp ( -C+ %) :l

and taking into account formula (A11), we obtain for the
average differential cross section

— 2
o) =7y

for
U(ry) -

7 (Al14)

4eC =225

Going through similar operations, we obtain for the cross
section that goes into the expression for the thermal conduc-
tivity and the viscosity in the case of a steeply varying inter-
action potential between the atoms:

&3 = J.( 1 — cos 2’1‘)) do = 27[R%/3

with

U(R,)/e = 0.23. (A15)

The average cross section that goes into the expression for
the thermal conductivity (7) and the viscosity (8) is

0, = 2rl/3

for

U(r,))/T = 0.83.
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" A statistical analysis of the data of Table VIII gives a value T,,/D
= 0.58 + 0.01 for the ratio of the melting temperature T, of an inert
gas crystal to the dissociation energy D of a dimer. This ratio was used in
Ref. 44 to estimate the melting temperature of carbon made up of C,
clusters.
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