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The current state of the foundations of quantum mechanics is discussed. The analysis takes as its
startlng point the theory of probability amplitudes, which is intimately related to the group-
theoretic approach. A detailed examination is presented of the relationships of classical and
quantum theories, the transition to the classical limit, the different forms of uncertainty relations
and the properties of quantum structures determined by the Clebsch—-Gordan coefficients. ,
Possible future generalizations are examined, including those involving quantum algebras.

1.INTRODUCTION

Analysis of the foundations of quantum theory has a
long history. It reached its peak when quantum mechanics
was being created, and is closely associated with names such
as de Broglie, Schrodinger, Heisenberg, Bohr, and Dirac.
The foundations of quantum mechanics were essentially laid
in 1932 with the publication of von Neumann’s book' in
which he gave a logically consistent and mathematically rig-
orous presentation based on the theory of Hilbert space.

These problems then gradually receded from the front
line of research, although the more important concepts con-
tinued to evolve. For example, nonrelativistic quantum me-
chanics became part of general quantum theory, group-
theoretic and probability aspects were recognized as being of
fundamental importance, the use of coherent states (CS)
has altered our views on the inter-relation between classical
and quantum theories, there has been a change in, and a
gradual complication of, the formalism that has entered
physics from branches of mathematics and has seemingly
become more and more abstract, and significant changes
have taken place in recent years in what seemed to be pretty
basic ideas.

All this has forced us to return once again to the exami-
nation of the foundations of quantum theory.

Our approach to this problem is closely linked to the
theory of Clebsch-Gordon coefficients (C-G coefficients).

In 1972, the senior authors of the present review pub-
lished an article in the present journal’ under the title
“Clebsch-Gordan coefficients, viewed from different
sides.” By that time, the theory of the Clebsch—Gordan coef-
ficients of the group SU(2), i.e, the theory of angular mo-
menta, had become an integral part of several branches of
physics, namely, quantum mechanics and field theory, the
theory of atomic collisions and atomic spectra, molecular
physics and the physics of elementary particles, and relativ-
istic equations and coherent phenomena. It was shown that
the Clebsch-Gordan coefficients constituted a new calculus
that was closely related to algebra, multi-dimensional geom-
etry, topology, projective geometry, theory of analytic func-
tions, special functions, differential equations, combinator-
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ial analysis, and finite differences.

In the last twenty years, the theory of Clebsch~Gordan
coefficients has undergone radical changes. We now have
continuous as well as discrete coefficients, and a unified the-
ory has evolved that includes not only SU(2), but also other
groups. It was then suggested that we should examine the
situation in a review entitled “Clebsch-Gordan coefficients,
viewed from different sides (twenty years later)”. However,
something unexpected has happened. From the physical
point of view, the theory of Clebsch-Gordan coefficients is
the science of the structure of quantum-mechanical systems,
of the connection between a system and subsystems, and of
the transitions between different structures, but the last
twenty years have witnessed changes in things that seemed
totally unshakeable and routine. The result is that the prob-
lem of the Clebsch—Gordan coefficients has been subsumed
by the general problem of the foundations of quantum theo-
ry.

The key point of this theory is that of probability ampli-
tudes. These amplitudes (wave functions 1) were consid-
ered as auxiliary quantities used in quantum mechanics to
calculate physical quantities. In actual fact, the probability
amplitudes are independent probabilistic objects for which a
systematic theory can be constructed. Dirac® noted that of
the two fundamental properties of quantum theory, namely,
noncommutativity of observables and the concept of proba-
bility amplitude, the latter is the more important and crucial
to the subsequent development of the theory and to the reso-
lution of existing difficulties. Dirac’s prediction has come
true. One of the fundamental steps in this direction was the
introduction of the path integral by Feynman.* The theory
of probability amplitudes discussed in Ref. 5 runs parallel to
the usual theory of probability and has its own distribution
functions, limit theorems, and Markov processes. There are
thus two equivalent languages in quantum theory, namely,
the language of operators in Hilbert space and the language
of probability amplitudes.

Probability amplitudes are intimately related to the
group-theoretic approach which has a universal character in
guantum theory. Each process has associated with it its own
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group, in much the same way that, in statistics, each particu-
lar phenomenon has its own probability distribution. In oth-
er words, there is no preferred group and we can speak of a
definite ‘group democracy’. At the same time, different
group and probability approaches are becoming increasingly
intertwined, forming a unified theory. Even the Clebsch—
Gordan coefficients that emerged from pure group-theoretic
considerations are actually probability amplitudes.

Studies of CS as a basis of irreducible representations
(IR) of groups have resulted in a version of quantum theory
that is wave-particle symmetric, and have led to a reformula-
tion of the question of its relation to classical theory. A
group-theoretic treatment of the uncertainty relations, a rig-
orous transition to the classical limit, and the construction of
states that are as close as desired to classical states have all
become possible.

Still greater generality is emerging from the formalism
of overlap formulas for basis vectors of the space of states in
which the well-known Dirac notation is employed (many of
Dirac’s ideas are presented in Ref. 6). This formalism ap-
pears to combine the two languages, i.e., the language of the
theory of operators in Hilbert space and the language of the
theory of probability amplitudes. Its central relation, name-
ly, the formula for the decomposition of unity, can be treated
either as a consequence of the completeness of the basis or as
a consequence of the completeness of the field of events un-
der consideration. The overlap formalism involves the C-G
coeflicients and a broad class of special functions, which re-
sults in a radical simplification of notation and calculations.
We know from the history of science that the introduction of
efficient and simple notations has far-reaching conse-
quences.

Advances in the development of a general quantum the-
ory, containing the usual quantum mechanics as a special
case, have been invigorated by new ideas that rely, for exam-
ple, on the use of infinite-dimensional generator algebras,
pseudo-differential operators, and quantum algebras. Here
we can see the importance of a systems approach and the
identification of fundamental principles.

The aim of this review is not only to bring together the
different strands of the subject, but also to identify new ideas
in order to demonstrate the internal unity of the three basic
approaches (group-theoretic, probability, and operator)
and to provide an outline of a general quantum theory. Par-
ticular attention will be devoted to the simplicity of presen-
tation and to the use of particular formulas as working tools.

Our review presents a systematic account of the group-
theoretic prerequisites for the analysis of the foundations of
quantum theory; the calculus of finite differences which in-
cludes the vigorously developing quantum algebras; coher-
ent states and the associated question of uncertainty rela-
tions and the transition to the classical limit; the C-G
coefficients for continuous and discrete bases; and the theory
of probability amplitudes and its connection with the group-
theoretic approach and the general structure of quantum
theory. Relatively complex formulas that are widely used in
group quantum theory are relegated to the Appendix.

Because of the wide range of topics covered in this re-
view, we have had to confine ourselves to a minimum num-
ber of references. With exception of the formulas given in
Sec. 4.1, which refer to the uncertainty relations, we use the
system of units in whichfi=c=1.
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2.PREREQUISITES FOR THE GROUP-THEORETIC
APPROACH

2.1.Lie algebras, representations, and bases

Group-theoretic methods have become an inseparable
part of quantum theory, whose basic concepts can be ex-
pressed in group-theoretic language and whose extensive
spectrum of problems is amenable to group-theoretic analy-
sis. Different representations of quantum mechanics can be
placed in correspondence with particular bases for irreduci-
ble representations. Until recently, attempts were being
made to find some fundamental all-embracing group for
which there were many candidates, right up to exclusive
groups. However, the reality is that different groups apply to
different problems, and each group describes a particular
aspect of reality.

In this Section we examine a systems approach based on
an equivalent set of simple groups whose Lie algebras con-
tain a triple of operators, namely, raising, lowering, and di-
agonal operators. This is the foundation of the group-theore-
tic analysis. These groups can be used as a framework for a
systematic examination of basic quantum concepts (coor-
dinate/momentum, angular momentum/angle, phase/
number of particles, energy/mass equivalence, and the com-
ponents of the angular momentum vector). We note that all
the basic consequences can be fully examined within the
framework of simple (three-parameter) groups, and a sys-
tematic and complete group-theoretic description can be
given (including generator algebras, representations, bases,
C-G series and coefficients, coherent states, operator sym-
bols, and transition to the classical limit).

The theory of representations of more complicated Lie
groups is still incomplete, so that it is best to use the con-
structive principle for them, based on results obtained for
fundamental groups. We note that groups such as the Poin-
care group M(3,1) or the Lorentz group SL(2C)-SO(3,1)
are really topics for separate monographs.

Advances in the group-theoretic approach have been
closely related to applications in physics. The successes of
quantum field theory are well known from this point of view.
There is also optics in which an enormous amount of re-
search has been carried out and which typically involves an
intertwining of group-theoretic and statistical problems.
The development of the group-theoretic formalism and the
wide range of group-theoretical research in optics have be-
come prerequisites for a re-examination of the foundations
of quantum theory.

The material presented in this Section can be regarded
as a generalization of the theory of angular momenta to the
entire set of simple groups lying at the foundation of the
group-theoretic approach. They include the five three-pa-
rameter non-Abelian Lie groups, namely, the semisimple
compact group SU(2), the noncompact group SU(1,1), the
nilpotent group, the Heisenberg group (or Heisenberg-Weyl
group) (W1), the group of motions of a plane (or the Four-
ier-Bessel group) M(2), and the group of motions of a pseu-
do-Euclidean plane M(1,1) [sometimes denoted by
MH(2)]. Their Lie algebras contain three operators each
(theraising operator E , the lowering operator E _ ,and the
diagonal operator H) and they have similar structure:

(H,E 1= =E,, [E,, E_1=f(H). 2.1
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The difference lies in the form of the function f (I? ). Weshall
use a specific operator designation for each group:

SU@), SU(LL) M(2), M(1,1) w(l)

F(HY: 20 0 7
B,: 7. o, a, ; (2.2)
ﬁ: Az JZ’ JXt 2

wherei = @ _ @ _ isthe particle number operator and Tisan
operator that is a multiple of the unit operator. For unitary
irreducible representations of the group W(1),8* =a .,
I+ =1, instead of a . and 2 a _ we usually employ the nota-
tiona* and @ (these are the creation and annihilation opera-
tors).

The Lie algebras in (2.1) correspond to different trans-
formations of the groups exp L, defined by three parameters:

L=aE, -aE_+iag, Ei=E., Tr=J, SUQ),MQ),
L=aE, +aB_+iayJ, Ei=-E_,TF=7 sUq,1),
L=ioE, +iyE_+ayl , EL=E,, T5=-T, M(@,1)),
L=aa, ~@a_+iafd, at=a., =1 W),

(2.3)

where a is a complex number and all the a; are real. The
HermitianAconditions in (2.3) correspond to unitary opera-
tors exp L. For arbitrary (nonunitary) representations,
these conditions are not in general satisfied. We note that all
the generators of (2.3) are usually chosen to be Hermitian in
the literature of physics. The factors i and — 1 are then
found to appear in the commutation relations given by
(2.1).

The last decade saw the development of deformed alge-
bras (that are no longer Lie algebras) in which f(H ) is an
arbitrary function. It has been found that, for some de-
formed algebras (the so-called quantum algebras), the basic
structure of the theory of representations is retained in a
transformed form (see Sec. 3).

The three-parameter groups that we are considering are
groups of motions of two-dimensional manifolds (i.e., trans-
formations of these manifolds into themselves that preserve
separations between points and orientations) of constant
curvature K, namely, the Euclidean and pseudo-Euclidean
planes [K =0, M(2) and M(1,1)], the sphere [K>0,
SU(2)], and the Lobachevskil plane or the hyperboloid
[K<O,SU(1,1)]; W(1) is the group of motions of a phase
plane.

The irreducible representations of the corresponding
groups are constructed with the help of the Lie algebras
(2.1). The discrete basis of irreducible representations is in-
troduced as a basis of the eigenfunctions of the diagonal op-
erator H whose eigenvalues are then called the weights of the
irreducible representations. The raising and lowering opera-
tors define transitions between basis vectors and couple
them into one irreducible representation of a Lie algebra.

Anirreducible representation is itself defined by a num-
ber (its signature), i.e.,-an eigenvalue of an operator that
commutes with all the group generators. The basis con-
structed with the help of the operators of the algebras (2.1)
can be looked upon as a basis of occupation numbers. It is
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conveniently written in the form [n}, |n, n, ). We shall also
use the following two types of notation for the irreducible
representations: T, (g) will denote a finite transformation
operator where g is a group element, A is the signature of the
representation, and D(A) is the same operator, but for those
cases where the absence of the argument g does not give rise
to a misunderstanding.

We now turn directly to the construction of the unitary
IR of the Heisenberg algebra W (1). We introduce the basis
of lwn) as the basis consisting of the eigenfunctions of two
commuting operators, namely, the operatorI that is a multi-
ple of the unit operator and the particle-number operator
h=a, a_
(2.4)

ﬂwn) =wl|wn), 2+2_|n)=wn|wn).

From the first pair of commutation relations in (2.1) we
have

2+|wn)= c(w,n)|w,n+ 1), a_|wn)
= cp(w, n)|w, n — 1)
The Hermitian conditions (2.3) are satisfied for unitary IR,

so that @ and n are real. Moreover, a* =a _ , from which

A =wn+1),c2=wn,t (n) =c,(n) and

2+[wn) = {w(n + 1)]1/2|w‘ n+1), g_lwn)
1/2 (2.5)

(2.6)

= (wn)""“lo,n-1),

wnzl, o(n+1)20.

The formulas given by (2.4)—(2.6) define the weights of the
unitary infinite-dimensional IR specified by the real 0 #0
(when @ = 0, the unitary IR are one-dimensional). Since /
commutes with all the operators in the group, the generators
specify transitions only between states with the same w.
When w > 0, (2.6) shows that the IR have the lowest weight
n = 0, whereas for w < 0, the highest weightisn = — 1 (Fig.
1). The representations D(w) and D( — @) are conjugate.

From the physical point of view, n specifies the oscilla-
tor level number and w is the level separation (oscillator
frequency). We note that much of the physics literature dis-
cusses only one IR with fixed w = 1.

The generators P of the group of motions of a plane
M(2) which consists of rotations and translations can be
written in the form

Dfw), <0 Dew), w >0

2w -lw) 0 w 2w lef n
a

A
ay

-3 =27 =7 0 7 2

A
b

a.

FIG. 1. Representations of the Heisenberg group: a—weight composition
of unitary IR for fixed |w|, b—reducible but nodecomposable representa-
tions.
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@, =p,xip, ®,B_=p2+py, 2.7

where p, and p, are infinitesimal operators corresponding to
translations (momentum operators). The discrete basis of
the IR of the group of motions of a plane M(2) is construct-
ed as a basis consisting of the eigenfunctions of commuting
angular momentum 1 operators J and the square of momen-
tum operator p* = (D <I>

®,&_|pm)=ptlom), T lpm)=m|pm). (2.8)

From (2.1) we obtain

@, |pm)=pcip,m+1), ®_|pm)=pc ™|p,m~1).

For unitary irreducible representations, (2.3) shows that m
and p are real and

S, lpm)=plp,m=1). (2.9)

Infinite-dimensional unitary IR are specified by real p£0
(for p = 0 the unitary IR are one-dimensional; the corre-
sponding states are |0,m) ); the irreducible representations
D(p) and D( — p) are equivalent; and m runs through both
positive and negative values, i.e., the IR do not have either
the highest or the lowest weight.

In the irreducible representation D(p), i.e., for a fixed
square of momentum p?, the generators can be written in the
form

.0 NS ~ .
J, = _IW’ ®, = pexp(zip), p,=pcosp, py=psing.

(2.10)

This representation is the foundation for the description of
angular momentum and angle variables in quantum me-
chanics.??

The generators of the group of motions of a pseudo-
Euclidean plane M (1,1) [the separation between the points
is given by p* = (x, —x,)* — (t, —t,)*] are infinitestimal
operators corresponding to translations and hyperbolic ro-
tations:

NP 0 oA 3 0
& =ip, =iz by=—ign Ty =xg + 15,
§.=5.+8, 8,6 =528 @11

We can now introduce a basis consisting of eigenfunctions of

the Hermitian operators # and p b 4 |&€,p) =& |%p), p|%,
p) = pl& ,p) where & and p real, and
3, 8-18,p) = (2 -8318,p). (2.12)

The unitary representations are characterized by the real
number m% = &2 — p® where m, is the particle mass. How-
ever, the theory of representations of M(1,1) (Ref. 7) is
more complicated than in the case of M(2); in this sense,
M(2) and M(1,1) arein the same relationship as SU(2) and
SU(1,1).

2.2. The groups U(2) and SU(1,1) as one system

The standard theory of angular momentum examines
states with integer and half-integer angular momenta j>0.
The basis of irreducible representations D(j) contains 2j + 1
vectors |[jm), — j<m<j. The unified theory of representa-
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tions of SU(2) and SU(1,1) can be usefully interpreted as a
generalization to arbitrary real and complex angular mo-
menta.

When the irreducible representations of SU(2) and
SU(1,1) are constructed, it is more convenient to start not
with (2.1) but with the commutation relations for the gener-
ators of the groups U(2) and U(1,1):

D7 1=n0 -0y 0, 7,1= 77, (2.13)

This algebra splits into two, namely, U(1) (A, — #, com-
mutes with all the others) and SU(2) [SU(1,1)}
(J . ,R; — A,). The Casimir operator of the latter system is

- %(2’1}?_ +27 7, +(n, - ny)d. (2.14)

The basis of the representations is specified as a basis consist-
ing of the functions 7, and #,:

~ ~
nylany ) =nylnny ), nylning) = nylnny ). (2.15)

In the usual notation n, + n, =2j, n, —n, =2m. When
the unitary IR are constructed, we can use either directly the
commutation relations (2.13) (Refs. 10 and 11) or the rep-
resentations of the generators in terms of the operators @

and & _ of the Heisenberg group forw = 1

B, = e, Ry = Baa, = Ay (2.16)
and the formula given by (2.5):

Tolmmy) = tny(ny + D120y — 1y + 1),

f_|n1n2)= [nz(nl+l)]l/2|nl+l,nz—l). 2.17)
Ifor upitary IR of SU(2) and SU(1,1), we have
J;t =J,=n, —n, real, i.e., Imn, =Im n,, and
SU(2):TY =T, =n(ny+1)20, ny(n, + )20, (2.18)
SU(1,1):?i ? > ny(ny+ 1) 0, ny(n, + 1) = 0. (2.19)

Figure 2a shows the plane of all the admissible real parts
of n, and n, ; the unitary regions for SU(2) (1) and SU(1,1)
(I1) are defined by (2.18) and (2.19). Since it follows from
(2.17) that for the irreducible representations n, + n, = 2j
is conserved, their weights must lie on the straight lines
n, + n, = const parallel to the horizontal axis. The neces-
sary condition for unitary IR is that the weights on the
straight line (separated by two units of length) do not enter
the nonunitary region. The operators J 4+ can be used to
reach an arbitrary weight of a given representation by start-
ing from any given weight. Whenever the numerical factor in
(2.17) is zero, the representation cuts off and we reach the
highest (lowest) weight. We note that the operators J do
not act on the imaginary part of n, and n,, i.e., the welght
diagram of the representation on the Im n,, Im », planeisa
point.

From (2.17) we obtain the following classification and
weight composition of representations of the algebra (2.13):

1. n, and n, are integers. The representation of D(j) is
reducible; it splits into three: D ~ (j) with the highest
weight, the finite-dimensional D°(j), and dim D°(j)
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71p=-integer
= _X

auxiliary~{ =7

1. V4
X Z

="/
7.

7yinteger” 2

Re s, J= 2 Remy =y
b o c d
7 9 7 +}_
\? I/ éﬂl 7
12 2 ,11 ng ny N, ny

naun,-integer  7,-integer

n,—integer

FIG. 2. Weight diagrams for the irreducible representations of SU(2) and
SU(1,1).

=2j+ 1, D * (j) with the lowest weight (Fig. 2b).

2.n, (orn,) isaninteger and n, (n,) is not an integer
(Figs. 2c and d, respectively). We have two types of repre-
sentation with the highest (lowest) weight, namely, D ~ ()
and D°~ (j) [D * (j) and D°* (j)] that differ by the weight
composition.

3. n, and n, are not integers. The representation D(j) is
irreducible and has neither the highest nor the lowest
weight.

Let us consider the region in which SU(2) is unitary.

1. Suppose n, and n, are real numbers. To leave the
unitary region (see Fig. 2a), we must ensure that both the
highest and the lowest weights are integers. The representa-
tions are finite-dimensional. There are two series, arranged
symmetrically around the straight line n, + n, =2j= — 1.
The eigenvalues of the operator 2= j( + 1) are then equal
for both of them.

2. Suppose that n, and n, have an imaginary part:
Im n, = Im n, #0. We then find that (2.18) are not satis-
fied. These representations are nonunitary.

Consider the unitary representations of SU(1,1).

1. Suppose that n, and n, are real numbers. It is readily
seen that the weights of all the representations D * (j) and
D ~(j), — « <j < o« are then in the unitary region. This is
the so-called discrete series of representations.

For — 2 <2j <0, we have the discrete series and also an
additional series due to the fact that we can ‘step over’ the
nonunitary region. The representations of the additional se-
ries require for their characterization a further number E
that specifies the value of 2m = n, — n, that is closest to
m=0; — 1+ |2+ 1|<E<] — |2j + 1|. The equal sign in
the last relation corresponds to the representations D° ™ (j)
and D ~°(j) with the lowest (highest) weight, and the in-
equality corresponds to the irreducible D(;).

2. Suppose that n, and n, have an imaginary part. From
(2.19) we obtain

Ren, +Reny=—1, Imn =Imn,.
These are the representations of the so called fundamental
series
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.
D(-3+%):

When p is real and — 1<EK], the representations

1§ R
D(-3+%) b(-3-%)
are equivalent and j* = (p* — 1)/4.

When jis real, the representations D(;) that lie symme-
trically relative to the line 2j = — 1 are equivalent.

Thus, the plane with axes j, m (see Fig. 2) gives a very
clear picture of the unitary IR of the groups SU(2) and
SU(1,1). Different symmetries are clearly present, includ-
ing the mirror symmetry (j—» —j— 1), and also a set of
weights of representations. If for a compact group SU(2),
the IR have a finite number of basis vectors (weights), in-
cluding highest and lowest weights, then for a noncompact
SU(1,1) there are three types (series) of unitary IR that
contain an infinite number of basis vectors that are either
bounded on one side by the highest (lowest) weight (dis-
crete series) or are unbounded on both sides (fundamental
and auxilary series).

The abstract bases constructed with the help of a Lie
algebra can have specific realizations in function space.
From many points of view it is convenient to use the sym-
metric (polynomial) basis that is closely related to finite
transformations (see Sec. 4) and group invariants.'""!2

The transformations T, (g) of the group SU(2) are re-
alized in the space of polynomials of degree 2j of z,, z,:

’7\12j(g)f2j(zl» 22) =f2j(z'l, 2'2)’ z’k = zk(g) = gf‘zi (2.20)

where z,, z, form the basis of the two-dimensional funda-
mental irreducible representation D(1/2), |z, |* + |z, |* =1
and ||gj || is a unitary 2 X 2 matrix. For the symmetric basis of
the irreducible representation D(j) of dimension 2j 4+ 1 we
have

172
(n, + ny)!
[niny) = Yjm(2) = [T"z" ufugz, ny

=itmom=j-m (2.21)
where n, and n, are nonnegative integers. For a discrete
positive SU(1,1) series, the irreducible representation
D * (/) (< — 1/2) is finite-dimensional and

T(=ny) 172
[nyny) ~ ¥j(z) = [mz"—"z)] upuyz  (2.22)

where 7, >0 is an integer, n, < — 1; for noninteger n, the
representation is multivalued. The effect of finite transfor-
mations is analogous to (2.21), but now |u, |*> — |u,|? =1,
and |[g% || is a pseudounitary matrix. The bases of the conju-
gate IR are obtained by complex conjugation of the bases for
(2.21), (2.22). The generators of SU(2) and SU(1,1) are

>

~

J, =24d/dzy, J_ = z,d/dz,

J, = zld/dzl - zzd/dzz. (2.23)

For fixed j, we can also have a realization of the irreducible
representations D(j) and D * (j) in projective space
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z=2,/z, (Refs. 7 and 13-15).

For fixed w#0, the operators @ . and & _ of the W(1)
algebra can be realized in the space of analytic functions of
the complex variable z or real x

~ _i ~ ~ _L _d_
a_ =y, a, =wz, a_—ﬁ(wx+dx),

~ _1 d.
a+——ﬁ(wx—dx .

(2.24)

The effect of unitary operators of finite transformations
T, (g) is specified by the exponential in (2.3)

Tu(@/(3) = exp[in(ag + ap¥) + a 3]/

= expliw(ag + ayay + ap) | f(x + ay),
T,,(8(2) = expliog) D(@)/(2)

= explo(iay — |a|? - az)] f(z - a),

a;=V2IRea, a,=vIIma. (2.25)
The operator D(a) = exp(ad™* — @a) is called the shift op-
erator. Discrete bases are specified in the space of functions

Vun(?) = (@' %2)"/ (n)! 2,
Yon(®) = Hy(@' %) exp(~wx¥/ 2@/ V212 (2.26)

where H, are the Hermite polynomials.

For the groups W(1), M(2),and M(1,1) there are also
finite-dimensional nonunitary representations by triangular
matrices.”'* The commutation relations can be realized not
only by differential operators, but also by 2 X2 or 3 X 3 ma-
trices. We note that the theory of nonunitary representations
is relatively complicated. For example, the set of vectors
(@'?z)", where n is an integer, forms a reducible but not a
decomposable representation of the W (1) algebra: while we
cannot reach n = — 1 from the state with n = 0 (applica-
tion of & _ produces zero), the reverse transition is possible
see Fig. 1b). This situation is also typical for other alge-
bras.!”2°

2.3.Clebsch-Gordon series and coefficlents

The Clebsch-Gordon series specify the decomposition
of the direct product of two irreducible representations into
irreducible representations. For quantum-mechanical sys-
tems, the Clebsch—Gordan series provide us with informa-
tion about the possible state of the system that arises when
subsystems are combined. We begin with two simple exam-
ples. For the group SU(2)

ming,./;}
D(j) ® D(jp) = 2 DGy +Jp — @),

a=0

(2.27)

i.e., if the subsystems are characterized by angular momenta
J1 andj,, the system as a whole can have angular momentum
Jj that runs through values ranging from |/, —j,| to j, +j,.
For M(2) (Ref. 7)
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27
D(py) ® D(py) = = | D),
0

P2=Pf+P§+ 2p,pycos . (2.28)

Correspondingly, the absolute magnitude of the mo-
mentum p varies from |p, — p,| (momenta pointing in op-
posite directions) top, + p, (momenta pointing in the same
direction).

While the Clebsch-Gordan series show which states
can arise when subsystems are combined, the Clebsch—-Gor-
dan coefficients define the probability amplitudes for finding
the system in a given state for known states of the subsys-
tems. The most extensively investigated example is that in-
volving the Clebsch-Gordan coefficients {j,m, |j, m, |/im)
of the group SU(2). They are the coefficients of the rede-
composition of the bases D(j, ) ® D(j,) -~ D())

lim) =3 CiymyLiymayll jm Yjym, Yiymy ),

"ll,"l2

liym Migmy)y =3 Cimll jymy Liymy Y jm ). (2.29)

jm

A detailed description of this can be found in many re-
views and monographs, for example, those in Refs. 2 and 21-
25. The Clebsch—Gordan coefficients are closely related to
the Wigner coefficient {j,m, |/, m, |j;m;||00) which speci-
fies the decomposition of an invariant over the product of the
bases for three irreducible representations.

The Clebsch—-Gordan coefficients of the group M(2)
are defined by

2t

[pymy Y pymy ) = I(pMIIp2m2Ip1m1 Y pm')dp,
0

lom) =3 (pym,|pymyllom ) pym, Y pym).

"ll."l

(2.30)

2

Their explicit form can be found in Ref. 7 where the relations
given by (2.30) are looked upon as formulas defining multi-
plication and composition of Bessel functions;
{(pym, |pym,|pm) = exp[i(m,p — mB)]/2m, exp(iB)
= [p, + p,exp(ip) }/p for m = m; + m,, and are equal to
zero for m#m,; + m,. The integral with respect to ¢ can be
replaced with an integral with respect to p between |p, — p, |
and P +D with dy replaced by
2pdp[4pips — (P —p} —p3)*] =" in accordance with
(2.28). The factor in the denominator is equal to four times
the area of the triangle with sides p,, p,, p.
When the IR of groups were constructed above, we used
Lie algebras of these groups, i.e., the infinitesimal approach.
To construct the Clebsch—-Gordan series and coefficients, it
is convenient to use group invariance, namely, the so-called
method of generating invariants. This method has been ap-
plied by van der Waerden to SU(2) (see also Ref. 25) and
was subsequently developed in Refs. 11, 12, and 26 for semi-
simple (both compact and noncompact) Lie groups.
The method of generating invariants is based on the
decomposition of functions of group invariants over polyno-
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mial bases of irreducible representations such as (2.21),
(2.22), and (2.26). We begin with SU(2) and SU(1,1)
whose invariants are the convolution and the determinant

(2.31)

(4, ) = uv| £ uyv,, (4,v) = Uy — Uy,

Decomposing the SU(2) invariant (#,0)¥ over the basis
(2.21)

p(u, U)zj = 2 (- 1)m‘pjm‘pjm’
m

we obtain the Clebsch-Gordan coefficient {jm/|jm|/00)
=(—1)"p, where the normalizing factor is p
= [dim D(j)] =2 = (2j+ 1) ~ /2. The generating invar-
iant {f, u|j,v|[jw) for the product of two irreducible repre-
sentations of SU(2) [SU(1,1)] is given by

p(M,, M,, &) () (uw) ~ww)Ma" (2.32)

where M, = 2j,, M, = 2j,,a = 2j, + 2j, — 2j. Decomposi-
tion of (2.32) yields the following expression (to within an
arbitrary coefficient):

u'lll+a ulzul—al—n,+a vfl +a vlzwz—a—nl +a W1+M2_Za—nl_nlwgl+nl ,

(2.33)

(a’ +a” =a),i.e., apolynomialin 4, v, and w of degree M, ,
M,, M, + M, — 2a, respectively. The transition D(M,/2)
®D(M,/2)-D [(M, + M, —2a)/2] thus corresponds
to the generating invariant (2.32).

For compact groups, the basis vectors contain the vari-
ables u, v, w with only nonnegative integral powers, i.e., only
integral positive powers of the invariants are possible. This
leads to the series (2.27) for the finite-dimensional irreduci-
ble representations D(j) of SU(2). In the case of unitary IR
of noncompact groups, the powers can in general be arbi-
trary complex numbers; in particular, for a discrete SU(1,1)
series, one of the powers is negative, and we have to use
negative nonintegral powers of the invariants.'"'

For the product D * (M, /2) ® D * (M, /2), if wecom-
pare the product of the bases (u}'u3" ~ ™) iy~ "y with
the expression given by (2.33) we find that should be a
nonnegative integer since otherwise u, or v, will appear in
(2.33) with a negative power. Hence we obtain the following
expression for the Clebsch-Gordan series:'"'*

D*(G)®D*(Gy) = I D+, — a).

(2.34)
a=0
Similarly, forj, +j, < — 1/2
2,
D*() @ DUy = I, DH(jy + j, - a). (2.35)
a=0

Theproduct D * (j, ) ® D ~ (j, ) can be decomposed into the
direct integral of irreducible representations because a need
not be an integer.

The C-G coefficients are obtained as the coefficients of
the normalized product of basis functions 1//1-‘,,,‘1//]2,,,217/,,,, in
the decomposition of the generating invariant (2.32). For a
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discrete positive series D * of SU(1,1), they are found to be
equal to the SU(2) coefficients, apart from the change in the
parameters:2"28

G ml g molli m dsuay = (=12
% (m—j,+j,—1)/2 (m+j,—j,—=1)/2 ‘J:—l. >
(my=my=ji=jp--1)/2 | (my=my=j; =j=1)/2 |~/ == 1/"

J<0, m=—j —j+1, —j+2... (2.36)

Since @ in (2.34) runs through an infinite number of values,
the finite sum in one of the normalization conditions must be
replaced by an infinite sum [cf. (2.29)]:

-2}

N 1Gimylamalliy + iy — am )| =1,

a=0
Y Wimyligmallim)12 = 1. (2.37)
m|+mz=m

We note that for integral and half-integral j, , ,,j the param-
eters of the SU(2) Clebsch—Gordan coefficients in (2.36)
are also integers or half-integers.

The product D(@, ) ® D{®, ) of irreducible representa-
tions of the Heisenberg group is a multiple of the irreducible
representation D(w, + w, ) (with infinite multiplicity) for
o, + w, #0; for v, + @, = 0, we obtain the representation
that splits into one-dimensional irreducible representa-
tions.'*

Strange though it may be, the theory of C-G coeffi-
cients of the group W(1) (i.e., the quantum theory of com-
position of oscillators) is still in its infancy, whereas the
analogous SU(2) theory is discussed not only in textbooks of
quantum mechanics, but has even had specialized mono-
graphs devoted to it. To fill this gap, at least partly, we turn
to the examination of the invariant of the W(1) group. This
invariant can be found as the overlap of coherent states (see
Sec. 4 for further details):

(wulwv ) = exp(-wl), J = - + (Ju|?/2) + (Jv]¥/2).
(2.37)

The real part of the invariant is the separation between
points on the complex (phase) plane, 2Re J = |u —v|*
[this invariant is analogous to the invariant of the group of
motions of a plane M(2) ], while the imaginary part is twice
thearea S, ofa triangle with vertices at the origin and at the
points v and u, i.e.,, Im J = 25, (Fig. 3).

The generating invariant (o, u|w,v||e, + o,w) takes
the form

explo, [iw — (|u|2/2) = (Iw|%/2) 1}

x explo,[vw — (Jv|%/2) — (Jw|Z/2)y.  (2.38)

Expanding the exponentials into series in powers of », v, and
w, and separating out the bases (2.26), we obtain the C-G
coeflicient of the special form
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FIG. 3. Invariants of the Heisenberg group: distance |z, — z, |, area of
triangle S, .

n_n 1 172
W) wa? (n, + n)!

1!
nyny.

{(wn lonyllw; + wyy ny +ny) =

»

(@) + wp)"
(2.39)
Z @y |wynyllw; + wy, n )2 =1,

"|+’lz="

|w; + wy, n)= 2 (wyn|oyny|lw) + wy, n ) ny Y wyn, ).
nl+n2=n
(2.40)
Replacing |wn) with the bases ¢, (x) of (2.26), we obtain

the following series for the Hermite polynomials in terms of
products of these polynomials:

H”((wl + w,)x)

()72
172
2 wliwhn! Hy (w,x) Hy (@03%)
= 172 172
ntmen (@, + wy)"nny! (mh (1)
(2.41)

The general C-G coefficients specify the recoupling of the
bases of the irreducible representations D(w) |w,x,n,),
|@,x,1,), |@, + @,x,n,), where |wx;n) corresponds to the
state |wn) shifted to the point x; away from the origin.

The C-G coefficients of the above groups specify the
physical characteristics that arise when subsystems are com-
bined. They can also be used in scattering and decay prob-
lems. The theory of representations of these groups is char-
acterized by many symmetries that find applications in
different branches of physics.

We start by noting the symmetries that preserve com-
mutation relations. For the Heisenberg group W(1) there
are the canonical transformations

~,

@ =ud+va*, @%) =va+ua’, |u*-v)?=1
(2.42)

These transformations belong to the group SU(1,1), i.e., the
group of automorphisms of the W (1) algebra. For the semi-
simple groups SU(2) and SU(1,1), the transformations that
preserve the commutation relations belong to SU(2) and
SU(1,1), respectively.

There is considerable interest in the symmetry between
operators and functions. In the Heisenberg group, this is the
symmetry between functions of # =d/dzand @* =z. Ac-
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cording to (2.42), the latter transform in accordance with
the representation D(1/2) of the group SU(1,1). The opera-
tors @;" =z, and ;" = z, may be looked upon as the basis
of the irreducible representation D(1/2) of the group
SU(2). Theoperators @, = d/dz, and @, = d/dz, thenform
the basis of the conjugate IR. In the same way that z, and z,
are used to construct the symmetric basis (2.21), we can
construct an operator basis for any representation D(j) of
SU(2) or SU(1,1). In particular, the generators (2.23) that
transform in accordance with the associated irreducible rep-
resentations D (1) are constructed from z and d/dz with the
help of the C-G coefficients corresponding to
D(1/2) @ D(1/2) - (1). We note that the set of operators
a’r,a;",a; can be looked upon as the basis of the irreduci-
ble representation D(10) of SU(3), and &,, 4,, 4, as the
basis of D(01); on the other hand, the SU(3) generator may
be regarded as the analog of (2.23) if we use the C-G coeffi-
cients corresponding to D(10) ® D(01) - D(11).

In the Dicke model,?>*° a set of two-level systems is
described by the representation [ D(1/2) ]” that decomposes
into the irreducible representation D(j) where j is the coop-
erative number representing the coherent properties of the
set (for example, a set of radiating molecules). A similar
construction can be developed for the operators @and @ * or
a, and @, because they may be looked upon as the compo-
nents of a spinor.

An arbitrary operator of a group can be expressed in
terms of the sums of products of generators and, in principle,
we can consider any functions of them, i.e., pseudodifferen-
tial operators. There is a symmetry between pseudodifferen-
tial and ordinary functions. It is reflected in the topology of
the concepts of a chain and a cochain.*!

Problems connected with the symmetry of C-G coeffi-
cients, including the Regge symmetry, their interpretation
and applications are discussed in Secs. 5 and 6.

2.4.Optics as atopicin group theory

The development of the theory of fundamental groups
has been closely coupled to problems in physics generally
and in optics in particular. Initially, the starting point was
the spherical symmetry of atoms. The IR of the group SU(2)
and the theory of angular momenta were widely used in the
analysis of atomic spectra.’?>-** It eventually transpired that
the group properties arise not just from the symmetry of the
radiating object, but are intrinsic to optics. Problems of co-
herence, interference, diffraction, polarization, image for-
mation, radiation transport in a medium, and the interaction
between light beams were gradually translated into the
group language. The basis for this development of the group-
theoretic approach was provided by algebraic or more par-
ticularly matrix methods which, after Ref. 35, became part
and parcel of most branches of modern optics.>*®

The propagation of radiation is a typical example. The
equation for a paraxial ray takes the form***°

AB
cD

N
Vi

Y2

v, (2.43)

’

where y is the height above the optical axis, ¥ = n sin 4, n is
the refractive index, and 1% is the angle between the axis and a
ray. For small angles, V' = nd. The determinant of the ma-
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trixis AD — BC = 1. With each element of an optical system
we can associate its own unimodular matrix, and the system
as a whole can be described by the product of the matrices
representing elementary translations, refractions, and re-
flections. The group SL(2,R) which is isomorphous with
SU(1,1) corresponds to the transformations defined by
(2.43) with a unimodular matrix. In the absence of axial
symmetry, in which case the position of the ray is specified
by two coordinates and two angles, we have to consider the
methaplectic group Sp(4,R) (Ref. 40).

The wave properties of light in paraxial optics are de-
scribed in terms of the theory of Gaussian beams. A Gaus-
sian beam describes coherent radiation with diffraction
spreading. Its energy is concentrated in the axial region and
falls off rapidly toward the periphery in accordance with the
Gaussian function.

Because of diffraction, a Gaussian beam propagating in
free space expands in such a way that the spot radius w and
the radius of curvature R of the surface of constant phase
undergo a slow variation. These two parameters can be com-
bined in a complex curvature parameter defined by

q= % + ﬁ;
where A is the wavelength. This new parameter satisfies the
relation

_Aq +B (2.44)
= Cq, +D

which is the analog of the relation for the real curvature
parameter, namely, 1/R = y/V that follows from (2.43).
The bilinear transformation defined by (2.44) specifies the
parameters of the Gaussian beam after it passes through the
optical system. It is often referred to as the 4BCD rule.*! It is
used in laser physics to calculate the properties of resona-
tors. We note that a beam that has been multiply reflected
between mirrors eventually become Gaussian.

A general analysis of group structures in paraxial op-
tics, including methaplectic groups and their connection
with the Poincare group is given in Ref. 42. Nonparaxial
beams are also examined and a group treatment of abbera-
tions is given in Ref. 43. The representations of SU(1,1) and
of its generalizations describe image transfer and scene rec-
ognition processes.

The second typical example is provided by the polariza-
tion properties of light, which are described by the coherence
matrix*®

(EADE(1+1)) { EYDE/t+7))

(EE(+0) (BB +m| )

Any measured polarization variable can be expressed in
terms of this matrix in accordance with relation
F = Sp(FG). The spectral matrix with elements

o

F(v) = Z Gy (t) exp(i2mvr)dr

-

(2.46)

can be expanded in terms of the Pauli matrices
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3
1
FH= 5 z 595
i=0

where the Stokes parameters

s; = Sp(o; %) (2.47)

specify the intensity s, of the wave and the spectral polariza-
tion states (s,,s,,5; ). They satisfy the conditions

4det.9?=s(2,—sf—s§—s§20,
Sp & =54 >0.

The transformations of the Stokes parameters (2.47)
belong to the group SL(2,C) and, when s, = const, to the
group SU(2). The description of the polarization properties
of quasimonochromatic, but not plane, waves involves the
group SU(3) (Refs. 44 and 45), and the superposition of n
light beams involves the group SU(n) (Ref. 46).

A variation in the polarization states at constant wave
intensity s, can be treated as the motion of a mapping point
on a Poincaré sphere of radius 57 + 53 + s3. The statistical
properties of a light beam were investigated in Ref. 47 by the
method of random walks on a sphere, and a calculation was
made of the distribution of trains over polarization states.
Similarly to the random walk on an invariant manifold of the
group SU(2), i.e, the Poincaré sphere, fluctuational
changes in the parameters 4, 8, C, D during the propagation
of radiation can be treated as a random walk on a hyperbo-
loid.

The third example is that of the effects of correlation
between radiators in problems involving the generation of
radiation. In the Dicke model, cooperative, collective states
of a system of two-level molecules are described by represen-
tations of SU(2). The cooperative number (signature of rep-
resentation) remains unaltered during radiative transitions.
Specific collective effects are discussed in Refs. 30 and 48
within the framework of the Dicke model. A system of none-
quidistant n-level molecules is an object in SU(n) (Refs. 49
and 50).

The quantum description of a field is closely related to
the Heisenberg group. Quantum electrodynamics is founded
on the representation of the free electromagnetic field by an
infinite number of harmonic oscillators. The electric and
magnetic fields are then looked upon as operators in the
space of states that describe the field, and are expressed in
terms of the operators @ and @ *. States |n) with a precisely
defined number of photons are the eigenvectors of the opera-
tor representing the number of photons n = @ + &, and form
an orthonormal system for which the following complete-
ness conditions are satisfied:

2|n)(n| =1

n=0

From the quantum point of view, all the information
about the statistics of the systems is contained in the density
matrix p which can be expanded over these states:

5= Y.p(nmlnXml, (2.48)

n,m
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where the pure states are described by the matrix
o = |n){n|. Since |n) transform in accordance with the rep-
resentations of the group W (1), the matrix p transforms in
accordance the representations of the group W(1) X W(1).
Different statistical, probability distributions arise under
different physical conditions forp (n) (Refs. 36, 51, and 52).

For chaotic (Gaussian) radiation, characterized by
maximum entropy S= — Sp(p Inp), we have the Bose-
Einstein distribution

(n)"

. (2.49)
(l + < n))l+n

p(n) =

The only nonzero elements of the density matrix are then the
diagonal elements.

For ideal coherent radiation, the distribution of record-
ed photon counts is given by the Poisson distribution

(n)"

n!

(2.50)

p(n) = exp(—(n)).
Here group-theoretic problems are intertwined with statisti-
cal problems.

New possibilities have arisen in the investigation of the
statistical properties of radiation following the advent of
photon counting techniques and measurements of correla-
tion functions, which began with the well-known work of
Hanbury-Brown and Twiss.** Studies were made of the dis-
tribution function for photon counts under different condi-
tions. ¢4

The concept of the occupancy (of a state with a particu-
lar number of photons |n)) provides no information about
the phase of the field, but this knowledge is unnecessary
when coherence is analyzed. Glauber®® has formulated a
quantum theory of optical coherence in a form close to the
classical description. It is based on the representation of a
coherent state in which the basis vectors |z) correspond to a
superposition of |n) and depend on the complex variable z
that is related to the field amplitude and phase:

00

12) = exp(~31e1?) X Egln)

n=0

(2.51)

The field in the state |z) satisfies the condition of com-
plete coherence. From the group-theoretic point of view,
(2.51) is a transition to a new basis, i.e., quantum optics can
be formulated either in the |n) representation orin the repre-
sentation of coherent states.

The experimental confirmation of a new phenomenon,
namely, that of squeezed states of light***® is closely con-
nected with a development of the theory of coherent states.

Studies of coherent states began in optics and have act-
ed as a powerful stimulus to the development of group-theor-
etic investigations, including the theory of C-G coeflicients
and the exploration of the very close connection between
probability and group-theoretic approaches. There is, how-
ever, another important point. There have been rapid ad-
vances in data processing methods,”>® and this has oc-
curred in parallel with advances in group methods. Optical
systems are now capable of performing, quite simply and
naturally, the evaluation of Fourier transforms, convolu-
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tions, and Hilbert, Laplace, Mellin, and other transforms.
The number of such operations is continually increasing and
there has been a tendency to implement group-theoretic
operations by optical methods or, in pictorial language, to
create an experimental basis for group theory.

It is thus clear that current attempts to create a unified
group-theoretic approach that would include simple Lie
groups, the translation into the group language of an exten-
sive range of physical problems, and the interweaving of
probability and group-theoretic aspects are leading us to the
re-examination of the fundamentals of quantum theory.

3. DISCRETE GENERALIZATIONS (FINITE DIFFERENCES
AND QUANTUM ALGEBRAS)

3.1.Discrete calculus and finite differences

A natural generalization of the Lie algebras (2.1), in
which f(H) =2H, 0, I, is provided by deformed algebras
with arbitrary f(H). In general, they are not Lie algebras,
but they contain many of the specific features of the algebras
(2.1). The problem will, however, will be treated below from
the wider standpoint of discrete generalizations of the theo-
ry.

In a previous paper,” two of us examined the fundamen-
tals of the relationship between C-G coefficients and the
calculus of finite differences that arose from the fact that the
objects treated in the theory of angular momenta (C-G coef-
ficients, Racah coefficients, and jm and j symbols) are func-
tions of discrete variables and can be subjected, for example,
to the operations of finite-difference differentiation and inte-
gration. Further advances have taken place in this area dur-
ing the last twenty years.

In addition, a new subject has emerged, namely, quan-
tum algebras, which since the mid-1980s have attracted con-
siderable attention. They originally appeared in publications
on inverse-scattering problems in statistical physics and in
quantum field theory.’"®* The operators of the quantum
algebra su, (2) satisfy the relations

[, E, ] = +E,,
(B, B_1 = sh(iHy/sh(w2) = (¢ - ¢ )/(g"2 = V).
(3.1)

According to the first pair of commutation relations, £,

are again the raising and lowering operators in the basis of
the eigenfunctions of H. If ¢ = exp 4, then for #—0 we ob-
tain the usual commutation relations of a Lie algebra and the
SU(2) group. This property has indeed led to the designa-
tions “quantum algebras” and “quantum groups.” Of
course, this was initially no more than a new jargon. How-
ever, similarly to the concepts of strangeness and charm,
which have nothing in common with the usual meaning of
these words, the new terminology became accepted in the
literature. In fact, we are dealing hereAwith a special case of
deformed algebras [with arbitrary f(H)].

It eventually became clear that quantum algebras are
related to the so-called g-calculus which is a calculus of finite
differences on an exponential (and nonuniform) net. Corre-
spondingly, if the elements of the Lie algebras (2.1) are dif-
ferential operators, then the elements of the quantum alge-
bra (3.1) are finite-difference differential operators. In the
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g-calculus, we see the surprising coexistence of century and a
half old results®®*® with some recent results.5® The renewed
interest in the g-calculus has also led to systematic studies of
nonuniform nets for which there are specific concepts of
number, difference function, and differentiation.

We begin by considering the relationships that apply to
any finite-difference net. Three finite-difference differenti-
ation operators are defined on such nets:

~ [0 ) = Ax) A f(x ) = f(x_1,9)

D+ = n+1 n Do - n+1/2 n—1/2
/) Xnel ™ %n /) Xn+1/2 7 *n-1/2

~_ fx,) — flx,_

D f(x) = ;)—_x(_—li) (32)

For a step 4, =x,, ; — x, —»0 we have f),‘f’—»d/dx. The
finite-difference integral is defined by

(3.3)

I
[ rodux= 3 1.
: n=k

Analogs of the Leibnitz shift formulas (involving a shift in
the argument) can be established for the derivatives, and the
formulas for the differentiation of a complicated function
take the form

DS, (33)) = FyCnar DD 5(3) + o1 20D 1)
= f1(Xy1,2) DY (%) + £y (%1 ) DY f1(x),

B f(p(x)) = DBsp) DOA), (3.4)

where 5¢, is the derivative on the net ¢, = @(x,). In the
limit as #—0, we have the usual formulas that are familiar
from continuous analysis.

Finite-difference functions are then defined on the net,
namely, the right (shifted factorial) and left (simple differ-
ence, generalized, or symbolic) finite differences (x), and
x(m,

-n

xXpn= H ka, llm(x),l = llm XM =

n—-1
| J ERE 5
k=0

@+ 0™ = a1 + xa” )<").

(3.5)

For a uniform net, x, = a + kh, x"™ = (x — nh) ,, and

n-1

(), = H(x+kh) h"l"( )/r(%)
(")—H(x——kh) h"l"( )/I‘(%—-n+l). (3.6)

For integral x and A=1, we have (x),
=(x4+n—1DV(n—1,x" =xl/(x — n)!. Foran expo-
nential net, x, = ag*, h, =aq (g — 1) = x, (¢ — 1), it is
usual to consider functions of the form
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n—1

(), =0-x,= ] -xb,
’ k=0

(1- x)(") = H 1- qu) = (¢""x, Q)

fany 3.7)

The sums 2x,, in the above cases represent sums of an arith-
metic progression with a step /& or a geometric progression
with ratio g.

We now turn to the finite-difference calculus on a uni-
form net.”>”® Here we encounter ordinary numbers x, the
power function @*, and the finite-difference power x‘*:

(/c)a(n k) a(m+k)

(a + x)(”) 2 k'(

= a™(a - my®

k)"‘
(3.8)

where x'™ is specified by the Bernoulli polynomial for natu-
ral n and the coefficients of x™ in the polynomial are called
Stirling numbers of the first kind whereas for the inverse
expansion they are Stirling numbers of the second kind. The
necessary expressions for these numbers are given in Ref. 73.
The finite-difference derivative

B SR = f)
x = h

is often ysed with simplified operator A, for 4 = 1, the sth
power of which is given by

(3.9)

s!

IVGEDY (D™ i < + - (3.10)
k=0

Typical examples of finite-difference differentiation and in-
tegration are as follows:

A = gz, AL = )15,
X

(n+ 1)
J-t(”)dht = x" T ASa® = (a - 1)’a”
0

There is a considerable degree of correspondence be-
tween continuous and discrete analysis. It is often sufficient
to make the formal replacements

o B (d/dx) » A5

However the isomorphism is incomplete: for example,
the formula for the differentiation of a product is different,
and the multiplication rule for finite-difference powers has a
different structure.

The solution of the finite-difference second-order hy-
pergeometric equation is given by the function’"3

) (@),(B) (%),
2F1 (ayﬂ'h, .’C) = 3F2( ¥, 6 H ) 2 (y)n(a)nn{ »
(3.11)

which is a series in powers of x‘™ where
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+a+é+l

4= )

&=

As h—0, this equation becomes the ordinary hypergeome-
tric equation, and

o, x . a,f.
2F1( yﬂ h’h) ey 2F1( Nt )

The relation given by (3.11) explains the appearance of hy-
pergeometric functions ,,F, of unit argument in discrete
analysis. The generalization of a power can be used in a con-
venient notation for the generalized-geometric functions

(a)
P q[(b )Z’ x}

These functions with arguments z = .+ 1 constitute the
standard object studied in the calculus of finite differences.
Their fundamental importance for finite-difference differen-
tiation is demonstrated in Ref. 73. The operator A; can be
applied to the generalized power and to the power function,
and this has resulted in a large set of relations of the form

(3.12)

n

- (n) z
ZH(a 1+ n) H(b+1+n)(") 1

h=0 i=1

X—=a

a3a = )@ = (=1)(a - )@, F, ("*a—a 5,1),

s (@q-1 _ a) -1 atx—a,
Alla+ X)) = ( 1)’[(a+x)()] 2F1(a+x+?s;l)’

A+ )0 = (=15 (b + )@, F b+ x + 1, 53 1),
Al(a+ )G = (1) (a + x)(b+2x)3F0(b - x
—a,a+x+1,-5;-1). (3.13)

In all these relations, the application of the finite-difference
differentiation operator A} to the corresponding function
produces multiplication of the function by a generalized hy-
pergeometric function with the argument x = + 1. The dif-
ferentiation rules for more complicated functions are also
given in Ref. 73. When ,F, is determined from formulas
such as (3.13), the result is not unique. For example, in the
case of the function ; F,, there are three equivalent expres-
sions, namely,

F (a+x+1,x—b+ﬂ, =Sy

2lx—b,a+x—-a+1 ’

= (@ = 990 - )P T =1)A (@ + )@ ~ )P,

F x—b,a+x—a+1,—s‘1
32l x-b-B,a+x+1 ’

= (a+ 0@ b - 0B (=1)A5 [(a + @B - 0},

a+x+1,b+x—ﬂ+l,—s‘1
2la+x+1—a,b+x+1 ’

= (~1y 0P 5@ + 0 (3.14)
(a+ x)(") X(b+x
Transitions between these expressions are performed by
means of formulas such as (3.8). Several basic quantities in
the theory of angular momenta are expressed in terms of ,, F,
with argument x = 1. For example, the C-G coefficient ex-
pressed in terms of ; F, is then identical with (3.14) apart
from a normalizing factor, whereas the Racah coefficient is
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expressed in terms of , F;. A specific expression for the nor-
malizing factor for the C-G coefficient {j, m, |j,m,||jm) in
the form given by (3.14) is given in Refs. 2 and 76. It is
readily shown that in a composition of C-G coefficients, the
factors in front of the finite-difference differentiation opera-
tor cancel out and all the operations performed in the theory
of angular momenta are expressed in terms of A} and the
product of generalized powers.

The fact that the C-G coefficients and their composi-
tions can be regarded as special objects in the calculus of
finite differences is only one aspect of the interrelation be-
tween the two. Another involves the development of a sys-
tematic theory of angular momenta in discrete time. Many
aspects of this problem are examined in Ref. 77 where finite-
difference equations are constructed for discrete spherical
functions and also analogs of the Schrondinger, Klein—Gor-
don, and Dirac equations. Apart from the evaluation of fi-
nite differences, there are also other possibilities for con-
structing discrete topologies, in particular, the dyadic’”"®
and the p-adic” coordinate systems. Specifically, the use of
group methods and the development of the theory of angular
momenta within the framework of a nonstandard calculus is
illustrated below by the g-calculus.

3.2. The g-calculus

In the last few years, different aspects of the theory of
quantum algebras (g-calculus) have attracted a rapidly
growing literature (see, for example, Refs. 80-84). A mod-
ern presentation of the theory of the algebras su, (2) and
su,(1,1) can be found in Ref. 85. The salient points of the g-
calculus are briefly summarized below insofar as they are
related to the g-analogs of number, power, exponent, and
also finite-difference differentiation and expansion of func-
tions.

According to (3.2), finite-difference operators on an
exponential net take the form

Bify = L, Drs = %’_—fff’—)l
~ f(ql/Zx) _f(q-l/Zx) (3.15)
DY f(x) = @ =g
or more simply
D+f( x) = (x_-f-aﬁ)__i(f)_, a=g-—1. (3.16)

ax

Itis clear that there is a similarity with the usual finite-differ-
ence derivative (3.8). However, in the latter case, the addi-
tion to x was independent, whereas here it is proportional to
x. Under the deformation @ —0 (g— 1) we have, as for 1 -0
in(3.9),D® ~d/dx (k= +,0, — ). The integration oper-
ator in g- calculus takes the form of (3.3) where x, = ag". In
particular,

Jf(x)dqx = 2 (x, — %, M(x,), 0<g<1,

0 n=0
[r080= 3 (et = x5, 7> 1. (3.17)
a n=0
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Let us apply the finite-difference g-differential opera-
tors to a power function:

-1 f-.n_ -1 0
", Dex = [n)_x""", Dix"

- [rl]xn_l

(3.18)

B;x" = [n), x
The quantity [ 7] that appears in this expression is the analog
of a number in g-calculus:

n]= q—(n—l)/Z[n]+ =g D/2 [,

n—1
n/ —n/2

=Zl —1/2 2 '

=—(n-1)

(3.19)

The quantity [#] is invariant under the replacement
g—g~'. In the limit as g— 1, the g-numbers become ordi-
nary numbers. We note the following properties of the
numbers [m]:

LB _m =1 m
(mxnl=q¢ 2[mlxq 2[n)=gq 2[m]xq2[n],
(nlln' +n"]=[n+n"]n"]1=[n=-n"][n"], O]l=[1]1=1.

(3.20)

The law of composition of g-numbers [polynomials
such as (3.19) ] follows from the requirement that their sum
must produce polynomials of the same type; bearing in mind
the fact that (3.20) is symmetric under the replacement
n<m, it be can rewritten in the form (g = exp h)

nh mh mh

[m+n]=(ch Sh—2'+Ch—2— h—)/ h-‘

We note that this formula corresponds to the composi-
tion of 4-velocities in the special theory of relativity and that
the 4-velocity itself is measured in terms of the “elementary”
sinh (4 /2), i.e., we have a particular kind of quantization of
the Lobachevskii space. At the same time, all the relation-
ships of the g-algebra can be realized on orispheres of the
Lobachevskii space, which constitute a parabolic section of a
hyperboloid, parallel to the light cone.

The factorial of a g-number is defined as follows:

(m) = [11[2][3]...[m],
u!n-—l!
(nl!'= (g9l -9 "=Inllg 2 =[n]_1g"" V.
3.2

and the g-analogs of exponential functions are defined by

K5y = "
eg (%) 2 (7 ]ky

n=0

7 DVeP(ax) = ae(ax), k= +,0,-
(3.22)

As g—1, e{¥ (x) - €*; the transition between the eV (x) is
given by formulas of the form

1/2\n
- 3 S
n=0 ¢

and the g-analog of the Taylor series®® is
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- — M~
79 = f@+ X EEPDw)| oy
n=1

where D 4" is the nth finite-difference derivative and
(x — a) ‘™ is the generalized difference power (3.7). The g-
binomial theorem plays an important role in applications:

(@x,9)

(3.23)
(%9’

(a.9), =
;Z @9,

which has been quoted as due to a number of scientists, but
seems to have been first mentioned by Rote in 1811. If we
apply it to (3.22), we obtain e,;" [x/(1 —¢) ] = 1/(x,9) .

The expansion of a power of a quasibinomial is obtained
with the help of (3.6) and (3.7), and is found to contain the
g-analog of the binomial coefficient:

nq)

b= )M =pr] ~5® = N 0 ngn-n
6 -n"=51-3 ’;,O(q,)xb

= 2 [n ]’}:]—n ],( ])H,q—n,(nlH)/anlbn_,ll'
1

Il_

(3.24)

There are also other far-reaching analogies with ordi-
nary theory. Differences arise because many of the relation-
ships, including (3.24), contain additional factors that de-
pend on the deformation g.

The following g-analog of confluent hypergeometric
functions plays a fundamental part:

a
nq)m b1 .

2 (al’q)r‘ : ‘(an’q)r xr
(bl ’q)r' . '(bm’q)r (q'q)r )

(3.25)

It contains g-calculus fractorials instead of ordinary fractor-
ials. The function ,®, was introduced by Heine in 1847. It
satisfies a second-order finite-difference equation.®® By
analogy with the case of a uniform net (3.12), we have

221 (50 (0 05 =z am (%),

Most of the formulas of the theory of ordinary hypergeome-
tric functions remain valid for the g-analogs, e.g., the inte-
gral representations

Wb
2¢1 (ac q’ x)
ro j
C
Y1 = qu) 271 = gbxw)~Dd R
r -
q(a) f(c—a o

where ', (#) = [n — 1], !is the analog of the I-function.
Similar functions on the exponential net, including g-poly-
nomials, are discussed in Sec. 7.
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The g-calculus as a whole has a closed and logical struc-
ture. We note that the equation

(a, 9), = (a 9)/(ad", )

or the analog of the integral representation of the I'-func-
tion, can be used to extend the theory to arbitrary complex 7.

3.3. Theory of angular momenta in the g-calculus

The g-calculus can be used as the starting point for a
systematic development of g-deformed ‘theory of angular
momenta. (We note in passing that the phrase ‘“‘quantum
theory of angular momentum” could lead to confusion be-
cause this refers to the usual theory.)

We begin with the creation and annihilation g-opera-
tors &, = DY, 4," = z that act in the space of the functions
f(2) of the complex variable z:

9 ag1=D;z=2D, =T, (3.26)
~ A+ AN _ "
[a 1N] aq) [aqu]__aqy
where N = zd/dz is the particle number operator. The fun-

damentally new point is the emergence of the shift operator

T,f(z) = f(q"*z). This is connected with the finite-dif-
ference character of 3, namely, the shift of the argument in
the formula for the differentiation of a product (3.4):

D¢, (2)f2(2)) = £,(a" 22D (2) + foa™ " 22)DYf, (2)
= £,(a7Y22)D%,(2) + £,(¢" %2)DY, (2).
(3.27)
If we choose
[n)g=2"Inl, (3.28)
as our basis in the space of functions [cf. (2.26) ], we obtain
atn),=n+11"2n+1),
Nin),=nin), T,lz)=¢"?|n),
(n1'2|n = 1),

A SRS -
aa, |n)=zD;|n), = [nl|n),

(3.29)

~
aqln)q=

The g-exponential (3.22) is the analog of coherent states:
1¢" %u ) (3.30)

Inthelimitasg—1, wehaved ) -a*,a, -4, ?‘, —1,and all
the formulas in (3.28)-(3.30) become identical with the
usual formulas for the group W (1).

To examine su, (2), we take the operators and the IR
basis D(j) in a form analogous to (2.23) and (2.21):

lu), = ed(uz), 62|u)q=u|u) , ?|u>q=

Ey =2D}, E; =2,D;, 2H = N 3s ~ 2z (3.31)
: 172
o 121! e
Lim g = (U.+ mlli—mi| & &" (3.32)

In this realization, the space of the representation D(j)
is the space of polynomials of z,, z, of degree 2j:
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Ejljm)q=([,': m][fim+l])l/2|j,mzl)q,

Hljm),=mljm),. (3.33)
It is readily verified that the commutation relations given by
(3.1) are satisfied. As g— 1, we have the usual theory of
angular momentum. The Casimir operator su, (2) is*®

B rea] B 4T
(3.34)

and the g-analog of the C-G coefficient is defined in the
standard fashion:

Liigim Y= 3 Cymy Ligmylim Yl iymy Vgl iyms g
m,m,
(3.35)

However, the problem of composition of angular momenta
for su, (2) has certain specific features. We have to establish
the rule for the effect of E * inthebasis |[j,m, ) ® |j,m,). As
in the case of the formula for the differentiation of a product,
given by (3.27), the finite-difference character of the opera-
tors E ;* leads to a complication of the picture: instead of the
usual tensorial product of irreducible representations, we
have the coproduct®®33

7 i
0] M
(l 2\—-E(1)®q2 +q 2 ®E(2) )

H(, 2)-1:((1)®1+ 1@H (3.36)

@r

In the usual theory, E &y = E SHel+le E &, whereas
for su, (2) this operator differs from (3.36) in that it does
not satisfy the commutation relations in (3.1). The formulas
given by (3.36) can be obtained by applying the finite-differ-
ence differentiation operators (3.31) to the product
fi@) e f,(2) =f,(a™ " 2)X [, (¢ 2).

If we apply E 3,, to (3.35), we obtain the recurrence
relations

(G F mllj = m+ 1) X jim | jymy |l jm),
m,
=q2(lh F mlljyxm +1])
n
+ 07T, % myll = my + 1)

172

172

X (ymyliymy £ 1|ljm £ 1), (3.37)

t‘hat can be used to find the C-G coefficients. In particular,

; m
(jmlj—mll00), = (-1Y""g2/12j + 11)}/2, (3.38)
We have examined the theory of representations of the
algebrasu, (2). The group-theoretic aspect is still not entire-
ly clear at present. The C-G coefficients have been used to
establish the g-analog of the matrices of finite transforma-

tions in su, (2), which have very unusual properties.®** We
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shall now use the explicit form of the coefficients (3.38) and
the states |jm) given by (3.32) to find the invariants of
su,(2). According to (3.35),

11]1 1 11 1 1
<77|7—5H"°>\55>|5“5>
1 111 1 1|11 .
+<7—5|75H"°>|5-5>‘55 = 100) = inv,

and, if we denote the basis functions of the irreducible repre-
sentations D, (1/2) and D,, (1/2) byz,,z, and u,, u,, we
obtain the g-deformed analog of the determinant (2.31):

1/4

zlu2q1/4 - u1z,q" = inv, (3.39)

which together with the convolution z, %, + 2,4, is an in-
variant of su, (2). We note that the symmetry u<z is com-
binatorial in character: we must also replace ¢ with g = '.

The C-G series and coeffi~ients can be obtained not
only with the help of recurrence relations, but also by the
method of generating invariants. This involves the use of
generalized (finite difference) powers and formulas of the
form given by (3.24). The analog of the CS overlap (see Sec.
4) is the generalized power of the invariant (convolution),
whereas the above basis functions (3.28) and (3.32) are the
overlaps of the CS and states in a discrete basis: {z|n),
(z,2,|jm).

There is an extensive literature on the con-
struction of specific g-analogs. Such analogs have been ob-
tained for the C-G coeflicients, the Racah coefficients, the
6/-symbols, and many other objects in the theory of angular
momenta, and their properties such as symmetry, orthogo-
nality, recurrence relations, and asymptotic behavior have
been investigated. The C-G coeflicient in the van der Waer-
den form is given by®®

80,82,85,87

(jlml|j2m2||jm >q
= AUy, DUy + m Gy — my Ny + my Lty — my 1t
X [+mlj—ml2j+1])?
X Y (~1%PFO([alllj, - j—~j - al!

X [jy—m —alli+ m,—al
X [ =i+ m —allj—j —my+al)”}, (3.40)

where the sum over a is evaluated so that none of the factor-
ials have a negative argument and

A(abe) = ([—a+ b+ ]!
xfla=b+cllla+b—cll/la+b+c+1)V?
A= (G, + D)+l + ) —jG+1)

+ 2(jlj2 + jlmz - jzml)}/4a

Bla) = —a(j, + j, +j+ 1)/2.

Apart from the fact that ordinary numbers are replaced
with g-numbers {a], and additional factors of the form ¢*
are found to appear, the resulting formulas are identical with
the standard SU(2) formulas. This is also typical for the
theory of angular momenta in the g-calculus as a whole.
Complete agreement with ordinary theory (subject to the
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replacement @ — [a]) occurs for the orthogonality formulas
(5.11) and the 6j-symbols:

{(‘}’;ﬁ} = A(abe)A(ac)A(cd)Adl) Y (~1)°la + 111

X ([a—a—b—ellla—a—c—fll[a—b—d—f1[a~-d—c—e]!
X [a+b+c+d—allla+d+e+f—al [b+ctetf-al) "L,

(3.41)

Like many other quantities in the theory of angular mo-
menta, the 6j-symbol of the g-calculus is invariant under
g—q~ " [cf. (3.1)]. For the C~G coefficient, the symmetry
under this replacement is combinatorial in character:

Cymy ligmallim Y, = (=027 ymy | jymy |l jm )
(3.42)

All the usual 144 symmetries, including the Regge symme-
try, hold for the g-analogs of the 6j-symbols. However, fac-
tors of the form ¢ appear in compositions of 6j-symbols, and
invariance under g«>¢ ~ ' is lost. For example, this applies to
the 9j-symbol written in the form of a sum of products of
three 6j-symbols.?*

The g-theory of angular momenta preserves the formu-
la relating the C-G coefficients and the 6j-symbols on the
one hand and the g-analogs of confluent hypergeometric
functions on the other. The C-G coefficient is given by®’

Cimyligma lljm ),
AGuPli+jy ~m 1!
Uy =i +illli+j,—j1
Uy +m Mty — mp i+ m 2+ 1] "2
Uy = m M+ mylG = m 1y = + m, T

= (=1~ mgB

my=j,ji+m+1l,m-~j

X P e o
3 2[m1—1+12+1,m1—1—12

a, qJ, (3.43)
where
B =%U2(J'2 + 1) =G+ D) =ji+ 1)+ 2m(m+ 1))

The representation of the g-analog of the 6j-symbol in terms
of , @, is identical with the usual form [cf. (5.24) in Ref. 2]
if we put a— [a]. The structure of the theory of angular mo-
menta is thus largely preserved in g-calculus.

Thenew point now is the appearance of the gauge trans-
formation (g-gauge). We have already shown that there are
two equivalent variants of the formulas for the composition
of g-numbers and the differentiation of a product, copro-
duct, and invariant, given by (3.20), (3.27) (3.36), and
(3.39), respectively, and obtained by introducing the re-
placement g<»g ~ '. The two variants can be used to form a
linear combination. For example, the formula for the com-
position of g-numbers, given by (3.20), can be written in the
form

441

n _n _m
m+nl=(Bgz+1-p)g 2)[m]+(Bq 2

li]

+ (1 -PBg2)n}l, 0<p<1.
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The gauge transformation is defined by the parameter 8.
The operations of differentiation, composition of g-
numbers, and the Raccah coefficients remain unaltered un-
der the transformations. However, the C-G coefficient does
depend on the gauge. It is determined by the choice of the
factor in the coproduct (3.36), and all the calculations for it
must be performed for a single chosen 8.

Physical applications of the g-calculus involve topics
such quantum field theory,® the Yang-Baxter® equation,
conformal field theory,® exactly-solvable problems in sta-
tistical physics,®"**> and phenomenological models of nu-
clear and molecular rotational terms.”® An increasing num-
ber of methodological applications present g-calculus
generalizations of everything within reach, up to exclusive ¢-
algebras.”’ The classification of the irreducible representa-
tions of g-deformed algebras is not very different from the
usual classification. For example, for su, (1,1), there are also
discrete, fundamental, and auxillary series, but thereis alsoa
further “strange” series of unitary irreducible representa-
tions.®5 There is considerable interest in the connection be-
tween g-functions on the one hand and elliptic theta-func-
tions that do not satisfy the usual differential equations. This
connection was noted as far back as 1847 by Heine.*® The
relevant formulas are reproduced in Chapters 4 and 11 of
Ref. 92. We note finally the connection between the g-calcu-
lus and the theory of partitions.”

The quantum algebra (3.1) is a special case of deformed
algebras with f(ﬁ )in (2.1) sggciﬁed bya | power series. For
example, it is possible to put f(H) = sin(hH)/sin(h /2),i.e.,
consider that # in (3.1) is purely imaginary. Apart from
quantum algebras, deformed algebras also include the so-
called W-algebras and Casimir algebras.’**” Possible appli-
cations of these algebras in quantum optics are discussed in
Ref. 94. Casimir algebras include, for example, the algebra
su™(1,1):

, H
dz" n

(3.44)

since its Casimir operator ?:2 =(nH)™ _E N E_ isade-
formation of the SU(1,1) Casimir operator [here (7) is the
generalized finite-difference power defined by (3.8)]. The
operators of this algebra are functions of the W(1) genera-
tors, namely, mth order differential operators. The finite-
difference derivatives on uniform and exponential nets are
defined by

B+f(z) - expghd;!dz) - lf(z) - fz+ hh) = f(2)

B0  shi(a/2)d/dz]
= w2

(3.45)
B _expthzd/dz) - 1. . _ f(g2) ~ f(2)
D; &) = (exph—T)z 7@ ="(g=Tys *
50 _ shi(he/2)d/dz]
=" 2sh(h/2)

where g = e”, and are also functions of d/dz, i.e., they are
pseudodifferential operators.

Thus, in contrast to the theory of Lie algebras, in which
generators can be represented by differential operators of
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order no higher than 1, in the theory of deformed algebras we
deal with pseudodifferential operators that can be represent-
ed by integral operators; the kernel is then called the opera-
tor symbol. In addition to the power and exponential func-
tions of d/dx, we can also consider other functions, for
example, §(d/dx). We can then use the usual representation
of the §-function as an integral of exp (ikx):

Ta (a%) f(x)dx = %ﬂf(z)dzz. (3.46)

-0

Examination of physical systems with Hamiltonians
consisting of operators belonging to g-algebras is equivalent
to the examination of systems described by differential equa-
tions of infinite order. It is precisely equations of this type
and the theory of representatons of Kac-Moody algebras
that can be used in relation to certain problems in quantum
field theory. In this sense, the results presented above can
serve as a bridge to a generalization of existing theory (see
also Sec. 6).

4. COHERENT STATES AND TRANSITION TO THE
CLASSICAL LIMIT

4.1.Coherent states and uncertainty relations

A notable event in the development of the group-theor-
etic approach in physics was the introduction of the contin-
uous bases for irreducible representations in addition to dis-
crete bases. The point of departure for this was provided by
studies in optics that involved the development of coherent
sources (lasers) and a new method of detection of radi-
ation.’>%%%° This placed on the current agenda the transition
from the representation of the electromagnetic field by a par-
ticular set of quantum states with precisely determined num-
ber of photons to the consideration of states with a given
phase, ie., an uncertain number of photons. In 1963,
Glauber®® showed that coherent phenomena could be de-
scribed with the help of states introduced by Schrédinger'®
and describing nonspreading wave packets for quantum op-
erators. He examined such states in detail, and called them
coherent states. In the 1960s, coherent states became the
subject of careful analysis and were used in many physical
applications (cf. the books by Klauder and Sudarshan,’’
Malkin and Man’ko,'®" and the collection of papers in Ref.
102).

Among the many remarkable properties of coherent
states, we single out two particularly important ones. First,
the coherent states |z) are functions of a continuous variable,
i.e., a complex number z, and not a set of eigenvectors of
diagonal operators of a Lie algebra. They constitute a com-
plete though not orthogonal system over which any vector
can be expanded. The system becomes orthogonal only in
the classical limit. Second, coherent states have minimum
uncertainty and can be treated as quantum states that are
maximally close to classical states. Coherent states can
therefore be used in the transition to the classical limit, in
which quantum formulas assume their classical form.

The coherent states introduced by Schrodinger and
Glauber were found to be closely related to the Heisenberg
group. Radcliff'® has constructed the coherent states for
the group SU(2). In 1972, Perelomov'® put forward a de-
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finition of generalized coherent states as states that are arise
when the representation operator is applied to some fixed
vector |z, ) in the space of the representation. The usual co-
herent states correspond to the choice of the vacuum vector
|0} as the vector |z, ). For an arbitrary group G, the general-
ized coherent states CS|z, of the representation 7(g) (geG)
are defined by

l2,) = T(@) 2, ).

In other words, the system of generalized coherent states is
an orbit of the element |z,) of Hilbert space in which the
representation 7(g) acts. For each irreducible representa-
tion we have a set of such orbits and the properties of the
system of generalized coherent states depend on the choice
of z, (Ref. 13). The definition given by (4.1) signifies that
the generalized coherent states |z} are transformed under
finite transformations to |z'), and not to a superposition of
them, which is in contrast to the states of the orthogonal
basis. Thus, for SU(2), the state with j =m = 1/2 trans-
forms under rotation to the superposition of states with
m = + 1/2. This is one of the main differences between the
CS basis generated by finite transformations of a group and
the infinitesimal (discrete) basis produced by the generators
of a Lie algebra.

For a given state |z,) we can find a stationary subgroup
H ={h},i.e., aset of elements of a group G whose applica-
tion changes only the phase or a numerical factor. For a
stationary compact subgroup,

T(h) |2y ) = exp(ia(h))|z,),

while the factor exp[a(4)] arises in the case of a noncom-
pact subgroup. The generalized CS associated with |z, ) are
parametrized by points of the factor-space G/H whose di-
mensionality is equal to the difference between the numbers
of parameters of G and H. They can be looked upon as points
on a surface defined by group invariants.

To construct the CS as quantum states that are maxi-
mally close to classical states, we must select from the differ-
ent systems of generalized CS (orbits) the states with mini-
mum uncertainty. Initially, the criterion for this relied on
taking |z,) as the IR of highest weight or the selection of
states with a maximum stationary subalgebra.'®*'%® How-
ever, these approaches were unsuccessful. The former is un-
suitable even in the case of representations of the principal
and auxillary SU(1,1) series which, in general, are not limit-
ed by the highest weight; when the latter is applied to the
group W(1), it produces not only the coherent states, but
also other systems of generalized coherent states (squeezed
states). The direct use of uncertainty relations would there-
fore appear to be the best way to procede. There are two
types of such relations between the root mean square devia-
tions AT,, (AT, )> = (T Y — (T Y2, where T are the gen-
erators of the group G.

The first type (discussed in detail in the review paper of
Ref. 106) includes relations containing products of uncer-
tainties in terms of different variables, for example,

4.1

(4.2)

W(1): Ax-Ap 2 B/2, (4.3)
SUQ): AT AT, = [(T,) /2. (4.4)

However, these relations are unsuitable for the determina-
tion of the coherent states of the corresponding groups be-
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cause states that minimize them can include states with arbi-
trarily large uncertainties. For example, in (4.3), the
equality can be achieved for Ax — o« and Ap—0, whereas in
(4.4) we obtain an identity in all states with a definite com-
ponent J, of the angular momentum, irrespective of the de-
pendence on AJ, and AJ,. Moreover, like the analogous re-
lations for other semisimple groups, (4.4) is invariant under
the finite transformations 7'(g) of the group. On the other
hand, according to (4.1), the CS defined as a special case of a
set of generalized CS are invariant under finite transforma-
tions T(g).

A consistent definition of coherent states can be based
on relations containing the sum of squares of uncertainties

2 2
w(l): (%) + (%) 21, x3=%
0 0

SUR): (AN)? = (A1 )2 + (a1 )2 + (AT )% = ji.

> xoﬂo = h! (4.5)

(4.6)

The development of this approach is due to Del-
bourgo,'°”'% who derived relations such as (4.6) for com-
pact semisimple groups, and to Gitman and Schelepin!>'®®
who considered (4.5) for the Heisenberg group and the anal-
ogous relations for SU(N,1) and SU(XN). We note that (4.5)
can be written in the form

(ata)y—-(a*¥a)=0.

The equality is achieved if and only if the states over which
the average is evaluated are Glauber coherent states (eigen-
states of @).

The uncertainty relations given by (4.5) and (4.6) in-
volve the invariant variance that is unaffected by finite trans-
formations in the group to states over which the average is
evaluated. The relations themselves are also invariant. The
measure of uncertainty such as (4.6) can be written for com-
pact semisimple groups in the following general form:'* 1%

ACy = (T, T,) = (T, X T, = 0,

where C, =g, /7\"0 /7\",, is the quadratic Casimir operator, /7\",,
are the generators, and g*° is the Cartan-Killing metric ten-
sor. For noncompact groups, the AC, givenby (4.8) isalsoa
measure of uncertainty. However, in this case, since AC, can
be negative, we must start with |AC, | = min when we deter-
mine the coherent states. Thus, for the irreducible represen-
tations of the SU(1,1) discrete series,

(4.7)

(4.8)

AC = (@A) =(I) =P =G+ -mP<j< -1/2.

It is readily verified that AC, is an invariant variance.
For example, if we transfo/{m /f:rorr)\ the Cartan—Weyl basis of
theinfinitestimal algebra H,,E_,E _ toanew set of Hermi-
tian and anti-Hermitian operators T, consisting of H,,
E,+iE_,, E, —iE_, with determined coefficients, and
if they are properly chosen, we have AC, = (AT)?and

R R
@an?= Y @ary?= ¥ (T —(T,),

a=1 a=1

(4.9)

where R is the dimensionality of the algebra of the Lie group
G.
Thus, inall the cases that we have considered (compact
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and noncompact semisimple groups and the nilpotent Hei-
senberg group), the invariant relation that determines the
coherent states can be written in the form

[(AT)?| = min (4.10)

with variance (AT)? defined by (4.9). The completeness of
the corresponding systems of coherent states follows from
the invariance of (4.10) under finite transformations. It is
clear that this is a general approach to the determination of
coherent states and that the use of finite transformations and
of the invariant formulation of uncertainty relations creates
the necessary prerequisites for the creation of a particular CS
basis and for the analysis of the transition from quantum
theory to the classical limit.

4.2. Coherent states as an IR basis

A rigorous and consistent formulation of quantum me-
chanics was first put forward by von Neumann.! It relied on
the representation of observable and dynamic variables by
operators in Hilbert space. Concrete analyses of coherent
states as quantum states, and examinations of fundamental
types of IR bases (including infinitestimal, symmetric, and
CS) from a single point of view, are closely related to the
properties of Hilbert space. We now turn to a brief examina-
tion of this question.

It is convenient to adopt the Dirac notation |#) (and
(¢|) for the vectors and the conjugate vectors in Hilbert
space. A complex number then corresponds to the product

(ply)=(vlp) (4.11)

In each (separable) Hilbert space we can then introduce a
complete orthonormal discrete basis, namely, a set of vectors

|n) for which
(njm)=3¢,, (4.12)

and there is a formula for the decomposition of the unit oper-
ator over the one-dimensional projection operators

1= [nXnl.

n

(4.13)

The latter can be used to expand any vector over the set

{|n)}
lp)=Y InXnlp).

A
The linear operator A has a matrix associated with it, whose
elements are given by

A, =(m|4|n), (4.15)

the matrix being interpreted as the mth component of the
vector 4 |n).

The general scheme changes when we consider coher-
ent states |z) (z = {z,}). Instead of 8, in (4.12) or the -
function [for example 8(x — x') ], we find that the following
CS overlap arises for the basis |x) of the irreducible repre-
sentation D(1) of W(1):

(212')=fG 2) = fZ, 2), fz, ) =1, (4.16)

where |f(Z,z')| has a maximum at z =z'. The CS overlap
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(4.14)

function is an invariant of the group. Actually, for unitary
irreducible representations 7' ~ '(g) = T * (g) and, accord-
ing to (4.11),

1Gp ) = 2glug) = (2| T*@T(@)|u) = (z|u) = 1G, u).

4.17)

The system of coherent states is overfull and the expansion of
the unity operator takes the form

T= [ 12X zlauca),
where du(z) = du(z,) is the invariant (under the transfor-
mations of the group) measure and

)= [ 12X zly ).

Hence it follows that the coherent state of an overlap func-

tion f(Z,u) = (z|u) is a generating kernel in the space of the
functions ¢(Z) = (z|y):'>'°

(4.18)

(4.19)

V@ = [ 16 @ d).

The operator 4 can be associated with the following function
(covariant symbol)

AQzZ, z) = (z|2|z)

Discussions of particular systems of coherent states are
closely related to the overlap formalism that enables us to
standardize the theory. We begin with the Heisenberg group
W(1) which is the starting point of the general theo-
ry.!>*192 The minimum of the invarant variance (4.5) is
achieved according to (4.7) if, and only if, the states over
which the average is evaluated are the eigenstates of the
annihilation operator 4,8|wz) = wz|wz)

wn/Zzn
— 7z leon).

(n!)l/ (4.20)

j0z) = exp(~gwl2[?)

n=0

The conjugate basis {wz| coincides with (4.20) subject to the
replacement of |wn) with {wn| and z with z. Comparison of
(4.20) with

jwz)= Z(wn|wz)|wn Y

yields
wl/Zz n w, 2
(amlwz)=£———L(n')l/2 exp(—7|z| ), (4.21)

i.e., none other but the symmetric basis of the irreducible
representation (2.26).
The CS overlap has the form

{wz|wn) = Z(wzlwn)(wnlwu)

= exp{[Zu — (|u|*/2) - (121%/2)) 0},

|(wz|wu)|2=exp(-—w|z—-u|2). (4.22)
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No two states can be mutually orthogonal, since for any z
and u we have 0 < |{wz|ou)|<1. Moreover, the states |wz)
and |wz') are approximately the same for neighboring points
of the complex plane, {wz|wz) = 1. In coherent states

(X)=VIRez, (p)=VIiowImz,

(Ax)% =1/20, (Ap)? = w/2. (4.23)
The invariant measure is du, (z) = wd?z/7 and the integral
in (4.18) is evaluated over the entire complex plane.

Other bases for generalized CS employ the semicoher-
ent states'’

lon,z)= B(z)|wn ).

When n = 0, we have the usual CS with ﬁ(z) being the shift
operator (2.25).

Squeezed and correlated states have recently attracted
considerable attention.’’>® These states minimize the
Schrédinger uncertainty relations [like the expressions of
Sec. (4.1), the expressions given by (4.24)—(4.26) involve
the Planck constant #i, whereas in all other cases we use the
system of units in whichfi=c = 1]:

(Ax-Ap)? — o2 = #?/4, 0, = (px+xp)/2) = (P X %),
(4.24)

and are characterized by squeezing and correlation coeffi-
cients, respectively defined by

‘ Ax/xo 2
T Ap/py) ]
yolpx (4.25)
Ax-Ap”

These coefficients can be used to rewrite (4.24) in the form

Ax-Ap>#/[2(1 — *)'?] and the invariant variance'*''° in

the form

_

21 - r2)1/2 ’
(4.26)

(Ax/xp)? + (Ap/pg)? = (K2 + k712

When r = 0, the squeezed states minimize the Heisenberg
relation Ax-Ap>#/2. However, in contrast to coherent
states, they are in general far from classical because Ax and
Ap can be as large as desired for kK — « and k-0, respective-
ly. These limiting cases correspond to states with definite
momentum |wp) or definite coordinate |wx) and also the
basis-forming irreducible representations D(w),
(wx|ox') =8[w(x —x')]. The squeezed and correlated
states are the eigenfunctions of the annihilation operators 4’
obtained by means of the canonical transformations (2.42)
in the group SU(1,1); 8 =ua +va ™,

@ |w, u,z)= wz|w, uv, z),

where the coefficients k and r depend only on the ratio
s=v/u:

r=-Ims{{(1 + |s|)%/4) - Re )} V2, -1 =<r=1,
k=(1+|s|2—2Res)/(1 + |s]®>+2Res), 0 < k< oo.
(4.27)
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This is not a fortuitous result. Actually, squeezed and corre-
lated states |, uv,z) depend on the single complex parameter
s = v/u, |s| < 1 because u and vare related by |u|?> — |v|* = 1
and, moreover, multiplication of # and v by ¢ leads to a
change in z such that z’ = ze™. Thus, without loss of genera-
lity, we can put u = cosh@-e®’%, v =sinhf-e™ %" ie.,
squeezed and correlated states are determined by the point
(6,¢) in the homogeneous space SU(1,1)/U(1), i.e., the
upper cavity of the hyperboloid of two sheets. When & is
large, k—tan’p/2, r— —1(0<@p<m)r-1(mr<@<2m),
r=0(¢ =0, ¢ = 7). The invariant variance (4.26) is then
equal to 1 + 2|v}>.

The CS overlap (z|¢) defines the decomposition over
the coherent-state basis. For semicoherent, squeezed, and
correlated states'® and also states with the definite coordi-
nate and momentum, we have

(wz|wn, w)

= e @ W expleitn) exp(-elz12),
(4.28)
(wz|w, v, w)
_ u—l/zexp[w (WTZ v 2—ut7W2 _ |W|2;' |ZLZ)],
(wz|wx)
= (n/w?) ™V 4 explow [~ (x2/2) + ZVIx
- @22y - (1|21}, (4.29)
(wz|wp)
= (w?) "V exp [-(p*/20) + 2VIp
+ @7/2) - (@]2|*/2) 1. (4.30)

We now turn to the consideration of coherent states for
the IR of the groups SU(2) and SU(1,1). The SU(2) coher-
ent states introduced in Ref. 103 were subsequently used in
Refs. 111-113 where they were referred to as the atomic,
spin, and angular momentum coherent states. The SU(1,1)
coherent states were investigated in Refs. 13, 104, and 110.
We begin by considering the general scheme for constructing
the IR in function space. Suppose that the irreducible repre-
sentations 7°(g) of the group G act in the space of functions
¥(2),z = {z, } in accordance with the formula

T(ew (@) = ¥(g2). - (4.31)

Different irreducible representations correspond to dif-
ferent types of function. The variable z is interpreted as an
element of the group G, and the tranformation (4.31) as an
internal group automorphism. However, z can also be inter-
preted as the column ||z, || with the matrix of fundamental
irreducible representation g acting upon it. We shall use this
below.

Realizations of the irreducible representations in terms
of function space has been performed mostly by mathemati-
cians'*!'*!15 whereas realizations in terms of a discrete basis
were tackled mostly by physicists (for the connection be-
tween these methods see Ref. 17). From the physical point of
view, the work of these mathematicians was essentially con-
cerned with the construction of generalized coherent states
(orbits) in function spaces.
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For the irreducible representations D(j) of SU(2) and
D * (), D~ (j) of SU(1,1), the space of irreducible repre-
sentations is the space of polynomials of the form z)'z of
degreen, + n, = 2j [cf. (2.20)-(2.23)] where |z, |* + |z, |
is an invariant of SU(2) [SU(1,1)]. Next, let us put
|z,1* — |z;)* = 1 [if we assume that |z,|> — |z,|*=0 and
follow steps similar to those employed below, we arrive at an
irreducible representation of the fundamental series of
SU(LD)].

If, in accordance with (2.20), we act on the highest
weight £y, (z,,2,) = ¥;(2,,2,) = (2,)¥, we obtain the co-
herent states ¢, (2,,2,) = (z,,)¥ = (#,2, + %,z,)¥ where
u, and @, are the elements of the first row of the matrix ||g} |,
|uy|® + |u,|* = 1. Expanding the binomial, we can readily
verify that the symmetric bases (2.21) and (2.22) are none
other than the overlaps {jz|jm). Hence for D(j) and D * (j)
we have

i

. 271 ve o
liziz) = 2 [g+ m)!](j—m)!] A" jm),
m=—j

(4.32)

o0

) [(—(i — 172 i
i 2iz) =, [f(—fyj%r”‘}nﬂ 2L jm).  (4.33)

For D ~ (j), we have m<j < — 1/2. The formula for the co-
herent states is obtained by putting 7 — — m, and the sum is
evaluated between m = — « and m =j.

Decomposition of the CS over a discrete basis

(fuliz) =Y Culjm X jmjz), (4.34)
m
readily yields the overlaps for D(j) and D * (j):
(juliz) = @z +Upzp) ¥, 220, (4.35)
(julj'z) = (G2, — Elzl)2j6j.,, 2j< 1. (4.36)

Itis clear that, in contrast to the CS of the group W (1), there
are always CS that are orthogonal to a given CS. The formula
given by (4.34) can be used directly to construct the CSas in
Ref. 110 (see also Refs. 15 and 16) if we know the discrete
functional basis of the IR. The invariant measure takes the
form'’

D(jy: d.u()— ( A2 2501212 + |z]? = 1)a%2,0%,,
(4.37)

D*(jy: d#()‘wa("’-zl - 1z, |? - 1)d?*z,d%z,.
(4.38)

We can now transform from the variables z — 1 and z,
to the angular variables 6, ¢:

1Bp) = |2,2, )™

We then have
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SU(2): z, = cos %. (-9/20/2)

/2) + (w/2
2"5"12 Jle/ D+ @/

du (6, p) = ——1- sin 8d6de,
05657" 05¢<27t,
SU(1,1): z; =ch g_.ei(—¢/2+w/2)

(4.39)

= Sh %5 l[(.p/2) + (w/2)]

du 6, ) = L shedode,

2]<—l,050<°°,05<p527t (4.40)
where in contrast to (4.47) and (4.38) there is no integra-
tion with respect to the phase wj [this actually signifies a
transition from U(2) to SU(2)]. The mean evaluatgd over
the generators (covariant symbols) J, (6,p) = (J,) for
D(j) and D ‘*+’(j), respectively,

Jy=Ji,=jsinf:cosp, J,=ij,=Fijshf8-cosp,
Jy=jy=jsin6-sin<p, Jy=ijy=Iijsh6-sincp,
J,=j,=jcosé,

; 2, 2_2
A+R+i=F

I,=j,=Fjché,

—A-R+i=F (a41)

A very graphic picture is obtained for different types of
IR bases by considering the space of the averages with axes
Jx» Jy» Jo- It follows from (4.41) that the CS of the group
SU(2) are defined by a point on a sphere (Fig. 4a), whereas
the CS of representations of discrete series of SU(1,1) are
determined by a point on the upper [D * (j)] or lower
[D ~ (j)] plane of a hyperboloid of two sheets (Fig. 4b).
For unitary IR of the auxiliary and fundamental series that
are not limited by the highest (lowest) weight, the CS are
specified by points of a single-sheet hyperboloid or cone. The
points on the j, axis in the figure correspond to states of the
discrete basis |jm), and the dotted line shows surfaces
(sphere and hyperboloid, respectively) corresponding to the
generalized CS associated not with the highest weight, but
with the states |jj — 1) of the discrete basis.

FIG. 4. CSof SU(2) (a) and SU(1,1), (b)—discrete series.
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Let us consider in greater detail the CS of the group
SU(2), i.e., the angular momentum CS. The covariant sym-
bols (4.41) of operators representing the projections of the
angular momentum are identical with the expressions for the
component of the classical angular momentum vector j =jn
(whose direction is defined by 0, @ in a spherical frame)
where n = (sin 6 cos @, sin 8 sin @, cos §). Substitution of
the coefficient of the covariant generator symbols into the
Poisson bracket

1 (%a_fz_ff_la_fz)

e (4.42)

{f]lfz}

gives relations analogous to the commutation relations for
the operators themselves: {j, (6,¢).j, (6,¢)} = j, (6,9) and
so on; for the CS variances we have (AJ, )?<j/2; the modu-
lus of the CS overlap can be found from (4.35):

'\
K Byp 1B = (cos5) " (4.43)
where 0 is the angle between the vectors j, and j, (see Fig.
4a). The different CS become orthogonal only in the limit as
Jj— 0 for arbitrary j only pairs of states characterized by
opposite directions of j, and j, are orthogonal.
The generalized CS |j, |m|; 6@ ) obtained by operating

on |jm) with finite transformations can also be found from

(o)1), |ml, 6p) = {mllj, [m], 6p), (4.44)
i.e., as states with a particular projection of the angular mo-
mentum onto the direction of n (see Ref. 116 about the ana-
log of this relation for semisimple groups). The wave func-
tions of the states |/, |m|, 8p ) are the spherical harmonics
Y, (6".¢") where@ " and ¢ " are functions of the state vari-
ables §’, @ ' and the spherical coordinates 6, @. In the special
case of CS

T2 qvr o
Y6, ) = (—l)f[gb%zﬁl%:l (sin )"/,

It is clear that, as j— «, the CS wave function is localized
near § = /2 i.e., in the plane perpendicular to the angular
momentum vector j, which corresponds to the classical rota-
tion of this plane. On the other hand, in the case of the gener-
alized CS |j, |m|, g, if the condition |m/j| -1 is not satis-
fied, this localization does not occur even for j— o and the
states do not become the classical states. The overlaps
(6, @, lj:|m|,0,@, ) are given in Ref. 15.

We note that the spherical functions are overlaps of
states with a definite angular momentum j and its projection
m onto the axis and states with a definite angle (i.e., uncer-
tain j):

(Jm|9<P ) = ij(gv ‘P)y

©

> > (plimXimloe’)
j=0m=-j

=(6p|0'p" ) = d(p — ")o(cos 6 — cos &),
1= |[ 160 X60pIsin6aps, 02 p <27, 002

(4.45)
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For the IR D(p) of the group of motions of a plane,
M(2), it is natural to consider the two bases |pm) and |pa).
The states [pm) are the eigenstates with eigenvalues m and
p? for operators representing the projection of the angular
momentum J, and the square of the momentum (Laplace
operator) p% + p2 = — (3%/dx* + 3¥/dy*) [cf. (2.7) and

(2.8)], and p, |pa) = p cos a*|pa), p,|pa) = p sin a* |pa).
For fixed p,
j|pa)<pa|da—1 2 lpm Y pm| = 1. (4.46)

m=-—-o

The wave functions, i.e., the overlaps with states |r@ ), where
r, @ are the polar coordinates of a point on a plane, can be

obtained by solving the differential equations’ (2.8) and
(2.9):
( rolpm) = €™, (pr),
2(’¢|Pm)<Pm|"¢)—ZJm(pr)_1 (4.47)
nm=—o m=—-x
(’VII)C! y = eiprcos(ya—a)’
{palpm) = P 7
(palpB) =Y (palpm X pm|pB)
m=—w
= % 2 einl(a‘ﬂ) = 6((1 _ ‘3)’ (448)

n

whereJ,, (pr) is the Bessel function of order m. To construct
the generalized CS, we apply the finite transformation oper-
ator to |p0) (the parameters in front of J will be set to zero
because {exp( laOJ )} form a stationary subgroup of the
state [pm))

expl(z®, —2B_)/2Vy(pr)

1 1 Mopz\™
3 s (8)' (4

= Jo [p(r +p? = 2or cos(B — ¢))'/ 2]

={rp|pz), z=péPb. (4.49)
Here we have used the summation formulas given in Ref.
117. The argument of J; is the product of p and the distance
between points with coordinates (r, @) and (p,,B) Hence,
|pm, z) is the state |pm) “shifted” from the origin of coordi-
nates to the point (pf3).

For the CS overlap we obtain

(p,u|p,z)=]0(p|u—z|). (4.50)
In accordance with the general theory [cf. (4.17)], the CS
overlap is a function of the invariant of the group M(2), i.e.,
the separation between two points on a plane.

For large p, p>m, the wave functions (rg |pm,z) are
localized at (p,f). The states |p,z) = |p0,z) are special
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among the |pm,z) because the spacial uncertainty Ax? 4 Ay?
is a minimum for them.

Some questions associated with the transition to the
classical limit and the generalized CS for angular momentu-
m/angle variables are discussed in Refs. 9 and 16 which con-
structs states that are the eigenstates of the “‘rotated” opera-
tor
?'z=?z—3(,f)+ +z&>_
which is a particular analog of squeezed states of the group
W (1) that are the eigenstates of the annihilation operator &'.

From an arbitrary Lie group G, the analogs of squeezed
states can be constructed with the help of linear automor-
phisms (canonical transformations) G, of the Lie algebra
gf the group G. For this we have to “turn” the generators 7T,
T;=T,(84),84€G, and construct the usual states for the
new operators T/, which are in fact squeezed states. They
are parametrized by points of the homogenous space G, /G,
where G, is a subgroup of the group G consisting of elements
that are common to {exp 2q; T '} and {exp 38, T 1,
T = T (g4),and @ and S are parameters of the transforma-
tions in the group G. This construction gives a substantial
theory in the case of resolvable groups; for the semisimple
group SU(2), where G,, G,, and G coincide, it does not
lead to new states because exp(Za; T ) are finite SU(2)
transformations.

The overlap formulas provide us with a very convenient
formalism for calculations. In addition to the usual overlaps,
we can use those that include the differential operators
(Gwlid/du), (jd/dw|jd/du) (cf. Refs. 11 and 118). For the
group SU(2),

(jwljd/du) = (Wd/du; + w,d/du,). (4.51)

It is also interesting to consider overlaps in the discrete cases
presented in Sec. 3, e.g., (jz/D," ),. The structural features
of these overlaps are readily seen in the case of SU(2). The
expression given by (4.35) leads directly to relations of the
form

(uIW)Zj = (juljw), (j]uljzw)(jluljzw)

= (j1 + j2u|j1 + jow )

The composition and decomposition of overlaps is real-
ized on the basis of the formulas for the decomposition of
unity, given by (4.13) and (4.18). Essentially, the overlaps
constitute a new universal language that enables us to per-
form very complicated operations with functions at a stan-
dard, elementary level. The theory of C-G coefficients and
certain portions of the theory of special functions may be
looked upon as studies of generalized overlaps.

We note that we have used the traditional realization of
the space of representations of W (1), which is valid for fixed
o. In general, if a state does not have a particular frequency,
i.e., it does not transform in accordance with some particular
irreducible representation D(w) of the group W(1), we
must consider the space of functions ¥(x,7),

p=~id/ox, X, = —ixd/dt, T= —id/or,

(%, p1=d, (%, 71= (5, 71=0. (4.52)
For example, Y(x,7) = explior)¢Y(w,x), p= —id/dx,
x,=wx, =0 [see (2.25)]. If, in general, [&,a, ]
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= —id/dr, then for states with fixed frequency
[4,6} ]| =o and we can employ the usual operator
a* =a} /v, [4,87 ] = 1. Such states are examined in the
next Section where instead of jwn) and |wz) we use the ab-
breviated notations |#) and |z) and the usual operators 4 *

and a.

4.3.CS-representation of quantum mechanics and the
transition to the classical limit

The CS provide a certain classical representation of
quantum mechanics. They were defined above as states with
minimum uncertainties, using the relations for the invariant
(under finite transformations of the symmetry group) vari-
ance. This invariance of the uncertainty relations ensures
that the CS form a complete IR basis of the group G. They
are parametrized by points in the phase space of the classical
system.

The wave function ¢ in the Schrédinger equation is es-
sentially none other but an overlap that is different for differ-
ent representations of quantum mechanics: {x|¢) for coor-
dinate, (p|¢) for momentum, {n|¢) for energy, and (z|¥)
for the CS representations (these are the Bargmann-Fock
representations).!**111°

In the last case, the Schrodinger equation takes the form

d 2 d/dz+:z
latill(z) (gz‘— ) (2 + u[——(z 2 ¥(2),

(4.53)

where ¥(z) = (Z|#) exp(]z]?/2) is an analytic function of z
and

(¥1ly,) = Jm«zz@ exp(— | z|Hd%z/x,

A d/dz+:z

2=d/dz, Zz\+=z, x = .
(me)lv/2

An oscillator is described by the first-order equation

w5 veo

States with determined energy E=w([(1/2) + n)] have
¥, (2) = z"Xexp( — iEt)/(n!) /%, and coherent states have

290 = (% + (4.54)

¥u(2) = explu(t)z — (iwt/2) — (1u|*/2) ], u(t) = uge™™".

The evolution of a state thus reduces to the variation of the
CS parameter 4 (t). The Bargmann-Fock representation has
been used in a variety of quantum-mechanical problems.'**!

Let us now consider generally the transition to the qua-
siclassical equations, using the calculus of symbols. Suppose
that the Hamiltonian of the physical system and a certain
operator L that is not an explicit function of time are opera-
tor functions of the group generators. The Heisenberg form
of the equation of motion is then

(4.55)

The quasiclassical equations of motion are obtained by for-
mally replacing the operators in the Heisenberg equations
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with the corresponding dynamic variables and the commu-
tator with the Poisson bracket (the word “quasiclassical”
means that the resulting equations retain the spin and color
variables that do not appear in the classical form).

The question is: when can this type of transition to c-
number equations take place or, at least, provide a good ap-
proximation? The answer to this question can be obtained by
averaging the Heisenberg equations over the coherent states.
The quasiclassical equations are then obtained (in general,
under certain additional conditions that define the range of
their validity) as equations for the evolution of the CS that
are parameterized by points in the phase space of the system.

If the coherent states of the corresponding group do not
spread out, i.e., they remain coherent in time
(#1}2(0)) = |z(1)) where @ is the evolution operator), we
can rewrite (4.55) in the form

2 2lLizy = 2|t L2, (4.56)
where z = z(¢) and the operators are taken in the Schro-
dinger representation, i.e., (4.55) converges to the equations
for z(d) (thisis the case of the so called “‘exact quasiclassical
behavior”). To ensure that the CS do not spread, it is suffi-
cient for H to be linear in the group generators because the
evolution operator is then an operator for finite transforma-
tions in the group (the nonspreading of coherent states is
discussed in Ref. 120). The left-hand side of (4.56) containﬁ
the derivative of the covariant symbol of the operator L
whereas the right-hand side contains the commutator sym-
bol. Thus, in symbol language, the second correspondence
principle signifies that the commutator symbol becomes the
Poisson symbol bracket (cf. 110 and 122).

We now turn to the coherrent states of the group W(1).
We know that they do not spread for a Hamiltonian of the
form

~ ~

H=(wa'a+ Fa+ Fat +8), o =@, f=5.

If we put L=ain (4.56), we obtain

92 _{H, 2} = L A F,

ot 0z (4.57)

where H = H(Z,z) is the covariant symbol for the Hamilto-
nian. The solution of this equation is

2= [2| expl-i(wr +p)1+ | Foyat

The quantity |z| is interpreted as the amplitude of the oscilla-
tions, @ is the initial phase, and

(%)= V2xy|z] cos(wt + o),

(p)= VIpylz| sinwt + p). (4.58)
It is clear that the average values vary in the coherent states
in accordance with classical laws, but the classical picture of
motion is a good approximation only in the case of large
amplitudes of the oscillations () and (%) in (4.58),
V2|z|xo > Ax = x4 /V2, V2|z|py > Ap = p,/V2, and the classi-
cal limit is reached for |z]| — 0.

For Hamiltonians that are linear in the generators of
SU(N) and SU(N — 1,1) (see Appendix), we find similarly
for
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H= CiT'lk, Zi = c;‘(-'_- 1)6uv+6/~
[the lower sign corresponds to SU(N-1,1) ] that for symmet-
ric irreducible representations'?

dz

3 .1
T= —leZl. (459)
In particular, for the SU(2) group, we have

H=i(aJ, +a,J, +a,J,) and, using the CS parametriza-
tion |j0g ) and (4.39)-(4.41), we obtain the equation de-
scribing the motion of a point on a sphere:

& = ta(. nl. (4.60)
For SU(1,1) ~80(2,1), the equations for the evolution of
the coherent states describe the motion of a point on the
upper [D * (j)] or lower [D ~ (j) ] sheets of the hyperbo-
loid [cf. (4.41) and Fig. 4].

If the Hamiltonian is nonlinear in the group generators,
then if we neglect the possible spreading of coherent states,
we can obtain from (4.56) an approximate equation for z,
which, in contrast to the quasiclassical (4.57) and (4.60),
contains the signature of the irreducible representation. The
quasiclassical equations given by (4.57) and (4.59) are ob-
tained for certain values of the parameters of state (|z| — oo
for W(1) andj— oo for SU(2); the case of SU(N) was inves-
tigated in Ref. 15 in connection with the derivation of the
quasiclassical evolution equations for color variables, i.e.,
the Wong equations).

We have already noted that if the CS do not spread (the
evolution operator i (¢,¢, ) reduces to finite transformations
il’l the group)i then ¢(Z,l) = <z|ﬁ(t)t0)|¢0) = <Z(Z)I¢O)

=9, [2(2) ]. For the irreducible representations D(j) and
D " (j) of SU(2) and SU(L1), v=9[(z,(¢,),2,(1,)],
z, (1), and z, (¢) transform as the components of a spinor
under the fundamental irreducible representation D(1/2),
|2,]1* + |z, ]* = 1, i.e., there are two equations for z, (¢) and
z, (). If, on the other hand, the CS do spread, then the equa-
tions obtained by averaging (4.56) over the coherent states
are only approximate; the exact equations are either the sys-
tem for ¢, (¢) = (jm|y) [for SU(2) we have dim
D(j) = 2j + 1 equations, and for unitary representations of
SU(1,1) there is an infinite number] or a partial differential
equation for ¥(z,1) = (jz|¢).

A concrete and consistent analysis starts with the sym-
bol calculus based on the mutually single valued mapping of
operator functions of generators and vectors of the group
representation space onto c-number functions of complex
variables z; and Z,. This calculus was developed by Bere-
zin''%'?! and plays an important part in his concept of quan-
tization'!®'?2 and the evaluation of the functional inte-
gral.'*"!23 Certain general propositions including those
relating to W(N), SU(Y), and SU(N,1) can be found in
Refs. 13, 15, 16, and 110. By using the CS-representations
that rest on the calculus of symbols, we are able to follow the
transition to the classical description, and also simplify the
calculations for particular systems.

Let us briefly examine the basic concepts in the theory
of symbols. The symbol of a vector |¢) is the function
¥(z) = {z|¢), i.e., the wave function in the CS representa-
tion. It is uniquely determined by the symbol that specifies
the decomposition (4.19) over the CS basis. The function
{(z|n) that specifies the symmetric basis can be looked upon
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as the symbol of vectors in an abstract basis of occupation
numbers. The overlaps (4.21), (4.22), (4.30), (4.35), and
(4.36) determine the symbols of vectors in different IR
bases.

Operators in the Hilbert space of irreducible represen-
tations can also be assigned symbols that define them com-
pletely. The covariant and contravariant symbols of an oper-
ator A are defined as the functions Q, (z,z) and P, (Z,z)

Q.(Zz)and P, (Z,2)

Q4G 2) = (z|4|z), (4.61)
A= IPA(E’ 2)|z X z]du(2), (4.62)
4G ) = [ Pa@ )1zl )\ 0u(u. (4.63)

The representation of an operator by a P-symbol is very con-
venient in problems involving the density matrix. We note
that the possibility of such definitions relies on the overcom-
pletion of the basis |z), which ensures that (z|4 |u) is com-
pletely determined by its diagonal elements (z|4 |z), where
0, (Z,u) = (z|A |u)/{z|u) is the analytic continuation of
the symbol Q, (Z,2).

For the group W(1), the covariant symbol Q, corre-
sponds to the normal way of writing down operators in
which all the @ | are written on the left of 2 _ (followed by
the replacement 4, -z, @_ —z) and the contravariant
symbol P, corresponds to the antinormal method of writing
operators in the reverse way. Just as important as Q, and P,
is the Weyl symbol that corresponds to the symmetrized way
of writing @, and & _ . The explicit form of the P and Q
symbols for the groups SU(2) and SU(1,1) can be found in
Ref. 13; the corresponding results for SU(N) and SU(1,1)
are given in Refs. 15 and 16 together with a simple method
for their evaluation, based on the representation of genera-
tors in terms of 2 . and & _ , analogous to (2.16).

The decomposition of unity given by (4.18) readily
yields the rules

A7) = [ 046, uX zluw@anto,
Apz) = [ P,@ X zluw@aut)

and the formulas for *-multiplication (multiplication of
symbols)

(4.64)
(4.65)

QAI . QAz = QAIAZ(E» z) = IQA,(E’ “)QAI(E 2)|(z|u >|2d:“(“)v
(4.66)

Qu 4,Cr 2 = [[ Py @ P, v) 2l Xl X012 D)),
(4.67)

For the group W (1), the expressions given by (4.63) and
(4.66) can be written in the differential form'2!

04, 2) = exp(AG, 2))P4(Z, 2), AR, 2) = 3°/0z 9%, (4.68)
04,4, 2) = (XP AE@, )04 G, )y @, 2)|,_,.  (4.69)

The formulas for the *-multiplication of symbols, given
by (4.66), and (4.69), are important in the analysis of the
transition to the classical limit, i.e., for deciding which states
can be described classically. Such states must have minimum
uncertainty and be parametrized by points in phase space.
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Moreover, the expectation values of operators in such states
must be much greater than the mean square deviations.

All the above equations are satisfied by the CS for cer-
tain values of the parameters. For an oscillator, these are the
CS |z) with large |z| (oscillation amplitude) and the angular
momentum CS |j6g )} become classical for high angular mo-
mentaj. The CS become orthogonal in the classical limit {cf.
(4.22) and (4.43)], the product of the overlap |{u|z)|* by
the normalizing factor in the measure du (4.66) becomes a
S-function, and for operators with nonsinglular symbols we
have the first correspondence principle up to terms of order
1/]z|> [W(1)] or 1/j [SU(2)], where the operator product
symbol is equal to the product of symbols:
Q4,*Q4, = Q4,"Qa,- The following are the corresponding

formulas for the group W(1):

2
[(ulz))%du(u) = e 1“1 d2u/n
_ e_Rel(u—z)—lmz(u—Z)dz(u —-2)/n

- %he—(ne /Ky Re a
X =M@/ B4 [ o ——— §(Re a)d Re ad(Im a)d Ima
v h n—-»0 ’
(4.70)
where @ = (4 — z)/|z|, h = 1/|z|. The second correspon-
dence principle can be obtained with the help of (4.66) by
including terms of order 1/|z|%(1/f) (Ref. 16).

We note that, in the classical limit, the Pand Q operator
symbols are identical because both (4.63) and (4.66) con-
tain the square of the modulus of the CS overlap.

It follows from the foregoing discussion that the classi-
cal description is possible for high values of certain quantum
numbers, i.e., the parameters of state (and sufficiently
“good” Hamiltonians that do not, in the course of time,
leave the region of states close to classical states). The cases
of SU(2) and SU(1,1) were investigated in Refs. 110 and
112, whereas semisimple compact groups were discussed by
Simon'?* who showed that the classical limit corresponds to
large values of the IR signature parameters; the discrete se-
ries of SU(,1) are discussed in Refs. 15 and 16. The classi-
cal picture is then a good approximation for high values of
the IR signatures and for large CS parameters |z;|. A more
general formulation of the problem of the classical limit as
the limit corresponding to “large N’ (in particular a large
number of degrees of freedom) is given in Ref. 125. We shall
return to this question in Sec. 6 where we shall consider the
law of large numbers and the limit theorems of the theory of
probability amplitudes.

4.4, Phase space and the relative variance as a measure of the
uncertainty of states
Let us now examine in greater detail which states are
maximally close to classical states. In classical theory, a state
isrepresented by a point in phase space. In the quantum case,
itis convenient to consider the (), {p) plane (or, in the case
of an arbitrary Lie group, the space of their mean genera-
tors). For each space there is a certain region with center at
the point x = (%), p= (p) (for the CS, x=v2ZRezp
= v2 Im z and dimensions of the order of Ax and Ap, i.e., a
certain vector (x,p) with variance [ (Ax)? (Ap)?]. The un-
certainty in this vector (and, hence, of the state) is naturally
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characterized by the ratio of the invariant variance of the
vector (4.9) to the square of its length:

D = (ATY2/(T?), 0<D, <l. (4.71)

The uncertainty is a maximum for D, = 1. The classi-
cal limit corresponds to D, —0, i.e, the uncertainties are
negligible in comparison with the means. The condition
D, -0 is essentially the correspondence principle for the
states.

In the case of a flat phase space [group W(1)], the

relative variance is
Ax 2+ ap)*
!AT!z _ X0 Dy

(T ((/x)) + ((p/pp)*)

_2(a*a)y—(a*Xan+1

(4.72)
Aata)+ 1

For states with definite coordinate |x) and momentum |p),
and also states corresponding to the nth level of the oscillator
|n) and coherent |z), semicoherent |nz), and squeezed |uv,
z) states, we have

States: |*) |p) In) |2) |nz) Juv, z).
o111 1 1 !
D, : Le2fz? | 2fzf? |, 20uz =527
1+2n 1+2{v|?
Classical limit — — — |z]=»w |z}=oo; |z]-»oo.
n/|z|*~0

In the case of squeezed and correlated states,
0

Doy [z[»

for fixed |v/u|% 1. In the limit as (v/u|— 1, this will not in
general be the case. In particular, for real zand |v/u|— 1, we
find that D, becomes equal to unity.

Therelative variance of the angular momentum is given

by
(AP + () + (A1)
rel (JZ) .
For the CS |j0g ) of the states |jm ) of generalized CS |j,
|m|, 6p ), we have

(4.73)

States [ ) lim), {flm]|,6p) [0).
1 m?
Do j+1 SRRy 3
Classical limit j=> > jroe, m/jl =1 -

Pictorially speaking, the relative variance defined by
(4.71) enables us to determine the “degree of quantization”
of a state in percent. We note, that in the classical limit, the
variances (AT)? are small only in comparison with the
mean; they can be constants [CS|z) of the group W(1)] or
they can increase [CS|j@g ) of the group SU(2)], which is
completely consistent with the uncertainty relations.

For states with D_, —0, the quantum-mechanical for-
mulas assume the classical form. In particular, the C-G co-
efficients relating the angular momentum CS |j6g ) lead to
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the classical formula for the composition of angular mo-
menta as j— .

To conclude this Section, we consider the common pro-
cedure of passing to the classical limit by allowing fi to tend
to zero. It is well known that, in the formal limit as #—0,
both the commutators (i.e., uncertainties) and the operators
J, = —i#3/dp, p= — i#id/dx (and, hence, the corre-
sponding physical quantities) must vanish. It is therefore
usually demanded (see for example Refs. 58 and 125) that
physical quantities such as the energy #iw{|z|> + (1/2)] or
#iw[n + (1/2)], the angular momentum, j#, and so on, must
remain finite. This gives @|z|*— 0 0rwn— 0, j— w0, i.€., we
are back to the consideration of the limit of high quantum
numbers (parameters of state). For #i—0, the uncertainties
vanish only for states for which the expectation values
(which must be finite) are much greater than the corre-
sponding uncertainties, i.e., for realitive variance D, -0.

5. THEORY OF CLEBSCH-GORDAN COEFFICIENTS AND
THEIR COMPOSITIONS

5.1. Unified theory of C~G coefficients of the group SU(2)

The structure of coupling between a system and its sub-
systems is determined in quantum mechanics with the help
of the C-G coefficients. The square of the modulus of a C-G
coefficient specifies the probability that the system is in a
given state for known states of the subsystems and, from the
group-theoretic point of view, the C-G coefficients specify
the transition from the basis of the direct product of two IR
to an IR basis, and constitute a unitary matrix.

The C-G coefficients are unique objects on which the
problems of quantum theory are focused. They arise under
very different guises: either as objects in the group-theoretic
approach or as probability amplitudes that may be looked
upon as sums over paths or as descriptors of the structure of
quantum objects or as powerful computational tools. We
thus have an intersection of very different branches of phys-
ics and mathematics.? The theory of SU(2) Clebsch-Gor-
dan coefficients, i.e., the theory of angular momenta, can be
found in one form or another in most textbooks and mono-
graphs on quantum mechanics, and a summary of the for-
mulas deduced by the mid-1970s is given in Ref. 21.

Until recently, the theory was confined almost entirely
to the discrete basis. In 1974, Bellisard and Holtz'*® gave an
expression for the C—G coefficient of SU(2) in, CS spaces,
but systematic studies began relatively recently.>!*!*” In
contrast to the standard theory of angular momenta?"** in
which the C-G coefficients and their compositions take the
form of awkward sums of products of factorials, in the CS
basis they are functions of continuous variables and the gen-
erators for the usual C-G coefficients.

The familiar theory of C-G coefficients has undergone
a radical change (see also Ref. 5). It is now formulated in a
unified manner for all the bases as a special generalization of
overlap formulas. Because of the convenient language in
which the various quantities that appear in the theory are
written, it is now possible to have both continuous and dis-
crete coefficients at the same time, and the development of
increasingly complicated structures of particular C-G coef-
ficients and their compositions is something akin to the
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child-like assembly of toy building blocks. We begin with
definitions. For the sake of convenience, we write down in
parallel the formulas for SU(2) that refer to the C-G coeffi-
cients (julj,v|jw) and the Wigner coefficients
{j, ulj,v}jw]||00) in the CS basis (u = {u,,u, }) [first rows in
(5.1)-(5.3)], and the C-G coefficients {j, m, j,m, ||jm)
and Wigner coefficients (j, m, |j, m, |jm||00) in a discrete ba-
sis [second row in (5.1)-(5.3)]:

1w = i hiw )i i Y i 0,

lim) = 3" vy Liymyim Y jym, Yiymsy ),

(5.1)
iy = 3, [ Cwlliulig Yiw s ),
j
Liymy Migmy Y =Y. Cmlljym, Liymy Y jm ), (5.2)

jm
100) = J Cyuliyw w00 Yy i Y e (), (v)du(w),

100) = 3" iy Liymylism3 100 1s,m, Miymy Yisms ). (5.3)

m,,my,my

The integrals in these expressions are evaluated over the
measure (4.37). It is also possible to use the angular vari-
ables (4.39) in terms of which which a state is represented by
|/6@ ) and the integration is performed over the measure
dtuj (0:¢ ) .

The formulas given by (5.1)—(5.3) are written for ab-
stract bases. In functional (Hilbert) space, it is best to use
overlaps that enable us to give the theory in standard unified
form. The resulting relationships often involve the following
overlaps:

Culiw) = (@w, + Tpwp?, (mljm' ) =8, -, (5.4)
(Juljwl00) = 22—1#)1/5 (@, — Twy)?,
o (-1y ™"
0W0Yy=—""7___¢ . (5.5)
(jm]jim'{|00) (2 + 1)1/2 m—m
2hH! 1/2—'—m—'+m
(julim) = {U_m)!(]_+m)!] A A (5.6)

which may be looked upon as a special case of C-G coeffi-
cients and as the definition (5.6) of the symmetric basis. The
decomposition of unity given by formulas such as

[ el X wlio Y o) = Cjul o),

Y Culim X jmiw) = Cjuljw). (5.7)
m
plays an important role.

We note that the C-G coefficients themselves are essen-
tially overlaps, i.e., of the basis of the direct product of two
IR with an IR basis. Hence in addition to the C-G coeffi-
cients that relate bases of the same type, we can consider the
mixed quantities (j, u[j,v|jim) or (j,m, [j,m,||jé@ ). These
unusual objects can be subjected to systematic analysis that
has much in common with the analysis of the C-G coeffi-
cients in the CS basis.
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For each property and each relationship between the C-
G coefficients in the discrete basis there is an analog in the
continuous basis, and transfer formulas between the two are
available. The nature of the resulting relationships is clearly
seen if we consider the orthonormalization formulas:

J(f1“|jzv | jw ) jw' ||f1“‘f2U )dﬂjl(“)dﬂjz(v) = (jw|w), (5.8)
ZJ(jluljZU"jW)(jW“jl’-"IjZU')dﬂj(w)=(j1“|j]“')(jzv|J.2U'>v
! (5.9)

1l ) P ), (o) () = dim D),
N, Gimyligmollim Y jm jymy Vigmy Y = 8,s (5.10)

m.m,

Z (jlml |j2m2||jm )(]m “jlm’l |-’.2”1'2 ) = amlm'I 6mzm'2’

il (5.11)
. . . 2 .

2, [ jymy Lipm, |lim )| * = dim D(j).

"1|,”12."l3

The interrelation between the C-G coefficients in con-
tinuous and discrete bases is given by the following formulas:

(d1my | jmy)jzms ][00 )

= j (jlu|j2v|j3w||00 le'"] ,flu x.fzmzlfzv )
X (jzmy l-j3w )dﬂjl(“)dﬂjz(v)d/‘j(w)’ (5.12)
<j1“|j2U |J3W”00)

= 2 (imyliym; ligma 00 X fyulm, X g |imaX jawlizms ),

"y, my

(5.13)
<j1“|jzv ”f3w>

= 2 Cmyigmalligmy X jymaigw X iz Usmy X jyuliym, ).
MMy

(5.14)

The C-G and Wigner coefficients are related by
Gl w003 = [ CGyaeig iw’ Y wl| 00 Y (o),

(fymylipmylim'(100) = 2(jlml|j2m'2||jm X jm|jm’||00).
m

(5.15)

All the properties of the standard discrete theory of an-
gular momenta can be systematically transferred to the C-G
coefficients in the CS basis and become part and parcel of the
unified theory. The new point is the appearance of an effi-
cient computational formalism due to the integration over
the measure . This is a very simple operation that enables us
to perform calculations in the CS basis without recourse to
the usual theory. For example, consider ff, (z) Wdy(z)
where f; and f, are polynomials in z. When the powers of any
z, and Z, under the integral sign are different, then integra-
tion of exp(ing,) with respect to the phase ¢, over one
period gives zero. When the powers are equal, the integral
over @, reduces to a multiplication by 277. We thus obtain
integrals that contain only |z, |* = x:
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1

Ixa_l(l -xf " ldax = B(a,pB), a,>0.

0

(5.16)

The C-G coefficients in the CS basis are the invariants of a
concrete group and constitute the normalized product of ele-
mentary generating invariants such as determinants and
convolutions. They can always be written down in factorized
form. For example,

(huljpllisw) = p( Ryu|R\w X Ry |Ryw X Rau|Ryv ][00 )
where
R1 = —fl +f2+f3, Rz =j1 —j2+j3, R3=j1 +j2 'fs

are the powers to which the elementary generating invar-
iants are raised:

(jluljzv ”]3“’) =P(E1w1 + Ezwz)R'(t_"lw]
= R = - 57 R
+ U,wy) 2y T, ~ uy0,) 3,
172

iY@+ 1)

o= el ' (5.17)
RIR,RSI(R, + Ry + Ry + 1))

This is a typical example of C—G coefficients in the CS basis.
They are written down directly in the form of the product of
group invariants. The normalizing factor can be calculated
with the help of (5.16). The symmetries of the C-G coeffi-
cients (invariants) correspond to the symmetries in discrete
bases. The analogs of the discrete recurrence relations can be
obtained with the help of overlaps such as (4.51), which
contain differential operators (see also Refs. 128 and 129).
The general scheme used to construct compositions of C-G
coefficients also remains in the CS basis. In the simplest case,

J st U gl v o,
Z(flmllfzmznf'm' Xi'm'|izmslljm). (5.18)
-

This formulation of the theory of C-G coefficients is quite
general and is valid not only for SU(2), but also for other
groups.

5.2. Transformation matrices

The relation between the different structures in quan-
tum mechanics is determined by the transformation matri-
ces. From the group-theoretic point of view, they specify the
transition between different bases for direct products of irre-
ducible representations. For SU(2), this corresponds to a
transition between different compositions of » angular mo-
menta (n>3). The simplest case of the n = 3 matrix

(Guii 3/l iy Uafa)ias)s
was investigated by Racah.** The transformation matrices
are usually written in the form of compositions of C-G coef-
ficients summed over all the projections of the angular mo-
menta. In their symmetric form, they are referred to as the j-

symbols.?"**!*® The transformation matrices are unitary in
their construction. This leads to formulas of the form
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s ’ am-

2. Guihajg | Gs)iny) Gy Gaiias/| i) i) = & o
I
A detailed listing of the relationships containing the trans-
formation matrices and including discrete variables is given
in Ref. 21.

In the CS basis, the transformation matrices specify the
recoupling of the angular momenta in terms of continuous
variables:

I(fl W) |f2W2 ||f12W12 )(f12W12|f3W3 [|jw )d.“jn(wu)
= Y (Guiiasf hGafp)ing)
In
X J(jlwl | /3w lliw Xizwyliswslljpzwas )d#jn(wza)'

(5.19)

Naturally, the transformation matrices that depend only on
the angular momenta are the same in any SU(2) basis. They
can also be expressed in terms of an integral. Thus, for the
transformation matrix in (5.19), which corresponds to the
Racah coefficient, we have

(G12i1 9371y Unf3)iash)

= 2 Ciymylipmalliiamy g Xdygmy g ligms |lim )

m,

X (jm ”fz3’"23 Iflml )(j23’"23”f2’"2|j3’"3>

= J(fl wiligwalljigwiz Xizwyaliswslliw)

X (jw||f23wz3|flwl )(f23wz3lljzwzlf3w3>

x d"jn(wl2)d!‘j2(w2)d»“j3(Wa)d#j'(Wi)d:“jn(wzs)d#j(w)~
(5.20)

Thus, the original expression for the transformation
matrices can be written in two equivalent forms in terms of
discrete and continuous variables. The transformation ma-
trix itself (which depends only on the signature of the repre-
sentation) is an invariant of SU(2). It can also be looked
upon as a SU(3) tensor. This duality is illustrated by the
following simple example of the connection between the
SU(2) and SU(3) overlaps:

R
Sy § 83 .
Uy uyuz) =———— (RulRv|Rsl|00
o (R+1)'/23( JRv|Rs}|00)
172%3
- R! R R
= Y mmmrshhd
R+R+R=R 1273

1 1
x (R, + Royuy, SR, + Ry,

1
2Ry + Ry)uzv,100).
(5.21)

The subscript 3 on the left shows that the overlap refers to
SU(3). The loss of simplicity that is apparent here is not
fortuitous: the quantities that appear in (5.21) refer to dif-
ferent groups. This aspect of the theory is discussed in Refs.
2 and 12 which employ the following decomposition of the
3 X3 determinant |u,,|:
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| .
ik
lug)® = (RPR+ D12 Y Ryl - [T —2

/2
ER' =1 ik=1 (Rik!)
rulli (5.22)
ISTRESVEST)
| Ry |l = || Ry Ryp Ry
R3) R3; R3;
—htihtiz -+ htia—J3 ..,
= P : , Nh 12 I3
= h-m™ =My 3—my = ,
. . . ml mZ M3
i+ m Jpt my ]3+m3
(5.23)

and the R-symbols given by (5.23) and their unions are used
to construct a theory of the jm- and j-symbols in a form that
is covariant under SU(3).

Thetransformation matrix (5.20), regarded as a sum of
the products of the four symbols ||R,. ||, corresponds to a
SU(3) tensor containing four triples of indices. In an expres-
sion for an arbitrary j-symbol, such as (5.20), we have a
summation over the projections of the angular momenta in
the second and third rows of | R ||, and a 3 X n-matrix can be
constructed from the first-row elements.

This matrix defines the j-symbol in the R-representa-
tion. The triads of elements R |, corresponding to the R, of
the /th symbol of || R, || form a column. Each triad is linked
to three others and the links lie in a row. The essence of the
unified R-form is clear from the following two examples of
6j- and 9j-symbols:

— ~—
Ry; Ry Ry Ry

— ]
Ry Ry Ry Ry,
——————
R,; R,. R,. R
13 Ro3 Ryz Ry
=l ity —htigtl i3t

~— ! mi ) ]
= jl_j2+j12 j1+j23—f _f2+f3+f23 j1;+f3—f s (5.24)

flz_j3+f

Wri=ha h—hat] htiz—ja —hatizt]
| e - 1 1
Ry Ry Ry Ry Ry R

[ S
Ry, Ry Rz Ry Ry Ry (5.25)

— —
Ri3 Ry3 Rz Ry3 Rs3 Reg

This way of writing these expressions takes into account the
particular character of the transformation matrices because
it indicates all the links. We note that if each triad in the R-
symbols (5.24) and (5.25) is represented by a point, and we
retain the link lines, then the linking scheme in the R-sym-
bols goes back to the usual graphs of the theory of angular
momenta. The general form of the graphs for the symbols
given by (5.24) and (5.25) is shown in Figs. 5a, b. The total
number of symmetries in the 3 X n-symbols is equal to the
product of the number of permutations of rows and the num-
ber of symmetries of the corresponding geometric figure
(Fig. 5). For (5.24), we have 3!-24 symmetries, whereas for
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FIG. 5. Graphs for j-symbols: a—6j-symbol, b—9j-symbol.

)

(5.25) there are 3!72 symmetries. Figure 5 clearly shows
the additional 3! symmetries as linked to the change in the
order of lines approaching each vertex. This method takes
into account all the symmetries, including the Regge sym-
metry.'*' The transformation matrices in the R-representa-
tion can also be discussed in the language of overlaps. The j-
symbol given by (5.24) corresponds to an overlap of the
form

o Ry R ;| RyRy;| R3R3, | R,R,1100),

in which, in addition, we have to indicate the linking scheme.
This overlap is a SU(3) tensor that can be transformed into
an invariant by using four vectors of the form

R 172 R R R
—_— u‘l” W.~2 U, N
(R“!Rl.Z!R,B!) it Mgt g

and can be written as the overlap
3( Ry |R2u2|R3u3 lR4u4|l00 ).

The relation between these overlaps can be written in the
standard form

K Ry |R2“2|R3“3|R4u4" 00)

= Z K Ryu|R Ry ) 5 Ryup | RyRy; )

R Ry Ry Ry,

X o RyulR3Ry;) 5( Ryuy| RyRy;)

X { R R ;| RyRy | R3R3;| R R ,,1[00). (5.26)
We thus have a unified theory for the SU(2) transfor-
mation matrices and for the C—G coeflicients, which include
both discrete and continuous bases.
This theory emerges within the framework of the group
SU(2), but eventually becomes part of the SU(3) overlap
theory.

5.3.C-G coefficients of other groups and the classical limit

Even a cursory glance at the theory of the C-G coeffi-
cients of the group SU(2) reveals certain characteristic fea-
tures of quantum structures. They include the absence of the
impenetrable boundary, which is typical of the classical situ-
ation, between system and subsystem, [the C-G coefficients
contain the symmetry not only between the subsystems
(jiym,) and (j,m,), but also between them and the system
(jm); see also Sec. 6], the possibility of describing different
partitions into subsystems in terms of group characteristics,
and the irreducibility of quantum structures to structures
described by one group. Particular systems such as atoms,
nuclei, and molecules are also characterized by the existence
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of a whole series of different groups. Even when we system-
atically construct objects, starting with a single group, the
appearance of other groups becomes inevitable (see also Ref.
132).

As already noted, the fundamentals of the theory of C—-
G coefficients in the CS basis, which were discussed above
for SU(2), continue to be valid for an arbitrary group. Par-
ticular calculations are essentially based, as in the case of
SU(2), on the decomposition of unity (M is the IR signa-
ture)

[ 1m2 X Mzl qupg(ay = 1, (5.27)

from which we have, for example, relations of the form

3 [ 1Myl My | Mw) 2ty o) = 1,

M

[ 1Ml M M) Py @y @) = 1 (5.28)

The probabilistic meaning of the C-G coefficients is the
same as for SU(2). The values of the square of the modulus
in (5.28) are set by the probability density over the measure
dy,, that the system is in the state |Mw) if the subsystems
are in states |M, #) and | M, u). For discrete series D * (M)
of the group SU(1,1), the C-G coefficient in the CS basis has
much in common with the C-G coefficient of the SU(2)
group [cf. (5.17)]:

‘-
(Mu|My||Mw) = p'(M|,M,,M) (i, w, — Tw)" ¢
- = M, — -
X(Tyw) — Uywy) "2 “ @y, - uzvl)as
where
M=2j,2a=M~—M; - My=0, M, My, M

are negative,

p'(M ;M. M)

(- M, + Q)[(~ M, + a)T(= M — 1 +a))'?
= [ T(- M)I(~ M)I(— M — 1)a! :

(5.29)

In this case, we can effectively use the formalism of inte-
gration over the measure . The basic relation is

jx"‘ Lx+1) Pdx =B (a,f—a), 0<a<f,  (5.30)
0

which is the analog of (5.16). When we construct the C-G
coeflicients and their compositions in the CS basis and in the
discrete basis, we use the same overlap technique as for
SU(2).

For the groups SU(X) and SU(N — 1,1), the C-G co-
efficients in the CS basis were obtained in Refs. 5, 11, and 15
(see also Appendix). The analogs of (5.16) and (5.30) are
given in Ref. 5. Their right-hand sides contain the multidi-
mensional B-function. The construction of the C-G coeffi-
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cients is based on the analogy between (5.4) and (5.5) which
have the following form for SU(3):

K Mv|ME) = (Euy + Epuy + Equz)™,

Uy uy u
1 1%2%3

Mu|Mv|Mw||00)=
o Mu| Mo |pw[00) (M + 12 (M +2)/2]72

Vv V3
Wl W2 W3

(5.31)

The C-G coefficients in the CS basis have a classical
limit for certain parameter values. Consider the transition to
the classical limit by considering the example of the group
SU(2) (Ref. 15). In terms of angle variables (4.39), we have
for the CS

i

231 172
o= 2 [ =)

m=—j

g\/tm  g\i—m . ,
X (cosi) (smi) exp (—imp) |jm).
(5.32)

The overlap is
; . 0152
/1619172629 (cos~2—) ,

where 0, is the angle between j, and j,, and the C~G coeffi-
cient is given by'®

€116, 1728202 1 B )|

A TRV A
=p(}l]2]3) (smT) (L]

O3\ =i\ iy ti
X (cosﬁ) re (CO

s 2!_2 )f,‘jf"f
2

2

’

where8,,, 0,,, 8,, arethe angles between j, and j,, j, and j,,
and j, and j,.
In the basis for the direct product |j,6,¢,) ® |j,8,¢, ),

(Fy= 10y + 1) + Iyl + 1) + 2yJp 0086, =)t +i+J
(5.33)

where j, is the classical angular momentum, given by

Jo =7+ i3 * 2yjpcos by, (5.3
For large values of j,, j,, the mean square deviation
AJ = (j; +j,)"?is much smaller than either of the combin-
ing angular momenta, {J*) ~/%, and we obtain the classical
formula for the addition of the angular momenta, given by
(5.34).

For largej, , j,, the coherent C-G coefficients are signif-
icantly different from zero only near values of j, 6, ¢ given by
the classical formula for the composition of angular mo-
menta. The usual C-G coefficients {j, m, |j,m,|jm) oscil-
late rapidly as j— «o (Refs. 21 and 133), i.e., they have no
classical limit, which is not unexpected because they couple
states that are highly nonclassical. In the basis of the direct
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product |j,m,)® |jm,), the variance (AJ)? = (* — m?
+J/5 —m3 +j, +4;), i.e, it is generally of the same order
as (J?) for any j, and j,, however large.

6. THEORY OF PROBABILITY AMPLITUDES
6.1. IR bases, probability distributions, and limit theorems

In quantum mechanics, the square of the modulus of
the wave function |y, | gives the probability of finding the
system in the nth state, and the function ¥, itself is referred
to as the probability amplitude. The wave function has often
been referred to as an auxiliary concept used to calculate
different physical quantities. However, similarly to the Lo-
bachevskil geometry which, on the one hand, was a general-
ization of ordinary geometry and, on the other, a mapping or
analog of it, the theory of probability amplitudes may be
looked upon as generalization of probability theory, but also
as a certain parallel theory that has analogies with ordinary
probability theory for many of its objects. This is the starting
point of Ref. 5 which presents the theory of probability am-
plitudes; its results will be extensively used in this Section.

We note that there is a limited number of publications
that are directly concerned with the theory of probability
amplitudes. We begin with Feynman’s papers in which, as
part of his development path integrals, he gave (probably for
the first time) a systematic treatment of probability ampli-
tudes as independent quantities (see Ref. 4). Maslov!3*!%
considered complex Markov chains and on this basis gave a
derivation of the discrete analog of the Feynman integral
and the Schrédinger equation. Dicke (see Ref. 19) proposed
a simple two-state scheme for the probability amplitudes.
Various aspects of the relation between probabilistic and
group-theoretic characteristics are discussed in Refs. 5, 11,
136, and 137.

The theory of probability amplitudes considers events
in which a given system is in a given (pure) state. This set of
events serves as the foundation for the systematic develop-
ment of the theory, including the derivation of the basic
equation. In principle, it is possible to take into account
more complicated events (transmissions by a slit or mea-
surement), but these are of secondary importance and the
structure of the sequence of events then becomes much more
complicated. According to Ref. 5, several qualititively new
points arise in the theory of probability amplitudes, which
distinguish it from the usual theory of probability. They are
as follows.

1. Whereas, in probability theory, events form a o-alge-
bra,'*® in the theory of probability amplitudes they form a
Hilbert space. A set of elementary events is then associated
with the basis elements of the Hilbert space. The conditions
of completeness of the set of elementary events |n) or |y) are
written in the form

Yinxnl =T, Ilyxyldy(y)=f. (6.1)

2. In probability theory, each elementary event 4, has
associated with it a real nonnegative number p, on the inter-
val [0,1] with the normalization condition Zp, = 1; in the
theory of probability amplitudes, on the other hand, the lat-
teris a hypercomplex number ¢, = {r|¢) (real, complex, or
quaternion), subject to the normalization condition
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Y, F,=1. (6.2)
n

Once {¢, } is given, this implies that |¢) is also given.
For a continuous set of elementary states, each state can be
assigned a function ¥(y) = (y|¢¥), i.e., the probability am-
plitude density over the measure du (y).

3. In the usual probability theory, we can choose p, so
that any random quantity will be precisely defined; for ex-
ample, p, = | means that the variance is

D)= Y x%p,(1 -p,)=0.

In the theory of probability amplitudes, we have an uncer-
tainty principle: it is impossible to have an event, i.e., it is
impossible to choose ¥,, for which all random quantities
(observables) will be precisely determined.

4. In probability theory, the transition matrices (opera-
tors) that specify the complete probability picture of possi-
ble changes between time ¢ and ¢ ' form a subgroup, whereas
in the theory of probability amplitudes they form a group.
This means that it is possible to use the fully developed for-
malism of group theory to describe the extensive set of differ-
ent structures that arise.

5. The usual theory of Markov processes employs the
formalism based on the Kolmogorov-Chapman equation
(the generalized Markov equation for the stochastic evolu-
tion operator), whereas the theory of probability amplitudes
relies on the equation for the unitary evolution operator.
Under certain additional conditions (no discontinuities),
the transition probabilities satisfy the Fokker-Planck-Kol-
mogorov equations, whereas the transition amplitudes satis-
fy the nonrelativistic Schrodinger equation.

In a systematic presentation of the theory of probability
amplitudes, it is useful to consider the parallel with the pow-
erful formalism of the usual probability theory—above all
the specific distribution functions—and also the limit theo-
rems. This reveals a qualitatively new aspect, namely, the
resulting distributions have group characteristics. In addi-
tion to the distributions and limit theorems of the theory of
probability amplitudes, we present below the probabilistic
treatment of C-G coefficients and their compositions, and
also the fundamentals of the theory of Markov processes for
the probability amplitudes. This enables us to develop the
general principles of quantum theory in a consistent way.

We now turn to the consideration of specific distribu-
tions.

If the complex amplitudes #, satisfying (6.2) form the
basis for the fundamental irreducible representation
D(10...0) of the group SU(N), the complex polynomial dis-
tributions

172
n M! n n
vy = (m) Vi M= Don,
1=1

(6.3)

form the basis for the irreducible representation D(M 0...0)
for fixed M. If we multiply it by the complex conjugate that
transforms under the irreducible representation D(0...0M),
we obtain the polynomial distribution for the usual probabil-
ities p, = [¢,|*, Zp, = 1
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nlony! P170N

(6.4)
Thus, the symmetric basis (6.3) for the irreducible represen-
tation D(M 0...0) of the groups SU(N) is a polynomial dis-
tribution for the complex amplitudes from the standpoint of
probability theory.

The negative binomial distribution

(—n+n -1 _
Illn - n.n
9/1 z (_ n— 1)!"1" P g
_ F(n + l) l ’lz q n
T T, + Tyn? (p) (_;) (6.5)
for integral n <0 gives the probability that, before success
with the number |n| is achieved, there are », failures (proba-

bility of success p; probability of failure ¢ =1 — p). For
fixed n = n, + n,, we have

o0

1 g n
nn, _ (L _4) _
zylllz—(p p) =1

n,=0

The negative binomial distribution for complex amplitudes
has the form

172
(- ’12) -
vin= (i) it
- 172
_AT(=np (= D" n o
= W ulluZZ, (6.6)
2

P = (W wp = =iy, uy =y,

2 2 2
p=ly 1" = 11Vuyl% g=|y,)° = |u1/u2|2.

Since p + ¢ = 1, we have — u, %4, + u,4, = 1 which is an
invariant of SU(1,1); 4, and u, form a basis for the funda-
mental nonunitary irreducible representation D(1/2). Un-
der transformations from SU(1,1), the amplitudes ¥, and
1, transform under a bilinear transformation, whereas ¥,'"
and W,'™ with fixed » form a basis for unitary irreducible
representations in the positive and negative series, D * (j)
and D ~ (j), respectively. In these expressions, j = n/2,
m=(n, —n,)/2,andm= —j, —j+ 1,...for D * (j) and
m=j, j—1, j=2,. for D~ (j). According to (6.5), for
fixed n = n, + n,, we have

2
=1,

-]
z l\IJ;lll"z
nl=0

The Poisson distribution for the complex amplitudes is

k
u )22

(k!)l/z € (6.7)

\pk=
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If we multiply this by ¥, we obtain the usual Poisson distri-
bution with the parameter |u|%

k -
&= ]‘I’kl2=J—“,;|!2—e‘ lul” Y w2=1

n=0

In this expression, the ¥, form a basis for the unitary infi-
nite-dimensional irreducible representation of the Heisen-
berg group. By analogy with the usual probabilities, the
Poisson distribution for the probability amplitudes can be
obtained from the binomial distribution for the complex am-
plitudes. Thus, for the probability p, we have for n— oo,
fixed @ = np, and finite k <n,

- . ! - -
limg’i’” k= tim H(n—n:k—),'Pk(l —p)tTk=deynm,

n-» o n-» o

and we find that for the amplitudes , = |¢, |¢*** with fixed
|u]* = |¢, |’n and large n <k

k
kn—k _ n! & n—k &
P T kl(n = k)! Yi¥2 ViT ¢ b7z e,

u= lv;l |n1/2 ei(‘P,_‘Pz).

The normal distribution that is the limiting case of
many discrete distributions plays a particular part among
the distributions of probability theory. The density of the
normal distribution

1 e~ pz(x,xo)/’.’az

6.8
Vit o (68)

decreases monotonically and rapidly with increasing dis-
tance p from the position x, of the maximum. The reduction
in the square of the modulus of the probability density in
proportion to exp( — p?) isindeed a general property of ana- -
logs of the normal distribution of probability amplitudes. In
the theory of representations of groups, they correspond to
coherent states. The CS overlap functions {u|z) are the least
“smeared out” in homogeneous space, and we shall write
them in the form

[ u)z)|? = exp(—p*(u, 2)), (6.9

where p(u,z) is a symmetric invariant under group transfor-
mations;'® p(u,z)>0, p(u,z) = p(z,u) and p(u,z) =0 only
for u = z (the symmetric differs from the metric, i.e., dis-
tance, by the fact that the triangle rule does not necessarily
apply to it).

The CS overlap function {u|z) is the analog of the nor-
mal distribution of the theory of probability amplitudes. For
the Heisenberg group, the square of the CS overlap function
is given by

[{ulz)|? = explz - u)® = expl~(x — %)% = (v — y,)?],
(6.10)

and corresponds to the usual two-dimensional normal distri-
bution with

u=x+1iy, z=xl+iyl,

[ Kzt 2a?usm = 1.
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For squeezed states, (4.29) shows that the square of the
overlap function for the generalized CS corresponds to the
two-dimensional normal distribution with different variance
along different directions in homogeneous space.

The square of the CS overlap integral for SU(2) is, ac-
cording to (4.43),

18,0, 1Pyp5)1% = exp(—p%(6,, 9,3 65, 93)) = [cos(6, /) 17,

where 6, is the angle between the vectors determined by the
states |j@,@,) and |j6,@,). For large j, the square of the
modulus of the overlap integral [with allowance for dy; in
(4.39) ] approaches the normal distribution. Typically, the
above discrete and continuous amplitude distributions are
the IR bases for Lie groups.
As in the usual probability theory, the law of large
numbers and the limit theorems play an important part in
the theory of probability amplitudes. We shall now consider
an analog of the law of large numbers for a set of observables
(random quantities), i.e., for the state of the system as a
whole. The coherent states parametrized by points in phase
space become orthogonal to one another in the classical lim-
it. This is clear from the CS overlap integrals (4.22), (4.36),
and (4.43). In the limit of large quantum numbers (j — « or
|z] — o in the above examples), the mean square deviations
of random quantities in coherent states becomes negligible in
comparison with their mathematical expectations.
The law of large numbers is also valid for distributions
describing the characteristics of a system when subsystems
are combined, i.e., for the C-G coefficients. The usual C-G
coefficients {j, m, |j,m,||jm) of the group SU(2) oscillate
rapidly for j— o« because they couple states that are very
different from classical states. For large j, the C-G coeffi-
cients in the CS basis are significantly nonzero only near the
values ofj, 8, @ given by the classical formula for the addition
of angular momenta, which is also obtained in the limit as j, ,
Jja — . The transition to the classical limit, discussed in
Secs. 4 and 5, now has a clear probabilistic interpretation.
The distributions associated with coherent states have
their own limit theorems. In previous papers'>!'® we exam-
ined coherent states | Mz, ...zy_ , ) that were the symmetric
irreducible representations of SU(N 4+ 1) and SU(WN,1),
and used the transformation a' = z,/z, to perform a transi-
tion to the N-dimensional projective space Py (C) or the
open sphere D, (C), respectively; we showed that, for large
M (curvature of space ~ 1/M), the CS overlap integral was
nonzero only for small Aa’, and could be written in the form
of the multidimensional normal distribution

(Ma|Ma') = exp(—p?) = exp(—gikAaiA&k), Ad =a' ~a.
(6.11)

The expressions given by (6.11) have a simple geomet-
ric interpretation: if the distribution is nonzero only in a
small neighborhood of a point a (and space can be looked
upon as locally flat), then the corresponding CS become the
CS of flat phase space (CS belonging to the Heisenberg
group).

The first correspondence principle follows from the law
of large numbers for the CS, which corresponds to the fact
that, apart from a normalizing factor, in the measure du,
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(Ma|MB )tendstoS(a — B) as |M |- « . Usingtheformula
for the *-multiplication of symbols (4.66), we obtain the
following expression for the mathematical expectation .4
up to terms of order 1/M:

AAB)= AIBA]= #IAIAIB], (6.12)
where A and B are random quantities that correspond to the
group generators. Since the overlap integrals can be written
in the form of (6.11), i.e., if we use the limit theorems for the
CS, we find that, for large | M |, the commutator transforms
to a Poisson bracket (this is the second correspondence prin-
ciple):'®

MIAB - BA] = g* 0A(a, @) 0B(a, @) _ 94(2, 3) aA(a,@]

aa* aa! aat Foread
(6.13)
where  [|g%||=|gull ~'s A(a@) =4 (4), B(ad)

= 4 (B) are functions on homogeneous space.

Thus, in quantum mechanics, the first and second cor-
respondence principles are associated with the law of large
numbers and the above limit theorems. It is clear that the
development of a general theory of representations for prob-
ability amplitudes is a very pressing problem.

6.2. C-G coefficients as analogs of the hypergeometric
distribution

In group theory, the C-G coefficients relate different
bases and define the redecomposition of the probability dis-
tributions corresponding to the bases. The hypergeometric
distribution of the usual probability theory

Cchh 2y

1 1 1t 2 2 1 2
nng| _ chmctty  niin®lnglng!
tnitn21,11
n!ny!ni!iny!nj!

AR R S R ;
ni—ni+ni,n‘=n',+n’2,n=2n;‘ (6.14)

ik

specifies the redecomposition of binomial distributions

(6.15)

and is the analog of the SU(2) coefficient of the theory of
complex amplitudes. Analysis of the connection with the
hypergeometric distribution and its generalizations is part of
the problem of the relationship between classical and quan-
tum properties, and enables us to understand the probabilis-
tic meaning of the symmetries of the C-G coefficients.

The hypergeometric distribution

1 1
n n,
2 .2
ny n,

is defined as the probability that if we make a selection from
n' = n! + n} objects in a total set of

n= an
ik
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objects containing n, = n} + n} objects with properties 4,
and n, = n} + n3 objects with properties 4, the number of
objects with property 4 will be n}. The numerical value of
the hypergeometric distribution is unaffected if we inter-
change columns and rows or if we perform the operation of
transposition.

The distribution given by (6.14) has a simple general-
ization to the case where the total number of properties is 7
and the number of sets of objects into which the original set
‘can be partitioned is K. The probability of finding ¥ objects
in the k th set with properties i(i= 1,1, k= 1,K ) is given
by

' ky
) nin;} i ni.l;ln : '
k=1 sk ).

SO (6.16)
n k
n‘f...r:ﬂ nt ’ mi!

The numerical value of the multidimensional hypergeome-
tric distribution is unaffected by the interchange of rows and
columns and by the operation of transposition. The latter
means that the property of belonging to a given sample is no
different, from the probabilistic standpoint, from the prop-
erties of the objects themselves. The normalization of (6.16)
takes the form

Yint=1,0<{nf =1 (6.17)

ny
where the sum is evaluated for fixed sums of rows and co-
lumns of the matrix |7t ||, n, = 2 n¥, n* = 2.k

We note the transformation of the 7 X K hypergeome-
tric distribution to the 7 X (K — 1) distribution

(6.18)

i i i i { i
z {n)...ng_, =o', a'} = {n\..nk_,},
i
[24

which plays an important role in the theory of hypergeome-

tric functions of many variables (see Sec. 7). This can be .

proved for nonintegral n{, as well. The sum is evaluated for
fixed ¢ = Za;. From the probabilistic point of view, (6.18)
corresponds to the composition of the elements of the K th
and the (K — 1)-th sets into one.

In the same way that the hypergeometric distribution
arose from the redecomposition of the binomial distribu-
tions, the C~G coeflicients define the reconnection of the IR
bases, i.e., complex binomial distributions. The new point is
the appearance of the parameter @ = j;, + j, —j which cor-
responds to the convolution of the basis functions D(j, ) and
D(j,) into the invariant (¢, ¢¥; — ¥} ¥,)* = 1.>"*7 Symme-
trization (a@ = 0) corresponds to the usual hypergeometric
distribution of degree 1/2.

In contrast to the sampling problem (the problem of
partition into subsystems), the problem of finding the char-
acteristics of a system under the composition of subsystems
has a trivial solution in probability theory: the properties of
the system as a whole are uniquely determined by the prop-
erties of the subsystems of which it is composed. In the theo-
ry of probability amplitudes, the problems of sampling and
of composition of subsystems (‘“‘composition of angular mo-
menta”) are equivalent and their solution is given by the
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corresponding C—G coefficients. In the simplest case of two
properties A and A4, these are the C-G coefficients of the
group SU(2). We shall write them in the form of the Regge
symbol

22-a2l-a a
1 1

ny n, 2,-a
2 2 .
ny ny 2j—a

1 —j|+jz—a—m

(6.19)
2+ 1)17?

= {jym, |jm,|ljm ) 3=

where j=j +j, —2a, m=m, +m,, n\ +n>=2,
nl+nt=2%n" —ni=2m,

There is a profound analogy between the symmetries of
the C-G coefficients and of the hypergeometric distribution.
Permutation of the representations D(j, ) and D(j, ) in prod-
ucts corresponds to the permutation of two particular parti-
tions of the original set of objects. A change in the sign of the
projections of the angular momenta corresponds to the per-
mutation of the numeration of the internal properties of a
set. Thus, transposition of the Regge symbol corresponds to
the transposition of the matrix of the hypergeometric distri-
bution (this symmetry is due to the fact that the partition of
a set of objects in accordance with their internal properties is
no different from the probabilistic point of view than parti-
tion by sampling). The symmetry of the C-G coeflicients
that corresponds to the permutation of the resulting repre-
sentation with one of the factors (i.e., symmetry due to the
equivalence of the sampling and partition problems) has no
analog. When this symmetry is added to the symmetries of
the hypergeometric distribution by the successive applica-
tion of transposition and permutation, we obtain the 72
Regge symmetries of the C-G coeflicients of the group
SU(2). It is then clear from (6.19) that the matrix of the
hypergeometric distribution can itself be looked upon as part
of a Regge symbol.

The negative hypergeometric distribution is defined as
a recoupling of negative binomial distributions. The corre-
sponding formula is identical with (6.15) except that »} are
negative, |n5| > n}{, and n} are positive integers. The nega-
tive hypergeometric distribution can be defined as a condi-
tional probability. In particular, if we continue to sample
from |n, | elements until the number of elements with prop-
erty 4 reaches a given number |n'|, the probability that the
number of elements with property A4 in a sample will be n!,
will be given by

"i n; _ (—nl + ni - 1)!(—n2 + nf = DY ~n - )in!
2,2 (—nl - 1)!ni!(-—n2 - 1)!nf!(-—n +n— 1)

ny ny
n{ —n'=1] _p -1
nf —n?—1|-n— U

The C-G coefficients {j;* m, |j;" m, ||j * m) of the group
SU(1,1) define the recoupling of the negative binomial dis-
tribution for complex amplitudes, i.e., they are the analogs of

(6.20)
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the negative hypergeometric distribution. The C-G coeffi-
cients for the discrete series of SU(1,1) can be expressed in
terms of the C~G coefficients of SU(2) in accordance with
(2.36), and can be written in the form of the Regge symbol®

-n—a-2 n—a a
(Jimy llmylljm ) = n} -nl—a-1 ~nZ -1
nf ~nt—a-1 —n;—l

X (=n~1+2a)!2,

n =

, = ) (6.21)

’J'=j1+l'z-a-

6.3. Markov processes and the Schrddinger equation

The theory of Markov processes provides the founda-
tion for the description of both stochastic and quantum-me-
chanical process. A Markov process for the probability am-
plitudes is defined by analogy with ordinary probabilities as
aprocess without aftereffect: the state of a system at a partic-
ular instant of time depends only on which state it was in at
an immediately preceeding time ¢, but is independent of its
states at previous times 7 < £.

We shall follow Ref. 5 and consider stochastic and
quantum Markov processes in parallel. In the case of a finite
or denumberable number of states

(6.22)
(6.23)

P(t) = Pi(t, top(tg), PL(t, 1) = 4L,
wi(t) = uldt, o lte), (e, 1 =&k,

where pj (t,t,) [ u} (£,t,) ] are the conditional probabilities
(amplitudes) for a transition from state / to state X, ¢> f,.
From the normalization conditions 3p;, =1, p;>0 and
Z|¢;|> = 1 we then have

2r=1p2 2““1
p

i.e., ||pi || is a stochastic matrix (the sum of elements in a row
is equal to unity) and U= ||u}| is a unitary matrix with
U * = U ~". The product of stochastic matrices is again a
stochastic matrix and a product of unitary matrices is a uni-
tary matrix. However, while the inverse matrix
U~ '(4ty) = U ¥ (1,¢,) always exists, this cannot be said
about the inverse matrix ||p|| ~'. The matrices ||uj || form
the groups U(N,K) (K =R, C, H for real, complex, and
quaternion amplitudes, respectively) and the stochastic ma-
trices ||p% || form a semigroup. The amplitudes ¥, form the
basis for the fundamental irreducible representation
D(10...0) of the group U(N,K), and the matrices ||u} || are
the matrices of the finite transformations of these irreducible
representations.

Since the inverse operator for the amplitudes exists, it
follows that if we know the evolution operator and the state
¥(¢) of the system at the present time, we can reconstruct the
past, i.e., the Markov process for the amplitudes is symmet-
ricbetween the past and the future. For stochastic processes,
we can determine the future if know the transformation op-
erator and the state of the system, but we cannot reconstruct
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the past. This becomes particularly clear if we consider the
example of the transformation matrix ||p; ||, p{ = 1 with the
remaining p, = 0. After one step, we obtainp, =1, p, =0
for is£ 1, whatever the preceeding state, i.e., all information
about the past is lost.

In the general case, (6.22) and (6.23) can be written in
the operator form

p(t) = P(t, 19)p(ty), (6.24)
'P(t) = U(t,to)w(to)- (625)

From the normalization conditions for p and ¥ it fol-
lows that P(t t,) is a stochastic operator and U(t t)is a
unitary operator. Since, for Markov processes, the future is
independent of the past for a known present, the transition
operators must satisfy the equations

P(t, tg) = P(t, )P(x, tg), (6.26)
U(t, to) = U(t, T)U(T, to), (6.27)

These generalizations of the Markov equation have been de-
signated in different ways in different cases (discrete and
continuous processes; probability and amplitude chains):
they are referred to as the Markov, Smoluchowski, and Kol-
mogorov-Chapman equations, the equations for probability
amplitudes, and so on.

Expanding P(t + At,t) and U (t+ At Lt) intoa serles in
At, and retaining only the linear terms AAt and HAt we

obtain in the limit as Az -0
%P(t, o) = AP, 1), (6.28)
-;—tU(t, to) = HOU(t, 1), B = —H. (6.29)

The equations for p(¢) and ¥(¢) take the analogous form

220 = Rp(o), (6.30)
%«p(r) = ﬁw(t). (6.31)

We shall now consider ﬁ( t,t,) and /(\J( 1,t, ) that are indepen-
dent of p(¢,) and ¢(¢,). Nonlinear complex chains with
nonadditive amplitudes are discussed in Ref. 135. For a fi-
nite and denumerable number of states, (6.30) and (6.31)
can be written in matrix form (i.e., the right-hand side is a
sum):

a%Pk =2p A= lIAL, Zx;; =0, 20 (i=4k),

a—;p,, K, H= AL, H+ -H.

In the case of continuous processes, (6.26)—(6.31) can be
written in integral form. For a one-dimensional continuous
Markov process, we have

wix, ) = Ju(x,tlx',to)w(x',to)dx', (6.32)

and

u(x,% x,t9) = Ju(x,'t|x',t)u(x',t|xo,t0)dx’, (6.33)

which is analogous to the equations of the theory of probabil-
ity, subject to the replacement ¥(x,t)—p(x,t),
u(x,7|x0,t) >p(x,7|x5,t) where u(x,7|x,,t) is the condi-
tional density (transition amplitude density).

Smorodinskifetal,. 1038




We shall use (6.32) and (6. 33) to find the explicit form
of A and H. We shall put 7 =t + Atin (6.33) and will take
the transition densities p(x|x’) and u(x|x’) as the Fourier
integrals of the conditional characteristic function

o0

p(@lx) = [ X p(x| xydx,

~ o _ {BlUIX")

u(plx)= !Zﬁlxl)
_ (BLaX ULy s [ im0
_-J; i) dx —Le u(x|x'ydx.

(6.34)

The last formula shows that the conditional character-
istic function u(p)x") is none other but the pg (or px) symbol
of the operator U. Expanding the characteristic function
into a Taylor series in powers of €2, or the momentum p, and
allowing Az to tend to 0, we obtain the following expressions
for the operators A (Refs. 139 and 140) and H (Ref. 5):

o0

a’llﬂaxt. n_ ?{a/;(x, 1, !’-\{ = ZL—;IF)::—:'A,,(X, f,  (6.35)
n=0 ) x
ap(axr’ =Ap(x. 9, A Z Ky (x 8, (6.36)

. 1 nn ’
A= AI;TOEJ‘(x — x"Y'u(x,t + At|x',f)dx, n=1,
Ag = lim LJ‘ u(x,t + At)x',0) — u(x,tix',0) }dx, (6.37)
At-»0

K,= llm —J(x xN'p(x,t + At|x',t)dx. (6.38)

When all the coefficients with # > 2 are zero, we obtain the
Fokker-Planck and Schrédinger equations

AD = Ly - L Ly 1) (6.39)
= 3xa(nt) =37 3000,

where b(x,t) = K, (x,t)>0 is the diffusion coefficient,

a(x,t) = K, (x,t) is the drift coefficient,

, 2
go_1i 9" 3
H{ P~ (6.40)

2m 2 ax (e + Agx.0),

where m = i/A, is the mass of a particle, and the field poten-
tials are described by A4, (x,¢) and 4, (x,t). For any contin-
uous process, we can show that either only the first two coef-
ficients K, are nonzero or there is an infinite number of such
coefficients (in particular, all the even coefficients'*® ). We
thus have an alternative: either the equation is of order no
higher than 2 (these are the so-called diffusion processes) or
the order is infinite (a few examples of such processes can be
found in Refs. 140 and 141). In the theory of probability
amplitudes, the analogous proposition has not been proved,
but is likely to be valid.

Consideration of processes described by second-order
equations is equivalent to the consideration of processes sat-
isfying the following conditions for the probabilities**?> and
amplitudes,® respectively:
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[F . - e

lim L I p(y, tlx, t — Afydy =0, (6.41)
A0 BT 4 I

|ly—x| =48
lim Ai [ uttlx, 1= angy =o. (6.42)
s B

[y-=x|=26

These conditions ensure that large shifts (jumps) have low
probability. We shall refer to such processes as processes
with small increments or processes without jumps. The con-
dition for small increments leads to diffusion processes or
nonrelativistic quantum mechanics. We note, in passing,
that, in mathematical literature, (6.41) is also referred to as
the condition for enhanced continuity'** or the Lindeberg
condition'*? because of the similarity with the condition for
the validity of the central limit theorem.

Equation (6.35) refers to processes with jumps, i.e.,
processes involving transitions between different stationary
states (emission and absorption). The conditions that must
be satisfied by the coefficients 4, can be established on the
basis of (6.37). A general analysis of (6.35) is quite compli-
cated. It is interesting to examine the possibility of finding its
exact solutions when H is written in terms of the operators of
deformed (including quantum) algebras, e.g., shift opera-
tors (3.45).

For finite or denumerable states, the analog of the con-
dition for small increments

| i
Altl-lflozi 2 Piltlt = A) =0,
k,|i—k|>1 (6.43)
1 - .
lim = L w(t|t— Aty =0
Ar= 07 ik > 1

signifies that a transition within a small At is possible only to
neighboring states, i.e., the problem of a one-dimensional
random walk.

It was noted in Ref. 142 that ‘“‘the theory of subgroups
leads to a unified theory of Markov processes, which cannot
be attained by other methods.” The transition function
(transition probability) of a Markov process generates a
subgroup of operators. If we know the infinitesimal operator
of the subgroup (or, what amounts to the same thing, of the
process), we can find the significant characteristics of the
process; moreover, questions relating to the classification of
Markov processes reduce to the description of the corre-
sponding infinitesimal operators. 443

The classification of Markov processes for probability
amplitudes is related to the classification of groups or of the
corresponding Lie algebras. In the case of processes with
denumerable (finite) number of states, the transition ampli-
tudes for Ar—0 are

i_ si i i _ 7/
uj_aj+ hAt, h; hi,

or, in matrix form, U(t+ At,t) = E+4+ HAt, H" = — H,
H = ||h }|. The classification of processes thus reduces to the
classification of the matrix unitary irreducible representa-
tions of Lie groups.

Let us now consider one-dimensional processes for the
complex amplitudes that satisfy (6.43). They correspond to
multilevel systems with transitions between neighboring lev-
els: the infinitesimal operator for the process (the Hamilto-
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nian) contains only the transition amplitudes k) with
l{ — k|<1, i.e., the matrix ||k || is a three-diagonal matrix.
The algebra of infinitesimal operators (Lie algebra)  consists
of three operators, namely, the raising operator £, , the
lowering operator E_ , and the level number (particle num-
ber) operator H that corresponds to a change in the phase of
the state satifying (2.1). A random walk corresponds to a
transformation of a finite-dimensional irreducible represen-
tation D(j) of the group SU(2) on a segment, D * () of
SU(1,1) or D(w) of W(1) on a half-line, and the irreducible
representation of the principal series of SU(1,1) or D(p) of
the group M(2) on a line (see Ref. 5 for further details).

The transition densities for discrete processes satisfying
(6.43) are shown graphically in Fig. 6. If we consider a sche-
matic limiting transition to a continuous process, we find
that the diffusion coefficient becomes K,~A +pu

— (A — pu)?, the shift coefficient becomes K| ~4 — u (Ref.
140), the mass becomes inversely proportional to the ampli-
tude for the transition to the neighboring state, m ~ 1/Im «,
and the potential becomes 4, ~dp /9t (Ref. §5).

If the process is not a process with small increments
then, in addition to the /t\ransi/t\ion operators £, we have to
consider the operators E, , , E; , , and soon, i.e., instead of
the Lie algebras we have to consider the Kac-Moody alge-
bras or deformed algebras.

6.4. Postulates of quantum theory

The theory of probability amplitudes can be used as a
basis for formulating the postulates of quantum theory.’
This formulation is closely related to that proposed by von
Neumann (see Refs. 1 and 121). It contains the nonrelativis-
tic quantum mechanics as a special case and consists of the
following four proposition.

I. A change in the state of a quantum system is a Mar-
kov process.

II. The states of a quantum system are in one-to-one
correspondence with sets of nonzero vectors in Hilbert space
that differ only by a factor.

II1. Normalized state vectors |¢) are in mutually one-
to-one correspondence with probability amplitudes ¢. If the
decomposition of unity f|y){(y|du(y) =1 exists, then
v = OlY).

IV. Observables are in mutually one-to-one correspon-
dence with random quantities with real mathematical expec-
tation.

We can also specify additional conditions that are satis-
fied for a wide class of processes, but are not essential. Let us
consider the following two propositions.

1. The transition amplitude is independent of ¥, in
which case evolution is described by linear equations.

2. The transition amplitude is independent of ¢ and the

y A -&y -,
N TN NN
Y N o
1-p-A a, iy a,
a b

FIG. 6. Transition probabilities and amplitudes in the random walk prob-
lem.
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process of variation of state is a process with small incre-
ments for complex amplitudes, Evolution is then described
by the nonrelativistic Schrodinger equation.

In the general case, postulates I-III show that the evo-
lution of a state can be described in two possible languages,
namely, the language of operators in abstract Hilbert space
or the language of transition amplitudes:

Ultyt)l9(4) ) = 9ty ), Uty =1,

Iu(x,tzly,tl)w(y,t,)dﬂ(y) =9(x,0y), u(x,t|y0) =5(x ~y).
(6.44)

For the sake of brevity, we shall use y to represent y = {y,}.
In the case of flat space

du(y) = nd}’,'-

Postulate I leads to the equation for the evolution operator
or the generalized Markov equation for the amplitudes:

D(ty.t,) = Ult3, ) Ultpoty),

Juzt5 1y, 0utnt 1 0,1)d00) = u(z g1 5.1y (6.45)

Since ¥(x,t) is the probability amplitude, the norm is
JU(x, t)t//(x t)d,u(x), i.e., (1//(t) |l//(t)) should remain con-
stant in time, so that U+=0- Lie., Uisa unitary opera-
tor.

Next, using (6.44) and (6.45), and the expansions of
U(t t — At) and u(p,t |x,t — At) for small At, we can pro-
ceed to the Schrodinger equation (6.31) or the path integral.

Postulate IV enables us to define the classical limit as
the case where the mathematical expectations of random
quantities are much greater than their variances. The law of
large numbers and the limit theorems of the theory of proba-
bility amplitudes, which are related to the first and second
correspondence principles, specify the conditions for the
transition to the classical limit. In the language of the theory
of operators in Hilbert space, postulate IV demands that
there should be a correspondence between linear self-adjoint
operators and observables.

According to postulates II and III, a state has associat-
ed with it a set of amplitudes that differ only by a phase
factor; in the case of complex amplitudes, this factor is
exp(ig) whereas in the case of quaternion amplitudes it is
exp(ip, +j@, + k@s). By choosing the amplitude types,
we are essentially defining a gauge group. For complex am-
plitudes, this gauge group is U(1) of the electromagnetic
interaction, whereas for quaternion amplitudes (corre-
sponding to spin 1/2 particles) this group is
U(L,H) =8SU(2).

The requirement that the normalization of ¥ must be
preserved leads to the classification of states under the uni-
tary irreducible representations of the symmetry groups.
For noncompact groups, the unitary irreducible representa-
tions are infinite-dimensional. We know that spin S particles
correspond, on the one hand, to unitary infinite-dimensional
irreducible representations D(SM) of the Lorentz
group'*®'4” whereas, on the other hand, they correspond to
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nonunitary finite-dimensional irreducible representations
(under which 3 transforms in relativistic wave equations),
i.e., there are two different descriptions. It may well be that
the relativistic equations for nonunitary irreducible repre-
sentations are the CS evolution equations associated with
the Lorentz group SO(3,1) ~SL(2,C) and the Poincaré
group M(3,1) [by analogy with the first-order equation for
the spinor {z,,2,}, |z,|>—|z,|*=1 of SU(1,1), which
arises as the equation for the CS evolution of discrete unitary
series of infinite-dimensional irreducible representations of
SU(1,1) (see Sec. 4.3)]. It follows that the development of
the theory of coherent states and the operator symbols for
the groups SL(2,C) and M(3,1) is a pressing problem.

In relativistic theory, one way of retaining the probabi-
listic intepretation is to introduce the proper time 7 and to
consider the first-order equations in d /dr; however, in con-
trast to the Dirac equation with proper time'*® (which, by
the way, is very convenient in the transition to the classical
limit'>*°' ), ¥ must transform under infinite-dimensional
(and not finite-dimensional) unitary irreducible representa-
tions of the group M(3,1).

The basic equation of the theory is (6.45) which ex-
presses the Markov property of the process. When specific
conditions are imposed on the transition amplitudes or the
measure du, the result is a variety of differential equations.
The equations of quantum mechanics in curved space are
obtained by considering processes with small increments on
real and complex manifolds with metric tensor g, and g,
respectively:

du(x) = (det gik)l/z H Adx", ds? = gl.kdxidxk,

n

du(z) = det gz | | dz"n a7, ds? = ggaridzt.

n

If we do not demand that the transition amplitudes
must be independent of ¢, i.e., the transition amplitude is
regarded as a function of ¥, u (x,t | x,,t,,¥[x,% ) ], then for
processes with small increments we obtain the equations of
nonlinear quantum mechanics such as the nonlinear Schro-
dinger equation

The derivation of the equations is conveniently based on
the formalism of conditional characteristic functions, i.e.,
the pg; gp; and Weyl operator symbols.

7.QUANTUM THEORY, GROUPS, AND SPECIAL FUNCTIONS
7.1.Groups and special functions

Special functions usually arise in the course of the solu-
tion of problems in quantum mechanics. In one sense, they
constitute the foundation for the entire formalism. It is
therefore important to establish any correspondence with
group and probability interpretations of quantum mechan-
ics, i.e., a kind of translation from the language of special
functions to the group and probability languages.

From the group point of view, the theory of special
functions is a mixture of problems associated with respresen-

tations, C-G coeflicients, Lie algebras, coherent states, and.
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the finite-difference calculus. However, for a long time, the
theory of special functions developed independently of
group methods and a huge variety of special formu-
las®>!!"1%® has emerged without which modern physics can-
not even be imagined. The connection between special func-
tions and group representations was discovered by Cartan.
A systematic presentation of the theory of special functions
from the group-theoretic point of view was first given by
Vilenkin’ (see also Refs. 150 and 151). There are three
qualitative points that can be made about this problem.

First, special functions appear in the theory as the ele-
ments ¢, (g) of finite transformation matrices (/ is the IR
signature). Their discrete indices correspond to m and n,
their continuous variables correspond to the parameters g of
the group, e.g., the matrix elements of SU(2) and SU(1,1)
are expressed in terms of Legendre polynomials and func-
tions P, whereas those of M(2) are expressed in terms of
the Bessel functions J,, _, (Ref. 7). The composition theo-
rems for special functions are a direct consequence of the
relation

T(218) = T[g)T(g,). (7.1)

The recurrence relations for ¢/ (g) in which the indices
differ by unity constitute the infinitesimal variant of the
composition theorem. The formulas take the form

ad "
At = C\(l’m‘n)tlm,n+l' A t1m,n+1 = C2(l*ma")t1mna

where 2, 2 " are first-order differential operators (group
generators). They can be used to establish the seconfq-g\rder
differential equations for the special functions: 4'4t!
=¢, (Lmn + 1) X ¢, (Lm,n)t! . This approach was em-
ployed in Ref. 7.

Second, special functions appear as the overlaps of dif-
ferent bases of a given irreducible representation of a group.
For example, the Hermite polynomials can be written in the
form of the overlap (n|x) of the group W(1):

(nlx)= n'1/4(2"n!)_1/2Hn(x) exp(—x2/2).

If we use the decomposition of unity, we obtain the generat-
ing function for the Hermite polynomials:

(z|xy= Y (zlnXn|x),

expl(=22/2) + 2VIx] = 3 (2/VI)"H,(x) /n.

n

(7.2)

Similary, if weuse (4.21) and (4.22), we obtain the integral
representation and the orthogonality relation

(nlx) = £ finlzyzla,

n/2

H(x) = zn J'exp[—z2—2 +vVIzx - |z|2]'z'"d2z,

(nln')=J.(n|x)(x|n’)dx, S

= J.Hn(x)Hm(x) exp(—x?)dx. (7.3)

Smorodinski¥ et a/. 1041

[ h



The Bessel functions J,, can be written as the overlap
(rg |pm) of the bases of the irreducible representations for
the group M(2). From (4.46)-(4.49) we obtain the gener-
ating function and the integral representation for J,,,:

(relpa) =Y (rplpm X pm|pa),

m
oo

expliprcos(p — a)1 = 3, explim(p — @) W™, (pr),

2%
(rplpm) = | (rplpa X pa|pm Yda,
0

2

i"J . (pr) = % jexp[z‘pr cos(p — @) + ima Mda. (7.4)

0

Relations of the form (x|@|n) =n"*(x|n—1),
(rg |® . |[pm) = (rp |p,m + 1) readily yield recurrence re-
lations and second-order differential equations. The multi-
plication (composition) formulas for the special functions
define the decomposition of the product of special functions
into a sum of functions of the same type (correspondingly,
the decomposition of special functions into a sum of prod-
ucts). Within the framework of this approach, these opera-
tions correspond to the redecomposition of the bases of the
direct product of irreducible representations and the re-
duced basis, performed with the help of the C—G coefficients
[see (2.30), (2.29), and (2.41) for Bessel functions, spheri-
cal functions, and Hermite polynomials, respectively ]. This
approach enables us to exploit standard devices, and to elu-
cidate the group significance of many of the relationships.

Thirdly, special functions appear as the basis recou-
pling coefficients. If we consider discrete bases, then all the
parameters of these functions are also discrete, and studies in
this area are closely related to finite-difference calculations
on,nets (see Sec. 3). The analysis of different finite-differ-
ence analogs of special functions is based on a generalization
of the standard approach for a continuous variable. Follow-
ing Refs. 75 and 152, we shall consider this in the case of
orthogonal polynomials. The starting point is the differen-
tial equation for the classical polynomials

5(x).y" -'P (x)y' + Ay =0, (7.5)
wherq 6‘(‘)%) and 7(x) are polynomials of degree not higher
than-2 and 1, rdpectlvely If the solution of this equation,
y(x), 1s'.a pol$nomial of degree 7, then we have the Rodri-
guez formula for it, which defines a recurrence formula

where B, is a normalizing constant and p(x) is a weight
function defined by (op)’ = 7p, which appears, for example,
in the orthogonality formula

[ @ p(x)dx = 8,

a

(7.7)

The function p(x) can be reduced to three canonical forms
corresponding to the Jacobi polynomials P (*®(x) (and
their special cases, namely the Legendre, Chebyshev, and
Gegenbauer polynomials), and the Laguerre and Hermite
polynomials L § (x) and H, (x). The quantities that appear
in (7.6) and the corresponding orthogonality intervals (a,b)
are listed in Table I (Ref. 152). All the polynomials are spe-
cial cases of the hypergeometric function F(a,B;y|z) and the
equation ¢ = — n is common to them.

The above standard scheme, originally developed for
classical orthogonal polynomials, can be extended to the dis-
crete case.”>!>? The relations given by (7.7)-(7.9) remain
in force if we replace the usual variables with their finite-
difference analogs [derivatives with finite-difference deriva-
tives, powers with generalized powers, and the integral (7.7)
with summation]. For the finite-difference analog of (7.5)
on a uniform net, there are four types of finite-difference
polynomials, namely, the Hahn, Meixner, Kravchuk, and
Charlier polynomials # ¥ (x,N), m{" (x), K © (x,N), and
C*#(x), respectively. The finite-difference analogs of the
quantities appearing in (7.6) are listed in Table II (Ref.
152).

The Meixner, Kravchuk, and Charlier polynomials can
be expressed in terms of the usual hypergeometric function
o Fy; the Hahn polynomials can be written in the form [cf

(3.1D)]

hE;a’ﬁ)(x’ N)

DNV -DIE+ 1 (ot frntl,x
AN=n-Dr 32| ger,1-n 1)
(7.8)
which, apart from normalization, is identical with the C-G
coefficients of the group SU(2)
N ) G (XJ‘J 1/2'
(‘1)"' '<11m1 l]zmzlljm )= 4 hf{’*ﬁ)(x, N),
n

(1.9)
where p(x) and d, are, respectively, the weight and the

7.6 ) ’ .
) x) ir ,,( (x)p(x)); (7.6)  norm of the Hahn polynomialsand 7 =j — m, x = j, — m,,
TABLE 1.
7,0 PoPy B> -1 Liia> -1 H ()
p(*) (1 -0*+x0f * exp(-x) exp(~x")
o(x) 1- 4 x 1
B, -1"/2"n 1/n! -n"
(a. b) -LD (0, =) (==, »)
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TABLEII.

YV A, Ny =1 | mT(x)y>0,0 <u< 1 |K((x, N); .g>0, p+a>1{Ch(x)in > 0
X, x N-x -X X
P | AT(x+ DI +p + 1) x rlzlriyx;rg) T+ f)!#(:/ Ti-x I‘(el - )
X T(N +v — (N — x)}"'
o(x) x(u + x) x x x
B, 1/n 1/u" -1)'¢"/nt 174"
(a,b) ©. M) ©. =) O.N+1) ©, =)

N=ji+j,—m+1, a=m-—m, B=m+m,
m' =j, —j.

Representations of the group SU(2), or the Wigner D-
functions

Dfnm,(a, B.v) = exp(—ima)(if;,!m,(ﬂ) exp(im'y),

are directly related to the Jacobi and Kravchuk polynomials:

B B) = <—1>'"‘""[ G+ miG = m) ]”2

M G+ m)(T—m)!
m-m' m+m’ , i
X(1=s) 2 (1+5) z_pl(.T,;'"'"”'"), (7.10)

s =cosf

172
=H" B = ‘(BS‘J%L‘K‘Z(J:,N), (1.11)
where p(x) and d,, are the weight and the norm of the Krav-
chuk polynomials and n=j—-m, x=j—m', N=2j,
p =sin’(B/2). We note that, since the Hahn polynomials
h{*# (x,N) are the finite-difference analogs of the Jacobi
polynomials P (*# (s), it follows from (7.9) and (7.10) that
the C~G coefficients are the finite-difference analogs of the
function d fm . (B) for s = cos B. Thus, the theory of the C-
G coefficients can be translated into the language of special
functions (see also Refs. 153). All its relationships are si-
multaneously replaced by relationships between finite-dif-
ference special functions.

A particular set of discrete polynomials can be consid-
ered by standard theory, but on a nonuniform net. Here
again there are finite-difference analogs of the Rodriguez
formula and the orthogonality formulas (7.6) and (7.7).
For the square net x, = kh(kh + 1), the differentiation op-
erator is

f(x + 20k + 1)) — f(x)
2h(k + 1) :

(7.12)

Dlf(x) =

For sufficiently large & (hk + 1)/hk =1, it too corresponds
approximately to the finite-difference operator (3.9) on a
uniform net. Two types of polynomial were examined in Ref.
152 on a square net, namely, the Racah polynomials
u'™? (x,a,b) and the Hahn dual polynomials W€ (x,a,b),
which are orthogonal on (a,b). The existence of the Racah
polynomials was established in Refs. 73, 154, and 155 by
studying the Racah coefficients in their representation in
terms of , F, with argument x = 1.

The formula connecting the 6j-symbol and the Racah
polynomials is
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(_l)jl+j+ju(2jlz + l)l/z{jl j2 jlz
L13 J 123j

172
= O oD, 0, 5), (7.13)
n

where p(s) and d, are the weight and the norm of the poly-
nomials, respectively, and n=j,, —j, +j,, x =s(s + 1),
S=jyn, a=js—j b=h +js+j a=j —j —js +J,
B=j, —Jj, +Jjs —Jj. Itis clear that by using (7.13) we can
formulate a theory of transformation matrices in polynomial
language.

We note that, as in the case of large k, we havein (7.12)
a transition from the finite-difference differentiation on a
square net to the usual finite difference one and then, for
h—0, to differentiation with respect to a continuous vari-
able, so that we can write [cf. Refs. 21 and 152] the asympto-
tic formulas for the transition from the Racah polynomials
to the Hahn polynomials and then to the Jacobi polynomials
(correspondingly, Racah coefficients »C—G coefficients
—d-functions).

In the case of the exponential net x, = exp(27k) = ¢,
the differentiation rule is defined by (3.15) which involves
the g-polynomials.'**!%¢'%7 Their classification is analogous
to the classification on a uniform net with which they be-
come identical for g — 1. For example,

‘IIT; hgla-ﬂ)(q"’ N,g)= hgl‘"ﬂ)(k, N). (7.14)

The C-G coefficients su,(2) given by (3.43) can be ex-
pressed in terms of the Hahn g-polynomials. For the net
x, = cosh(2yk) we have, in particular, the g-analogs of the
Racah polynomials and the Hahn dual polynomials. The
case of the nets sinh(2y4) and cos(2yk) is briefly discussed
in Ref. 152.

An extensive class of polynomials can be obtained from
the above complexification of the argument. They are the so-
called discrete polynomials of an imaginary argument. They
are obtained by replacing summation with integration in the
orthogonality formula. The C-G coefficients of the contin-
uous series of noncompact groups, in particular, SO(3,1)
(Ref. 152) can be expressed in terms of discrete polynomials
of an imaginary argument. The 9j-symbols of the group
SU(2) correspond to discrete polynomials in two vari-
ables.'*® Functions of several variables are also encountered
in the theory of representations of higher groups.

7.2. Probability distributions and hypergeometric functions
The theory of special functions is closely linked to prob-
ability distributions. Hypergeometric functions occupy a
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special place in this theory because most of the functions
encountered in mathematical physics can be expressed in
terms of them. The last decade saw a very intensive develop-
ment of the theory and an expansion of the range of applica-
tions of hypergeometric functions of many variables as well
as of the confluent hypergeometric functions.?>!3°-1%! Their
properties have much in common with the properties of or-
dinary hypergeometric functions , F,. Clearly, they are de-
termined by the structure of the coefficients in the series in
powers of x,. These coefficients can be expressed in terms of
(@), =T(a+ n)/T(a), e.g., for the hypergeometric func-
tions of two variables, i.e., the Appell (F,) and Horn (G,)
variables

z (a)m+n(ﬁ)m(ﬁ )n myn

F = @)y mint

m,n=0

(7.15)

G2 _ 2 (a)m(a) (/3),, m(ﬂ )m —n myn

m!n!
m,n=0

or the confluent hypergeometric function

2 @)y (ae)n x

7.16
l)n q)n ( )

The resulting complex functions must be analyzed by
the constructive approach,® i.e., we must specify the basis
elements, the method of composition used for them, and the
construction rules. Here we have a direct analogy with the
theory of angular momenta in which all the variables are
constructed as compositions of C-G coefficients and the
construction rules are specified by the graphical tech-
nique.?? We note that, in addition to the method given in
Ref. 23, in which the C-G coefficients are presented as
“three-legged diagrams” it is possible to have a modification
in which the C-G coefficient is represented by triangles and
compositions of two coefficients are represented by two tri-
angles with a common side.?

In the general theory of hypergeomeitric functions, the
basic element (the analog of the C-G coefficient) is the hy-
pergeometric distribution discussed in Sec. 6. The coeffi-
cients of continuous variables in hypergeometric functions
of many variables and the confluent hypergeometric func-
tions can be constructed as the compositions of these distri-
butions, i.e., their theory has its own probability aspects.

We now turn to the consideration of methods for the
determination of the basis elements.

The Gauss hypergeometric function is defined by the
series

( )n(ﬂ)nx
@), n

F(a,Biyi x) = z (7.17)

=
This is the generating function for the hypergeometric distri-
bution (See Sec. 6 for notation)
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- n2!n2! [
Fx) =———2%——F(—n, —n',n—=n—n' + 1; %)
1 1 1
nl(n—n; —n’)!
'"1'" Iny! 2 <
(n' = Py = HYn = ny = n' + P
1 1
- 2 "; "g n, (7.18)
R R
n

If n; and n' are integers, then the series terminates for
j = min{n,,n'} and we obtain polynomials. The summation
in (7.18) continues for fixed sums of rows and columns r,
and n'. The sum of probabilities of all the possible outcomes
in (6.17) is F(1) = 1.

For the 2 X 3 hypergeometric distribution, we can write
two different generating functions, i.e., the hypergeometric
functions of the two arguments F, and G,:

Fi(x,)

n2tny!

1 . 1 .
_N'(N—nl—n _nz)‘Fl(—n y—np,—ny N—n' —nj—n,+1; x, y)
! 1 !

1_ .
- 2 o xhm,
y—J np—m N-n! —n-ny;+j+m
(7.19)
Gy(x,y)
1y Wipt
n Y{(N—=n")In,!
= 1 1 Gz(_nl,-‘nz,
NY{(N=n"—n))}(n"—ny)!
—N+n1—nl,—nl+n2; x,y)
. _ 1 _ i
Sy T mIm T A m(7.20)
= . 1 . .
— |n =7 m N-n-n+j—-m
Hm

If we replace the factorials in (7.18)~(7.20) with T'-
functions, we obtain the series for the hypergeometric func-
tions for arbitrary values of the parameters, which take the
form of sums of rows and columns of the distribution matrix.

The polyhypergeometric distribution as a function of a
M X N-matrix can be used effectively to construct and exam-
ine hypergeometric functions of many variables. In particu-
lar, if we start with (7.19) and (7.20), and the transforma-
tion properties of the polyhypergeometric distribution
(6.18), we readily obtain the required reduction formulas,
some of which are given in Ref. 92:

G,B,8., ~y+B +1,a=p3x1)=F(a,p.B,7x1)
=F(a,By - B> %),
Fl(a,ﬂ»ﬁ’v )’: xa x)
ca—j-

z{-ﬂ. Y —ﬂm m )’+J+"l—1} &/

hm

z{ ﬂ ]; - ‘)’+]—l}x/ F(aﬂ+ﬂ ‘)’,X)
! (7.21)
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Forintegral B’ < 0, we can replace the summation parameter
m in (7.19) with k — n, — m and obtain®

Fi@B.B8.vix)=y PGB0, v+ +1,a~f;x %).
(7.22)

Analysis of the confluent hypergeometric functions is
also related to the consideration of compositions of hyper-
geometric distributions. As already noted, the C-G and Ra-
cah coeflicients can be expressed in terms of the functions
,F, and ,F,, apart from normalizing factors. Using the
expression for the C~G coefficient in terms of the hypergeo-
metric distribution,’?” we obtain

3F(2a - 2n%, ni +1,n; nl - nf +1,-n! - 'I%; x)

| ) 172
n—a n—a
= a, |1 TG Ny T
‘Pz(‘l)’ 2_, 2_,
a,+a,=a ny 2 2 1
172
1_ 1 2 2 172
% ny—a, n, —-a, ny—a, ny—a @
al a2 a2 &l .

(7.23)

The function , F, is the generating function, apart from the
normalizing factor p, for the composition (product) of three
hypergeometric distributions, and its value for argument 1
gives the C-G coefficient of the group SU(2). Similarly, the
function , F, is the generating function for the composition
of four C-G coeflicients and its value for argument 1 corre-
sponds to the Racah coefficient.

Itis clear that the hypergeometric distributions serve as
the building bricks for the construction, in accordance with
a particular algorithm, of confluent hypergeometric func-

tions and hypergeometric functions of many variables. The
construction rules can be laid down with the help of a simple
graphical technique. Hypergeometric functions of many
variables are constructed as the generating functions for po-
lyhypergeometric distributions.

In Fig. 7a, a parameter of the polyhypergeometric dis-
tribution specified in matrix form corresponds to each site
on the graph. The diagrams are constructed in accordance
with the following algorithm. The product of the factorials
of numbers corresponding to the sites is written in the de-
nominator and the product of factorials of sums over edges is
written in the numerator. The factorial of the sum over the
entire graph is placed in the denominator. A similar algo-
rithm is used to construct the distribution for the graph of
Figs. 7b—d. In the graphs of Figs. 7a, we associate with point
x; the hypergeometric functions of the form

Npeee..
Fxg, xp) = 2 . xhade:
nl',lz=0 coe 2' ..

We note that we then have F(x,1) = F(x) and F(1,1) = 1.
The sum is evaluated over matrices with fixed sums of co-
lumns and rows. These sums are the parameters of the func-
tions.

The usual hypergeometric functions , F,, i.e., the Ap-
pell and Horn functions F; and G,, correspond to the ordi-
nary hypergeometric functions. The graph of Fig. 7b corre-
sponds to the confluent hypergeometric function , F,. The
sum is again evaluated with fixed sums along the graph
edges. The functions that are obtained from one another by
analytic continuation, e.g., F, and G, [see (7.22) and Fig.
7a] or F,, F,, H, (Ref. 92; see also Fig. 7c) have the same
graphs.

We note that among the Lauricella functions (N-di-

FIG. 7. Graphs of hypergeometric functions.
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mensional analogs of , F, ) F,, Fy, F,and Fy, (Fig. 7d), itis
the last of these and its analytic continuations

7 (@i &| X
D{BiseesBp B | V1seresyy
Rpyenyity B-—mpy..Bi—m B+Yn+3m,

atyn—ym

- nl,...,a.k - n;

x x™M L xMeh B

that are connected to the 2 X (¥ + 1) hypergeometric distri-
bution and are the closest in their properties to those of , F, ;
they are particularly interesting from the group point of
view.'®

The above graphical technique satisfactorily represents
the properties of the confluent hypergeometric function and
the compositions of C-G coefficients. In the simplified
graphical method?® adopted for the C-G coefficients [the
function ,F,(1)], many of the properties, including the
symmetry relations, are lost. In that case, instead of the fig-
ure twisted like the Mobius strip (see Fig. 7b) we have a
projection, i.e., a triangle or its equivalent “three-legged dia-
gram.”

8. CONCLUSION

Analysis of the fundamentals of quantum theory shows
that a particular synthesis of our concepts is occurring at the
present time. Quantum theory now has two languages,
namely, the language of operators in Hilbert space and the
language of probability amplitudes. The latter is intimately
connected with the group-theoretic description. Particular
formulas of quantum theory often admit of a three-fold in-
terpretation (operator, probability, and group). On the oth-
er hand, we are dealing with a single truth that remains the
same however one views it. The universal aspect of the situa-
tion is then the overlap formalism that is distinguished by
simplicity and convenience. It serves as a basis for the forma-
lization and unification of the theory, including the C-G
coefficients that specify the structure of quantum-mechani-
cal objects and a variety of special functions. It also reveals
the possibility of a smaller number of essential formulas and
a smaller volume of reference literature.

The relationship between classical and quantum theo-
ries has been formalized to a considerable extent. The classi-
cal theory involves probabilities and semigroups whereas
quantum theory deals with probability amplitudes and
groups. The transition to the classical limit relies on the limit
theorems of the theory of probability amplitudes.

Much new light has been thrown on the foundations of
general quantum theory. The usual quantum mechanics is
based on postulates that demand the existence of probability
amplitudes for Markov processes (first-order equation in
d/dt) and small increments (no discontinuities). The last
postulate is responsible for the dominance of second-order
equations (both in quantum theory and in classical theory).
Any departure from this postulate and the admission that
discontinuities are possible immediately leads to infinite-or-
der equations and, as a consequence, groups with an infinite
number of parameters and pseudodifferential operators. The
approach that we have described provides a reasonably clear
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outline of the direction that general quantum theory is tak-
ing and of possible future developments.

Interestingly, many of the early papers on quantum the-
ory remain topical in relation to the fundamentals of the
theory and, as noted above, even publications dating to the
middle of the nineteenth century are still relevant for the g-
calculus. Here, we clearly see the link between the past, the
present, and the future.

At this point, we would like to emphasize the outstand-
ing contribution to this subject of the late Feliks Aleksandro-
vich Berezin and Naum Yakovlevich Vilenkin whose names
are so familiar to every specialist in this field.

We are greatly indebted to D. M. Gitman, Yu. F. Smir-
nov, and V. N. Tolstoi for discussions of a number of prob-
lems.

9. APPENDIX

The analysis presented in this review was largely based
on the theory of simple non-Abelian groups containing three
generators, namely, SU(2), SU(1,1), W(1), M(2), and
M(1,1). These groups constitute only a small part of the
overall range of Lie groups that have found such wide appli-
cations in very different branchess of physics. Their theory
has not been finally reduced to a single system, and one often
finds physics journals reporting rediscoveries of the same
formulas in different forms. It therefore seems useful to put
together a short reference appendix on Lie groups as a
whole, with particular emphasis on data that may be useful
in practice.

9.1. Classlification of Lie groups

Lie groups can be divided into solvable and semisimple.
The Lie algebras L of solvable groups have their own com-
mutative ideal N([L,N]CN) or, in other words, the se-
quence of ideals L =L, LV = [L© @], L¢+D
=[L,L™] =0 terminates. Solvable groups include
W(1),M(2),M(1,1), and also the Poincaré group. W(1) is
a nilpotent group-a special case of solvable groups charac-
terized by the sequence L, =L, L, = [Lo,,L ]seens
L,,,=[LwnL]=0

Semisimple Lie groups do not contain a commutative
ideal. They include groups of linear transformations of n
variables (real R, complex C, and quaternion H) GL(n,K),
K =R, C, H and their subgroups which are specified by uni-
modular, (pseudo)unitary, symplectic, and orthogonal ma-
trices. All these groups are called classical. Semisimple
groups also involve exclusive groups associated with the oc-
tave algebra. We note that the unitary quaternion group is
sometimes denoted by USp(n) or SU(n,H); Sp(p,q) by
Sp(2p,2q); and SL(n,H) and SO(n,H) by SU*(2n) and
SO*(2n).

Many groups of small dimensionality have between
them equivalence relations (isomorphism and homeomor-
phism) such as SL(2,R)~SU(1,1) ~SO(2,1), SL(2,C)
~80(3,C) ~S0(3,1) ~SL(1,CxXH). A complete listing of
these relations is given in Ref. 28.

The basic characteristics of the group G include the
matrices of infinitesimal operators L, the matrices of finite
transformations in G, and the invariants J. The correspon-
dence between the matrices of finite and infinitestimal trans-
formations g = exp L is as follows:
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TABLE IIL Classification of classical groups.

Unimodular ((Pseudo)unitary Symplectic Orthogonal
R: SL(n,R) S0, Sp(n,R) SO(n,R)
C: SL(n,C) SU(p.g) Sp(n,Cy So(n,0)
H: SL(n,H) Sp(p. Sp(n,H) S0(n,H)
gEGL(n,K): detg=1 I lg*l,=g7! FlgF=g"! d=g!
unimodular (pseudounitary)  (symplectic)" orthogonal
LEg(n, Ky TrL=0 I I =~L F'LTF=L  L*=-L
traceless  (pseudoantihermitian) antisymmetric

I, © . . .
where I, = (0 Iq)’ I, is the wunit matnx,
pXpp+q=n,

—_— 0 Ir
F= (—Ir 0)’
2r = n, and instead of F we can consider the matrix y:
Yaz—1 =LYy 1= —1,1=1.2,..,n/2,and theremain-

ing matrices y,; = 0.

The common invariant of classical groups is the deter-
minant constructed from the basis vectors of fundamental
irreducible representations. The quadratic invariants of
pseudounitary, symplectic, and orthogonal subgroups
SL(¥NK), K =R, C, H have the form X'I, X *, X'yX 7,
X'XT where X = {x,} and X' = {x';} are the rows of basis
vectors of fundamental irreducible representations. For the
quaternion bases, X 7 is a column of transposed quaternions
g"=a, +ia, —ja, + ka,. The invariants of classical
groups are listed in Refs. 11 and 166 and those of exclusive
groups in Refs. 166 and 167.

9.2. Lie algebras, C-G sequences, and reduction formulas

The commutation relations for group generators are
written in the standard form

~

[H[) Ea] = a(H[)Eav [Eav E..a] = Hav [an Eﬂ] = Na‘ﬂEa.',ﬁ-

In contrast to (2.1), they contain a whole set of /{aising,
lowering, and diagonal operators. The constants @ (H;) and
N, 5 are expressed in terms of radical vectors that are char-
acteristic for each group (the Cartan-Weyl basis). The algo-
rithm for them and the structure of the set of radical vectors
are specified by the Dynkin schemes. A detailed presenta-
tion of these questions is given in Refs. 28, 115, and 164.
Figure 8 shows a set of Dynkin schemes for groups of rela-
tively low rank. They give the dimensions of fundamental
representations and the notation used below in the table of
C-G series. The weight diagrams for the irreducible repre-
sentations of the groups of rank 3 SU(4),SO(7), SP(3), and
SU(3,1) are given in Ref. 11. An enormous range of factual
material on C-G series and coefficients can be found in the
literature. It is largely unsystematic. We confine our atten-
tion here to a table of series that are most frequently encoun-
tered in applications:
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f
SU@3): D(P,Q)) ® D(P,Q,)
C, min{P,P} min{Q,.Q,}

=y Y Y. D(PQ), P20, Q=0;
A=0 §=0  §,=0
SUQ@,1): D*(P,0)) ® D*(P,0))
e min{Q,Q}

C
=Y > 3 p*PQ), P<-2, 020,

A=0 §,=0 5,=0
P=P +P,=25 +S,~4, Q=0,+Q,—25,+ 5, — 4,
C, = min{P,-S§,, Q,-S,}
+ min{P, -5, 0,-S,}, C, = Q1+Q2—282;

SUW,1): D*(P,0...0) ® D*(P,0...0)

= ), D*(P, + P, — 25 50..0);
§=0

min{P ,P,}
SU(N): D(P,0...0) ® D(P,0..0) = Y, D(P, + P, — 25 50...0),
§=0
D(P,0...0Q,) ® D(P,0...00,)
= Y D(P,+Py—a'~a"~25,5,0.05,0,
a’,a",SPSQ
+0,-a'~a’'~25y),
Py =Sp-a'20, P~ Sp~a’ 20,0 -Sy,—a" 20,
SO(N), Sp(N): D(P,0...0) ® D(P,0...0)
min{P —S§, P,— S} min(PI WP}
= Y Y. Dp, + Py - 25 - 2220..0),
a=0 §=0
D(0...0P,) ® D(0...0P,)

N
D(25,2S83..25y Py + P, — ¥ 25,), Sp(N)
= i=1
- 2 N ' ’
Si-1Su| D(S, S,...8y Py + Py — Y 25), SO(2N + 1)

i=1
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. 2 Sp(2)~50(5): R
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FIG. 8. Dynkin’s schemes. The dimension of the fundamental
su(s, ) c6 73', 2c0 Z‘? g 3 9 36 84 15 IR is shown above each vertex. Numbers at the vertices are the
T wp U tpggutMuik yis S 0(8): 2 ? ratios of the squares of the moduli of radical vectors [for SU(N),
U Uip UMl U SO(2N), E, E,, E; they are equal to unity ]. The dimensions of
8 11 55 165 330 32 the lass.ociated representations are shown for the orthogonal and
) 8 28 PlUx $0(11): >—@—0—a—p , S*clusiveones.
S50(8): SaR s Y Uk Mgl UipdmUe
"”ap U 780Uy
“Ualy! £ 4 351 |2925351 27
76 LA Ltk i
u; Uik 757
sofu): 2 5 120 °Va ¢ ik
Y4 Ui Uy 16 o 972 yuod
“hap U . 58 1599 27664 | 3837,

7
62: d ?
26 273 1274
®—¢=®——g 4 fai

4

N
Pi= D520
i=1
Sp(2) ~ SO(5): D(P,Q,) ® D(P,Q)

= D D(Py + Py~ 25, 2ap + 25, Q,
aP,aQ,SP.SQ

+Q,2_2SQ_aQ+SP)’

-a -SP—2a'l—a” >

P, =

ap=a, +a'|+a),,

0, Ql—az—SQ—a'z—a'ézo,

Py—a)—8Sp—2a,-a’y 20, Q2—a2—SQ——a’l—a’l’20;
aQ=2a2+a'l'+a”.

A large number of concrete expressions for the C-G series of
classical groups is given in Ref. 11 and for exclusive groups
in Refs. 162, 163, and 165. The formulas for a reduction to a
subgroup reflect the hierarchy of physical structures. The
branching rules corresponding to the reduction SU(N
+ 1)>SU(N), SO(N+ 1)-SO(N), SU(2N)-Sp(N),
Sp(N) —»Sp(N — 1), SU(N) -SO(N) for N7 are given in
Ref. 12.

9.3. Bases of irreducible representations

The IR bases (both finite and infinite-dimensional ) can
be divided into two broad classes, namely, discrete (infini-
tesimal and tensor) and continuous (generalized CS bases
and bases of the eigenfunctions of non-self-adjoint opera-
tors).
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The infinitesimal bases are constructed as the IR bases
of the corresponding Lie algebra (by operating on a chosen
element of infinitesimal operators of the groups we obtain
the complete IR bases). These bases constitute a set of eigen-
functions of self-adjoint operators; different choices of the
latter lead to different bases.

The tensor (symmetric) basis is constructed as a poly-
nomial of the basis functions of fundamental irreducible rep-
resentations. It is closely related to the permutation group.
In the case of unitary irreducible representations of noncom-
pact groups, the tensors can have negative or noninteger
rank. This basis is usually redundant (with the exception of
simple cases).

The generalized CS basis is constructed by acting on a
chosen element from the space of irreducible representations
of finite transformations of a group; it is overcomplete. The
basis of the eigenfunctions of raising or lowering operators
can be constructed for infinite-dimensional unitary irreduci-
ble representations of noncompact groups, but not for finite-
dimensional irreducible representations of compact groups.

9.4. The groups SU(N) and SUN-1,1)

The fundamental point here is that it is possible to con-
struct a theory of representations of higher groups on a con-
structive basis. In this approach, the formulas for the over-
laps and for the effect of generators and of the invariant
measure play a dominant role. Apart from the above simple
groups, there is a detailed theory that includes coherent
states, the symbol calculus, and a transition to the classical
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limit, which applies to the unitary symmetric irreducible
representations of SU(N) and SU(N — 1,1) (Refs. 15 and
16). The quantity

N-1
(u,2) =uyzy = ZEizi .
i=1

is an invariant of SU(N) and SU(N — 1,1) groups.

For symmetric finite-dimensional irreducible represen-
tations D(M 0...0) of SU(N), M>0is an integer; for the infi-
nite-dimensional irreducible representations D * (M 0...0)
of SU(M 1,1),M <« — N + 1. The CS overlap is expressed in
terms of the invariant (Mu|Mz) = (u,z)™ where
(u,u) = (2,2) = 1. The relative variance (4.71) of the CS is
AC,/C, = N/{N + M). The invariant measure is

N N
dupy(xy = HENZ DL L5150 21| T aoap,
) (27) i=1 i=1
dup(2) Nl .
— T(—M) 1 2 2 2
"T(-M-N+1) (M)Na (PN_ Z;Pi - 1) l];][dpid‘Pi’
z; =piei¢z.

The integration is performed over the N-dimensional com-
plex sphere or hyperboloid (z,z) = 1, using formulas similar
to (5.16) (Ref. 5). The transformation z! = z,/z,, is used to
pass to the projective space P, _,(C) or the open sphere
Dy _, (C). The operator symbols can be found from the
form of the generators T of the groups U(XN) and

U(N—1L1)intermsofa, anda_:T;=4,, a;_.
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