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Manifestations of order in topologically disordered media are analyzed. Amorphous materials
and monatomic melts are considered as examples of disordered media. It is shown that in the
case of close-packed liquids geometric and chemical short-range order are most clearly
manifested in the acoustic properties. In these materials ordering is of a dynamical character.
The temperature dependence of the acoustic properties correlates well with the results of x-ray
and neutron diffraction methods of investigation and substantially supplements the latter. The
contributions from loss of long-range order and intensification of thermal translational motion
on melting are distinguished from one another by comparing the bulk moduli of elasticity of

melts, crystals, and amorphous substances.

1. ACOUSTIC EFFECTS IN MEDIA WITH TOPOLOGICAL
DISORDER

Many (but by no means all) manifestations of local or-
der in media with crystalline long-range order were consid-
ered in Ref. 1. Thedirect interaction of low-frequency sound
with lattice atoms or ions at quite high temperatures was
described in terms of relaxation theory, in which explicit
expressions for the sound absorption coefficient and sound
speed dispersion were found by calculating the thermody-
namic functions within the weak-solution model. In this
model the periodically arranged atoms (ions) undergoing
harmonic oscillations comprised the solvent and the atoms
(ions) participating in the translational motion played the
role of the solute. Experimental and theoretical studies of
these processes, as a rule, make it possible to identify the
relaxational mechanism and, on this basis, to determine the
structural units participating in the translational motion and
their concentration and the heights of the potential barriers
to translational motion as well as (see below) to reconstruct
the components of the strain tensor of the crystal lattice due
to carriers of local disorder.

It is completely obvious that a substantially different
approach is needed in order to study the acoustic properties
of noncrystalline materials. First of all, crystalline order
cannot play the role of the zero-order approximation (sol-
vent). Second, the concentration of disorder is high and the
weak-solution theory becomes meaningless. Third, the type
of disorder must be specified in order to choose an appropri-
ate model.

In this paper we consider media with topological disor-
der—amorphous materials and melts of chemically compar-
atively simple substances.

Before discussing the results of long-wave acoustic ex-
periments and their theoretical interpretation, we make
some general remarks concerning the characteristic fea-
tures, which could be manifested in the acoustic properties,
of the structure and thermal motion in amorphous bodies
and melts.

All condensed media with topological disorder exhibit
common macroscopic uniformity and short-range order,
manifested in the existence of preferred values of nearest-
neighbor distances and coordination numbers. Significant
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differences can be easily seen, however, by comparing for an
amorphous material and a melt the radial distribution func-
tions determined from diffraction experiments on the one
hand and computed within the hard-sphere model on the
other.

It is well known (see, for example, Ref. 2 and the bib-
liography provided there) that the hard-sphere model,
which takes into account only geometric order due to the
impenetrability of the walls of the spheres, describes quite
well the behavior of g(r) for many metallic melts (liquid
semimetals and semiconductors require special analysis).
However, the functions g(7) for amorphous films exhibit
significant differences (see, for example, Refs. 3 and 4).
Comparing g(7) for an amorphous film to g(7) for, as an
example, molten iron® showed that although the position of
the first peaks is virtually the same in both materials, the first
peak in the case of the amorphous film is significantly
sharper and the second peak exhibits fine structure, i.e., it
splits into two peaks of different height. In addition, in the
amorphous film oscillations of the g(r) are observed up to
appreciably larger values of 7 than in the molten iron.

At the present time there is no unequivocal interpreta-
tion of the fine structure of the peaks in g(#) in amorphous
materials. But, the existence of the peaks itself indicates that
there are present in the structure regions with nongeometric
order. This result is the physical basis for the interpretation
of experiments on sound absorption, which indicate unequi-
vocally the existence of a relaxation mechanism of sound
absorption at both low and high temperatures.

The point is that in the absence of special types of inter-
actions of elastic waves with matter (for example, the piezo-
electric effect and ferromagnetism) the only source of sound
absorption are deformational and thermoelastic interac-
tions. Numerical estimates and analysis of the temperature
dependences of the Akhiezer sound absorption coefficient,
made with the help of formulas derived for imperfect crys-
tals (see the bibliography and formulas in Ref. 1), show that
most existing experimental results on ¢ (w) and a(7) in dif-
ferent amorphous materials require a different interpreta-
tion. Diffusion of structural units and heat fluxes due to gra-
dients of deformation in a wave (see the formulas from Ref.
1) are also found to be ineffective right up to frequencies of
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10° Hz (thin films are an exception). For this reason, with-
out specifying the relaxation mechanism, we can assert that
sound absorption requires the existence of regions whose de-
formational potentials differ from either one another or the
environment. It is only then that an elastic wave creates an
effective potential relief which changes the probability for
structural units of the amorphous material to overcome nat-
ural potential barriers (the change in the probability of tran-
sitions through a barrier is determined by the gradient of the
deformation interaction constant').

The most significant difference between amorphous
and melted substances is associated with their shear modu-
lus G. In the case of amorphous substances G can be consid-
ered to be frequency independent at all temperatures below
the softening temperature 7, whereas in the case of melted
substances the shear modulus in nonviscous (viscosity
7’ & 10° kg/m-sec) melts is virtually zero at all frequencies
of the applied force right up to the relaxation frequencies of
shear viscosity, which are equal to ~ 10'2 Hz. According to
the general ideas of Ya. I. Frenkel’, this indicates that in
amorphous bodies and melts two different types of thermal
motion of the atoms are realized, in spite of the similarity of
the instantaneous structures of these materials. In the first
case most atoms (ions) occupy quite deep (compared with
the thermal energy) potential wells and they undergo pri-
marily oscillatory motions around disordered positions of
equilibrium. Only a small fraction of the structural units is
capable of participating in translational motion. From this
standpoint, topological disorder in amorphous bodies can be
termed static. In the second case, i.e., in melts, all atoms
(ions) participate in the translational motion and they also
probably excecute oscillatory motions at the same time.

Since for low-viscosity metallic and semiconductor
melts the characteristic relaxation times of the shear viscos-
ity 7, are ~10'? sec, a large number of spatial configura-
tions of the atoms is realized during the period of the sound
wave or during the propagation of the wave through the
sample. It is natural to term such topological disorder as
dynamical disorder.

Thus in the sequence crystal—amorphous state—melt
the first two states, in which the short-range character of the
thermal motion is preserved, have substantially different or-
der characteristics (according to the third definition of V.
Dal’; see the first reference in Ref. 1 of this article). This
makes it possible, by comparing the sound speeds (elastic
moduli) and sound absorption coefficients of substances
with the same chemical composition but in different states
(crystalline and amorphous), to observe different manifes-
tations of static topological disorder in both the acoustic and
other properties.

Great care must be taken, however, in interpreting the
results of such a comparison, since the interpretation is not
always unique. There are several reasons for this. First, the
amorphous state is a thermodynamically nonequilibrium
state, and for this reason all structure-sensitive properties, in
particular, the acoustical properties, depend on the thermal
history of the sample. For this reason, temperatures far from
the softening point are preferable for determining the effect
of order on, for example, the speed of elastic waves. In addi-
tion, it is probably useful to perform measurements in a
range of temperatures in order to make sure that there is no
temperature hysteresis in the sound speed. However, since
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the speeds of longitudinal and shear waves depend on the
structure of an amorphous material, these measurements
can be used to check the parameters of the real structure of
the material. Second, the effect of order on the elastic moduli
is masked by relaxation processes, which can be manifested
differently in the crystalline and amorphous states. In the
presence of a relaxational process (see, for example, Ref. 1)
the sound speeds contain a frequency-dependent correction
As. In order to calculate this correction it is necessary to
know the specific scheme of the relaxational process. Since
As~ (1 4+ »°m*) "', the highest possible frequencies and
comparatively low temperatures (increasing ) are best for
revealing the effect of order.

In addition, it is useful to measure s and a simulta-
neously, since irrespective of the relaxational mechanism
(see Ref. 1)

As/s = as/w’r, (D

and, therefore, 7 can be estimated from Eq. (1), if Asand «
are determined experimentally (the notation is explained in
Ref. 1).

The effect of the character of the thermal motion on
both relaxational processes and the elastic moduli can be
determined experimentally by comparing the acoustical
characteristics of amorphous materials and melts and in the
process the applicability of different models of the liquid
state can be assessed. As in the case of amorphous materials,
great care must be exercised in separating the contributions
of the changed character of the thermal motion and relaxa-
tion, even though, as is well known, the liquid state is a ther-
modynamically equilibrium state. This is connected with the
short relaxation times characteristic for liquids. Thus, if
72~ 10'? sec and the typical values are used for e, i.e.,
a=~10"" em~! at 100 MHz, then As/s=~0.2, which can
mask the change in the sound speed on melting of the crystal.

1.1. Amorphous materials

It is well known® that the amorphous state, irrespective
of the manner in which it is produced, is, in contradistinction
to melts, a thermodynamically nonequilibrium state, and as
a result of these different characteristics, including, and
sometimes especially, the acoustical characteristics, have
long relaxation times. Moreover, measurement of elastic-
wave speeds, which are uniquely related to the elastic moduli
of the structure, is often an effective method for observing
aging, results of heat treatment, etc. For this reason, in com-
paring the properties of amorphous materials it is best to
employ data for samples having approximately the same age,
thermal history, and so on, assuming that the elastic moduli
found under such conditions are the equilibrium moduli of
the structure existing at a given moment. Such precautions
are apparently not necessary for studying most glassy dielec-
trics, which age much more slowly than glassy metals. The
higher stability of glassy dielectrics is manifested also in the
fact that they are easily obtained in the form of bulk samples,
while metallic and semiconductor structures can be pro-
duced only in the form of films, thin ribbons, etc.

Strongly pronounced hysteresis phenomena are ob-
served in the temperature dependences of the acoustical
characteristic of metallic glasses with increasing and de-
creasing temperature, even at temperatures appreciably be-
low the crystallization point. The magnitude of hysteresis
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depends on the maximum temperature to which the sample
is heated. Definite uniqueness can be achieved by first sub-
jecting the sample to temperature normalization in the form
of annealing at a definite (with respect to the crystallization
point) temperature and for a definite period of time. In this
situation, low-temperature measurements of the elastic
moduli as a function of the annealing temperature may be
very informative. As an example, Fig. 1 displays such a de-
pendence, taken from Ref. 7, for the alloy Feg;,B,P .

As far as the physical reasons for these effects are con-
cerned, the increase of the elastic moduli with increasing
temperature is apparently associated primarily with the out-
flow of excess free volume, for example, by recombination of
Frenkel’ pairs.® This reduces the degree to which the amor-
phous phase departs from an equilibrium state and makes
more likely the formation of crystal-like clusters. As shown
in Ref. 8, at low temperatures there is virtually no outflow of
free volume. Thus, for alloys with high cobalt concentration
the effective outflow of free volume starts only at tempera-
tures of 500-550 K.

Another reason is associated with the possibility of for-
mation of a cluster structure in the amorphous alloy. For
example, the dependence of the sound speed on the anneal-
ing temperaturein Fig. | is explained’ with the help of the so-
called model of a cluster in a shell. In this model it is assumed
that because of the rigidly oriented bonds the specific clus-
ter—cluster interface energy is appreciably higher than the
cluster—metallic solid solution interface energy. For this
reason, an interlayer of solid solution can remain between
the clusters. The entire temperature dependence of Young’s
modulus can be explained by the change in cluster size as a
function of the annealing temperature.” There also exist
more complicated models, employed for qualitative inter-
pretation of acoustic experimental data,*%'? but these mod-
els also suffer from inadequate substantiation. Nonetheless,
there is no doubt that the degree to which the structure of
metals and elementary semiconductors in the amorphous
state departs from equilibrium, which, as a rule, decreases
with increasing annealing temperature and time, is responsi-
ble for the acoustical hysteresis in these materials.

The above-noted phenomena, together with possible
manifestations of fast relaxation processes, make it much
more difficult to separate the contribution of static topologi-
cal disorder to the acoustical properties of a material.

J2f

1073 sec™2
N Ny
e [y
T T

2
f char s
¥
T

1 1 A L
700 200 300, 40

FIG. 1. Characteristic frequency of the sample as a function of the anneal-
ing temperature.
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Another problem arising in any attempt to separate this
contribution is the choice of suitable acoustic properties,
since a crystal is an anisotropic structure and the speeds and
absorption coefficients of elastic waves in it are functions of
the direction of propagation, while in glass and melt all prop-
erties are isotropic. The most suitable characteristics are,
apparently, the bulk modulus K and the shear modulus G,
which in the case of a crystal can be calculated in terms of the
elastic moduli for different types of lattices'>'* while in the
case of glass they can be calculated in terms of the speed s, of
longitudinal waves and the speed s, of shear waves:

pst =K+ (4G/3), ps?=G.

Even such a comparison entails, however, some arbi-
trariness, since, although X, defined as the relative change in
volume under hydrostatic compression, remains meaningful
for crystals, polycrystals, and amorphous substances, the
numerical value of the shear modulus depends on the direc-
tion of application of the force with respect to the slip plane
of the crystal. The room-temperature bulk and shear moduli
K., and G, are presented in Table I for a number of crystals
with cubic symmetry, together with the same moduli K, -
and G,,, for polycrystals of the same metals.'®'® It is obvious
that the latter crystals, which do not have static topological
disorder, are isotropic due to the random distribution of the
orientation of the crystallites. Data for amorphous materials
are also presented here. According to Table I, in metals the
transition from the crystal to the polycrystal and the amor-
phous state is not accompanied by significant changes in the
bulk modulus (up to 10%) and shear modulus (30-40%).
For example, in the case of a transition from the crystalline
state into an amorphous state the bulk modulus changes by
6.2% for PdgSi,,, 6.5% for Pd,; sCugSi,e s, and 4.5% for
Sm,Co,,."” In other words, the metallic bond is insensitive to
both changes in the long-range order (intercrystallite boun-
daries) and even loss of long-range order.

In elemental semiconductors and dielectrics, in which
interatomic interaction is realized by means of covalent
bonds, the transition into an amorphous state results in a
significant reduction of both the bulk and shear moduli.
Thus, the bulk and shear moduli of crystalline germanium
and silicon calculated from the elastic moduli!” using the
formulas of Ref. 14 were found to be K, = 7.1-10'° Pa and
G,. =4.7-10" Pa for Ge and K,, =9.2-10'° Pa and G,,

= 5.8:10'° Pa for Si (at 293 K). At the same time, the val-

ues of K + (4G /3) calculated from the data on longitudinal
sound speeds in amorphous Ge and Si were found to be
4.8-10'° and 4.5-10"° Pa, respectively.'®

Similar results for the change in the bulk and shear
moduli with the transition into the glassy state are also ob-
tained for chalcogenide semiconductors and quartz glasses.

Therefore, because they are directed toward the nearest
neighbors, covalent bonds are more sensitive to loss of long-
range order than are metallic bonds, since for semiconduc-
tors, dielectrics, and metals the volume changes at a transi-
tion into the amorphous state are virtually identical. The
small change in the bulk moduli in amorphous metals (sev-
eral percent) indicates that the free volume arising in the
amorphous state (several percent) is distributed uniformly
between separate structural units. Conversely, such a strong
change in the bulk moduli in amorphous semiconductors
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TABLE 1. Comparison of volume and shear elastic moduli of crystals (cr), polycrystals (per),

and amorphous materials (AM).

-10—'e .1n—10 “1p-10 1n-10
Element |K,, 10~ pg |G, -10-'° Pa K""P:.? ’ ggﬁﬁ 10 ’lﬁ"“ 107, ga“'“ 10-"]
Al 7,64 [146) 2,61 [146) 7,25 [16] 2,64 [16] —
Cu 13,71 [146] 4,73 [146] 13,60 [16] 4,55 [16] —_
Cd 5,35 {146} 2,42 [146) 4,07 [16] 1,94 (16} —
Zn 6,83 [146] 3,94 [146] 6,85 [16] 4,06 [16] —
Ni 18,75 [146] (9,29 [146] 17,61 [16] 7,7 [16) —_
Fe 17,31 [146] 18,69 [146] 15,98 [69] 8,21 {69) —
FegoB2o - 8,8 [15] — — 14,1 [15] 6,5 [15)
FegoNizoB20 - — — — 20,6 [15] 6,1 [15]
Fe4uNi4uBzo - — —_ —_ 16.7 “5] 6,0 [15]
'Pd 19,23 [146] |4,74 (146] — — —
PdgoSize 19,3 {15} 4,69 (15] - — 18,2 [151 3,5 {15]
Si0, 5,65 [146] 4,24 [146] —_ — 3,7 120] 3,1 {20)
Si 9,78 [146] 6,65 [146) - 2,43 [69] 2,5/2,9 2) 1,8/1,4%)
Ge 7,54 (146]  [5,48 [146) J - — 2,45/3,0% (1,8/1,4%
"The densities are taken from Ref. 69.
12Calculated from the values of the limiting speed of sound’® for Poisson ratios 0.2/0.3.

and dielectrics can be interpreted as a nonuniform distribu-
tion of free volume, giving rise, in terms of percolation theo-
ry, to weak key couplings between clusters with large (of the
order of crystalline) values of the elastic moduli.

This interpretation from investigation of the equilibri-
um elastic moduli agrees with a numerical experiment per-
formed on a 500-atom model of an amorphous material:'® In
this model three atoms were removed from the central part
so0 as to form a vacancy cluster. If the model relaxed under
the action of the Lennard-Jones potential, then with time
only 10% of the initial volume of the vacancy cluster re-
mained and the remaining volume was distributed uniformly
over the system. If, however, covalent bonds were intro-
duced between the atoms, then the vacancy cluster did not
vanish, i.e., the presence of a covalent bond was sufficient to
stabilize the local free volume.

For the reasons mentioned above, the temperature de-
pendence of the elastic moduli of metallic glasses is uninfor-
mative from the standpoint of the investigation of physical
processes, while the temperature dependence of the speeds of
longitudinal and shear waves have been studied in detail in a
wide range of temperatures in amorphous dielectrics and
semiconductors (Ref. 20; see bibliography there). These
temperatures dependences were found to be extremely di-
verse. Thus, in amorphous Si0,, GeO,, and BeF, the tem-
perature coefficients of the sound speed (TCS) were found
to be positive, i.e., the sound speed increases on heating.
Conversely, in chalcogenide glasses TCS was negative and
increased with increasing selenium concentration.

Since the TCS of the corresponding single crystals is
negative and as a rule large, a decrease or change in sign of
the TCS in amorphous materials requires special study. One
reason could be the presence of one or several relaxation
processes in the amorphous material. Indeed, irrespective of
the specific relaxation mechanism, its contribution to the
sound speed is always negative and proportional to
(1 + »?7*) """ For many relaxational processes the coeffi-
cient of proportionality decreases with increasing tempera-
ture as 7 ~'. For this reason, if o7 < 1, then due to relaxation
the TCS will decrease or can change sign. For example, it has
been established for SiO, that at frequencies up to 16 GHz
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maxima of the relaxational type are observed in the sound
absorption coefficient as a function of the temperature. In
addition, in the lower megahertz range a ~®?, and the coef-
ficient of proportionality is ~10~'" dB-sec?/cm.?® Setting
7= 107" sec and using the formula (1), we obtain for Asas
an estimate of several tenths of s, which gives for TCS the
correct order of magnitude and sign. Moreover, since
As~ T ', the relaxational contribution to the sound speed
decreases with increasing temperature, and this could give
rise to the change in sign of the resulting TCS, i.e., a transi-
tion from TCS > 0to TCS <0, as is observed experimentally.

Positive values of TCS could also be due to elastic mi-
crononuniformity of glasses, as proposed in Ref. 20 and as-
sociated, for example, with structural nonuniformities. In
this model the bulk and shear moduli are given by

K=KI-(_A-2)1/2, G=G’—(Ké)l/2, (2)

where K * and G’ are the values of the moduli in a uniform
material and A% and A% are the squares of the correspond-
ing spatial fluctuations. If the temperature coefficients of K’
and A? or G’ and A% are different, then it can be expected
that TCSs will also be different. This is why fluctuations of
the glass density are ineffective for this approach. However,
the application of the model to glassy dielectrics (which was
first proposed in order to explain the TCS of these materials)
is questionable, since there is no hysteresis in the tempera-
ture dependences of the sound speed in them, and therefore
within the model the elastic nonuniformities vanish with in-
creasing temperature and then on cooling reappear in exact-
ly the same form as before heating. Indirect arguments also
indicate that positive values of the TCS are associated with
relaxational processes. In Table II the Poisson ratios v are
calculated for different glassy dielectrics and semiconduc-

tors from the speeds of longitudinal shear waves given in
Ref. 20:

1512—2s,2
V=z .
2 si-sf

Table I also gives data on the TCS for these glasses for 5, and
5,
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TABLE I1. Poisson’s ratio for some amorphous substances.

Substance » TCS-105, K" (s,) | TCS-105,K~' (s))
Si02 0,17 +130 +110
GeO, 0.19 +70 +5
BeF» -0,72 +200+£50 +100£50
AS,S; 0,25 -150 -170
AS3Ses 0,25 -170 -150
| Se 0,31 - 640 1000

According to Table II, glasses with positive values of
the TCS have small and even negative Poisson ratios. In ac-
cordance with the formula for v, this is a consequence of the
fact that s, is less than s,. In isotropic media, nonisotropic
(with respect to deformation) relaxational processes are un-
likely to arise, i.e., as observed experimentally, relaxational
processes are manifested more effectively in longitudinal
waves. As a result, s, decreases due to the relaxational cor-
rection with s, remaining constant and v decreases.

Sound absorption has been investigated in a large num-
ber of amorphous materials in a wide range of frequencies
and temperatures. This includes metallic glasses, elemental
amorphous semiconductors Si, Ge, and Se, chalcogenide
semiconductors, glassy dielectrics, and other materials. The
results of low-temperature experiments have been interpret-
ed quite convincingly on the basis of two-level tunneling sys-
tems (TLTS) (see bibliography in Ref. 21). Measurements
of the sound speed and sound absorption coefficient at quite
high temperatures ( ~ 100 K and higher) have not been ana-
lyzed as carefully.

Relaxational maxima have been observed in measure-
ments of @(7") in metallic glasses. It is by no means always
possible to establish unequivocally the nature of these maxi-
ma. This has been done most convincingly in the case of the
relaxation of dissolved hydrogen as well as in the case of
Gorskif relaxation.*?2

When crystalline metals are hydrogenated their lattice
expands by approximately 3 A3 per H atom, even though the
H atoms occupy interstices. In the process there arises an
elastic dipole, which is manifested in ultrasonic measure-
ments.

Approximately the same change in volume is obtained
for metallic glasses simultaneously with observation of re-
laxation. This is usually attributed to the appearance of elas-
tic dipoles also in the glasses. Direct measurements of the
structure by the x-ray method in Nb,Ge have shown that the
peak of the radial distribution function splits into two sub-
peaks, the splitting being associated with the presence in the
matrix of pairs of atoms whose separation is increased due to
the presence of H.'® The peak in a associated with hydrogen
relaxation is asymmetric: It is flatter on the low-frequency
side and its width is three to four times greater than the
Debye width. The activation energy AE and the preexponen-
tial factor 7, are found by measuring the displacement of the
peak in a as a function of the temperature and finding the
location of the peak on the frequency scale. The results of
different studies agree quite well with one another. Thus,
according to the measurements in Ref. 15 in the alloy
PdgSiy, 7o=5:10" " sec and AE = 0.31 eV, while accord-
ing to Ref. 22 7, = 1.4-107'* sec and AE =0.34 eV. The
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energy in the exponential of the relaxation time is close to the
activation energy of self-diffusion of hydrogen in the alloy,
determined from independent measurements to be 0.25 eV.
The agreement isimproved, if the spread in the heights of the
potential barriers to diffusional motion is taken into account
in the spirit of percolation theory. As a result of this spread,
the effective barrier in the exponential of the diffusion coeffi-
cient drops below the average value.?* This decrease is deter-
mined by the variance of the barrier heights. The barrier
reductionis ~0.08 eV for a uniform distribution and 0.06 eV
for a normal distribution.

The observation of so-called Gorskif relaxation—diffu-
sion of impurities and characteristic defects in the material
from regions of compression into regions of tension—at fre-
quencies of hundreds of kilohertz and even megahertz is as-
sociated not with the physical features of amorphous materi-
als but rather with the fact that metallic glasses and
amorphous semiconductors are obtained primiarly in the
form of thin films. As a result, in microscopically uniform
media the deformation gradients produced by an elastic
wave are inversely proportional not to the wavelength A but
rather the film thickness 4, since A > & and, hence, the char-
acteristic relaxation time is, in order of magnitude,’

v'p=h/ntD, (3)

and the absorption coefficient is determined by Eq. (25) of
Ref. 1.

The characteristic relaxation time determined by heat
fluxes changes similarly, i.e., instead of 7,- we have

= thC,*,/nzx , 4

and the relaxation mechanism itself is called Gorskii relaxa-
tion.”

Using the typical values of the kinetic coefficients, we
find the 77, and 7% in films tens to hundreds of angstroms
thick is 1075-10~ sec. For this reason, ultrasonic measure-
ments can be a valuable source of information on the kinetic
coefficients of amorphous films.

In the absence of impurities, and also when the frequen-
cy range of the measurements excludes gradient mecha-
nisms, the interpretation of the relaxation maxima is closely
connected with the possibility of atoms, molecules, or struc-
tural units participating in the translational motion under
the action of deformation in an elastic wave. As mentioned
above, this requires the existence of regions where the defor-
mational potentials are different from the environment, i.e.,
regions where the interatomic interaction potential is differ-
ent from that in the environment or the spatial symmetry
(degree of order) is different from the mean-statistical sym-
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metry over the sample. In what follows, we term such re-
gions defects in a topologically disordered medium.

The concentration of such defects in amorphous mate-
rials is low, and this makes it possible to employ once again,
for calculating the sound absorption coefficient and the dis-
persion of the sound speed, just as in crystals, the weak-
solution approximation,’ in which the specific relaxational
scheme is determined by the model adopted for the defect
and the solvent is the spatially uniform disordered medium
with short-range order, for example, the hard-sphere model.

Of course, from a general-physics standpoint, defects in
amorphous materials and in crystals have nothing in com-
mon. In crystals defects are regions where long-range order
is disrupted and as a consequence the entropy of the system
increases. In amorphous systems defects are any formations
which in some sense are different from the environment and
for this reason they decrease the entropy of the system, since
they decrease the number of microscopic states correspond-
ing to a given energy of the disordered medium.

We underscore the fact that irrespective of the type of
defect a disordered system in the energy representation can
be regarded in the simplest case as a two-level system, since
the translational motion of some structural unit, as noted
above, can be described as one or several transitions of the
entire ensemble from one energy state into another.

In the general case defects in amorphous alloys, just as
in crystals, can be divided?® into point, extended microscop-
ic, and macroscopic. Defects of the first kind consist of
broken and irregular bonds, pairs with variable valence,
atoms with a weak stress field (quasivacancies), atoms with
a strong stress field (quasiembedded atoms), and small clus-
ters consisting of several atoms and containing the disrup-
tions noted above. Linearly extended defects can consist of
the boundaries of clusters, accumulations of quasivacancies,
etc.

Investigations with an electron microscope have shown
that linear defects are virtually absent in amorphous metallic
alloys, in spite of the fact that free volume is undoubtedly
present.* Positron-annihilation experiments have not re-
vealed a large number of localized vacancy-like defects.*

For this reason, the concept of three types of defects in
metallic glasses was developed in Refs. 27 and 28. These
defects include three types of clusters containing 15-20
atoms: n-type—characterized by low “internal”” hydrostatic
pressure; p-type—characterized by high pressure; and, r-
type—characterized by high shear stresses. Estimates based
on the mechanical properties and from density data give n-
and p-defect concentrations of ~2.5%. Defects can migrate
through the volume and recombine. Similar ideas were em-
ployed in Refs. 29 and 30 to describe diffusion in amorphous
metals by means of small displacements of complexes.

Another mechanism of diffusion®' in amorphous metal-
lic alloys is also based on the presence of complexes, but the
complexes are distinguished not by internal pressure but
rather according to the number of metal atoms surrounding
the metalloid. According to the model, complexes contain-
ing the maximum admissible number of metal atoms are
rare, i.e., in terms of percolation theory the concentration of
unsaturated complexes is higher than the percolation
threshold, and this makes it possible for an atom to move
from one complex to another, i.e., it enables diffusion over
macroscopic distances. In this approach the defects are com-
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plexes in which the number of metal atoms surrounding the
metalloid is different from the average number.

Thus the analog of a vacancy is a complex with n — 1
atoms and the analog of an interstitial atom is a complex
with # + 1 atoms.

Modulation of the defect concentration in the sense of
deformation in a wave, as considered above, i.e., the concen-
tration of energetically more favorably organized defects in-
creases under the action of the elastic wave, as studied in Ref.
1 for crystals, can provide a quite universal mechanism of
interaction of an elastic wave with a topologically disordered
medium. The concentration changes due to diffusion of met-
al atoms either from a defect into the surrounding medium
and vice versa (into the matrix), or from the defect into
another.

It is obvious that, repeating the same arguments as for
point defects in crystalline metals, the interaction energy for
an elastic wave interacting with a constituent atom of a de-
fect in a topologically disordered medium can be written as

B = K00 = APy )

where K {™ is the local bulk modulus in a defect of type m;
the tensor Q{™ characterizes the difference of the deforma-
tion produced by an atom in a defect of type m from that of
the matrix; and, A$™ is the deformation potential of a defect
of type m. If the wavelength of the wave is much greater than
the size of the defects and the distances between defects, then
the force inducing diffusion of atoms is the difference of the
corresponding components of the deformation potential in
different defects. Assuming that the diffusion process con-
sists of uncorrelated jumps, the relaxation times, describing
the change in a number of atoms comprising a defect or re-
combination of defects, can be estimated as r;/D’ and
ris/D ", respectively, where 7, is the characteristic of a de-
fect, 7,4 is the characteristic distance between defects, and D’
and D" are the diffusion coefficients for diffusion over dis-
tances ry and r,,4.

If defects are assumed to be noninteracting, then be-
cause of their low concentration it can be assumed that r4
&1,y . Therefore the transition of an atom between defects
requires a much larger number of jumps than a transition
inside a defect, i.e., D " is apparently close to its macroscopic
value and the relaxation process itself is characterized by a
comparatively narrow spectrum of relaxation times.

The transformation of n, p, and r type defects into one
another can be taken into account within the theory of chem-
ical relaxation,*” modified in Ref. 33 for analyzing the con-
tribution of complex-formation processes to sound absorp-
tion in solids. Since, however, the interpretation of existing
experimental facts on sound absorption and sound speed in
amorphous materials (see below) does not require this ap-
proach, we do not discuss it.

If defects of the types n and p interact with one another,
striving to occupy adjacent positions, or a defect is produced
by the changing composition of metal atoms around a metal-
loid or the extreme atoms migrate from the defect into the
matrix or vice versa, then in order to migrate from one state
(environment) into another an atom must overcome a po-
tential barrier V. Sound absorption in this situation is due to
breakdown, as result of deformation in an elastic wave, of
thermal equilibrium between transitions through the bar-
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rier, i.e., the mechanism of sound absorption is analogous to
absorption in crystalline metals due to thermal disorder.

Thus the physical processes responsible for sound ab-
sorption in amorphous metals are very similar to those in
crystalline metals. The difference stems from the fact that,
due to the manifestation of random configurations in the
short—and intermediate—range orders of amorphous me-
dia, the characteristic sizes of defects and the distances be-
tween defects as well as the local values of the bulk moduli,
deformation potentials, and potential-barrier heights in the
general case are random variables and must be characterized
by a distribution function G(A,r, V).

For this reason, the procedure for calculating, for ex-
ample, @, reduces to calculating the sound absorption coeffi-
cient for a single defect (pair of defects) &, and then sum-
ming a, over all defects weighted by the distribution
function G(A,r,V):

a = Ja,G(A,r,V) dAdrdV, (6)

where a, is the sound absorption coefficient calculated in
Ref. 1 for crystals, per defect.

We consider first relaxational processes associated with
recombination of defects of the types n, p, and r, which re-
quire, as noted above, overcoming a series of potential bar-
riers. Generally speaking, in order to calculate the sound
absorption coefficient it is necessary to calculate the effec-
tive height of a potential barrier for displacement over a dis-
tance r,,. This is a typical problem in percolation theory.?*
However, we assume that the diffusion coefficient D is a
known parameter of the problem. This assumption makes
unnecessary averaging over ¥ and we can set 7,4 = riy/D.
As far as averaging over r,4 is concerned, if the defects are
distributed randomly, then the distribution function of the
distances between defects G,(r,q) is

Gi(rpg) = 4N, d’%de"p(‘g‘”Nd’gd) ) )

where N, is the total number of defects.

If the distribution of the distance between defects is sta-
tistically independent of the distribution of the deformation
potentials, we can write

G(r,A) = Gy(rpg)G2(A)
where G,(A) is the distribution function of the deformation
potentials of the defects. Then

_2 (- -]
E_AQMI Thg €xp ( “%”N 4ha) _w'idtbd .

3
ot ps kgT 0 1+,
(8)

where K;, =7 A;y, G,(A)dA s the standard deviation of the
deformation potentials of different defects (the tensor in-
dices in the components of the deformation potential, distin-
guished by the form of the deformation u;, in the elastic
wave, are omitted), NV, and , are the number of defects of
types q and ¢ (where g and ¢ assume the values n, p, and r),
and A,, = A, — A,.

It is easy to see that a4 has an absolute maximum as a
function of frequency, if

w=DN§/3, (9
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In order to estimate the temperature dependences of
a,q we replace the exponential in Eq. (7), which truncates
Gi(ryg) for rya >N '’ by | —H(ryy) —F.4, where
H(ry, ) is the Heaviside unit step function, 7oy = 3., N5 >,
and %,4 is a numerical factor of order 1. Then

Az D32
apg =Y, 2R [D’ bd ~

—— 5 F T Dy .

at

74+ VI Fog(D/w) 2 + (D/w)
7oy = VIF,4(D/w) % + (D/w)

VI 7o q(D/w)'?

(10)
(D/w) =F 24

+ 2 arctan

For low and high frequencies the functions a(w) are
identical to relaxation functions, though the functions them-
selves are substantially different. In addition, this mecha-
nism is distinguished by the fact that its temperature de-
pendence is closely correlated to the temperature
dependence D(T), i.e., a(T) increases with T. Moreover, it
can happen that at low temperatures D /& < 72y while at high
temperatures the reverse inequality holds. Then the function
a(w) is replaced by a quadratic law a ~”.

The dispersion of the sound speed is calculated similar-
ly to Eq. (10):

Asbd MX;,NGN, D¥2,"32
— =% Fp(FopD ). (11)
ot ps3kBT w2

It can be shown, as done above, with the help of asymp-
totic expansions that the above-noted properties of @, as a
function of frequency and temperature, as compared with
the relaxation behavior, are also manifested in As,,/s.

The quantity a4, associated with the exchange of atoms
between defects and the matrix, can be calculated similarly.
This mechanism can be interpreted as the above-mentioned
diffusion of free volume. If the process of formation of ex-
tended defects is viewed as uncorrelated flow of Z, excess
atoms, which create internal mechanical stresses, into a re-
gion of radius 4, then for N7} > 1 the probability of such a
process is described by the normal distribution (X is the
total number of atoms). Depending on whether Z, >0 or
Z ; <0, we have different defects. For this reason, for pur-
poses of estimation, the probability of the appearance of a
defect of type n having radius 7; and containing a smaller
number of atoms in the region r,, is of the order of
Pl ( NPV %1/2, and the probability for defects of type p is
[ —®( (Nrg )2y 4+ 1]/2, where ® (k) is the error function.
Substituting the probability of formation of defects into Eq.
(6), we obtain, for example, for defects of type n,

%= 4ps3kBT(Ard)I (N

2
1/2 wT

dr,, (12
w22 Ta )

where Ary =ry; —ry,, and ry, and ry, are the minimum
and maximum sizes of the defects, respectively.
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Since the second factor in the integrand has a sharp
maximum at 7, = (D 4/w)"/?, for purpose of estimation the
function ®(x) can be removed from the integrand and eval-
uated at r; = 7}, and the limits of integration can be ex-
tended from O to «. Then

AZN (D( [N(Dd/w)3/2]l/2)Dé/2wl/2
4ps3kgT(Ary)

no_
ay =

(13)

It is easiest to estimate the variance of the sound speed if
(Nrgy)'?> 1:

‘A2 172
Asy AN (Dy/w)

d

Fi(ryp,Dgw) — (F(rg1»Pgo®) ) -
S psszT(Ard) ( a2 17g1>Ha )

(14)

Similar expressions can be derived for other types of
defects, taking into account the possible difference in the
intradefect diffusion coefficients D 4. Since in typical defects
N1} > 1, the error function is essentially equal to 1. For this
reason, the expression (13) also gives an estimate for the
absorption coefficient with a uniform size distribution of de-
fects in the range ryy, <7y <Fy5.

If relaxation proceeds via single jumps, i.e., by breaking
of the bonds of an atom with its nearest neighbors, an over-
barrier transition, and establishment of new bonds, the
sound absorption coefficient can be calculated using the
expression for @ (Ref. 1) associated with defects in the man-
ner of Frenkel’, together with averaging over the distribu-
tion of the heights of potential barriers:

e vV
AZN max 2
ay = 3 £ G3(V) w‘;zdvf (15)
2057k T 7y I+w‘r

min

wherer =7,exp(V/kgT), V> kyT,and N, is the number
of atoms participating in a single transition over the random
barriers V.

Since the formula (15) has been used repeatedly for
interpreting experimental results for both amorphous metals
and dielectrics (see below), we list the assumptions on
which it is based:

1. The potential barriers ¥ are symmetric.

2. The potential wells differ only in that their deforma-
tion potentials are different.

3. The heights of the potential barriers separating two
potential wells between which an atom makes a transition
and the deformation potentials of each of these wells are
independent random variables.

4. There is no direct Coulomb interaction between the
potential wells (for amorphous metals this assumption is
justified by the high concentration of mobile charge carriers
and for dielectrics, probably, by the large distances between
the wells).

In order to find explicit expressions for a(w, T) and
s(w, T) it is necessary to calculate the integral in Eq. (15),
i.e., to use an explicit expression for G,(¥). Since there are
no well-founded physical arguments for choosing the distri-
bution function of the heights of the potential barriers,
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G,(V) is often chosen to be a uniform distribution® or a
Gaussian distribution.?>36
For the uniform distribution we have**

AZNV w
- 205°AV

[

ay [arctan(wT ,,, ) — arctan(@7 ;) ],

(16)

Vmin

14
max _
AV = Voax = Vimin s Tmax = T0S*¥P 7 > Tmin = FoS¥Pp 7

and V,_,. and V,,;, are the maximum and minimum of the
admissible heights of the potential barriers. The characteris-
tic experimental manifestations of this mechanism include
weak temperature dependence of @ and the fact that « is
proportional to the frequency o of the elastic wave.

The sound-speed variance associated with this relaxa-
tion process was calculated in Ref, 37:

l mag(_
n 2
min

(16")

22
As NNy (AV
1+wzr

1 1 +w?r? )
s 8ps2AV

keT ~ 2

If the heights of the potential barriers are distributed
according to a normal distribution, then

ANy,
ay = NZ
4np sk T(AV?)
+e T2 2
V-V wT
xjexp[_( _ZL] 55 dV. (17)
oo 2(AVY - 1+ o'

The integral (17) is usually calculated numerically,
and agreement with experiment is achieved by adjusting the
parameters of the distribution—the mathematical expecta-
tion ¥ and the variance AV2.

In order to determine the characteristic experimental
manifestations of the structure of the amorphous material,
resulting in a distribution of the barriers around some aver-
age value ¥, we assume that the barriers are distributed uni-
formly over a range of values V,_,, =V + (AV/2) and
Voin =V — (AV /2).

Then

'

3 AZNVa,
ay

- 2ps3AV

o7] —exp( — AV /2kyT) + exp(AV 72k, T) )

X arctan
|

(18)

where 7 = 7, exp(V /k T).
IfAV /k 3 T < 1, then making a series of expansion of the
exponential and the inverse tangent, we obtain
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2 4-3°
- AVIw’T L_A_D_w_;_
AN, T % 2kgT 8(kgT)

ay, =

Y 20, T 14022 14027 3(1+0? 7))

(19)

The last relation shows that if a is observed to have a
peak in amorphous metals, then by measuring the asymme-
try of the peak at high frequencies it is possible to estimate
the spread in the potential barriers. We note in passing that
the relation (19) shows, in agreement with experiment, that
in the case when there is a distribution of barrier heights
a(w) differs from the case AV = 0 only at high frequencies.

In the opposite limiting case A¥> ky T and retaining
only the first two terms of the expansion, we have

| oA, {1 lw?exp(AV/kBﬂ]_l} (20)
ay = ———— -l )

4ps°AV 1+ w27

i.e., to a first approximation & does not depend on the tem-
perature and is proportional to the frequency. When the next
terms of the expansion are included, a decreases somewhat
with increasing 7. The formulas (16)—-(20) describe qualita-
tively, and even quantitatively if the parameters are suitably
chosen, the existing experimental results on the acoustic
properties of metallilc glasses. Thus, depending on the relax-
ation mechanism and the form of the distribution of the
heights of the potential barriers, the frequency dependences
of @ can range from a~w~''2 to a~w? The frequency
range investigated in metallic glasses is bounded above by
o, =~ 10° Hz. Relaxation maxima have been observed in the
above-noted cases of hydrogenated glasses or Gorskii’s re-
laxation. In the other cases @ ~?, indicating that compara-
tively narrow distributions of the potential-barrier heights,
for which w7 < 1, are realized in metallic glasses. Especially
weak sound absorption can arise in the case of a normal dis-
tribution of barrier heights [see Eq. (17)], when the most
effective barrier heights V¢, giving a maximum of the func-
tion w7/ (1 4+ w*7?), are unlikely, i.e.,

[V-kgT lln(wry) 11 23(VDV2

It is this case that was probably observed in Ref. 38 in
the metallic amorphous alloy Pd, ;95 Agg 04 Sig 165, iR Which
in the frequency range 60—-500 MHz it was found that o for
longitudinal and shear waves is very small and less than in
fused quartz. From this standpoint it is understandable why
increasing the Ag concentration by a factor of 1.5 did not
change the sound absorption within the limits of the error of
measurements.

Therefore, in this alloy the thermoelastic losses asso-
ciated with heat conduction are the main source of sound
absorption.

Replacing Ag atoms by Cu or Ni atoms with the same
concentration increases a by factors of 7 and 10, respective-
ly. Since such low Cu or Ni concentrations cannot change
the thermoelastic losses in a metal so strongly, the observed
increase can be attributed to the contribution of relaxation
by one of the mechanisms considered above. The quadratic
frequency dependence of « indicates that, as in the case of
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Ag, relaxation with a single transition through a potential
barrier predominates. Since the atomic and ionic radii of Ag,
on the one hand, and Cu and Ni, on the other, differ by 10%,
it is unlikely that the deformation potential will change
much. Therefore, experimentally, the relaxation time in-
creases by at least an order of magnitude, i.e., the height of
the potential barrier to the translational motion of the atoms
[see Eq. (17)] must increase substantially.

According to acoustic experiments, however, as long as
the condition wr < 1 is satisfied, only the combination AZ
7N, can be determined. For this reason, in such cases all
estimates are unreliable, if there is no additional information
that can be brought to bear on the problem. Thus, for the
alloy Pd, ;75 Cug gs Sig 165 » Setting 7o = 10~ sec and taking

into account the fact that @ ~? right up to frequencies of
500 MHz, we obtain the estimate ¥'<0.1-0.2 eV. If, next, it is
assumed that all Cu atoms participate in the relaxational
process, then ( AZ)'/2=1eV.

In this sense experiments in a wide range of frequencies
and temperatures, which make it possible to check the theo-
retical models qualitatively, are of greatest interest. Thus
experiments on the same metallic amorphous alloys per-
formed in a wide temperature range have shown that for
T> 150-200K a starts to increase with temperature, though
the quadratic frequency dependence of @ remains. It is easy
to see that in none of the models with a~w? considered
above does a increase with temperature.

The simplest assumption that makes it possible to
change the temperature dependence of « is the assumption
that different potential wells have not only different defor-
mation potentials but also different depths, i.e., the potential
barrier is asymmetric.

If, as before, single transitions through a barrier are
considered, then each pair of wells must be regarded as iso-
lated. It is obvious that the distribution of atoms over the
wells is, like the amorphous state itself, a thermodynamical-
ly nonequilibrium distribution. However, the equilibrium
distribution of atoms within wells of the same kind with the
energies at the bottoms differing by A, satisfies the equation

NQ/ND = 451/ 41, = exp (A /T ), (21

where N {’ and N ) are the number of atoms on opposite
sides of the potential barrier and 4,, and 4,, are the proba-
bilities of a transition through the potential barrier ¥ from
different wells of the pair.

An elastic wave, modulating the transition probabilities
84, and 84, due to deformation interaction, disrupts the
distribution of atoms 8N, _ in the potential wells of the pairs.

For wells whose depths differ by A,, the balance equation
has the form

N = — (A, +841,) (N +8D))

+( Ay +384y, ) (N +8ND). (22)

Since for isolated pairs SN ) =8N §, and carrying
out the standard calculation of @, ,' we find for these pairs
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The general sound absorption coefficient is found by
summing over all wells with the corresponding distribution
functions. If it is assumed once again, for simplicity, that
A, ¥V, and A,, are independent random variables, then

ay=aykyT/M,, (24)

where

¥ dx
M, =[G, (x) 2X--
A _.[”4 )Chzx

Here G,(A,, ) is the distribution function of the probabilities
of energy asymmetry of the wells. If, for example, the asym-
metry distribution is uniform and @, = a},, then the total
sound absorption coefficient is proportional to the tempera-
ture. By combining the distribution functions G,(A,, ) and
the different expressions (17) and (20) for @) we can ap-
proximate the experimental temperature dependences ob-
tained for the acoustic parameters for different alloys (the
sound speed is calculated for the relaxation processes in the
standard manner' from the known values of a). The tem-
perature and frequency dependences of & obtained in amor-
phous semiconductors and dielectrics are mainly similar to
the dependences considered above for amorphous met-
als.**%*%=! The frequency dependences of a in different
temperature ranges can vary from «° to @% one observes
either maxima of a as a function of the temperature much
wider than the Debye peaks or a is at first temperature inde-
pendent and then, at higher temperatures but still far from
the vitrification point, a increases with temperature.

As the discussion presented in Ref. 34 shows, these ex-
periments on sound absorption can be interpreted on the
basis of relaxation processes with a single transition through
the barriers between symmetric potential wells, choosing a
suitable distribution of the potential-barrier heights. It is as-
sumed that at low temperatures the transitions through the
barriers occur by means of tunneling and that at high tem-
peratures the barriers are overcome by an activational over-
barrier process.

Big problems arise in any attempt to determine which of
the structural units of amorphous semiconductors or dielec-
trics participate in the translational motion. Thus, for exam-
ple, in Ref. 42 it is concluded, only on the basis of the differ-
ences in the experimentally determined numerical values of
the activation energy, that in As,S, at low temperatures the
S atoms, which are much more weakly bound with two As
atoms than in the S—As-S bond, undergo tunneling transi-
tions, while at temperatures 7'> 140 K the complex As S,
makes a transition over the barrier.

Another typical example are the models proposed for
specifying the relaxation process observed experimentally in
SiO,.

Some approaches employ motion of oxygen atoms in
$i—O-Si complexes in a transverse direction with respect to
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the bonds,** other approaches employ motion along the
bonds,* and still other approaches employ the hypothesis of
fused quartz as a double structure in the form of a mixture of
two types of octahedra, corresponding to the & and /3 phases
of crystalline quartz.*> The first two models do not agree
well with the x-ray diffraction data, while in the last model is
it possible to adjust the concentration of the phases so that
the x-ray scattering and the temperature dependence of the
sound speed are correctly described.

However, it is quite difficult to specify the relaxational
mechanism on the basis of only acoustical measurements.
The same situation exists in the case of measurements of
and s in amorphous elemental semiconductors.

In a-Si, aside from a relaxation maximum associated

with dissolved hydrogen, there is also observed® another
peak in a, which is attributed in Ref. 39 to the breaking of
one of the weakened bonds of the silicon atoms and satura-
tion of another bond, so-called bond switching. The activa-
tion energy of the relaxation process, as determined from the
temperature shift of the maximum at different frequencies,
was found tobe 1.73 + 0.2 eV, though the energy required to
break one bond is 1.15 eV. According to Ref. 39, this excess
energy goes into deformation of the remaining three bonds.

In principle, defects of the type of unpaired “dangling”
bonds are quite typical for amorphous silicon and germani-
um prepared by evaporation in vacuum or sputtering, since
directed covalent bonds, as noted above, hinder relaxation.
According to EPR data for the samples investigated, the
concentration of unpaired spins was 6-10'° cm™*. However,
since methods for preparing amorphous silicon with a low
concentration of “dangling” bonds do exist, this contribu-
tion can, in principle, be separated.

The question of the possibility of observing in amor-
phous semiconductors the contribution of electrons (holes)
to sound absorption is of great interest. In the absence of the
piezoelectric effect, any interaction of electrons with the
elastic wave occurs via the deformation potential. As noted
in Ref. 1, such an interaction at realistically attainable fre-
quencies (up to 10°-10'° Hz) is much weaker than the pie-
zoelectric interaction, and & on unlocalized carriers does not
exceed fractions of a dB/cm, and this makes it impossible to
separate it from the different mechanisms associated with
defects. An effective method for separating the deformation
interaction of sound and unlocalized electrons in crystalline
semiconductors was doping, which, as is well known, in the
case of amorphous semiconductors had a weak effect on the
electric properties. Experiments on separation of this contri-
bution could probably also be based on investigation of the
dependence of @ on the pulling electric field, which produces
drift of charge carriers.

Localized electrons (holes) can, in principle, make a
contribution to sound absorption of the same order of mag-
nitude as the piezoelectric effect contribution in crystalline
weakly doped semiconductors (see Ref. 1). This is associat-
ed with the possibility of the existence of nearby (separated
by less than the average distances) centers of localization
which have different deformation potentials. If, as before,
we denote by A,,, the difference of the deformation poten-
tials of two neighboring centers m and », then the intensity £
of the electric field produced will be of the order of A,,,/
g.7...,» Where g, is the electron charge and r,,, is the distance
between the centers. This electric field modulates the proba-
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bilities of transitions of a localized carrier between centers of
localization, which gives rise to relaxation absorption of
sound. Transitions can evidently occur between centers by
means of tunneling as well as over-barrier transitions. As
mentioned above, tunneling through a barrier was studied in
detail in Ref. 46 for both weakly doped and amorphous semi-
conductors. This contribution to the sound absorption coef-
ficient can be separated by applying a magnetic field (see the
review and bibliography in Ref. 42), which, by transforming
the wave function of a localized carier, changes a. Such ex-
periments, performed in Ref. 42, show that in the chalcogen-
ide glassy semiconductor (CGS) a-As,S; a does not depend
on the intensity H of the magnetic field. From this it was
concluded that electrons do not contribute to a.

We note, however, that if transitions between centers of
localization are over-barrier transitions, then the effect of
the transformation of the wave function on sound absorption
is substantially weaker, and the absence of a field depend-
ence a(H) could indicate not that sound absorption by lo-
calized electrons does not occur but rather that the potential
barrier is overcome by an over-barrier process. Moreover,
there exists an entire series of experimental results in CGS
(see review and bibliography in Ref. 48)—photolumines-
cence, ac conductivity, and others—which can be under-
stood if it is assumed that over-barrier transitions occur in
pairs of defects C* and C~, where C* and C~ denote atoms
of the chalcogen with positive or negative charges. Due to
the Coulomb interaction, they can form close pairs with
variable valence. For this reason, we estimate the contribu-
tion of localized carriers (for definiteness electrons) to
sound absorption. This can be done by repeating the argu-
ments presented above and taking into account the fact that
in the case of the formation of a close pair spatial overlapping
of the potentials of each center is possible. As a result, the
height of the potential barrier now depends on the distance
between the centers [otherwise a is calculated from Eq.
(23)]. However, we employ the results of Ref. 48, where the
ac electric conductivity in CGS, due to an over-barrier tran-
sition in one close pair of variable valence, is calculated:

4p9c T @ wr
12k Tch?(A, /2kg T) 1 + 0?7’

Reo (@)= (25)

Here, 7 is determined by the relation (23), and ¢, and g, are
the electric charges of the pair and localized carrier, respec-
tively.

The energy lost by the elastic wave per unit time can be
calculated from the Joule-Lenz law:

2 2
W = Amuw T (26)
" 12kgTch? (A,/2kyT) (1 + w??)

The sound absorption coefficient is found as the ratio of the
energy dissipated per unit volume by all pairs to the energy
of the elastic wave. Repeating the arguments of Ref. 48,
made in order to find the hopping over-barrier electric con-
ductivity, we obtain the following expression for a:

2,2
o - ( 4quq" )3 x°A Npr o?
4 Vmax ! 95V, 25 sin(ma/2)’

(27)
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where

a=1-c, c=4kgT/V,

max ’

Do/ 2kgT

5 ZkBTf dx
- Ao ch2—cx 4

0

N, is the number of singly filled pairs of variable valence, N
is the total number of defects, and ¢ is the dielectric permit-
tivity.

In the derivation of the formula (27) the distribution of
the energy asymmetry of the wells was assumed to be uni-
form:

Gy(A,)=H(Ay =1 A,1)724,, (28)

and the distribution of the distances between the centers of
the pairs was assumed to be uncorrelated:

Gyt = 4JtNr?'m exp( - 4—”Nr3 ) . (29)

3 mn

The overlapping of the potential wells in the region between
the centers was taken into account by lowering the potential
barrier V:

Vmax -V= 4‘Ipqc/5"m;.,

where V,,,, is the barrier height in the absence of overlap-
ping. In addition, for the averaging it was assumed that*®

4
r?nndrmu = (elq’:lz: )3 ( 1- V:ax ) - ‘;::x
4
~ ()" (=)

max max max

and
exp (%I'N’eun) =1 ’

which corresponds to the assumption that pairs of centers
separated by a distance less than the average distance be-
tween the centers in the system make the main contribution
to the conductivity and sound absorption coefficient.

Taking into account the Coulomb correlation in the ar-
rangement of pairs of centers, which reflects the specific na-
ture of the technology employed for preparing the amor-
phous semiconductor, results in g being replaced by a’ given
by48

a'=1-c+(T/4T,),

where T, is the glass-formation temperature, at which a
transition from the highly elastic state into the standard
amorphous state occurs and the diffusion coefficient de-
creases sharply.

A characteristic experimental indication of the contri-
bution of localized charge carriers is that as the temperature
increases, the frequency dependence a(w) becomes sublin-
ear. In addition, as observed experimentally, the absorption
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coefficient a can depend on the frequency. For pair concen-
trations not less than 10"°-10** cm~?and V,,, =1-2 eV, a
is of the order of several dB/cm.

It is nonetheless clear that the question of whether dif-
ferent charge carriers (electrons, holes, ions) or structural
complexes make the determining contribution in amorphous
semiconductors has still not been resoived.

Similar results are obtained if the potential energy of an
ion in certain regions of a disordered matrix has the form of a
curve with two minima of equal depth.

More precise arguments can often be made in the case of
amorphous dielectrics—glasses, in spite of their very com-
plicated composition. This is connected with the possibility
of purposefully changing the concentration of some struc-
tural units and measuring the acoustic characteristics as a
function of the frequency and temperature for different com-
positions. Thus detailed investigations of glasses with the
composition (Agl),[(Ag,0), (B,0;),_,1,_,, in which
either x = 0 and y ranges from 0 to 0.33 or 0 <x <0.7 and
0.25 <y < 0.5, were investigated in detail at frequencies of 5—
45 MHz and temperatures 80—460 K.

It was found that sound absorption increases with both
increasing x and increasing y, i.e., sound absorption is deter-
mined by the silver atoms (ions) in the glass. The sound
absorption coefficient a as a function of temperature is ob-
served to have peaks whose width increases with decreasing
», so that at concentrations y~0.1 the temperature depend-
ence of @ is no longer discerned. In regions where the peaks
in a can be seen clearly, it is possible to find, in accordance
with Eq. (17), parameters of the Gaussian distribution of
the barrier heights for which agreement with experiment is
attained. Typical values of the deformation potential were
found to be several tenths eV and the parameters of the dis-
tribution are as follows: V is several tenths €V/mole and
( V*)'/2 is several hundredths eV/mole.

It was also established that the parameters of the distri-
bution of the potential barriers depend on the concentration
of silver ions. Thus, for example, for y = const and x = 0.3
¥V =0.385 eV/mole and for x =0.7 ¥ =0.25 eV. At the
same time the standard deviations of the heights of the po-
tential barriers decrease with increasing Ag concentration.
For example, for x = 0.4 = const, as y increases from 0.2 to
0.5 the parameter ( V7)'2 decreases from 0.11 t0 0.05 eV/
mole or in the case y = 0.5 = const, as x decreases from 0.7

10 0.3 the parameter ( ¥'2)'/2 decreases from 0.057 to 0.033
eV/mole.

Another detailed investigation of the acoustic proper-
ties of complex glasses was performed in Refs. 34 and 37,
where the sound absorption coefficient and sound speed
were measured in niobium-phosphate glasses of the system
(M,0), (P,0s), (Nb,Os), _, _,. The metal M was one of
Li, Na, K, and Rb. The temperatures ranged from 200 to 400
K; a was measured at frequencies in the range 200-1500
MHz; and, s was measured at 30 MHz.

It was found that in all glasses except lithium glasses
a ~o and is virtually temperature independent. Conversely,
the sound absorption coefficient in lithium glasses varies
nonmonotonically as a function of the temperature, reach-
ing very large values (up to several hundreds dB/cm at w/
27 = 400 MHz. As the temperature decreases, a in lithium
glasses decreases rapidly and at 7~ 100 K sound absorption
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in them is equal to that in the other glasses which were inves-
tigated.

In order to take into account the frequency and tem-
perature dependences of a in glasses which do not contain
lithium, the experiment of Ref. 54 was analyzed using the
model of single transitions through barriers with uniformly
distributed heights. At low temperatures it was assumed that
the barrier is overcome by tunneling, and for TR 100 K the
barrier is overcome by an over-barrier transition. It was
found that this wide temperature range of measurements of
a could be described by using the same values of the param-
eters: A=12¢eV, V_ ., >03eV, V., <002¢eV, and N/
AV =610 J7''m ™3, indicating that the model was cho-
sen successfully.

Measurements of the sound speed in the same phos-
phate glasses (Rb,0)g ;35 (Pb,05)¢ 45 (NbyOs)g; at 30
MHz also showed that when the same values of the adjusta-
ble parameters as those found for the sound absorption coef-
ficient are used, the low-temperature behavior of s can be
explained with the help of the model of a single transition
through the barriers. At high temperatures, however, the
experiment cannot be explained by such a relaxation mecha-
nism, since higher values of TCS are required. The detailed
analysis performed in Ref. 37 shows that in these glasses at
high temperatures the anharmonicity, described within Ak-
hiezer’s theory,*® can make the main contribution to the
TCS.

Since the introduction of lithium into the glass increases
a and also causes the functions a(w) and a(7T) to be non-
monotonic, this indicates that an additional mechanism in
sound absorption must be taken into account. As shown in
Ref. 34, the experimental results can be described well by
using the sum of two normal distributions of the relaxation
times:

N, [ (V—T/,)z}
p| i

1
GV =737 {(V_%)l/zex

Ny
+ =52 P
(V32)

V-V } }
2v3

N +N,;=N, (30)

where N,/N=0.2, a as a function of the lithium concentra-

tion ( ¥2)"? ranges from 0.085 to 0.037 eV, ( V2)V2

ranges from 0.07 to 0.035 eV, ¥, = 0.19 eV, and V, falls in

the range 0.35-0.325 eV.

Thus, just as in the case of silver, as the concentration of
lithium ions increases, the height and variance of the poten-
tial barriers to translational motion also decrease. The fact
that the potential barriers manifested in acoustic experi-
ments are associated with the translational motion of ions
was demonstrated experimentally in Ref. 34 by measure-
ments of the electric conductivity at low frequencies as a
function of the temperature in lithium-phosphate glasses si-
multaneously with measurements of a. It was found that in
both cases the barrier heights are very close: At different
lithium concentrations the difference does not exceed 0.020—
0.015 eV and depends in exactly the same manner on the
concentration of lithium ions. Since in Ref. 34 the measure-
ments of the electrical conductivity were performed at 1000
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Hz, they correspond to the condition w7’ €1, where 7’ is the
time of a single hop. In this case the activation energy of
electrical conductivity is equal to the percolation level ¥V,
of the system. It is well known?* that for a normal barrier-
height distribution the difference between the percolation
level and the average barrier heightis ¥, —0.8( V2 e,
within the limits of experimental error, the percolation level
is equal to the activation energy found from «. For this rea-
son, it can be regarded as an established fact that the excess
sound absorption by Ag and Li ions in glasses is associated
with a single transition through potential barriers.

We now discuss how the concentration of lithium and
silver ions affects the parameters of the potential relief.

We note first that within the model of a glass in the form
of a collection of double potential wells separated by poten-
tial barriers with some kind of distribution of the barrier
heights, the only effects of the concentration of mobile Li
and Ag ions are that the number of filled wells increases and
@ increases in proportion to the ion concentration. For this
reason, such an effect, first, could be associated with the
dissolved Li or Ag creating its own potential relief. If, how-
ever, the wells are assumed to be so wide that many of the
introduced atoms can fall into them and the process of ions
falling into potential wells of width R, is assumed to be
random, then the fluctuations in the number of atoms in a
well and hence also the disturbances of the potential relief
are determined by (N, R 3 )'/2, where (N, R32)>1and N,
is the concentration of mobile ions, i.e., in contradiction to
experiment, the fluctuations grow with increasing N, .

Second, if the characteristic widths R, of the potential
wells are such that the wells can accomodate small-scale
fluctuations (the characteristic width R, € R, ), then when
Lior Ag ions are introduced the deepest wells are filled first
(compare the energy structure of strongly doped semicon-
ductors). Therefore, the potential barriers which ions must
overcome in order to participate in translational motion are
high and their variance is greatest for small N, . It is easy to
see that in agreement with experiment both ¥ and ( V7%)!/2
decrease as N, increases.

In this situation, it is no longer adequate to adjust the
parameters of the barrier height distribution in accordance
with Eq. (17) or (30) in order to describe the experimental
dependences a (@) and a(T), since the condition

Vb

- 3
facne” AT 8 < N, 2 an
0

must also be satisfied, where V, is the maximum energy of
the filled small-scale fluctuations and g, (V) is the corre-
sponding density of states in a potential well with character-
istic spatial width R, and depth V. It is easy to see that
potential barriers to translational motion range from V; to
V, — V.. For this reason, it should also be possible to ex-
tract information about the density of states, produced by
fluctuations in the main network of the glass, from ultra-
sonic measurements.

Aside from the above-enumerated parameters of an
amorphous structure, in Ref. 36 the constant 7, appearing in
the expression for the relaxation time was also determined
and found to be =10~'* sec.
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We have already mentioned’ that the values of 7, of the
order of 10~ "*~10~'* sec and less, found from acoustic mea-
surements, are questionable, since estimates obtained from
measurements of the temperature positions of the maxima of
the sound absorption coefficient at different frequencies are
not accurate enough. Thus, if

w,Texp(V/kpT|) = w,toexp(V/kyT) =1, (32)
1%0 87 2% 52

where T, and T, are the temperatures of the maxima at fre-
quencies of , and w,, then for ¥ = V, — const- T we obtain,
under the condition (32), an estimate for 7, by a factor
exp(const/ kg T). For example, in order that 7, be 10~ sec,
const* T at T = 300 K must not exceed 0.06 eV, which for
typical potential barriers of several tenths eV is at the level of
the measurement errors.

In conclusion, we note that the overwhelming majority
of the existing experimental results for amorphous media at
high temperatures can be described, at least formally, usinga
model of over-barrier transitions of atoms or ions, which at
high temperatures replace tunneling. However, there exist
other approaches for describing relaxation processes in
glasses at high temperatures on the basis of improved TLTS
models. These models include two-phonon®® and multi-
phonon processes®! as well as the model of quasilocal har-
monic vibrations.*>*

1.2. Monatomic melts

In spite of the great success achieved in the study of the
structure of liquids with the help of direct methods (scatter-
ing of x-rays and thermal neutrons), combined with molecu-
lar-dynamics modeling and in questions concerning the
structure of liquids and organization of thermal motion,
much remains unclear and this has stimulated the use of a
large number of model approaches, which are, as a rule, ef-
fective for explaining one or two physical properties, but are
of little use for other properties.

Under these conditions it is important, as in the past, to
accumulate more experimental data on the properties of li-
quids in a wide range of external conditions and, on the one
hand, to bring out consistent laws and, on the other, to com-
pare these laws with estimates obtained from different theo-
retical approaches.

We now examine from this standpoint the accumulated
experimental data on the speed and absorption of elastic
waves in monatomic melts of metals, semimetals, semicon-
ductors, and dielectrics.

This choice of objects of study is dictated by, aside from
their relative structural simplicity, the two following cir-
cumstances. First, they have all been studied many times
with the help of direct methods (see the reviews Refs. 54—
58) in a wide temperature range. Second, other structure-
sensitive physical characteristics have been investigated in
detail for these objects,> and this makes it possible to deter-
mine the place of acoustic methods of investigation of the
structure of liquids among other indirect methods.

In attempts to separate the role of order or disorder as
well as the effect of the character of the thermal motion in
the acoustic characteristics, by no means a trivial question is
which characteristic should be compared for substances in
the amorphous crystalline and melted states. It is obvious
that the propagation speed of longitudinal waves for these
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purposes unsuitable, though it is this quantity that is, as a
rule, employed for estimating the changes in the elastic prop-
erties of a material which are associated with the transition
into the liquid state. This is because the expression for the
speed of longitudinal waves in crystals contains the elastic
moduli which are associated with shear deformations, while
in the case of amorphous materials 4G /3 enters directly. In
liquids, however, with shear viscosity of several centipoise
(which is typical for most of the melts studied) G =0 for all
realistically attainable frequencies (the shear modulus re-
laxation time ,, is of the order of %'/K [, where %’ is the
coefficient of shear viscosity and (K[, ) ~'is the part of the
bulk modulus of the liquid that is connected with the transla-
tional motion of the atoms).

For this reason, it is desirable to characterize, as done
above, tne equilibrium elastic properties and the change in
these properties on melting by the bulk modulus X', which
describes the change in volume under hydrostatic compres-
sion in both the solid and liquid states. From the viewpoint
of the characteristics of the internal structure of the melt,
however, the absolute quantity K is uninformative. For ex-
ample, lead and germanium melts, which have completely
different structure and physical properties, have close bulk
moduli: 3.53-10"! and 3.57-10'' dynes/cm?, respectively,
while copper and silver melts, which have very close proper-
ties, have substantially different bulk moduli: 9.56-10'" and
6.8-10"" dynes/cm?. In this sense, checking the theoretical
approaches by comparing with experiment the computed
values of K or s,, of course, as is often done, does not reveal
the characteristic structural features of the melts. As will
become evident from what follows, the temperature coeffi-
cient of thebulk modulus K ~'dK /dT (TCB) isa very subtle
physical characteristic of the melt and is sensitive to mani-
festations of different types of ordering.® As in the case of
amorphous materials, by ordering in a liquid we mean pro-
cesses which reduce the number of possible microstates of
the system, i.e., reduce the entropy of the system.

As far as the sound absorption coeflicient is concerned,
it is well known?*? that there arises in liquids additional (as
compared with solids) sound absorption associated with
momentum transfer due to shear viscosity. At frequencies o
such that wr,, €1, this sound absorption coefficient a,, is
proportional to the viscosity and the squared frequency and
does not carry any additional information as compared with
direct measurements of %’. In addition, as before, heat con-
duction contributes to the sound absorption coefficient. This
mechanism of absorpton in liquids @, does not have any
peculiarities as compared with crystals.! Its relative contri-
bution to the total sound absorption in melted metals and
semimetals, however, is large due to the fact that a is small in
these substances as compared with the crystalline state. For
this reason, both contributions are usually subtracted from
the experimental value ®ep -

The excess sound absorption coefficient a,, computed
in this manner is related with ““internal” relaxational pro-
cesses and it can be expected that different types of structural
processes, in particular ordering, will be manifested in it.
The problem for most melts of metals, semimetals, and semi-
conductors that have been studied is that ., is found as a
small difference of two large numbers. In addition, «,, + o,
contains all errors in measurements of %', x, p, and s,, consti-
tuting up to 10%, and as a result, the experimental manifes-
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tation of relaxation processes in the sound absorption coeffi-
cient in melts of metals can itself often be established only by
analyzing the temperature dependences of a.,, on the one
hand and a,, (T) + «, (T) on the other.®' It is not difficult
to show that for most melts the latter sum increases with
increasing temperature no more rapidly than in proportion
to T. Indeed, for low-viscosity liquids (o7, < 1)a, ~%"and
it decreases with increasing T;>° @, ~xT (Ref. 1) for fused
metals increases as ~ 7, since »x =~ const and for dielectrics
% ~1/T. For this reason, the relaxation contribution to the
sound absorption coefficient and to the equilibrium bulk
modulus K, must be determined individually for each melt
using the relations

m exp n E
- L5 RN (0 U
= “exp 2p 3 [77 x C’;/ CP ]v (333.)
2a_s
2 p
exp =P5exszS<l - :Z:X > ’ (33b)

where Cy and C, are the heat capacities at constant volume
and constant pressure, s,,,, is the experimentally determined
propagation speed of elastic waves, and K is the instanta-
neous bulk modulus at constant entropy, i.e, in the absence
of relaxation processes. In deriving Eq. (33b) we employed
Eq. (1) and the fact that As/s < 1.

In melts of group I metals (Cu,Ag) and alkaline-earth
metals the difference between the heat capacities Cy and Cp
canreach 40%, so that the adiabatic bulk moduli K g must be
distinguished from the isothermal bulk moduli K. Since at
all frequencies employed for investigating the melts the pro-
cess of propagation of elastic waves is adiabatic, in what fol-
lows, unless otherwise stated, K is the adiabatic modulus.

In order to extract information about the organization
of order or disorder and thermal motion in simple (monato-
mic) liquids, we consider two aspects of the results of acous-
tic experiments: a) How does melting, i.e., acquisition by
atoms of translational freedom (dynamical disorder) as
compared with static disorder (amorphous state) and the
ordered crystalline state (near melting), affect the elastic
properties of the materals? b) Which properties are mani-
fested in the temperature behavior of the bulk modulus and
the sound absorption coefficient in melts of substances with
different types of short-range order and interatomic interac-
tion forces?

In other words, only the change in the acoustic proper-
ties of the substances either under melting or as a function of
external factors need be discussed. Even in this formulation,
however, it is difficult to interpret unequivocally the results
of acoustic experiments. This is primarily because in all me-
tallic melts and in most semiconductor melts the condition
ot <1 (@ ~o°) is realized in high-temperature experiments
and, therefore, 7 cannot be found directly. For this reason, 7
is estimated with the help of more or less plausible theoreti-
cal hypotheses, so that there is some arbitrariness in the val-
ues of K calculated from Eq. (33b). In addition, as a conse-
quence of the weakness of the theory of the liquid state,
detailed models of relaxation processes in monotomic li-
quids that could contribute to the experimentally observed
values of a,, have not been developed.
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In this situation, in order to analyze the manifestations
of order or disorder in acoustic properties we eschew the
results obtained by direct methods of studying the structure
of liquids.

In Ref. 1 it was already mentioned that even using mo-
lecular-dynamics modeling it is still impossible to draw an
unequivocal conclusion about the details of the structure of
the liquid from diffraction data. For this reason, melts are
probably best classified only on the basis of experimentally
observed properties as functions of the radial distribution or
structure factors, without assigning them any specific phys-
ical meaning. Such a systematization, performed in Ref. 62,
for liquid metals, semimetals, and elemental semiconductors
has made it possible to divide all investigated melts into three
groups. The first group contains alkali, alkaline-earth, pre-
cious, 3d, and rare-earth metals, Al, In, T1, Pb, Pd, Pt, and
Zr. The structure factors of these metals have a symmetric
maximum, and the functions g(r) are described well by the
hard-sphere model. The second group consists of bivalent
Zn, Cd, and Hg, in which the first peak of the structure
factor near the melting points has distinct asymmetry. The
third group consists of elements whose main feature is that
the volume decreases on melting—Ga, Sb, Bi, Si, Ge, and
also Sn. In the case of these metals, a secondary peak is ob-
served on the high-angle side of the peak in the structure
factor. As the diffraction experiments show, these features in
the structure factors vanish with increasing temperature.

Already the first classifications of the acoustic proper-
ties of metallic melts®®®' showed that melts fall into similar
groups according to the temperature coefficients of the
speed of sound. The behavior of s as a function of the tem-
perature was later studied many times and different authors
obtained largely the same results. The experimental results
obtained on the absolute values of s differ by several percent,
which is not significant for the purposes of our discussion,
and the results on the TCS are quite close. For this reason,
we do not present here the existing bibliography on this ques-
tion, and we employ the experimental results obtained in
Refs. 60 and 61 by a universal method and on the same appa-
ratus, with the exception of new data which have appeared

(2/r3)-10°13, sec2/m

60.
g 800 7K 7000
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(anyoneinterested in a more detailed discussion of this ques-
tion can obtain additional information from Refs. 59—61).
The temperature dependences of the sound absorption coef-
ficient have been studied in much less detail, though without
these data it is impossible to estimate, in accordance with Eq.
(33b), the equilibrium bulk modulus. For this reason, we
focus our attention on melts for which the temperature de-
pendences a(7T) and s(T) are known in a wide range of tem-
peratures.

1.2.1. Acoustic propertles of the meilts of typical metals

The typical temperature dependences of « and s for
close-packed metals from the first group are presented in
Fig. 2 using the example of Pb.®

Analogous temperature dependences are observed for
indium and thallium melts.*** For these melts s,,, de-
creases linearly and a.,, increases monotonically with in-
creasing temperature. Considering the small number of ex-
periments performed on sound absorption, which involve
great experimental difficulties and large measurement er-
rors, the results of measurements of Q.. (T) from Ref. 66,
which were obtained later and are in good agreement with
Ref. 65, are also indicated here.

As far as the relaxation time 7, appearing in Eq. (33b),
is concerned, as already mentioned, estimates of it are quite
provisional. The structural relaxation time 7,. is usually
found with the help of a formula constructed by analogy to

the relaxation time 7, of the shear viscosity:
Tn=q"/K", (34)

where 7" is the bulk viscosity, whose numerical value is
found from the condition

oy = (@%/ 257", (35

and
K= kgTpNy /M. (36)

The formula (34) is usually based on the similarity of the
physical processes responsible for momentum transfer in a

782

Q
§ FIG. 2. Temperature dependences of the speed of sound (4) and
£ sound absorption coefficient in liquid lead. I—Experiment, 2—ab-

7,627m" sorption due to heat conduction and viscosity, 3-—relaxation ab-

sorption coefficient.
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liquid between regions which are deformed differently and
for restructuring of the short-range order under the action of
elastic deformations. As justification of this estimate, it can
be noted that for most low-viscosity melts it agrees in order
of magnitude with the characteristic times of the autocorre-
lation function of the velocities of the particles, which is cal-
culated with the help of the molecular-dynamics modeling
(the numerical values of 7 are presented in Table IIT). For
purposes of estimation n” was calculated from Eq. (35)
from the known value of a,, or, if no experimental data on
a,, were available, it was assumed that 7” =~ %', which holds
in the investigated melts quite well near the melting point
T,.
Substituting Eqgs. (34)-(36) into Eq. (33b) we obtain
that for the second term in parentheses estimation gives
K ! /2ps* €1 and, therefore, if the formulas (34) and (35)
are correct, then the bulk modulus X should likewise in-
crease linearly with the temperature and in this case the re-
laxation contribution can be neglected.
On the other hand, for the instantaneous adiabatic bulk
modulus within the statistical theory of liquids we can
write®’

K(1 - kgTpNa By, _ kgTNAP
( CeM |~ M

N2 [T
+_i_A“1

1, 6
al & (3o0) o

- 350? Jd)’(r)g(r)radr ] (37)
0

where the prime indicates differentiation with respect to r.
By simple but cumbersome transformations we rewrite Eq.
(37) in the form®®

i1 BTNapBr, _ kgTNyp
( ceM )T M

4mp?N2 T 5
+ ——— A L d(r)g(r)ridr
2
owm>

-4

wp’N} N

+ —9;42— J [( 6¢(") - (I‘)I‘ )5
0

kTN, p
C‘W

where the fact that in metallic melts, as in liquified inert
gases, for r greater than several interatomic distances $(r)
decreases not more slowly than ~r—3 was taken into ac-
count. The second term can be expressed in terms of the
potential energy U of the melt:

-3 ¢'(r)§—§]ﬁdrsxl+xz+xa, (38)

Ky =2UpN,/M. (39)

As far as the third term is concerned, in principle it can
probably be calculated from the diffraction data obtained at
different temperatures and pressures (it is easy to show that
dg/dr can be expressed easily in terms of dg/d¥). The nu-
merical values of K, in Eq. (39) can be estimated as the sum
of heats which must be supplied to the melt in order for the
melt to reach the boiling point and then evaporate. In Table

TABLE III. Comparison of the experimental values of the bulk moduli and their TCM with the

values calculated from Eq. (39).

_ o |1 4Ky 2 [ 1 Ky
1[']-‘,11:;]t K, ]1)(; 1, Kz'l(f) 0, EF-!O‘, 1nwl(2)) * Koy 101, Pa? row W‘l 104,
Pa Pa sec K- 2

Na 0,013 0,52 50 5.3 0,68 6,0

K 0,013 0,21 7,0 3,5 0,33 8,2

Cu 0,3 8,9 2,0 1,6 9,6 4,0

Ag 0,09 5.1 2,0 2,1 6.8 4,0

Mg 0,05 1.9 4,0 27 2,6 4,0

Ca 0,03 1,1 4,0 24 1,2 5,0

Zn 0,06 2,6 4 3,0 5.3 4,0

Cd 0,04 1,6 4 3,9 4,1 5,0

Hg 0,02 0.9 6 5.6 3,0 8,0

Al 0,07 6,1 2,0 4,8 5,3 2,0

Ga 0,05 55 2,0 3,7 50 30

In 0,02 34 2,0 2,1 3.8 2,0

Ti 0,03 2,2 2,0 30 3,1 4‘1,0

Ge 0,08 6,0 1,0 9.0 4,0 4)

Si 0,12 7.6 0,65 6,4 3,9 )

Sn 0,03 4,3 2,0 6,1 4,3 5,0

Pb 0,03 4,2 2,0 8,7 3,5 44‘.0

Sb 0,04 1,4 3,0 20 2,3 )‘

Bi 0,02 1,8 3,0 69 3,0 3)

Ni 0,18 1,2 2,5 0,3 15,0 1

Co 0,18 11 2,5 0,2 12,4 [137] 1,1 {137]
Ar 0,0023 0,05 50 12 [69] 0,09 [135] 90 [135]

1 Xe 0,003 0,06 26 — 0,1 {136] 45 [136]

""The vaporization energies were taken from Refs. 69 and 138; the heat capacities were taken from

Ref. 59.
?The shear viscosities were taken from Ref. 59.

“The references to the experimental investigations are indicated below in Table V.

“The TCM changes with increasing temperature.
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III the computed values of K, are compared with the experi-

mental values K., . One can see that for close-packed melts
from the first group the values do not differ by more than
10% (the heat capacities and heats of evaporation were tak-
en from Refs. 59 and 69).

According to Eq. (39), the TCB is determined by the
temperature dependence of the internal energy of the melt,
i.e., the heat capacity, which, in agreement with experiment,
is virtually independent of the temperature. The numerical
values of TCB computed for close-packed metals from Eq.
(39) agree in order of magnitude with the experimental val-
ues (the discrepancy is 2040%).

The hard-sphere model gives good numerical agree-
ment with the experimental values of the speed of sound.”™
However, the values of the TCB obtained within the hard-
sphere model agree poorly. The model, for all practical pur-
poses, does not convey the full diversity of the temperature
dependence of s in semimetals and semiconductors, describ-
ing only the main feature of close-packed melts—the small-
ness of the free volume. Some improvement (but by no
means complete) is obtained with the soft-sphere model, in
which the temperature dependence of the radius of a sphere
is introduced (see, for example, Ref. 71). The plasma mod-
els’>®* also ignore virtually completely the specific structure
of the short-range order, giving only the correct order of
magnitude of 5. Thus, for these melts the relaxation contri-
bution to K can apparently be neglected.

As far as the sound absorption coefficient is concerned,
the temperature dependence of the contribution over and
above the classical coefficient a.,, calculated from the for-
mula Eq. (33a), for melts of close-packed metals is approxi-
mated well by a function of the form a ~ T'3/s* or by an expo-
nential dependence of the type a ~exp(aT), where a is a
constant. Obviously, if a7« 1, then both approximations
give the same description of the experiment, since when the
coefficient of proportionality is unknown the numerical
term in the expansion of the exponential is masked by the
linear increase of sound absorption with increasing tempera-
ture due to heat conduction.

The physical mechanisms of relaxation which are re-
sponsible for the excess sound absorption (as compared with
the classical case) and giving the experimentally observed
temperature dependence are still not entirely clear. On the
one hand, melting of metals which in the solid state have the
closest possible packing (twelvefold coordination) is not ac-
companied by a significant change in short-range order (the
coordination number=~11), and the electric properties and
measurements of the Hall constant indicate that the charac-
ter of the conduction does not change, i.e., the type of intera-
tomic bond remains the same, and this significantly limits
the possible mechanisms of relaxation. On the other hand,
since K; is 10-15% of the experimentally observed bulk
modulus, this means that dg/dV %0 and (or) dg/3T #0.
Therefore, in the case of propagation of a longitudinal wave,
the radial distribution function can change due to deforma-
tion and the change in temperature occurring in the wave.
Since the translational displacement of atoms is controlled
by processes of the diffusion type, this gives a phase shift
between the deformation in the wave and the change in g(7),
i.e., structural relaxation appears.

In Ref. 74 it was suggested that in order to describe the
contribution of a change in short-range order to sound ab-
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sorption the packing ratio £, be used as an additional inde-
pendent thermodynamic variable and the excess sound ab-
sorption coefficient itself be calculated within the
Mandel’'shtam-Leontovich theory (see, for example, Ref.
32). The main deficiency of the theory of Ref. 74 is that it
employs the free-volume model

5f=—;-n( m";-am>,

where a,, is the diameter of an atom, for deriving expressions
for the free energy and its derivatives in the liquid metal. On
the basis of this model, the potential energy of an atom,
which depends on the short-range order, is written in the
form U= y(£&,)N A /V, where y(£, ) is some function of £,
and completely ignores specific features of the metallic
melts, such as the presence of free charge carriers and their
screening action (which, essentially, is what leads to the spe-
cifically metallic pair interaction potential). The relaxation
time of short-range order should correspond, in order of
magnitude, to the residence lifetime and is estimated by A. L.
Ansel’m for liquid mercury to be 107!2 sec. As far as the
temperature dependence of a, is concerned, the final formu-
lain Ref. 74 (we do not present it because it is too complicat-
ed) contains parameters which are unknown in practice and
it is difficult to say anything definite. Within this theory a,
should probably decrease with increasing T, since the resi-
dence lifetime of the atoms decreases.

Moreover, it is hardly useful to use the packing ratio as
the relaxation variable, since the packing ratio is insensitive
to details of the short-range order, as is evident from the fact
that its values for different metallic melts are found to be
very close to 0.45. This was one of the main justifications for
using the hard-sphere model to describe the acoustic proper-
ties of metallic melts.

Two other approaches, employing similar ideas of
structural relaxation in close-packed melts, were proposed
practically simultaneously in Refs. 66 and 73. We note first
that a quite large number of highly accurate diffraction ex-
periments (see Ref. 1) have been performed in which it was
observed that the average interatomic distances [ position of
the first maximum of g(r) ] are virtually temperature inde-
pendent in an entire series of fused metals and semiconduc-
tors whose specific volume increases with increasing tem-
perature. This result is explained” within Ya. I. Frenkel’s
hole theory of the structure of liquids,”® the main idea of
which (ignoring the details, which are difficult to justify) is
that as a result of intense translational (besides vibrational)
motion of the structural units of the liquid, there arises a
nonuniform spatial distribution of the so-called free volume,
i.e., the volume not occupied by these structural units (for
example, ions in metallic melts). Individual closed elements
of free volume are called holes. Traditional calculations of
the sound absorption coefficient within the hole theory of
liquids®? are based on a postulated dependence of the proba-
bilities of formation and vanishing of holes on the external
conditions and they give, irrespective of the specific (more
or less realistic) computational scheme, the result that the
bulk 7" and shear 7' viscosities are proportional and the
proportionality coefficient is weakly temperature depen-
dent. For this reason, the relaxation sound absorption coeffi-
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cient should always decrease with increasing temperature,
and this contradicts the experimental facts for close-packed
metallic melts (Fig. 3).

For this reason, in Ref. 66 it was proposed that instead
of calculating the probabilities of formation and vanishing of
holes, the close-packed melt be regarded as a mixture of ions
in two states (1 and 2): the first state corresponds to the case
when there is no hole in the first coordination sphere, i.e.,
among the nearest neighbors of the ion, while in the second
state the first coordination sphere contains one hole.

Using Furukawa’s analysis’’ of the results on scattering
of x-rays, Flinn, Jarzinski, and Litovitz®® started from the
assumption that in the absence of holes all liquid metals
should have near the melting point short-range order with
face-centered symmetry, which corresponds to Z_ = 12.

They attributed the fact that the real coordination num-
ber Z,, found experimentally, is different from the ideal
number Z_ to the presence of holes. This made it possible to
calculate the number of holes in the first coordination
sphere. The concentration of ions in the two states (1 and 2)
was estimated, correspondingly, thus

12—z 22— 12

Ch =, C;=]—(Co=——"on—1—
2 ’ 1
z 2 z

(40)

and it was used as an additional thermodynamic variable.
The transition of an ion from one state to the other is asso-
ciated with transition through a definite potential barrier.
This barrier is modeled by the deformation occurring in an
elastic wave, which is what gives rise to relaxation. For this
reason, the sound absorption coefficient is then calculated
with the help of the two-structure model proposed by Hall”®
for describing acoustic properties of water and later elabor-
ated by Herzfeld and Litovitz.”. It was found that @, ~¢c,
and for this reason it is a strong function of the coordination
number:

(41)

T sk TN,

v C
where AV and AH are the changes in the volumes and enth-
alpies per mole accompanying a transition of an ion from one
statetotheother; 8.... and C fm are the instantaneous values
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FIG. 3. Temperature dependences of the ratio of the volume 7" and shear
7’ viscosities for Pb (1), In (2), and TI (3).
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of the thermal expansion coefficient and the molar heat ca-
pacity at constant pressure; and, both concentrations are ex-
pressed in terms of the coordination number by the relations
(39) and (40).

The mechanism of the interaction of an elastic wave at
least with close-packed liquids, which liquid metals and se-
mimetals are, is quite universal. For this reason, Z, should
probably be used as an adjustable parameter, since there is
no basis for assuming that in all melted semimetals and semi-
conductors having in the solid state completely different
types of short-range order and apparently several different
interatomic potentials, the same value of Z, (equal to 12)
should be established after melting. Moreover, it is shown in
a number of articles (see the bibliography in Ref. 3) that
different radial dependences g(r), in particular, depen-
dences with a characteristic shoulder near the first peak, can
be obtained by adjusting the pair potential.

It is easy to see that a, as a function of the coordination
number has a maximum at Z,,,, = 2Z_/3. For this reason,
the behavior of a, (T) is determined by the form of the func-
tion Z, (T). By adjusting Z, it is possible to achieve good
agreement with experiment with respect to both the tem-
perature dependences of @, and the absolute magnitude.
However, in using the theory it is necessary to take into ac-
count the fact that the computational results depend very
strongly on Z,, whose value is determined with large error
from direct experiments. Thus, for Pb Z_ = 11.4 gives good
agreement with the measured value of @,,and Z, = 11.2 or
Z,. = 11.6 gives disagreement with respect to both the abso-
lute magnitude of &, and its temperature dependence. Simi-
lar results are also obtained for Bi.

We note in passing that for close-packed metals a, (T)
is a monotonically increasing function. This follows from
Eq. (41), if Z, > Z,,., since the coordination number de-
creases with increasing temperature. In these metals the as-
sumption Z_ =~ 12 probably is justified, since Z,,, = 8 and
near the melting point Z, =~ 11. In liquid bismuth (see below,
Fig. 6), however, these arguments are not valid, since the
coordination number is much smaller than eight in this
case,’® and therefore on the section where « increases mono-
tonically Z_. « 12, which, considering the character of the
interatomic interaction in the crystalline state, is entirely
reasonable. The described computational scheme can also be
used for calculating «, within the cluster model of a liquid,
which, in the last few years, has been employed quite widely
for describing different properties of liquids (see Ref. 1).
Here, two states of the ions can also be separated: in the first
state an ion is present in the cluster and in the second state an
ion is present on the boundaries of the clusters (or between
clusters). We return to this question below when we discuss
the acoustical properties of melts of semimetals and semi-
conductors.

In Ref. 73 the packing ratio £, of the free volume was
chosen as the additional independent thermodynamic vari-
able which takes into account the presence of holes. It was
introduced into the calculation by the definition

(4/3)n(r2)y¥ % =7, (42)
where (72)!/? is the rms interatomic distance and 7 is the
specific volume per ion. It is easy to express 7 in terms of the
radial distribution function g(r), since the latter function,
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being a binary correlation function, is related to the proba-
bility of finding a particle at a distance ranging from 7 to
7 + dr from some other particle:%®

J (g(r) - 1) V.
Q)

(43)

Introducing 7 = 7+ Arand § = i, + AD, where7is the aver-
age interatomic distance corresponding to the first maxi-
mum in g(r), 9, = (4/3)@F>, Ar are random deviations
from the average values in the interatomic distances, and A
is the free volume per ion, and assuming that Ar €7, we can
rewrite Eq. (42) in the form

(an)?
2

o
oc'lcl

"T

In this approach sound absorption is due to relaxation
arising as a result of the redistribution of free volume under
the action of the elastic wave. A relation between £ and the
free energy of the melt can be found on the basis of the pseu-
dopotential theory,®! applied to metallic melts under quite
general assumptions about the form of the local pseudopo-
tential. The internal energy of the melt can be written as®’'

~ l [--1--]
U=Uy¥)+ ‘z—n“z.([.([Un(Q)

+U,Q)E0) — DIGE PO e, (44)

where U, ( 7 includes all terms in the expansion of the inter-
nal energy which depend on the volume of the system and
the second term takes into account the energy that is sensi-
tive to the structure of the short-range order; Uy, (Q) and

Ui (Q) are the Fourier transforms of the pair potentials of
the direct and indirect (via the conduction electrons) inter-
actions.

The integral over the wave number Q in Eq. (44) is
estimated on the basis of the fact that U ,;, (Q) and U, 4, (Q)
are proportional to £(Q) [£(Q) is the Fourier transform of
the dielectric permittivity of the electron gas], and £(Q) has
alogarithmic singularity at Q = 2Q (QF is the Fermi wave
number).

In Ref. 73 calculations were performed for a pseudopo-
tential in the point-ion model taking into account repulsion
of the internal shells. As a result we have

22
- O,Iwzt z°q,

5;2/3 , (45)

where z is the valence and g, is the electron charge. This
gives the correct order of magnitude, if it is assumed that
T2 1072 gec. The temperature dependence of @, can be esti-
mated taking into account the fact that within the Man-
del’shtam-Leontovich relaxation theory?? 7~32U /d&2.
Hence”

a,~T3/s>. (46)
In Fig. 4 the computed temperature dependences a, (T') are
compared with the experimentally found dependences
(dots) for Pb, In, Bi, and T1. The proportionality coefficient
in Eq. (46) was found by comparing the theoretical and ex-
perimental values at a given temperature. As far as the relax-
ational contribution to the sound speed is concerned, in vir-
tually all theories considered above As, ~ 1/T, which should
lead, from Eq. (33b), to a positive TCB. If, however, the
previous estimate 10~ 12 sec is used for 7, then for real values
of a, the second term in Eq. (33b) can be neglected and
therefore the temperature dependences of K., in close-
packed metals from the first group are determined only by
the instantaneous values of the bulk modulus, and this leads
to linear temperature dependences K., (7).

1.2.2. Acoustic propertles of group-2 metais

The experimental observation of the characteristics of
the acoustic properties of metallic melts from the second

FIG. 4. Comparison of the experimental results with the function

2 % a, ~T3/s* for Pb (1), In (2), Bi (3), and Tl (4). The asterisk marks

points where both dependences coincide.
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group (Zn, Cd, Hg) reduces to the following. In these melts
the TCB is substantially nonlinear,®? and a(T) exhibits a
nonmonotonic temperature dependence.® This is illustrated
in Fig. 5 for the example of Zn.

In addition, the acoustic properties of these melts are
several times more sensitive to external pressure than for
other metallic melts (for example, for melts belonging to the
first group s 'ds/dP=~0.6-10"° bar~', while for mercury
s 'ds/dP~1.5-1077 bar 18334 this last result agrees well
with the values of dg/dV estimated from the calculations of
(Kexp — K,)/K,,, presented in Table III. The latter quanti-
ty is 10-20% for group-1 close-packed metals and 100-
200% for Zn, Cd, and Hg.

The excess sound absorption coefficient in Zn and Cd
has a diffuse maximum. This agrees well with x-ray measure-
ments in a wide temperature range,”® which show that in
these melts, even though the character of the metallic bond
does not change, the coordination number at first increases
and then starts to decrease at 100-200" above the melting
point. It is easy to see that within any model of the melt an
increase in the coordination number with the bond type re-
maining unchanged is accompanied by an increase in the
bulk modulus. This increase, superposed on the overall drop
in the bulk modulus due to intensification of thermal motion
accompanying heating, decreases the TCB in group-2 met-
als.

The increase in the coordination number near the melt-
ing point T, in these metals is probably connected with the
fact that in the solid state they have a complicated structure
of short-range order (8 + 6) and the change in short-range
order is not completed in them at 7', . Analysis of the change
in the bulk modulus of these metals on melting gives similar
results (see below).

We also note that the significantly lower TCB than in
other group-1 metals has also been observed in In (see Table
III), in which conversion of the short-range-order structure
from a body-centered cubic lattice (8 + 6) in the solid state
to the closest packed structure in the melt occurs also. X-ray
diffraction experiments also show that the coordination
number in indium does not reach immediately values char-
acteristic for the closest packing (11, 8), but rather increases

70

[a/r})-10-75, secz/m

- 2,79

700 800 7100

975 Sov. Phys. Usp. 35 (11), November 1992

smoothly after melting.

In In, however, the TCB is practically constant (except
for the case of large overheatings), and «,, is a monotonic
function of the temperature.5*%> The reasons why bivalent
metals are more sensitive to changes in the coordination
number (and external pressure) must be sought in the pres-
ence of two valence electrons, since, as is well known (see,
for example, Ref. 85), in the solid state their valence band
overlaps with the band lying above it, and on melting the
electric properties of In and the density of mobile charge
carriers do not change drastically. Since the radii of both
coordination spheres of the corresponding crystals fall nto
the region of the first maximum of the radial distribution
function of fused Zn, Cd, and Hg, it can be conjectured that
there are present in the melt two close preferred interatomic
spacings and hence two values of the overlappings of the
bands. This makes it possible to employ two-structure mod-
els, similar to the two-state models considered above, for
calculating «, .°*%¢ Both studies are idealogically close to
the model presented above; they differ by the methods em-
ployed for finding the values of the adjustable parameters. In
the first approach (Ref. 66) a, ~c,c, and in the second ap-
proach (Ref. 86) a,~c,c3, where ¢, and ¢, are the concen-
trations of each structure and ¢, 4 ¢, = 1. The difference is
connected with the formula used to calculate the contribu-
tion of translational motion to the bulk modulus of the melt
and, as a consequence, different values are employed for the
relaxation time. In Ref. 66 K |, is calculated from Eq. (36)
and in Ref. 86 K ;. = ¢,K |.. If ¢, and ¢, are functions of the
temperature, then in accordance with experiment a, has a
maximum at ¢, = 0.5 in the first case and ¢, = 0.3 in the
second case. For large overheatings the differences between
the structures vanish due to intensified thermal motion, and
the temperature dependence a,, (T) is determined by pro-
cesses wWhich are characteristic of close-packed metals.

1.2.3. Acoustic properties of melts of semimetals and
elemental semiconductors

The clearest relation between the acoustic characteris-
tics of close-packed monatomic liquids and the organization
of short-range order is observed in melts of elements belong-
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FIG. 5. Same as Fig. 2 but for liquid zinc.
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ing to the third group—in semimetals and semiconductors.
As has already been mentioned, experiments have estab-
lished reliably that for these melts the first peak in the scat-
tering intensity as a function of the angle is accompanied by a
secondary peak. The coordinate of the secondary peak often
corresponds to the distance to the nearest neighbors which
form a homopolar bond in the solid state.>>*

From the standpoint of acoustics the temperature de-
pendences s(7) and a(T) in group-3 melts differ signifi-
cantly from the first and second groups.

In fused tin and gallium,%***#"-%8 as in group I metals,
the bulk modulus is observed to decrease with increasing
temperature, but significantly above the melting point
(~275°C for gallium and ~570°C for tin) the TCB
changes significantly.

Similar features are also observed in the temperature
dependences a(7) for tin, though these temperatures are
appreciably lower than the ones at which the secondary peak
in the g(7) curve vanishes.? The changes in the TCB amount
to 10-15% and some authors have not been able to record
them at all (see the bibliography in Refs. 59 and 84). Recent

——
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FIG. 6. Same as Fig. 2 but for liquid bismuth.
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measurements performed by S. G. Kim have revealed a peak
in the sound absorption coefficient of fused gallium right
next to the melting point,'** though earlier measurements
performed by Hunter and Hovan'**!3* did not show this
feature. The results obtained in this temperature
range®®13%134 are also distinguished based on the measured
absolute values of @. At temperatures high above the melting
point the sound absorption coefficient increases monotoni-
cally approximately as 7°/s> with increasing temperature.
As the fraction of covalent bonds in the solid state in-
creases, the transition into the liquid state results in more
complicated temperature dependences s( 7)) and a(T). They
are presented in Fig. 6 for Bi,% in Fig. 7 for $b,5%°7°% in Fig.
8 for Ge,”"** in Fig. 9 for 8i,°** and in Fig. 10 for Te.5>97:%
As one can see from the plots of s(7T'), in all melts near
the melting point the bulk modulus does not decrease with
increasing temperature, as in typical metallic melts, but
rather it either remains practically constant (for Bi; see also
Refs. 59 and 84) or it increases with the temperature (for
Ge, Sb, Si, Te). Only at temperatures significantly above the
melting point (Bi, Ge) is it possible to observe a transition to
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FIG. 7. Same as Fig. 2 but for liquid antimony.
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a bulk modulus that decreases linearly with increasing tem-
perature or to a different TCB (Sb, Te).

The sound speed as a function of the external pressure
behaves near T, differently from the case of normal metals.
Such experiments up to pressures. P = 12 kbar have been
performed for liquid bismuth®***® and have revealed a sig-
nificant difference in s(P) near and high above the melting
point.

The temperature dependence a,, (T) in fused semime-
tals and semiconductors, in contradistinction to group I
metals, has near T, peaks of different height and a transition
to the temperature dependence a,, ~ T>/s> can be observed
only far above the melting point (Bi, Te).

As expected, all features in s(7T) and a,, (T) are most
clearly observed in tellurium melt, where melting and heat-
ing make it possible to realize semiconductor-semiconduc-
tor—metal transitions.

It is natural to associate the features in the acoustic
characteristics of fused semimetals and semiconductors to
the characteristic features of the organization of short-range
order in them, since the latter features are recorded reliably
in diffraction experiments. Thus, it has been established in Bi
(Ref. 80) that in the temperature range 20-30 K above the
melting point the coordination number Z, increases from
7.2 to 8.1 and then decreases monotonically. Similar changes
in the coordination number are observed in diffraction ex-
periments in Sb, Ge, and Si. In the case of tellurium, the
temperature changes occurring in the radial distribution
function are interpreted® as resulting from preservation of
chains of tellurium atoms in the melt immediately after melt-
ing. Heating decreases the length of the chains, but the di-
rected covalent bonds remain even with quite large overheat-

95

FIG. 9. Same as Fig. 2 but for liquid silicon.
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FIG. 10. Same as Fig. 2 but for liquid tellurium. / '—experimental curve
obtained in Ref. 98.

ings; this is also indicated by the fact that the position of the
first peak in g(7) remains virtually unchanged as a function
of the temperature and the second and third peaks in g(r)
are well resolved.'®® At higher temperatures (up to 400 K
above T, ) the second and third peaks in g(r) vanish, and
the coordination number increases up to 6.

We underscore, however, the fact that the secondary
peak in g(r), which has served as a basis for separating the
third group of melts and is usually interpreted as being a
consequence of the preservation of covalent bonds, is ob-
served at temperatures appreciably above the range where
anomalies are present in the acoustic characteristics. In this
connection we note that anomalies in the temperature de-
pendences of different physical properties of group I1I melts
have been observed by many authors (see the reviews in
Refs. 55, 59, and 101). Thus, measurements of the electrical
conductivity o have shown that after melting o in Bi, Sb, Ge,
and Si reaches values close to the typical values for polyva-
lent metals (for example, Pb), and this enabled A. R. Re-
gel’'®! to assert that melting in these metals results in semi-
metal-metal and semiconductor—metal transitions,
respectively, for Bi, Sb and Si, Ge.

Accurate measurements of the electrical conductivity
and the Hall constant have revealed that in a number of cases
the transition is not completed at melting, but rather it con-
tinues also in the liquid state. Thus, in the case of Ge at
temperatures of 50-60° above the melting point o deviates
from a function which decreases linearly with increasing
temperature and the Hall constant passes through a mini-
mum.>®

However, no sharp anomalies in the electrical proper-
ties of Bi and Sb have been observed above the melting point,
though near melting the Hall constant of these metals is
somewhat different from the values predicted by the free-
electron model under the condition that all valence electrons
are collectivized.

The activation energy of viscous flow in all liquid poly-
metals (Bi and Sb) and semiconductors (Ge and Si) near
T, changes as a function of temperature more slowly than at
higher temperatures, and in some elements it passes through
a minimum.'°!
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In tellurium intense growth of the electrical conductiv-
ity and viscosity changes extend over several hundreds of
degrees, and the Hall constant decreases, remaining ~3
times higher than in the free-valence-electron model.*®

Thus in all structure-sensitive physical properties of
melts of semimetals and semiconductors (except Te) anom-
alies are observed mainly at temperatures slightly above the
melting point, when no drastic changes are observed in the
secondary peak in the intensity of x-ray scattering, but rath-
er changes, reflecting small changes in the coordination
number, are observed in the main peak itself.

One would think that the anomalies in the acoustic
characteristics reflect directly a continuing increase of the
free-carrier density near the melting point. However, replac-
ing the covalent bonds by metallic bonds does not increase
the bulk modulus, but rather it decreases the bulk modulus
substantially, and this can be seen clearly in Table V for the
example of germanium and silicon. In these metals, in spite
of the fact that the volume decreases substantially on melt-
ing, the bulk modulus decreases strongly, and this can be
correlated to the fact that the interatomic bonds become me-
tallic.

Another possible explanation, based on the fact that on
melting a large relaxation compressibility arises in the semi-
conductors, does not work because the experimentally ob-
served sound absorption coefficients are very different, even
though their bulk moduli change by approximately the same
amount on melting. However, the general relaxation rela-
tions (33) show that this situation can occur only if the re-
laxation times in both melts are substantially different, and
there is no physical basis for this (these melts have close
viscosities and specific volumes, which determine the trans-
lational relaxation time).

Anomalies in the behavior of the physical properties
near the melting point of liquid metallizing semimetals and
semiconductors are often regarded as a manifestation of
their microscopically nonuniform cluster structure.

Hall’s two-structure approach,’® mentioned above, was
proposed as a relaxation mechanism already in the first pa-
pers in which acoustic anomalies were observed in liquid
semimetals and semiconductors.*%*°” Within the two-
structure model, quasicrystalline structure is assigned to the
liquid. According to this structure, the liquid consists of a
mixture of two structures: one corresponds to the solid state
and the other corresponds to a more close-packed state. The
appearance of a close-packed structure is what determines
the decrease in the volume on melting. Atoms can make a
transition from one structure into another, but this transi-
tion requires overcoming some potential barrier. The relaxa-
tion process arises as a consequence of the modulation of the
probabilities of a transition of atoms from one structure into
another by the elastic wave and therefore as a consequence of
changes in the concentration of both structures.

One version of the two-structure model is the cluster
model proposed for a liquid quite a long time ago (see the
bibliography in Refs. 3 and 102) and recently further elabor-
ated in the theory of melting and premelting.'°*'** A R.
Regel’ and V. M. Glazov explained, with the help of the
cluster model, anomalies in the temperature dependences of
the viscosity near the melting points in melts of semimetals
and semiconductors.'® V. R. Regel’, V. M. Glazov et al.
employed in a number of studies (see the review in Ref. 105)
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cluster representations for qualitative interpretation of the
above-noted features in the experimental temperature de-
pendences of the speed of sound in melts of semiconductors.
In these papers the different temperature behavior of the
physical properties in liquid semimetals and semiconductors
was attributed to the different kinetics of cluster breakup.
However, as a comparison of the bulk moduli of semimetals
and semiconductors, which metallize on melting, in the solid
and liquid states (see Table V below) shows, the breakup of
solid-like clusters should by no means result in an increase of
the bulk modulus, which is required for explaining the ex-
perimental results.

It should also be noted that J. Ziman’s general consider-
ations'® concerning the fact that the role of a large number
of “special” atoms located on the surface of clusters is ne-
glected are not resolved within the traditional cluster analy-
sis.

Cluster representations also contradict Turner’s ther-
modynamic estimates (see Ref. 107). He obtained for the
structure factor S(0) of a binary alloy in the small-angle
limit

SO =N lcy—cy)loy —cy s

where N, is the number of atoms in a cluster, C, is the total
concentration of atoms of, for example, type 4, ¢, is the
atomic concentration of 4 atoms in a cluster, and ¢, is the
concentration in the matrix in which the clusters float. Nu-
merical estimates give for N, values of 1-2, which, of
course, is physically meaningless.

It is also difficult to reconcile the idea of clusters as
crystal-like formations with the results of diffraction experi-
ments which show that the temperature dependence of the
coordinate of the first peak is very weak (or absent alto-
gether), i.e., the microscopic thermal expansion coefficient
for different melts, including bismuth and germanium,>>-¢ is
very small (zero), though the presence of regions with crys-
talline order would also require the organization of crystal-
line thermal motion with values of B typical for the corre-
sponding crystals.

As far as the secondary peak is concerned, there exist a
number of methods (see the bibliography of Ref. 3) for ob-
taining it, for example, with the help of a specially chosen
pair interaction potential.'%®

In addition, molecular-dynamics modeling of melts, in
particular, recent calculations for liquid Si (Ref. 90) and
GaAs (Ref. 107), does not reveal any clusters. However,
modeling has shown for Si that =~30% of the atoms in a
coordination sphere are associated with the central atom,
while for GaAs up to 50% of the atoms are associated with
the central atom. Moreover, in gallium arsenide, if the prob-
ability of strong coupling between atoms of the same type is
27%, then the probability of coupling between groups of
three atoms drops to 6%.

These bonds could possibly be present in the form of
short-time localization of valence electrons in the bound
state between pairs or groups of neighboring atoms, for ex-
ample, in the process of resonance hybridization,> as con-
sidered by Pauling.'®

A significant difference between the covalent and me-
tallic bonds is that covalent bonds have a finite lifetime 7, ,
since they are broken by the thermal diffusive motion. This
was also demonstrated by molecular-dynamics modeling in
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Ge and GaSb. Considering the fact that a finite time 7, is
required in order to establish a covalent (ionic) bond and
Tire decreases with increasing temperature, since thermal
motion intensifies, it is understandable, without the help of
the cluster model, why in melts such as Ge, Si, Bi, and Sb,
covalent bonds are broken and metallic bonds are estab-
lished (if the density permits this to happen) as the tempera-
ture increases.

This approach enables a natural explanation of the ex-
perimental fact that in the amorphous state (static disorder)
in Ge and Si the main type of bond is the covalent bond,
while in the liquid state (dynamical disorder) the main type
of bond is metallic. If, however, the material in the crystal-
line state has a chain-like structure, then the weakest bonds
are the interchain bonds, and melting occurs as a result of
breaking of these bonds. The melt contains a large number of
chains, which are not broken by the thermal motion. As a
result, chains are the structural units which participate in
the translational motion. Such a system has a high viscosity,
and therefore the residence lifetime of the structural units is
long. For this reason, the covalent bonds are mainly pre-
served, and melting occurs by semiconductor-semiconduc-
tor (selenium) and dielectric—dielectric (sulfur) type
mechanism. The intermediate case is apparently realized in
tellurium, when the energy of bonds between atoms in a
chain is comparable to the interchain bond energy. As a re-
sult, on melting there appears a metallic type interatomic
interaction together with weak self-diffusion and a high con-
tent of covalent bonds. The latter bonds quickly break with
increasing temperature, since the viscosity decreases rapid-
ly.

Thus atoms in Ge, Si, Bi, and Sb probably occupy two
states, while in Te they occupy three states. The first case is
characterized by a purely metallic type of interatomic bond,
while the second case is characterized by a mixed covalent-
metallic bond. Atoms comprising chains with a covalent
bond are found in the third state. Deformations in an elastic
wave displace the dynamical equilibrium between concen-
trations of atoms c; in different states, and this gives rise to
the appearance of relaxation effects, which are superposed
on the above-considered universal mechanism of relaxation
characteristic of all close-packed liquids due to modulation
of the free volume by the elastic wave. Since in metallizing
semimetals and semiconductors (except for tellurium) the
concentration of atoms with a covalent bond is low, an ap-
propriate model for theoretical description of the relaxation
process could be the weak-solution model, considered in
Ref. 1, in which the solvent is the medium with a metallic
bond and the solute are atoms with a covalent bond. Using
calculations of the sound absorption coefficient, associated
with the modulation of the probabilities, given in Ref. 1, of
the creation of thermal fluctuational defects, we obtain for
a,

. ~(BTkB Tln Coov Aliq )2 ccoszNA szllfe , (47)

= oCy K 29ky TM

where ¢, is the concentration of covalently bonded atoms,
Cy is the heat capacity at constant volume, M is the gram-
atomic weight, N, is Avogadro’s number, A, is the defor-
mation potential, characterizing the modulation of the po-
tential barrier to the breaking of a covalent bond by the
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deformation in the wave. As noted in Ref. 1, if in order to
remove an atom creation of a free volume {2 is required, then
A, =KQ. The first term in parentheses takes into account
the contribution to the sound absorption of the change in
temperature in the elastic wave.

It is easy to see that Eq. (47) describes qualitatively
correctly all the basic features of @, , observed experimental-
ly in melts of semimetals and semiconductors. Indeed, in
accordance with Eq. (47) a, has a maximum if

Ay Cy
e —exp| (2 __‘_9__."_)] _
wuc =00 = (24 7 “9
The height of the maximum is
Uy max = 2€maxB 7ky TK *N , 0° 1. /C LM, (49)

In order to estimate the deformation potential we can set
Ay, =K (br}), where r, is the radius of the first coordination
sphere and b is a numerical coefficient of order unity. Then
weobtain ¢, = 1072, and @, 1, /f* = 10'*-10""® sec’/m,
if Ty =107 11-107'2 sec, which agrees in order of magni-
tude with the experimental results. Since from general con-
siderations it is obvious that the concentration of covalent
bonds should decrease with increasing temperature, the con-
dition for observing a maximum in ¢, (7T) is ¢.,, > €.y, and
the condition for «a,(T) to decrease monotonically is
Coov <Cmax- The first case is realized in fused bismuth and
antimony, and the second case is realized in liquid germani-
um.

As one can see from Eqgs. (33a) and (33b), if a, de-
creases, then As should also decrease, and hence the mea-
sured sound speed should increase. Precisely such behavior
is observed in silicon. For this reason, the absolute value and
temperature dependence for 7y, can be obtained with the
help of Eq. (33b) and experimental data for s and a,, in the
temperature interval 7, -7, + 100. In Fig. 11 it was as-
sumed that at 1800 K, when «,, dropped by an order of
magnitude and no longer changed with increasing tempera-
ture, the effect of the relaxation mechanism considered is
small and the universal relaxation mechanism associated
with modulation of the free volume (see above) becomes
determining. The results of such analysis, which are present-
ed in Fig. 11, show that the estimate 7;;. =~ 10~ "' sec is self-
consistent. We note that the structural relaxation time 7,.,
calculated from Egs. (34) and (36), under the assumption
that it is equal to the relaxation time of the shear viscosity

a5,
1 1
7700 7750 1.4 7800

FIG. 11. Temperature dependence of the covalent bond lifetime in liquid
silicon.
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(7" =7'), gives the estimate 10~ '? sec, i.e., 7,. > 7. This
result is entirely justified physically, since the shear viscosity
is determined by the motion of atoms with a metallic type
bond, which comprise ~99% of all atoms in the melt, while
the energy of the metallic bond, as a comparison of the bulk
moduli in the solid and liquid states in Ge, Si, Bi, Sb shows, is
less than that of the covalent bond. Calculating As for liquid
germanium using the same estimate for r;;, shows that the
change in the sound speed due to the relaxation process un-
der consideration is small and cannot explain the experimen-
tal temperature dependences s(T).

Estimates of As for liquid Bi and Sb lead to a similar
conclusion. Moreover, in accordance with Eq. (33), the sit-
uation cannot be saved even by adjusting the numerical val-
ue of 7., since as @, increases, As increases and therefore s
decreases, and vice versa. As a result of this, relaxation theo-
ries cannot be used at all to explain at the same time the
maxima of As and «a,,, provided that the relaxation mecha-
nism does not presuppose an effective increase of the relaxa-
tion time with increasing temperature. This situation can be
interpreted as being a consequence of the fact that the tem-
perature dependence of the sound speed in these melts is
determined not by a relaxation process, but rather by a
change in the instantaneous bulk modulus due to the change
in the short-range order on heating near the melting point;
this is manifested in the above-noted change in the first co-
ordination number, which, as the temperature increases, at
first increases and then decreases [see Eq. (38) ]. This inter-
pretation is also supported by the fact that the temperatures
of the maxima of A(T) and a,, (T) are not the same.

Significantly above the melting point the concentration
of covalently bonded atoms decreases; 7. also decreases,
which gives rise to a significant decrease in a,, according to
this mechanism of interaction. The above-considered relaxa-
tion mechanism, associated with modulation of the free vol-
ume by the elastic wave in close-packed liquids, increases at
the same time with increasing temperature. As a result the
temperature dependence a,, (T is described by the function
T3/s. ‘

This picture is seen most clearly in liquid bismuth,
which has been studied experimentally right up to tempera-
tures above 27, (see Fig. 6).

The ideas presented above should explain the tempera-
ture dependence of the acoustic properties of binary systems,
demonstrating semimetal and semiconductor properties in
the liquid state, which were studied in a number of articles by
V.M. Glazov and S. G. Kim, % who attributed the observed
anomalies to the cluster (microcrystalline) structure.

1.2.4. Acoustic properties of melts of monatomic dielecltrics

The close correlation between the temperature depend-
ence of the acoustic properties and changes in the organiza-
tion of short-range order is also observed in melts with a
large free volume, in which covalent bonds are the predomi-
nant interatomic interaction forces. Among the monatomic
liquids, we consider as examples sulfur and selenium, in
which heating above the melting point is accompanied by
strong, similar changes in short-range order.

The chain-like structure of the crystals of these sub-
stances—strong interatomic interaction in a chain and weak
interchain interaction—indicates that the atomic potentials
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are anisotropic, and this undoubtedly should be manifested
in the organization of the short-range order in the corre-
sponding melts.

It is well known®® that immediately after melting ele-
ments characteristic for the crystalline structure are ob-
served in the structure of short-range order of selenium: Seg
rings—comprising a monoclinic modification and spiral
chains—the structural units of hexagonal selenium. When
the temperature increases up to 573 K, the chains break and
the concentration of Seg rings increases. When the tempera-
ture increases further to 703 K, the rings break and short
chains form.

Heating liquid sulfur also significantly changes the
short-range order: from weakly bound S; rings to low-mo-
lecular formations S, and S; and then long molecular chains.
These structural transformations are accompanied by such a
strong change in the character of the translational motion
that the viscosity of the melt has a maximum which is five
orders of magnitude greater than the value near the melting
point. The temperature dependences, constructed from the
data of Refs. 110 and 111, of the acoustic properties of Se are
presented in Fig. 12. We note in passing that the temperature
dependences presented for a and s for liquid selenium agree
well with later results obtained in Ref. 112 for both the char-
acter and value and with the results of Ref. 113 for only the
character of the temperature dependences. The acoustic
properties of liquid sulfur were investigated in Refs. 110 and
111 and have a similar temperature dependence.

The complicated temperature dependence a(T) re-
flects the transformation of the short-range order as a func-
tion of temperature in both liquid selenium and sulfur melt.
We shall discuss in greater detail the results of acoustical
experiments in selenium in order to reveal in their acoustical
characteristics possible channels for manifestation of short-
range order in liquids.

At low temperatures (near the melting point) the dy-
namical viscosity of liquid selenium is high due to the pres-
ence of spiral chains (according to the reference data from
Ref. 59 for T= 500K %'/p~10~* m*-sec™"). If the sound
absorption coefficient a,, associated with the viscosity 7’ is
estimated and compared with the experimental values, it is
easily seen that the theoretical values are several times
greater than the experimental values, i.e., in contradistinc-
tion to metallic and metallizing melts the relaxation of the
viscosity and a,, should conform here to the formula®?

a,. = (K /25%) o'r,./(1 + 0], (50)
where K, is the contribution of relaxation of the shear vis-
cosity to the bulk modulus. This opens up the possibility of
checking the scheme presented above for the relaxation of
the shear viscosity. The condition under which a,, has a
maximum makes it possible to calculate 7, and, if
7' (w = 0) is known, then K, can also be calculated. The
latter value can be compared with the value calculated from
Eq. (36). Next, knowing 7' (@ = 0) and K, it is possible to
calculate a,,. Numerical estimates using data on the shear
viscosity from Ref. 59 show that the formula (50) describes
not only qualitatively, but also quantitatively the behavior of
a in Se at 60 MHz.

The quantity K is estimated to be 2% of the instanta-
neous bulk modulus. This, on the one hand, agrees well with
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the theoretical value and, on the other, explains the absence
of any anomalies in the temperature dependence of the speed
of sound. It is easy to see that at 30 MHz the temperature of
the maximum of a ( T") shifts toward lower temperatures and
ends up near the melting point, where it is difficult to per-
form reliable measurements.

As the temperature increases, the chains become
shorter, the viscosity drops, and at temperatures = 700 K the
contribution of viscosity to the observed sound absorption
coefficient does not exceed 20%. For this reason, the high-
temperature peaks in a(7) are probably associated with
structural relaxation. It follows from the experimental data
that the relaxation time of the process is long, constituting
1078-107° sec, and decreases rapidly with increasing tem-
perature. Thus, 7(7T = 725 K)/7(T =700 K) = 2. On the
basis of the structural properties of the melt and the large
values of 7, we note, without discussing all possible relaxa-
tion mechanisms, that one of the simplest possible mecha-
nisms could be the model according to which vibrations of
the structural units—chains and rings—arise under the ac-
tion of deformation in an elastic wave. These vibrations are
damped due to interaction of the vibrating chains or rings
with their environment, and this results in a relaxation pro-
cess. If it is assumed that some pinning points are present,
then we arrive at the string model employed for describing
sound absorption in polymer solutions (see the review in
Ref. 32).

The relaxation time for such a process can be estimated
from the formula*?

g =Bl /3kgT,

where B is the coefficient of friction and /_;, is the length of
vibrating chain between the pinning points. If we use for 75
the values found experimentally and take B=%'l,,, then we
obtain for [, entirely reasonable estimates (6~10)-10~'°m,
i.e., such a chain consists of 4-5 atoms. Nonetheless, there
are not enough experimental data in order to interpret reli-
ably the high-temperature relaxation mechanism in liquid Se
and S with chain-like short-range order.
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= FIG. 12. Same as in Fig. 2 but for liquid selenium.

1.2.5. Effect of melting on the acoustic properties of
monatomic substances

It is obvious from what we have said above that the
melting, “‘including” translational motion, drastically
changes the dissipative processes responsible for sound ab-
sorption. In low-viscosity liquids at frequencies which can
be realistically attainable in acoustic experiments it is point-
less to estimate the change in the shear modulus. For this
reason, the bulk modulus, which remains meaningful in both
the solid and liquid states, plays a central role in determining
the role of melting in the change in the acoustic properties.

Here it is useful to consider two aspects. On the one
hand, there is the role of the translational motion, appearing
on melting, of all atoms (structural units), which can be
judged by comparing the bulk moduli of amorphous materi-
als and the corresponding melts. On the other hand, melting
destroys the long-range order in crystals. The contribution
of this process is evidently revealed by comparing the bulk
moduli of melts and corresponding crystals at T=~7T,,.

It is difficult to answer unequivocally the first of these
questions for at least two reasons. First, because of the non-
equilibrium nature of the amorphous state, as noted above,
the numerical values of the elastic moduli depend on the
technology employed for preparing the sample. Second,
many alloys which have been studied in the amorphous state
have not been studied at temperatures above the melting
point. Nonetheless, the experimental facts which have been
accumulated (Table IV) permit drawing certain conclu-
sions. In order to be able to ignore relaxation processes, we
confine our attention to low-viscosity melts.

Data taken from Refs. 15, 18, and 20 and converted to
the melting temperature with typical TCB of (2-3)-10~*
K~ ! are employed in the first column of the table. Since
there is no information for the corresponding metallic al-
loys, the elastic moduli in the liquid state were calculated for
melts with close chemical composition from measurements
of the speed of sound performed in Refs. 115 and 116. As one
can see from Table IV, the appearance of dynamical disorder
in melts does not result in any significant change in the bulk
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TABLE IV. Changes in the bulk modulus of amorphous substances on melting.

Substance Kpp 10710, Pa?) K -10~'°, Pa?
Feso Bao 10,1 [15] —
Fe — 10,8 [116]
Fego Niyg B2o 13,6 [15] -
Feu) Ni4o Bzo 11,2 [15] —
Fego Nizo — 11,1 [116]
Fea)Ni‘o - 11,4 [116]
Feqo Nigo — 12,7 [116]
Coss Pis 1L,71151% -
Co — 12,4
Ge 2,5/2,9% 3,6 [91]
Si 2,4/3,0% 3,9 [91]
Se 0,83 [20]) 0,48 [110]
SiO, 3,7 [20} 14,7 [137]
"The bulk moduli at 7= 293 K are presented.
?The bulk moduli at T}, are presented.
*The values were calculated from the measured shear modulus with a Poisson ratio 0.35.

“See remark 2) in Table L

modulus. This result is entirely consistent, both because
melting does not result in a significant change in g(r) as
compared with the amorphous state, and because the contri-
bution of translational motion to the resulting bulk modulus,
calculated from formulas for an ion gas having the density of
the real melt (see Ref. 1), does not exceed several percent. In
addition, the metallic bond realized by the collectivized elec-
trons is probably insensitive to the translational motion
which arises, since diffusion is realized by ions and the time
for establishing and breaking bonds does not affect the resi-
dence lifetime of an ion.

In the case of elementary semiconductors and dielec-
trics (Ge, Si, 8i0,), the bulk modulus increases on melting,
though, as before, the parameters of short-range order of the
amorphous and liquid states are close. It is difficult to associ-
ate such an increase in the bulk modulus to the appearance of
ametallic type bond due to active translational motion, since
the metallic bond, as noted above, under otherwise equal
conditions, gives lower values of the bulk moduli than a co-
valent bond between atoms in amorphous Ge and Si (Table
V). This increase in K probably indicates a nonuniform dis-
tribution, as noted above, of the free volume in amorphous
materials with a covalent bond. By making translational mo-
tion possible, melting leads to a uniform distribution of free
volume and eliminates bridges with high compressibility be-
tween regions with values of K which are normal for a cova-
lent bond.

Thus the existing experimental results show that the
appearance of dynamical disorder, as compared with static
disorder, in metals is not accompanied by a significant
change in the elastic moduli, and in the case of a covalent
bond the bulk modulus increases by at least a factor of 1.5.

Since it has been established that the appearance of dy-
namical disorder in itself at least does not decrease the elastic
moduli, we now consider the effect of a loss of short-range
order on melting. The basic experimental results on the bulk
moduli near the melting point for crystalline and liquid
states are summarized in Table V.

The bulk modulus was calculated from the elastic mod-
uli near the melting point for crystals of different symmetry
using formulas taken from the monograph of J. Nye."> As
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one can see from Table V, the changes occurring in the elas-
tic moduli at melting are very sensitive to loss of long-range
order and changes in short-range order. We first consider
typical metals, i.e., substances in which the interatomic me-
tallic bond is determining in both the solid and liquid states
and which were classified above in group I on the basis of
diffraction experiments.

It is easy to see that even in such a group of substances
with uniform properties the change in the elastic moduli at
melting makes it possible to distinguish two subgroups. The
metals Cu, Ag, Pb, Al and others, which are characterized in
the solid and liquid states by very close packing and corre-
spondingly coordination numbers close to 11-12, can be put
into the first subgroup. In these metals melting and the asso-
ciated loss of long-range order leads to a small decrease in
the bulk modulus by =~ 10-15%. Further, in the liquid state
they are characterized by a linear decrease in K with increas-
ing temperature.

Metals with more complicated organization of short-
range order belong to the second subgroup: In, Sn, and oth-
ers, including alkali metals. In these metals there are two
close coordination spheres in the solid state. After melting
these spheres merge, giving a coordination number close to
11-12. Alkali metals also melt with an appreciable increase
in the coordination number. Although according to the dif-
fraction experiments there are no significant differences be-
tween the structures of the substances in both subgroups, as
one can see from the table melting of the metals of the second
group is accompanied, in contradistinction to metals of the
first group, by a small (5-20% ) increase in the bulk modu-
lus.

These characteristics of melting of typical metals, as
determined by acoustic methods, are confirmed by results of
recent experiments on the positron lifetime in metals in the
solid and fused states.''® It has been established that in two
metals of the same type Al and In the change in the positron
lifetime at melting is different: in Al the lifetime increases
and In it decreases. Since this lifetime in the solid state is
determined by vacancy-like defects and in the liquid state it
is determined by the free volume, it can be concluded that in
Al and In melting changes the packing differently, though in
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TABLE V. Comparison of bulk moduli of crystals and monatomic melts near the melting point.

1 dk. 1 dKy, -
Element |K_, -10-'°, Pa K, ar 1 Kiq-107", ET 101 é—’—/,% R M,%
K-! Pa K-'» Ve, K., 1
Na 0,667 - 0,66 [148] 6 +2,8 0
K 0,4% — 0,33 [149] 7 +2,3 —
Cu 11,2 [139) 1,8 9,6 [63] 3,5 +5,5 +15
Ag 7.9 [139] 2,3 6,8 [63) 3.8 +3,4 +14
Pb 3,9 [142] 43 3,5 163] 3,9 +4 [69) +10
Al 6,2 [147] 3,3 5,3 [150} 3,2 52 +15
Sn 4,09 11 4,2 [63] 4 4,2 —5
In 3,6 [142] 7,0 3,8 (64] 2,3 2 —6
Fe 14,7 [141] 1,8 10,8 {116] 3 2,4 +26
Ni 13,89 — 12,9 [116] 3 3,1 +6
Ar 0,18 {143] 507y 0,09 {135} 80 13 +50
Xe 0,2 [144] 50 0,1 [136} 40 14,4 +50
Ccd 2,6 {140] 26 4,7 [64] 2,54 +4,1 —81
Zn 2,7 [119] — 5.3 [64) 2,1% +4,0 —96
Bi 2,7 117 1,2 2,9 [63] ?) —1,1 —7
Sb 2,7 17 5.1 2,3 [63] ?) —3.3 +15
Ge 6,2 [17) 1,5 3,6 [91] ?) —4,8 +42
Si 7507 1,0 3,9 (91,95) h —10 +48
Te 1,2 [17] 9,7 0,5 [64] D) +5,9 +58
GaSh 5.6 {152] 1,2 3,0 {154] ?) —8,2 +46
InSb 4,3% 1,3 2,7 [154] 2) —12,5 +37
AlAb 5,99 — 3,0 {154) 2y —12,9 +49
InAs 5.0117] 1.5 4,6 (151} 2 —7,1 +8
NaCl 1,0 (171 4,5 1.5 [151] 3,4 25 [153) —50
KCI 0,8 [17] 13.6 1,2 (151) 56 17,3 {153) —50
KBr 09[17] 9,8 1,1 [151] 5.6 16,6 [153] —24
KI 0,3 171 2,5 0,92 [155] 3,7 15,9 [153) —200 |

“Increases nonlinearly.
2Complicated temperature dependence.

PConverted from data at room temperature from Ref. 146 with typical values of TCM.

“Remains constant in a narrow temperature range.
The data on B, were taken from Ref. 59.

%The data on measurements of the volume of the substance at melting were taken from Ref. 59.

"Found by combining the data from Refs. 144 and 145.

both cases melting is accompanied by an increase in the spe-
cific volume.

These tendencies are even stronger in group-2 metals—
Zn, Cd, and Hg, in which on melting the bulk modulus in-
creases by 80-100%. Such a large change in K probably re-
flects a significant change in the interatomic interaction
forces, though melting does not destroy the metallic charac-
ter of the bond. This question has not been studied theoreti-
cally, though, as noted, on the basis of the model of overlap-
ping bonds® the metallic nature of the bonds in bivalent
metals is determined by the overlapping of the valence band
with a higher-energy band, and this makes their properties
depend more strongly on the changes in volume and tem-
perature. In the solid state this was confirmed by measure-
ments of the elastic moduli in a wide temperature
range''>'2% and in the liquid state the speed of sound in Zn
and Cd (Ref. 63) behaves nonlinearly with increasing tem-
perature, in contradistinction to the metals examined above,
the nonlinearity increasing strongly at temperatures close to
the boiling point.

Thus, in metals the loss of long-range order and the
appearance of translational degrees of freedom do not
change the bond character and the bulk modulus is found to
be sensitive only to a change in the short-range order.

However, this behavior is apparently characteristic of
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only elements exhibiting a metallic bond. For example, melt-
ing of solid inert gases (see Table V), which also does not
change the bond character, results in a strong decrease of the
bulk modulus. Such a change should reflect the strong de-
pendence of the van-der-Waals bond on the average distance
between the atoms.

According to their electrical properties, substances
comprising group-3 are in the solid state semimetals (Bi, Sb)
and semiconductors (Ge, Si). The most striking feature of
the melting of these metals is the reduction in volume, which
reflects a significant change in the short-range order. How-
ever, the reduction in volume on melting and the increase in
the coordination number, as one can see from Table V, is not
accompanied by an increase in the bulk modulus. On the
contrary, in silicon and germanium it decreases by almost a
factor of 2. As noted above, this fact could indicate that
melting in these substances is accompanied either by a
change in the interatomic interaction potential or by the ap-
pearance of an effective relaxation process, giving a large
delayed compressibility, or by the appearance of both factors
simultaneously. The analysis made above leads to the con-
clusion that the change in the character (metallization) of
interatomic bonds is responsible for the change in the bulk
modulus at melting.

According to the acoustic properties, melting proceeds
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similarly in A" BY semiconductor compounds, in which the
transition into the liquid state is accompanied by an increase
in density and metallization of the interatomic bonds.*®
Structural studies and molecular-dynamics modeling in lig-
uid GaAs also reveal much in common with elementary
semiconductors: finiteness of the lifetime of interatomic
bonds; two types of interatomic bonds—metallic and cova-
lent-slilghtly ionic; high probability (27%) of interaction of
pairs of identical atoms, which gives rise to the presence of
relaxation processes responsible for the decrease in the bulk
modulus at melting, in spite of the decrease in free volume.
In elementary semiconductors and semiconductor com-
pounds, which melt by the semiconductor-semiconductor
process, in liquid and solid states the short-range order is
organized in a complicated manner. Intensive translational
motion, which destroys the short-range order by fluctu-
ations, changes the character of the interatomic interaction,
injecting into it a metallic component. As a result, the jump
in the bulk modulus at melting is different in magnitude and
sign, since the change in the instantaneous bulk modulus and
the relaxation processes which arise also contribute to it.
This situation is reflected in the complicated temperature
dependences of the acoustic properties.!:9%-94.105.121

Melting in alkali-halide crystals increases the bulk
modulus by a factor of 1.5-2 (see Table V), though in con-
trast to semiconductors the transition into the liquid state is
accompanied by a decrease of the density. The character of
the interionic bonds at melting probably does not change. In
any case, in the melted state salts remain insulators, and the
character of the conductivity remains ionic. The bulk modu-
lus of alkali-halide crystals is estimated with the help of the
well-known expression'??

2
-t )

= (51)
9V"min

where 7,, is Madelung’s constant, ze is the ion charge, 7,,,;, is
the shortest interionic distance, and r,,, is the exponent in
the repulsion energy due to overlapping of the shells of posi-
tive and negative ions.

In principle, Eq. (51) is also valid for the melt and can
be used for estimating the instantaneous modulus of elasti-
city with the Madelung constant replaced by some liquid-
state equivalent ¥;,. For us it is important that there is no
basis for assuming that y}, differs appreciably from ¥y, . The
intense translational motion appearing at melting and creat-
ing a relaxation process and correspondingly an additional
delayed compressibility should decrease the resulting bulk
modulus, which does not agree with experiment. For this
reason, the significant increase in X at melting can be under-
stood if it 1s assumed that ze increases in the liquid state, i.e.,
charged complexes arise in the melt.

We note that irrespective of the results of acoustic ex-
periments a number of properties of fused alkali-halide met-
als can be explained on the basis of the model of an autocom-
plex structure of the melt, in which the melt is considered to
be a system of elementary cations and complex halide anions
MeMt" —! (Meis a metal and Mt is a metalloid; n = 1.2-6).
By displacing the equilibrium between complexes, a sound
wave gives rise to a relaxation process, leading to excess
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sound absorption (as compared with viscous sound absorp-
tion), which is observed experimentally.

In principle, it is not difficult to find a concentration of
complexes with which it is possible to describe the experi-
mental temperature dependences K(T) and a,, (T) in both
order of magnitude and variation as a function of tempera-
ture. For purposes of the present analysis, it is only impor-
tant to note that in the case of melts with ionic bonds the
acoustic properties remain highly sensitive to the organiza-
tion of short-range order in liquids.

Thus the change in the bulk modulus at melting reflects,
most uniquely, the changes in the organization of short-
range order, if at melting the interatomic interaction re-
mains metallic.

When the character of the interatomic interaction
changes, the character of the short-range order also changes,
and this makes it difficult to separate these contributions to
the jump in the bulk modulus and requires analysis of the
temperature dependences K(T') and a,, (T), which are sen-
sitive to the kinetics of the order and disorder processes. We
also note that in many cases AK,, at melting is more infor-
mative than, for example, the change in volume at melting,
which if often regarded as a measure of the free volume that
appears and is responsible for the kinetics in liquids, or the
change in the electrical resistance. For example, the volume
of metals belonging to group I of Mendeleev’s table Cu, Ag,
and Au increases on melting, just as in the case of group-2
metals Zn, Cd, and Hg. The jump in the electrical resistance
on melting is close to 2. However, in these metals AK,, have
different signs, which is an indication that the effect of the
increase in volume on the physical properties of both types of
substances is not equivalent.

The study of the temperature dependence a,, (T) also
makes it possible to determine the change in the interatomic
potential and short-range order, which cannot be deter-
mined by other methods, in particular, in melted semimetals
and semiconductors.

1.2.6. Effect of chemical short-range order on the acoustic
properties of melts

In the case of an isotropic interatomic interaction po-
tential of monatomic liquids the short-range order is deter-
mined mainly by geometric factors. As a rule, this situation
is most clearly realized in close-packed, group I fused met-
als, i.e., metals with a small free volume. They are character-
ized in the acoustic properties by a linear decrease of the bulk
modulus with increasing temperature and a monotonic in-
crease of the excess sound absorption coefficient.

On the other hand, the appearance of intense transla-
tional motion in the liquid state sharply decreases, as com-
pared with the solid state, the characteristic times of the
autocorrelation function of the velocity of the atoms. In the
case of small free volume this results in the fact that in mona-
tomic melts of metallizing group I1I semimetals and semi-
conductors, the short-range order is affected by, in addition
to a purely geometric factor, the possibility of realization of
two types of interatomic interaction—covalent, characteris-
tic for the solid state, but requiring a long establishment
time, and metallic. As a result, the entropy of the system
decreases compared with the case of a single type of interato-
mic interaction; this can be interpreted as manifestation of
chemical ordering in addition to geometric ordering. How-
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ever, estimates of instantaneous elastic moduli within the
hard-sphere model’®”" (geometric close-range order) give
for bismuth and antimony values which are close to the ex-
perimental values, and the specific nature of the organiza-
tion of the short-range order is reflected in the nonmono-
tonic temperature dependences of the bulk modulus (speed
of sound) and excess sound absorption coefficient. In the
presence of a large free volume (liquefied inert gases) or
more complicated types of interatomic interaction (for ex-
ample, liquid selenium) the realization of short-range order
is no longer as unique and its manifestation in acoustic prop-
erties in each case requires a special analysis (the acoustic
properties of liquefied inert gases are reviewed, for example,
in Refs. 122 and 123). In all monatomic liquids the most
universal and simplest method of changing the short-range
order in order to determine its contribution to the acoustic
properties is to change the temperature. It is the temperature
dependences K(T) and a,, (T) that are most informative,
since it is impossible to establish a correlation between the
absolute values of the acoustic characteristics and the char-
acteristic features of short-range order (see the above discus-
sion). Of course, experiments involving a change of the ex-
ternal pressure are very helpful, but technically they can be
more complicated than experiments in which the tempera-
ture is changed.

As mentioned above, in disordered sytems there also
exists a different type of ordering—chemical ordering, when
the character of the short-range order is determined by the
chemical interaction between atoms of different types.

The most versatile method for studying the role of
chemical ordering in the acoustic properties of liquids is ap-
parently to study systems consisting of different atoms.
Here, the role of the chemical factor in short-range order can
be determined in a standard manner by studying the plot of
an acoustic property as a function of the composition in sys-
tems in which a chemical compound is formed at certain
concentrations of the components. The physical mechanism
of the manifestation of the formed chemical compound in
the acoustic properties is obvious and, similarly to monato-
mic melts, it is associated with the appearance of molecular
forms, which reduces the entropy of a binary system and
changes its internal energy.

This question was investigated in detail by V. M. Gla-
zov and S. G. Kim and their colleagues on a large number of
binary systems, in which under certain conditions a chemi-
cal compound is formed, in this case, metal-metal, metal-
semimetal, and metal-semiconductor pairs.'%'?*-'*7 They
found that irrespective of the type of interatomic interaction,
as in the case of monatomic melts, the establishment of
chemical short-range order is manifested primarily in the
change in the temperature dependences of the acoustic prop-
erties. This is most clearly seen in the TCS as a function of
the composition plots, in which the point at which the chem-
ical compound appears is a singular point. Depending on the
properties of the components, a maximum or a minimum of
the TCS can be observed. The extremum lies in the region
TCS>0 or TCS <0 (Fig. 13).'2%'2" This is undoubtedly
closely connected with the type of interatomic interaction,
but these questions have not been studied in detail.

According to existing experimental data on the mani-
festation of chemical short-range order in the acoustic prop-
erties, the structure of the molecular formation becomes

985 Sov. Phys. Usp. 35 (11), November 1992

2,55 IN7 GﬂzTBJ 11
GaTe -2

2,25
g 1 -
E 7,95 2 . i‘:’
s K] ~-2 “E
A o O R

A T’EH 2 ‘olk
) 1 —-4%l%

17,351 1 =
1 J 1

A
AE 02 0% 0,6 08 Ta

FIG. 13. Concentration dependences of the speed of sound (7, 2) and TCS
(1',2") in GaTe and InTe melts, respectively.

more complicated, the relaxation contribution increases,
i.e., if in the binary system the formula of the chemical com-
pound is A, B, , then as m and » increase, the relaxation
corrections to the sound absorption coefficient and the bulk
modulus increase. This is illustrated in Fig. 14, which was
constructed using the data of Refs. 121 and 125, where the
binary systems Ga-Te and In-Te were investigated; in these
latter systems, chemical compounds withm =1and n =1,
and m = 2 and n = 3 can form (the viscosity values required
for calculating the classical sound absorption were taken
from Ref. 59). Similar results also follow from experiments
performed on fused salts, for example, CuCl and CuCl,,
CuBr and CuBr,.'*® The differences between a,, (T) in A, B,
and A, B, reach their maximum values near the melting
point. Then they decrease with increasing temperature, so
that, for example, in InTe and In,Te, a,, are identical at
temperatures ~ 100 K above the melting point. At these tem-
peratures, the TCSs are also identical in both melts. The
physical mechanism of relaxation is now similar to that stud-
ied for fused elementary semiconductors—modulation of
the equilibrium concentration of complexes by an elastic
wave. Then, in accordance with the general ideas elaborated
above, these experimental results can be interpreted as being

300

1225

£:70%m/sec

150

1000 7x 7700

FIG. 14. Same as Fig. 2 but for liquid indium tellurides (the unprimed
numbers refer to InTe.
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a consequence of the fact that the intensification of thermal
motion decreases the lifetime of the compounds A,, B,,. For
this reason, the equilibrium concentration of such complex-
es as well as the relaxation sound absorption also decrease.

When the time required to establish a covalent bond
becomes less than the lifetime of a complex, chemical order-
ing of this type vanishes. Thus, the results of acoustic
changes indicate that chemical ordering in liquids is of a
dynamical character.

Existing data make it possible to estimate the lifetime of
the complex In,Te;. If it is assumed that at temperatures
T> 1050 K the chemical compound In,Te, (see Fig. 14) is
not formed, then the contribution As to the speed of sound in
In,Te; due to relaxation of the concentration of the com-
plexes In,Te, can be calculated by comparing the speed of
sound in InTe and In,Te,, for example, at 1100 K and at
temperatures near the melting point. On the other hand, it is
easy to calculate the difference in the excess absorption in
both melts and, using Eq. (33), to calculate 7, which is
found to be =~ (5-6)-10~"" sec.

Similar processes can occur at higher temperatures in
InTeas well as in In,Te, melt, but with the compound InTe,
since the formation of the latter compounds requires shorter
times and therefore they remain at higher temperatures. Es-
timates of the lifetime of the complexes InTe from acoustic
data give 5-107 2 sec.

Thus the dynamics of chemical ordering can be studied
by studying the acoustic properties.

2. SOME TECHNICAL APPLICATIONS OF HIGH-
TEMPERATURE ACOUSTICS

Many of the results presented above can form a basis for
methods of technical diagnostics of the quality of crystals,
parts made of amorphous materials, and metallurgical tech-
nology. In some cases, for example in the control of metal-
lurgical processes on the basis of measurement of structure-
sensitive acoustic properties of melts in order to prepare
materials with prescribed properties, only the fundamental
possibility is at the present time obvious and significant ef-
forts are required in order to develop practical methods. In
other cases, for example in checking heat-treatment of amor-
phous materials, the methods of making such checks are
completely obvious.

However, there exist situations when the development
of a diagnostics method involves a definite nontrivial specifi-
cation of the results presented. As examples we now examine
the determination of the components of strain tensors of a
crystal lattice strained by a point defect’?” and the determin-
ation of electrical nonuniformities in semiconductor crys-
tals.'*°

The retrieval of the strain tensor is based on the expres-
sion (28) from Ref. 1 for the sound absorption coefficient as
a function of the direction of propagation of elastic waves
and the orientation of the polarization of the waves with
respect to the crystallographic axes.

It is easy to see that the sound absorption coefficient
determined by the impurities is sharply anisotropic. Its
orientational dependence is determined by the tensor Q.
For this reason, the study of a for different types of waves
propagating in different crystallographic directions can
make it possible to estimate the character of the distortions
produced in the lattice by impurity atoms.
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Measurements of the sound absorption coefficient'>’
were performed in a number of bcc metallic single crystals
(V, Nb, Mo, W) at frequencies of 10’-10® Hz and high tem-
peratures. Extending the temperature range of the investiga-
tions up to 1200 K made it possible to observe the relaxation
maxima at high frequencies. Under these conditiions the me-
dium can be regarded as being infinite and excitation of vol-
ume waves—Ilongitudinal and shear waves—is possible in
the same samples with characteristic dimensions of ~ 10
mm. This makes it possible to estimate the components of
the tensor Q.

The experimental results obtained reduce to the follow-
ing. In single crystals of bce metals there exist a number of
directions in which volume elastic waves do not interact with
impurities. These include directions along the spatial dia-
gonals (of thetype [111]), for longitudinal and shear waves;
directions along the edges of the cube (of the type [100]),
for shear waves; directions along the diagonals of the faces
(of the type [110]), for slow shear waves. In other crystallo-
graphic directions these waves are absorbed efficiently. The
magnitude of the barrier associated with the displacement of
impurities along the lattice can be estimated from the tem-
perature shift of the position of the maxima of the sound
absorption coefficient as a function of the frequency. This
makes it possible to classify impurities.

The temperature dependences a( T') were obtained for a
single crystal of Fe + 3% Si, in which carbon atoms embed-
ded in the initial lattice of the crystal correspond to the size
of the potential barrier of the impurity. One of the possible
types of defects produced by an impurity atom are distor-
tions with tetragonal symmetry (the impurity is localized on
the edges of the cubic unit cell), for which the components of
the tensor 0’ have the form

Q, 0 0 Q,0 0
p=1 OQZO y p-2 OQIO ,
009 00Q
Q,0 0
p=3 OQZO
000,

It is easy to see that the experimental results are not consis-
tent with such a tensor Q. Indeed, since the edges of the
cubic unit cell are the principal axes of the tensor Q, for all
shear waves i#kQ¥u, =0, i.e., there should be no sound
absorption due to impurities.

It can be shown that the symmetry of a cubic lattice
admits, besides defects with tetragonal symmetry, also de-
fects with trigonal and orthorhombic symmetries. For tri-
gonal symmetry £, =Q, (i=k) and Q; = Q; (i#k),
where ), and () are some quantities characterizing the de-
formation of the lattice accompanying the introduction of a
defect. It is obvious that defects with trigonal symmetry also
cannot explain the experimental results.

It follows from the general formula (28) from Ref. 1
that defects of this type should not contribute to absorption
of longitudinal sound in the direction of an edge of the cubic
cell, and this disagrees with experiment. The sound absorp-
tion coefficient in the [111] direction calculated for trigonal
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defects (see Eq. (28) from Ref. 1) is found to be different
from zero, likewise in disagreement with experiment. The
symmetry of a cubic crystal admits defects with orthorhom-
bic symmetry of two forms of the type [ 100] and [ 110]. For
the first type, the main symmetry elements are planes and
directions parallel to the three axes of the cube and for the
second type the main symmetry elements are directions par-
allel to the diagonals of the faces. For an orthorhombic de-
fect of the first type, for example [100], the components of
the tensor 1§’ have the form (for p = 1)

—_

0
0
Q. (52)

oo

0
Q2
0

It is easy to see that the strain tensor of the form (52) for a
lattice deformed by impurities makes it possible to interpret
the measurements on longitudinal and shear waves in the
propagation directions [100] and [111], while for shear
waves propagating in the [110] direction this tensor is un-
suitable. Indeed, since the edges of the cubic unit cell of the
crystal lattice are not “natural” for writing the strain in an
ultrasonic wave in the [110] direction, a transformation
must be made from one coordinate system (where the strain
is given) into another (where the components of Q{f’ are
given). The transformation of one coordinate system
(primed) into the other (unprimed) is made according to
the well-known relation

Uy = bymbgrtper >

where b, and b,,. are the corresponding direction cosines.

For an ultrasonic wave propagating in the [ 110] direc-
tion the “natural” axes will be those axes in which this direc-
tion is also the direction of propagation (1'), and then the
other axis (2") corresponds to the direction (110) while the
3’ axis corresponds to the direction (001). In these coordi-
nates the fast shear wave is written as #,.,- and the slow shear
wave is written as u,.,..

In the coordinate system tied to the edges of the cubic
unit cell of the crystal lattice, the strains in the fast and slow
shear waves are represented, respectively, by the matrices

0043 Uy —upy 0
00u;.3 |and| upp =y 0
00 O 0 0 0

By substituting the last components of the tensor into
Eq. (28) from Ref. 1 it is easy to show that the absorption
coefficient, due to impurities of orthorhombic symmetry of
the type [ 100], for fast shear waves is equal to zero (in dis-
agreement with experiment).

Impurities having orthorhombic symmetry of the type
[110] create in the lattice distortions which can be charac-
terized by a tensor of the form?*
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Q,Q, 0 Q 0 @,
p=1|2Q,0 ) p=2:10Q0 |,
009, Q,0Q,
Q0 0
p=31]0QQ
0 Q,Q

Lattice distortions of the last type make it possible to explain
all the experimental factors. Substituting it into Eq. (28)
from Ref. 1 and performing the corresponding calculations,
we find that for a slow shear wave the sound absorption coef-
ficient due to point defects is equal to zero, while for a fast
shear wave it is proportional to (Q2,)?. The absorption coeffi-
cient a in the [ 100] direction is equal to zero for shear waves
and is proportional to ({; — Q,)? for longitudinal waves.
There is no sound absorption for longitudinal and shear
waves in the [111] direction.

Thus measurements of a for longitudinal and shear
waves at high temperatures and frequencies of 107 and 10*
Hz show that impurity atoms embedded in the lattice of bee
metals give rise to distortions having orthorhombic symme-
try of the type [110] and not tetragonal symmetry.

The hypothesis that impurity atoms produce in metals
with a bec lattice defects with tegragonal symmetry is based
on the following. In such crystal lattices the largest voids are
produced in octahedral (at the center of the edge of a cubic
unit cell) and tetrahedral (coordinates, for example, 1/2, 0,
1/4) interstices and, therefore, impurity atoms are embed-
ded at these locations. Since it is observed experimentally
that the distortions have orthorhombic symmetry, in the
metals investigated pair defects (dumbbells) are evidently
most likely in the metals investigated and the embedding
occurs near lattice sites, which, generally speaking, agrees
with general qualitative considerations for possible defects
in lattices of bce metals.

In the case of semiconductor crystals a typical break-
down of quality is deviation from a prescribed concentration
of dopants or parasitic impurities. If the impurities are elec-
trically active, then their presence can produce in space a
nonuniform charge distribution of free (and bound) charge
carriers, as well as internal electric fields which affect the
operation of semiconductor devices. Acoustical diagnostics,
based on the interaction of charge carriers with a propagat-
ing elastic wave via piezoelectric and strain potentials, sub-
stantially supplements electrical diagnostics methods. The
physical basis for this is that the propagation speeds of elas-
tic and electromagnetic waves are different (by a factor of
~10%), so that the wavelength of the wave interacting with
nonuniformities decreases by the same amount and hence
geometric dispersion appears much earlier. In addition,
since sound absorption by mobile charge cariers is deter-
mined by the production of carriers following the wave, the
presence of local internal electric fields changes the local
velocity of the charge carriers and as a result the electric
clusters and the wave become dephased. This affects the
sound absorption coefficient. In the case of an electromag-
netic wave this dephasing is 10° times weaker. For this rea-
son, the electrical conductivity of nonuniform media is sen-
sitive only to the spatial charge nonuniformities (temporal
dispersion). Using the formulas (41)—(43) from Ref. 1 to-

M. B. Gitis 987



gether with the measurements of the electrical conductivity,
it is possible to obtain, by means of simple arguments, esti-
mates not only for the mean-square fluctuations of the den-
sity of mobile charge carriers, but also the local electric
fields.

First, the condition under which a maximum is ob-
served includes the sample-averaged Maxwellian relaxation
time (7 ), determined by the sample-averaged electrical
conductivity (o); in experiments on measurement of the
electrical conductivity as the coefficient of proportionality
between the current density and the intensity of the external
field the effective electrical conductivity 0.4 is determined
and as a rule it is less than (o) (see, for example, Ref. 33).
The effective electrical conductivity o is equal to (o) if the
measurements are performed at sufficiently high frequencies
when

w(ty) >> 1+ (D (/B

(the notation is explained in Ref. 1). If the experimental
value of (o) is known from acoustic data, then it is possible
to find equations which relate the parameters of the fluctu-
ations. Since they contain two unknowns b, and b, (or b; and
b,), they must be supplemented by the dc or ac values of 0,4,
when

oty << 1+ (D @)/ B).
In the latter case

Oop = (o) [1 ~ (o'zn/ (no)z) 1

Second, by comparing the maximum of the sound ab-
sorption coefficient in the sample with the theoretical value
predicted for a uniform sample, it is possible to determine
qualitatively the relative characteristic dimensions of the
fluctuations. In other words, if the measurements of the elec-
trical conductivity o, revealed dispersion at comparatively
low frequencies in the region where @ (7 } is of the order of
unity and acoustic measurements give only a small displace-
ment of the maximum in a as compared with the uniform
sample, then we are dealing with very small nonuniformities,
which are characteristic for strongly doped, weakly compen-
sated materials. In the opposite case (with respect to the size
of the nonuniformities), if the change in the height of the
peak in a [see Eq. (42) from Ref. 1] and its displacement
[Eq. (43) of Ref. 1] are measured and (o) from electrical
measurements is taken into account, then the mean-square
fluctuations of the internal field and the concentration of
current carriers can be calculated.

Third, the absence of dispersion in o and the existence
of deviations in the acoustic measurements from the case of a
uniform sample indicate that only fluctuations of the inter-
nal field are manifested, and they can be calculated directly.
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