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The linear long-wave approximation is used to analyze the classical interaction between elastic
waves and local disorder in dielectric, semiconducting, and metallic crystals. It is shown that
carriers of thermal and nonthermal disorder provide significantly different contributions to the
acoustic parameters of crystals such as the velocity of sound and the sound attenuation
coefficient. The effect of direct and indirect interactions between elastic waves and the ensemble
of carriers of disorder on the attenuation of sound is examined. In the former case, deformation by
the wave modifies the motion of the carriers of disorder themselves, whereas in the latter case the
elastic wave interacts with quasiparticles in the crystal, and the presence of disorder is seen as a
change in the character of motion of these quasiparticles. The effects of high concentrations of
carriers of disorder produced by melting one of the sublattices of superionic crystals are also
described.

1. GENERAL INTRODUCTION

According to the dictionary,1 the word 'order' has a
number of meanings. First, it means a set of objects arranged
in sequence one after another and 'not higgledy-piggledy.'
Second, it means a picture of disposition or method of ar-
rangement, and so on. Third, it means 'a sequence of actions
in accordance with a predetermined rule.' This diversity of
meaning of the word 'order' is reflected in the terminology of
physics.

However, these definitions do not provide us with a key
to the measurement of order. A measure of order can be the
degree of deviation from order, i.e., the magnitude of disor-
der. The third definition of order, which is based on the pos-
sibility of using specific algorithms, is the most suitable from
the standpoint of physical disorder. A reduction in order can
then be treated as a signal that we have to introduce probabi-
listic concepts. The simplest example is provided by the posi-
tion coordinate that represents the localization of an impuri-
ty atom. This is determined by the potential distribution in
the unit cell and by the properties of the impurity. Disorder
is then seen as the uncertainty in the cell number. Depending
on its source, disorder can be subdivided into 'natural' and
'artificial.' The former includes disorder due to thermal mo-
tion. For example, the carriers of disorder in crystals include
thermal point defects such as crowdions, interstitial atoms,
vacancies, and so on. So long as the number of such carriers
of point disorder is small in comparison with the total num-
ber of atoms, they may be looked upon as an 'impurity' of
disorder in order, and this provides us with a mathematical
basis for a description of their manifestations. Experiment
shows that the thermal disorder 'impurity' is small through-
out the temperature range in which crystals exist, so that the
concepts of short- and long-range order in the crystal sense
can still be used, and the crystal structure can be treated as
the zero-order approximation (a possible exception is the
temperature interval adjacent to the melting point Гт). Ar-
tificial disorder produced, for example, by introducing im-
purities into a crystal, can be described in a similar way.
Acoustic measurements enable us, at least in principle, to
separate these contributions and to estimate order quantita-

tively by establishing the necessary experimental conditions.
Processes involving estimates and applications of order

and disorder can also be described by adopting the reverse
approach whereby perfect disorder is taken as the zero-order
approximation. For example, if we transfer our attention
from a gas to a liquid, we find that definite ordering immedi-
ately takes place because of the sharp reduction in the free
volume as compared with a gas, and symptoms of short-
range order appear in the structure, e.g., the atoms are no
longer uniformly distributed in space, there is a preferred
number of neighbors (coordination number), and so on.
This type of geometric ordering is fundamental in densely-
packed metallic alloys and is very significant in melts of se-
mimetals and semiconductors, which will be discussed in
some detail below.

There have been frequent attempts (see, for example,
the review in Ref. 2 ) to provide a general theoretical descrip-
tion of the relationship between order and disorder that
would be suitable for media with long- and short-range or-
der, but clear recipes are still lacking.

Experimental methods of studying disorder in order
and of manifestations of order (in the senses introduced
above) in disorder are usually subdivided into direct and
indirect. Direct methods are based on studies of x-ray and
neutron scattering by given spatial structures, whereas indi-
rect methods rely on studies of the so called structure-sensi-
tive macroscopic properties, combined with searches for
correlations between singularities in the dependence of these
properties on external factors and structure.

There is a thin diving line between direct and indirect
methods from the standpoint of the amount of information
that can be extracted about order and disorder in disordered
media. We know that the measured scattered intensity as a
function of the angle в and energy E can be transformed into
the static S(k) and dynamic S(k,E) structure factors that
are related to the static and dynamic pair correlation func-
tions g(r) and G(r,t) by the expressions (see for example,
Ref. 3):

5(k) = 1+ p \ (g(r) - 1) exp(/kr)dr, ( 1 )

S(k, ш) = ± J (G(r, 0 - p) exp(ftr - (2)
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where r is the position vector, p is the density, со is the angu-
lar frequency, k = 4тг sin (в /2) /Я, and Я is the wavelength.
The expressions given by (1) and (2) provide us with the
justification for referring to methods based on scattering as
direct methods of studying structure. However, the deriva-
tion of these two expressions relies on a number of assump-
tions that are not satisfied in experiments.3 These assump-
tions are: no multiple scattering, no absorption of energy, no
containers or windows, and so on. As noted in Ref. 3, this is
as good as saying that there is no sample! Additional prob-
lems arise when 5(k) andS(k,«) are estimated fork tending
to 0 (but is not actually equal to 0) in which case this range
of k reflects the specificity of short-range order. The limiting
value S(Q) can be obtained from indirect measurements, us-
ing the thermodynamic relation

S(0) = kBTpNA/MK, (3)

where kB is the Boltzmann constant, К is the bulk modulus,
Г is the temperature, NA is the Avogadro number, M is the
atomic weight, and the intermediateS(k) are subject to con-
siderable uncertainty.

The use of the methods of molecular dynamics to aug-
ment diffraction experiments has led to a significant im-
provement in the overall situation, but unambiguous conclu-
sions have not been possible for disordered close-packed
media. This question is examined in detail in Ref. 3 in the
case of liquid sulfur for which diffraction data suggest a
structure consisting of Ss rings and, possibly, S6 as well.

Similar problems arise in the interpretation of diffrac-
tion experiments for practically all media in which melting is
accompanied by a change in structure. These media include
semimetals (Bi, Sb) and semiconductors (Ge, Si, etc.), since
the diffraction peaks of these melts have fine structures that
are difficult to interpret unambiguously. For example, the
hypothesis of cluster structure of such melts, i.e., the sugges-
tion that the melts contain regions that float in the closely-
packed matrix4 and retain condensed-phase order, has again
found wide acceptance. This approach has been adopted by
Regel' and Glazov5'6 as a means of explaining the tempera-
ture behavior of electrical conductivity and viscosity of liq-
uid semiconductors near the melting point. The same ap-
proach was used in Ref. 7 to explain the temperature
dependence of the velocity of sound in molten semimetals
and semiconductors. Mishin and Razumovski!8 have sug-
gested that the cluster model could be extended to all alloys,
and have used this as a basis for a new theory of melting and
premelting, although the model itself is experimentally in-
valid when it is extended to all melts. Additional arguments
in support of clusters can be found in Ref. 9.

There is, however, a whole range of results that do not
fit the cluster model of order in disorder. For example, x-ray
diffraction was used in Ref. 10 to investigate liquid tin in the
temperature range 300-1700 °C. It was found that a change
in temperature had practically no effect on the position of
the first diffraction peak, i.e., the most probable separation
between neighboring atoms and the root mean square sepa-
ration remained unaltered to within experimental error. Al-
though the second peak on the radial distribution function is
broader than the first, it was suggested that the second pre-
ferred separation between atoms was also unaltered.

Direct measurements of the relative change in macro-
scopic volume between 300 and 1700°C yield a figure of

14.6%. This corresponds to a 4.7% change in interatomic
separation, which is much greater than the result deduced
from diffraction experiments.

Similar data have also been obtained for tellurium
which metallizes on melting. For temperatures in the range
773-1073 K, the position of the first and second peaks on
g ( r ) did not change to within + 0.02 A although measure-
ments of density as a function of temperature suggest that
there is a small increase in density near the melting point and
that the density decreases almost linearly after passing
through a flat maximum." If we proceed in the spirit of
cluster models, we find that thermal motion is of the solid-
state (vibrational) type (in the clusters themselves) and of
the translational (diffusion) type between clusters which are
structures containing up to a hundred atoms organized ac-
cording to the type of the corresponding crystal. This means
that an intensification of thermal motion in a cluster should
be accompanied, depending on the type of solid, by an in-
crease in atomic separation. Moreover, Turner's calcula-
tions12 show that the appearance of crystal 'fragments' in
disordered structures as indicators of the onset of order leads
to anomalously high structure factors due to correlations
between concentration and fluctuations in concentration,
whereas it is noted in Ref. 2 that this approach leads to the
problem of 'special' atoms on the surface of clusters, whose
properties have to be taken into account. Model descriptions
are also impossible to avoid in attempts to deduce informa-
tion about the thermal motion of atoms from direct measure-
ments obtained by studying the behavior of the pair autocor-
relation function which can be deduced from the dynamic
correlation function G(r,t) (Ref. 12).

These problems are discussed in Ref. 13 where it is not-
ed that the long-term asymptotic form of the velocity auto-
correlation function is t ~3/2 (which is typical for diffusion
spreading of correlations) has been experimentally con-
firmed, but only for liquid sodium (t is the time of observa-
tion ). In other experiments, it has been difficult to achieve
an unambiguous interpolation of S(k,co) between k = 0 and
k that would fit experimental data, and to verify the asymp-
totic form t 3/2. For intermediate values oft, it is even more
difficult to draw from diffraction data any conclusions about
the nature of thermal motion in structurally disordered me-
dia. Diffraction experiments only confirm that, in high-tem-
perature disordered media (melts of elementary materials),
and for short periods of observation of a particle, the particle
executes vibrational motion, whereas diffusion-type motion
occurs for t— oo. It has not been possible to deduce from
experimental data the form of either type of motion, or of
transitions between them, and a large number of models has
been put forward (see the reviews in Refs. 5 and 6).

For example, Bar'yakhtar et al.10 have interpreted their
experimental data (showing that the mean atomic separa-
tions are temperature independent) in terms of the Frenkel
hole model of a liquid14 although it is well known that there
is a whole range of experimental factors that do not fit this
model.5'6

Of course, model descriptions are also used in indirect
methods of measuring order and disorder parameters. How-
ever, the relative simplicity and high precision of experi-
ments have produced reliable evidence for the dependence of
order parameters on external conditions and for the effect of
this on a range of macroscopic properties. Comparison be-
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tween direct and indirect measurements can be used to draw
more reliable conclusions about changes in the structure of
media under investigation. Moreover, since indirect mea-
surements yield numerical values of macroscopic variables,
rigorous thermodynamic relations can be used to verify
model descriptions of order and disorder. Results obtained
by indirect acoustic methods of studying equilibrium and
nonequilibrhim of partially and completely disordered me-
dia will be described below. We shall use the elastic moduli
c,j and the bulk modulus K, on the one hand, and the sound
attenuation coefficient a, on the other, as functions of exter-
nal factors such as temperature, vibration frequency, pres-
sure, and so on.

In principle, the relationship between order and the vol-
ume compressibility can be obtained from statistical thermo-
dynamics. The result is15

(4)

This relation is rigorous, but not very useful in specific calcu-
lations because, to establish short-range order effects in
compressibility, we must have a very precise knowledge of
g ( r ) , which is not provided by diffraction experiments.

A considerable amount of information can therefore be
extracted by comparing experimentally determined func-
tions ctj (T) and К (Т) with theoretical calculations based on
different models of disorder, and also by comparing the be-
havior of these quantities with data obtained from other
structure-sensitive properties. This approach enables us to
determine relatively small changes in order-disorder rela-
tions, especially for topologically disordered media. In crys-
tals, on the other hand, such measurements are found to be
less informative because the contribution of growing ther-
mal disorder is masked by increasing anharmonicity of vi-
brations.

Moreover, if we compare changes in elastic moduli ob-
served during the transition from crystal to melt, and from
amorphous body to melt, in materials in which there is no
change in the type of interaction, we can isolate contribu-
tions due to the loss of long-range order in the first case, and
the onset of intensive translational motion in the second.

As far as the kinetics of different processes in disor-
dered media is concerned, this is particularly clear in the
sound attenuation coefficient a. The problem usually con-
sists of choosing the optimum experimental conditions to
ensure that the contributions of particular processes can be
isolated, and of calculating a for different models of disor-
der.

In the long-wave limit, the acoustic description can be
applied not to the individual local manifestations of disor-
der, but to the disorder parameters averaged over the volume
containing either a large number of structural units of disor-
der (when these can be readily identified) or simply a large
number of atoms.

Another important limitation of the range of questions
examined in this review and, subsequently, in Ref. 15 a, in-
volves the temperature ranges. The high-temperature ap-
proximation will be used whenever we can ignore quantum
effects inherent in disordered systems, especially different
modifications of two-level models that are so effective in re-
lation to low-temperature anomalies.
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By restricting the temperature range at the high end we
ensure that the condensed state of matter is preserved (and
there are no critical phenomena).

We have already noted that the use of crystal order as
the zero-order approximation to disorder in crystals pro-
duces a sufficiently consistent theoretical description of
these processes.

In the case of the liquid state (topological disorder; cf.
Ref. 15a), we shall concentrate our attention on experimen-
tal results obtained by varying different factors, and the
comparison of theoretical ideas with experimental data will
be largely qualitative in view of the foregoing remarks.

Because of the great diversity of possible situations, an
effective approach is to use the thermodynamic description
in the spirit of relaxation models developed for liquids and
gases by Mandel'shtam, Leontovich, and Knezer, and subse-
quently extended by many others (see, for example, Ref.
16). If we describe nonequilibrium states by the Gibbs local
equilibrium distribution,17 and if we use the hydrodynamic
approximation, we can also take transport processes into ac-
count together with the additional (as compared with the
usual thermodynamic variables such as temperature Т and
strain uik) variable g that characterizes the internal state of
the system, i.e., the specific physical model of disorder. The
basic assumption for this type of analysis is that the system
consists of several subsystems in which the approach to equi-
librium occurs in two stages: partial equilibrium is initially
established in the subsystems, and is subsequently followed
by complete statistical equilibrium.

The procedure describing the relaxation process in-
cludes a perturbation-type series expansion of a thermody-
namic potential, e.g., the free energy Fper unit volume V, the
local entropy balance equation, the relaxation equation, and
the condition for local equilibrium.

Let us now write down the expansion for the free energy
in powers of perturbations produced by an elastic wave, tak-
ing into account the internal parameter in a form convenient
for both solids and liquids.18 In the isotropic case we have

^=^o + f4+e(«,*-3<W

Ч ^W+fafeW
аПо T^jo

•*т£ «?+-. (5)

whereas in the anisotropic case we must replace the second
and third terms with

where the subscript 0 indicates that the corresponding value
is taken in the state unperturbed by the elastic wave, (? is the
shear modulus, 6,* is the Kronecker symbol, /3T is the vol-
ume expansion coefficient, and gr is the internal parameter
of the rth subsystem.

All the expansion terms, with the exception of those
containing the internal parameters, correspond to the free-
energy expansion given in Ref. 19.

The local entropy-balance equation is17
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дЛ
dt ~ "ЛГ = CTout (6)

where Sp is the entropy density, js is the entropy flux den-
sity, ofut and afn are the densities of external and internal
entropy sources, and jc, are the cartesian coordinates.

As far as the time rate of change of the internal param-
eter |V is concerned, it is assumed that the rate at which an
internal parameter tends to equilibrium is

(7)

where 6gr is the instantaneous deviation off the internal pa-
rameter |"r from its value Ё, ° in the absence of perturbation
and I"' is the new equilibrium value in the presence of the
wave. If the perturbation is a plane harmonic wave of fre-
quency CD, and if we neglect transport processes, we find that
the sound attenuation coefficient a and the change As in the
velocity of sound due to relaxation processes18 are respec-
tively given by

«A.
r 2VpS

3C~C*~(d2F/dg)0 1 + «A?'

2VpSC~C*~(d2F/d$2)0\+v2T2'

(8)

where

(9)

a = X «r-

in which С у is the specific heat at constant volume Fand s is
the velocity of sound for longitudinal (i = k) or shear
(i^k) waves. In the anisotropic case, we must replace K/3T

with kikmn&mn in the brackets in the first term.

2. ACOUSTIC EFFECTS IN MEDIA WITH LOCAL DEPARTURE
FROM CRYSTALLINE ORDER

Any type of defect, namely, point, line (dislocations),
or volume, i.e., clusters of defects (fluctuations in concen-
tration) can act as a localized 'impurity' of disorder in crys-
talline order. A progressive elastic wave interacts with de-
fects, becomes attenuated as a result, and its propagation
velocity changes. These changes in the elastic-wave param-
eters provide us with a way of investigating the manifesta-
tions of disorder in crystals by acoustic methods. The whole
range of local manifestations of disorder in acoustic proper-
ties can be divided into two major groups, namely, direct and
mediated interactions between elastic waves and defects.

The first group includes interactions that produce a
change in the individual characteristics of defects. Thus, de-

formations produced by an elastic wave result in the dis-
placement of impurity atoms within the unit cell or in the
vibrational motion of dislocations; deformations and
changes in temperature in the wave field modulate the prob-
ability of creation and annihilation of thermal-fluctuation
point defects; and so on.

Mediated mechanisms are those in which an elastic
wave interacts not with the local manifestations of disorder
themselves, but with collective excitations, phonons, elec-
trons, and so on, which are present even in the perfect (in the
sense of order) crystal. The role of disorder then reduces to a
change in the parameters of this interaction.

The study of these mechanisms of disorder in perfect
crystals is a substantial part of the physics of real crystals.
Some of them have often been discussed in reviews and mon-
ographs. 20~24 We shall therefore ignore many important fac-
tors, such as, for example, the dislocation and domain mech-
anisms, and will confine our attention to estimates of these
contributions in the high-temperature range in the context
of particular experiments.

In the following sections we will discuss the most uni-
versal mechanisms of local disorder that operate in a wide
range of temperatures and remain significant at high tem-
peratures. Our aim will be to explore their usefulness in
quantitative estimates of local disorder.

2.1. Manifestations of local disorder in crystalline dielectrics

2.1.1. The most universal mechanism of interaction of elastic
waves with perfect crystals generally and dielectric crystals
in particular is the interaction with the thermal vibrations of
the crystal atoms. When the wavelength of an elastic wave is
much greater than the wavelength of collective vibrations,
the wave may be looked upon as a classical field that pro-
duces a deviation of the phonon distribution function from
its equilibrium form. The new distribution function is estab-
lished by phonon collisions, but this does not occur in phase
with the strain produced by the wave. The result is the ab-
sorption of the elastic-wave energy, first considered by Ak-
hiezer in Ref. 25.

In the other limiting case, the elastic wave may be
looked upon not as a classical field, but as a beam of artificial
phonons, and the absorption of sound is determined by
three-phonon processes controlled by special selection rules
(this is the Landau-Rumer mechanism26).

In the long-wave limit, the presence of local disorder in
the form of impurity atoms without internal degrees of free-
dom ensures that, in addition to phonon-phonon collisions
with frequency Гр1] ph the establishment of the new phonon
equilibrium function is affected by phonon-impurity colli-
sions of frequency Tphl (Refs. 27 and 28).

This mechanism for the effect of local disorder on the
acoustic properties of crystals is a typical example of a medi-
ated contribution of disorder, since the direct interaction
between elastic waves and point defects does not occur in the
system. We also note that the onset of local disorder, espe-
cially for high concentrations с of disorder, also leads to a
change in the average properties of the crystal (its density
and elastic moduli), but these changes usually have practi-
cally no effect on the interaction between elastic waves and
thermal lattice vibrations, and can be described by the effec-
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tive-medium model.29 We also note that the quasilocal oscil-
lations associated with point defects are relatively unimpor-
tant for these processes because, in real experimental
situations, the masses and force constants of the defects and
of the unit cell of the original lattice are not very different,
which means that the local oscillation frequencies are not
very different from the Debye frequencies.30

The effect of local disorder on the Akhiezer attenuation
of sound is particularly well denned for pure shear waves,
since the elastic strain uik (r,t) then affects only the phonon
frequency fph (kph,r,0 relative to the unperturbed frequency
/°ь(Ю (Ref.25):

'. 0 - Л?*Ч*(Г. 0), (10)

and the new distribution function is established as a result of
normal processes in the phonon subsystem and the Rayleigh
scattering of phonons by impurities,27'28 where AgJ1 is the
phonon deformation potential and /cph is the phonon wave
vector (indices characterizing the phonon branch are omit-
ted).

ifrp h > i>r ph,ph then the characteristic time constant
for the establishment of the equilibrium phonon distribution
function is controlled exclusively by Гр1и (Ref. 28)

c(\ - c)sa3k4

ph
(11)

where wcell is the mass of a unit cell, Дmce]1 is the change in
the mass of the cell due to the introduction of the point de-
fect, and a is the lattice constant that can be interpreted as
the correlation length for local disorder in the case of inde-
pendent single scattering events. It is found27 that the maxi-
mum contribution to the sound attenuation coefficient aph is
not due to thermal phonons, as in crystals without local dis-
order,25 but long-wave phonons for which Fph s (£ph) ^co,
(where о is the frequency of the sound)

ph

/* \ 3 / 4

I ЛЛ* I / i 'i \— , (12)

where T0 is the Debye temperature.
When both impurity and phonon scattering participate

in establishing the disturbed equilibrium phonon distribu-
tion function, the main contribution to sound attenuation is
due to phonons of frequency fph for which the two relaxation
processes vary in phase, i.e., ГрЬ>рЬ (/ph ) = rphii (ffb ). At
temperatures exceeding the Debye temperature28

Пси
Ph

kBT
2/3

(13)

We note by the way that if a particular phonon-impuri-
ty scattering remains while equilibrium is being established,
then (12) will remain valid for T> T0 as well.

The effect of local disorder on phonon attenuation of
sound for shear waves at high temperatures can therefore be
examined on the basis of either aph (T) or aph ( T ) , since the
sound attenuation coefficient is independent of temperature
when equilibrium is established in the phonon subsystem

exclusively by phonon-phonon processes25 for 7> TD. As
far as frequency dependence is concerned, it does not appear
to provide a great deal of information because, experimental-
ly, it is difficult to distinguish between aph ~u>2 predicted by
theory in the absence of disorder25 and the expression

«Рь~">7/4.
From the methodological point of view, it is interesting

to note that the formulas given by (12) and (13) can be
obtained not as the imaginary part of the polarization opera-
tor, but from standard relaxation theory in the form of(5)-
(8). In this approach, phonon attenuation of sound is due to
an internal parameter in the system, which may be taken to
be the phonon distribution function x(fptl,T) perturbed by
the elastic wave. To calculate the attenuation coefficient we
have to use the expression for the free energy in terms of
X (/ph. T) and substitute it in (8). According to Ref. 31, the
free energy of a crystal due to phonons is

(14)

(15)

where 2r represents summation over all the normal modes
of the crystal. The disturbed equilibrium is restored in the
rth mode by interactions with all other phonon modes. In
traditional relaxation theory, the kinetics of the restoration
of equilibrium is described by the relaxation equation given
by (7) where the quantities S§ $ are the differences between
instantaneous and equilibrium value of the rth mode distri-
bution function [Eq. (15)].

If we now express the free energy in terms of the distri-
bution function given by (14) and (15) (this is the relaxa-
tion parameter), and substitute in (8), we obtain the sound
attenuation coefficient and the change in the velocity of
sound due to the establishment of equilibrium in the rth
mode:

(r) =
ph

where Лр£' is the deformation potential of the rth mode, тр^
is the rth mode relaxation time constant, and V is the vol-
ume. Hence, if we consider that the contribution of the
phonon modes are additive, the total sound attenuation coef-
ficient in the elastic continuum approximation is found to be

Ph
(0 -

-
3V

(И)

where s is the average velocity of sound, given by

in which 5,, s, are the velocities of transverse and longitudi-
nal waves, respectively, and a>D is the Debye frequency. The
specific dependence of a'£ on frequency and temperature is
determined by the relaxation mechanism, i.e., by the de-
pendence of Tpf,' on the phonon frequency and the tempera-
ture. Thus, if rph

} is independent off, then the dependence of
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Cpi on u>rph is purely relaxational. Conversely, if we use
(11) for TpJ,', then the integral in (17) can be evaluated be-
tween zero and infinity because the last factor in (16) falls
very rapidly. For the same reason, long-wave phonons pro-
vide the main contribution to the integral. The integral then
assumes a standard form32 and

ph
Дтcell
тcell

- c)

-3/4

V/ 4 *Br.

(18)

It is readily shown that this expression is identical with (12),
apart from some multiplying numerical factors. When a lon-
gitudinal deformation wave propagates through the medi-
um, this also gives rise to a change in the local temperature
that cannot relax to its equilibrium value (relative to the
thermostat) by phonon-impurity scattering and normal pro-
cesses in the phonon subsystem. Peierls33 was the first to
point out that umklapp processes have to be taken into ac-
count. The umklapp process was discussed in Ref. 34 in the
absence of local disorder in the case where the umklapp time
constant was much shorter than the time constants of nor-
mal processes. The opposite case was examined in Ref. 35.
The emergence of the minimum characteristic time
r

ph,i = Tpi,,' in the problem, due to impurities, gives rise to a
two-stage evolution of equilibrium.36

The first to reach equilibrium, in a time rlph, are the
phonons corresponding to a particular constant-energy sur-
face. We then have

rlph rph,ph rph,i'

because the contribution of the two processes is additive
(^ph.ph = rph]ph). Phonon groups belonging to different
constant-energy surfaces then reach equilibrium with one
another because of phonon-phonon [/-processes with char-
acteristic time r2ph.

When r2 p h>rp h i, it is precisely the phonon-phonon
processes that dominate the evolution of the overall equilib-
rium.

In the general case, the ratio of the contributions of
different phonon-phonon and phonon-impurity processes to
aph depends significantly on the kinetics of the local and the
equilibrium temperatures. These questions have often been
analyzed in the literature37^*0 (see also Refs. 41-44), which
means that shear waves are preferred in studies of local dis-
order effects. It is probable that it is precisely this situation
that was encountered in experiments with longitudinal
waves45 52 in which doping had a significantly different ef-
fect as compared with shear waves.

In addition to the effects discussed above, there is also
the influence of impurities on the phonon-phonon relaxation
times53 and on phonon-phonon correlation when the contri-
butions of phonon modes to the overall attenuation coeffi-
cient are added together.54

Local disorder can have a significant influence on the
interaction of not only acoustic but optical phonons as well,
which has a significant effect on the attenuation of sound in
complex crystals with a large number of low-lying optical
branches.38'55 They include rutile TiO2 and aluminum yt-
trium garnets. In contrast to acoustic phonons, long-wave

phonons are unimportant in the scattering of optical phon-
ons by impurities, and the main contribution is provided by
phonon groups for which the density of states is high. More-
over, the contribution of optical-phonon scattering to the
attenuation of sound depends not only on Дтсе1], but also on
the position of the impurity in the crystal cell, which is in
contrast to the case of acoustic phonons. Calculations55 have
shown that, in this case, aph is proportional to temperature
and accounts for a fraction per optical branch of 0.1-1.0 of
the sound attenuation coefficient per acoustic model.

An important feature of the attenuation of sound due to
local disorder is its dependence on concentration. Since
(11)-(13) are based on the Rayleigh scattering law, they are
valid in a wide range of scatterer concentrations. This is so
because, for randomly distributed impurities, the lattice
constant is essentially the correlation length and estimates
made in Ref. 28 show that (11) is also valid for
Amcl,n/mceH ~ 1 and c~0.5.

This had led to attempts to apply this method to solid
solutions as well, especially since, on the one hand, they are
physically interesting because their concentration of disor-
der can be varied continuously within wide limits and, on the
other, it may be possible to use them as a basis for new mate-
rials for high-frequency acoustic delay lines. For example,
crystals of the solid solutions ZnxC&\ _ xTe have been inves-
tigated56 at frequencies in the range 100-1 000 MHz and
temperatures of 78-300 К for longitudinal, and for both fast
and slow shear waves. Similar measurements have been
made40 on the solid solution *Y3 xLuxAl5Ol2 in the fre-
quency range 0.5-5 GHz at temperatures between liquid he-
lium and 80 K, and on Y ( _xLuJ CAl5O1 2 (Ref. 57).

These experiments have produced very interesting re-
sults that often do not fit the theory presented above al-
though this theory does work qualitatively in a wide range of
concentrations of local disorder and temperatures. It has
been possible to provide a unified description of different
types of temperature dependence.56 For example, for shear
waves, and in accordance with (12) and (13), the measured
a increases with increasing T, although the increase is much
slower for slow shear waves in CdTe and ZnTe, and there is a
reduction for fast waves. On the other hand, a small peak has
been found for longitudinal waves in Zn071 Cd029Te at
about 150 K, which has also been seen in CdTe and ZnTe
separately.

A similarly complicated picture appears on the concen-
tration and (especially) frequency dependence of the sound
attenuation coefficient, although the overall trends remain.
For example, the sound attenuation coefficient has a mini-
mum as a function of the concentration of one of the compo-
nents (c~x), as predicted by the theory. However, all the
experimental functions show that the minimum of «ph (x) is
shifted away from с = 0.5. Thus, in ZnxCd1_; (Te it is
found57 that cmin ^0.7, while in Y3_хЬиА15О1 2 the mini-
mum is very broad and lies in the range с = 0.2 — 0.35 as x is
varied.

For example, Fig. 1 shows a (x) for Cd^Zn, лТе, as
reported in Ref. 56 for longitudinal and two shear waves
(fast and slow). It is clear that the depth of the minimum is
different for different types of wave. Thus, while for the fast
shear wave the minimum of a is about 15 dB/cm, the figure
for longitudinal waves amounts to a few dB/cm which corre-
sponds to a reduction in the contribution of disorder due to
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FIG. I. Sound attenuation coefficient and elastic moduli of Cd^Zn, _ ,T
as functions of concentration, a—T= 78 K; 1—longitudinal waves, 2
slow shear waves, 3—fast shear waves; b—fast shear waves.

the higher velocity of sound against the background of tem-
perature effects in the first approximation, which is indepen-
dent of the concentration of disorder. It may be that cooper-
ative effects have to be taken into account in solid solutions
at high concentrations of disorder. This conclusion is sup-
ported by the temperature dependence of the above mini-
mum:36 its depth decreases with increasing temperature for
the fast longitudinal wave (for example, at 300 К it is lower
by a factor of 4 than at 78 К) and its position shifts toward
higher x, which is in poor agreement with the ideas formulat-
ed for crystals with a random distribution of disorder. For
shear waves, the attenuation a is controlled exclusively by
the factor c( 1 — c) which does not depend on temperature.

However, the greatest interest lies in the frequency de-
pendence of the attenuation of longitudinal waves. It is
found40'56 that the frequency dependence of a consists of
two segments: at low frequencies the dependence is quadrat-
ic, whereas at high frequencies it is linear. The latter is as-
cribed in Refs. 40 and 56 to a manifestation of the Landau-
Rumer mechanism, both because aph ~<a and because the
temperature dependence of aph is found to be close to T*.
However, the theory does not fit the fact that the transition
from one mechanism to the other occurs abruptly, i.e, there
is a break on the frequency dependence of a (Fig. 2 from Ref.
56). It is clear from Fig.2 that in Zna35 Cdo.65 Те at 300 К the
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FIG. 2. Sound attenuation coefficient as a function of frequency. /, 2, 5—
300 K, 3, 4—78 K; 1, 3, 5—x = 0, 2, 4-х = 0.35; 1-4—longitudinal
waves, 5—fast shear wave.

break occurs at about 800 MHz, whereas at 78 К it occurs at
about 500 MHz for the same composition. It is also found40

that the frequency at which the break occurs is a function of
composition: for Y27Lu03Al5O12 the break occurs at 5
GHz whereas for Y,Lu2AlsO12 it occurs at 1 GHz.

However, it was shown in Ref. 42 that the Boltzmann
transport equation could be used when sound attenuation
was due to thermal phonons to calculate the sound attenu-
ation coefficient for arbitrary corphiph, including u>rph ph < 1
(the Akhiezer case) and fi>rph > 1 (Landau-Rumer case).
The formula obtained in Ref. 42 for aph contains a resonant
term in the denominator, which is responsible for three-
phonon processes with the corresponding selection rules,
and a relaxation term responsible for the Akhiezer mecha-
nism. Consequently, the transition from one mechanism to
the other along the frequency axis is sufficiently smooth. It is
possible that the break reported by the authors of Refs. 40
and 56 was simply due to the discrete selection of experimen-
tal frequencies, in which case the estimate for the point
a>cTph >ph г; 1 that characterizes the region of the change in the
frequency a (f) is valid, and the dependence of coc on compo-
sition can be used to estimate rphph (х), which was indeed
done in Ref. 40.

We also note that the absence of a break for shear waves
looks relatively strange within the framework of the stan-
dard method, although the study reported in Ref. 56 was
carried out for different compositions in a wide range of fre-
quencies.

If, however, the break on the frequency curve a(f) is
abrupt, this is probably an indication that, for high enough
concentrations of local disorder, the hypothesis of indepen-
dent and randomly distributed Rayleigh scatterers begins to
fail.

The sound attenuation coefficient was calculated in
Ref. 58 for partially ordered mixed crystals. In contrast to
the case of independent Rayleigh scatterers, the following
three factors were taken into account: (1) a spatial fluctu-
ations of concentration in the mixed crystals, (2) possible
clusterization of the solid solution, and (3) the presence of
long-range order elements.

In the first case, it was found that rp^J retained the con-
centration and frequency dependence. The second case had
the same dependence on с and a> as the first, but the sound
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attenuation coefficient was lower by the factor Ncl (the num-
ber of atoms per cluster) because the correlation function
was higher by this factor.

In the third case, the Ornstein-Zernicke approximation
and the assumption that the correlation length is less than
the phonon mean free path together ensure that sound at-
tenuation is as before determined by the phonon-phonon in-
teraction. It is readily seen that the inclusion of correlations
in the disposition of localized disorder has a significant effect
on the sound attenuation coefficient and its concentration
dependence, but it does not explain the abrupt change in the
mechanism responsible for the interaction between sound
and the phonon subsystem.

It is probable that an effective way to proceed would be
to take into account the fact that, for high concentrations of
disorder, weak and strong localization phenomena may arise
in the phonon subsystem,59"61 so that an increase in concen-
tration will be accompanied by, for example, the onset of
clusterization phenomena or Gaussian fluctuations for
which the spatial size of the most probable formations in-
creases with increasing impurity concentration, which in-
tensifies phonon scattering. This process exhibits the signs of
a phase transition and leads to an abrupt increase in the
phonon relaxation time because the diffusion coefficient
tends to zero. The result of all this is that the frequency
dependence of the sound attenuation coefficient changes
from quadratic below the critical concentration to linear (in
accordance with the condition <yrph ph > 1). The characteris-
tic size of the scatterers is the found to be of the order of the
wavelength of sound, i.e., about 1 000 A.

In accordance with experiment, the critical concentra-
tion is then different for different elastic-wave frequencies:
for shorter waves the necessary characteristic cluster size is
smaller, so that localization sets in for smaller x, which was
indeed observed in Ref. 56.

2.1.2. We shall now examine an example of the direct contri-
bution of local disorder to the acoustics of crystalline dielec-
trics. Since, as before, we shall be interested in long-wave
acoustic oscillations, scattering effects will be insignificant
and the elastic wave will act as a classical field but, in con-
trast to the preceding case, this field will act on the thermal
motion of the units of local disorder themselves. These can
be any one of: vacancies (Schottky and FrenkeP type), inter-
stitial atoms and their complexes, individual impurity atoms
that have entered the original crystal as it was being grown
(or were introduced specially) and their complexes, com-
plexes containing vacancies or interstitial atoms of the origi-
nal crystal, and impurity atoms.

Local disorder produced in crystals as a result of intrin-
sic thermal motion in the crystal lattice will be called ther-
mofluctuational, or simply thermal, and the other manifes-
tations of local disorder will be referred to as nonthermal.
The latter can be produced by doping, irradiation, and so on.

The difference between these two types of disorder as
far as interactions with long-wave elastic waves are con-
cerned is due to the fact that the equilibrium average concen-
tration of thermal disorder, evaluated over the volume, is
determined by temperature and mechanical stresses, and is
therefore affected by the propagating wave, i.e., thermal de-
fects can be annihilated and created.

At the same time, in the case of nonthermal disorder, its
average concentration within the crystal volume always re-
mains constant, and both strain and changes in temperature
in the wave field produce a change in the local concentration
and a corresponding redistribution of carriers of disorder in
the crystal lattice over macroscopic (of the order of a wave-
length) and microscopic (of the order of a lattice constant)
distances.These differences lead to specific acoustic manifes-
tations of both types of disorder.

Another important difference between local disorder of
thermal and nonthermal origin is due to their significantly
different temperature dependence, since the concentration
of the former is a rapidly varying function of temperature
whereas the concentration of the latter is practically con-
stant (to within changes due to thermal expansion). More-
over, temperature has a considerable effect on the mobility
of carriers of local disorder of both types and, consequently,
on the characteristic times of the corresponding dissipative
processes and the frequency range of elastic oscillations that
are being effectively used.

It is thus clear that thermal disorder manifests particu-
larly strongly at high temperatures because the necessary
concentrations of lO~3-10~4 are reached for a temperature
T^ TD or higher. In this temperature range, the characteris-
tic lifetimes of thermal defects are 10~6-10^7 s, which
means that they are most readily observable in the long-wave
part of the spectrum of ultrasonic oscillations.

Let us first consider the interaction between elastic
waves and local disorder of thermal origin.l8'24'63 Long-
wave oscillations produce a deviation of the mean concen-
tration of local disorder from its equilibrium value which,
because of the establishment of equilibrium takes time, does
not succeed in following the changes in strain and tempera-
ture in the wave field. This process can be described in terms
of relaxation theory in which the equilibrium concentration
of carriers of local thermal disorder is the effective internal
relaxation parameter. We note, by the way, that in the linear
approximation in the deviation from equilibrium, the ther-
mal and diffusion fluxes of disorder produced by the elastic
wave need not be taken into account because they are qua-
dratic in strain and temperature.

To be specific, we shall consider that the carriers of
local disorder in the crystal are Frenkel' vacancies with in-
stantaneous concentration c. Since the concentration of car-
riers of local disorder is low until we reach the melting point,
the free energy of a crystal containing local disorder can be
calculated as the energy of a weak solid solution:3'

N,
(19)
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where F0 is the free energy of the crystal without disorder,
N,,, is the number of Frenkel' vacancies, Nn is the number of
atoms of the original crystal per unit volume, and ^, is, in
general, a certain function of temperature and mechanical
stress. It can be shown that, for thermal defects, we may
assume to a good approximation that ^t = const. Actually,
if we assume that the interaction between vacancies can be
neglected when

the equilibrium concentration that ensures minimum free
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energy is proportional to exp( — if>t/kBT). On the other
hand, numerous experimental data on specific heats and vol-
ume expansion coefficients at high temperatures, from
which it is not difficult to extract the contribution due to
thermal defects,63 suggest that the temperature dependence
is of the form exp ( — const/Г).

In the case of deformed crystals, the expression given by
(19) acquires an additional term due to the interaction be-
tween the elastic wave and local disorder, which takes the
form NiAEinl where £\nt is the energy of interaction of a sin-
gle point defect, given by64

c, = c, exp (23')

£int = KQikuik< (20)

in which П№ is a symmetric tensor describing the deforma-
tion of the lattice by a single carrier of local disorder of a
particular type. The order-of-magnitude result is il;/sa3

where for an interstitial atom fl/; > 0 whereas for a vacancy
П„ <0.

If we evaluate the derivatives in (8) for the adiabatic
propagation of elastic waves, we obtain

c~v

A c,t

c,t (21)

where M is the atomic weight and NA is the Avogadro num-
ber.

The relaxation time for the process, rc, and the equilib-
rium concentration of disorder, c\, can be readily related to
the creation and annihilation probabilities Ag and Ал for a
carrier of thermal disorder by using standard equations.18 In
the linear approximation,

ct = А/АЯ, (22)

A number of points can be made about the probability
of creation and annihilation of local thermal disorder. Since
the creation and annihilation of local disorder requires the
matched motion of a large number of atoms, the process is
conveniently described phenomenologically in the multidi-
mensional space of atomic configurations, each of which is
characterized by its own potential energy.65'66 This model
does not require a microscopic picture, and the frequency of
creation of local disorder is calculated from the velocity of
the imaging point between one potential minimum and an-
other in the configuration space. The minima are separated
by a saddle point on the 3NA -dimensional surface that must
be crossed by the imaging point, i.e, the height of the barrier
that must be crossed in the transition from one state to the
other must be equal to the difference Kbetween the potential
energies at the bottom and at the saddle point. Different
configurations can be realized with probability proportional
to the Boltzmann factor. Consequently,

а - ехр(-К2/*вГ). (23)

where ct* and rj, are constants.
The exponential dependence of the equilibrium concen-

tration of local disorder on the energy parameter can also be
confirmed by thermodynamic calculations67 if the variation
of the free energy of the crystal with local disorder can be
expressed in terms of the probability of realization of the
state containing Nitt units of local disorder.

If we use combinatorial considerations to calculate the
probability for the equilibrium concentration of defects that
minimizes the free energy we again obtain (23' ) .

The physical meaning of the pre-exponential factor in
(23') is still not entirely clear. On the one hand, in the ap-
proach described in Refs. 65 and 66, r*t can be interpreted as
the effective frequency of attempts to overcome the potential
barrier between one configuration and another. However,
the numerical values of r*t found from acoustic experiments
for different crystals, lie in the range between 10 ~1 2 and
10 ~ 16 s, i.e., (т£ ) ~ ' is much greater than the limiting fre-
quency of oscillations in crystal lattices, which is in poor
agreement with the concept of effective frequency. It is pos-
sible that such low values of т*л can be explained by recalling
that they were deduced specifically from acoustic data, using
the following condition for the observation of the relaxation
maximum of ac , as a function of temperature at a particular
frequency &>:

Hence

If V2 =£ const and decreases linearly and slowly with increas-
ing Т ( V2 > kB Т up to the melting point ) , this must lead to a
reduction in r*t. Of course, the value of V2 found from the
temperature shift of the relaxation maxima of a at different
frequencies col and co2, for which

w,r;itexp(V2(7'1)/ABrI) = w2T*lexp(V2(71

2)/AB7'2),

turns out to be too low, but this is very difficult to establish
by comparing V2 calculated from acoustic data with values
of V2 found from measurements of transport coefficients
(see below). As far as the reduction in V2 with increasing
temperature is concerned, one of the reasons for this may be
the synchronization of the individual atomic motions due to
anharmonism, since the latter gives rise to oscillation fre-
quencies that exceed the limiting frequencies of collective
modes in a given crystal lattice, and this generates individual
oscillation modes.

Numerical calculations68 have shown that, when an ex-
tended fluctuation is used to excite a chain of atoms for dif-
ferent pair interaction potentials, the phased collective mo-
tion of groups of atoms substantially reduces the threshold
rupture energy. For example, when the chain is deformed by
about one percent, the threshold energy is reduced by a fac-
tor of fifteen as we increase the number of excited atoms
from two to ten.

Since for an elementary local disorder in the form of an
interstitial-atom vacancy we have flik^fl,,, the orienta-
tional dependence of these effects is not well defined. It may
be considered that it is precisely this mechanism that is re-
sponsible for the increase in the sound attenuation coeffi-
cient that has frequently been observed in different crystals
for T> T0 , and is often referred to as the high-temperature
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background (see for example, Refs. 23 and 69).
The most characteristic feature of the high-temperature

background is its weak frequency dependence, revealed by
measurements at frequencies in the range 105-106 Hz and
above, and the monotonic increase with increasing tempera-
ture which is nearly exponential (Fig. 3).

In accordance with (21)-(23), and if the condition
a>Tc_, > 1 is satisfied, the temperature dependence of acл is
independent of frequency and is exclusively determined by
the probability of creation of local disorder, i.e.,
exp( — FI//CB Г). Measurements of the velocity of sound as
a function of temperature, designed to reveal local disorder,
are less informative because such data are masked by the
temperature dependence of the elastic moduli, which is due
to anharmonism.

The maximum of the sound attenuation coefficient as a
function of temperature is observed when

V2) (24)

which replaces the usual condition flrc>t = 1. Since direct
methods have established that the concentration of thermal
disorder increases with increasing temperature, the conclu-
sion must be that Vl > V2- When V2 < Vl < 2 V2, acoustic ex-
periments can reveal the maximum of the function a(T). On
the other hand, for F, > 2 V2, we should observe an almost
exponentially rising form of a( 7") in the case of the modula-
tion mechanism. In dielectrics, which usually have a high
defect formation energy (as compared with kBTm), this
mechanism leads to ac, (T,co) that is in agreement with the
high-temperature background. Analysis of the data in Fig. 3
shows that Vv ~ 1 eV in high-resistivity CdS.

Local disorder can manifest itself not only in the form of
individual vacancies or interstitial atoms, but also in the
form of elementary complexes, of which the simplest and
most common is the complex consisting of a vacancy and an
impurity atom. The above formulas for relaxational local
disorder are then found to remain valid, but the process ki-
netics changes form because the probability that the com-
plex will appear is determined by its lifetime and the specific
mechanism of relative motion between the impurity and the
vacancy. The strain produced by the elastic wave modulates
the probability of creation (annihilation) of thermal local
disorder, and modifies the equilibrium concentration of the
complexes. When rcomp >A ~ ' (rcomp is the time necessary
to produce the complex in the presence of the vacancy), the
relaxational form of a (a) is preserved. However, in the op-

posite limiting case, a has a specific frequency dependence
that is often observed experimentally. When the point at
which the vacancy occurs is not correlated with the position
of the impurity, and the complex is formed as a result of the
diffusion of the impurity toward the vacancy (because of the
significantly different diffusion coefficient), the change in
the concentration of the complexes in the acoustic field for
a> > A A is controlled not by the vacancy lifetime, but by the
period ts of the acoustic wave. The probability Acomf that a
complex will be produced can then be calculated as the prob-
ability that the impurity will diffuse in a time t < Ts over a
distance of the order of the mean separation between the
impurities, i.e., N{~

 1/3. If we describe diffusion in terms of
uncorrelated one-dimensional hops, then we can show that70

Лотр ~« ~ 1/2лг2/з jf a > О-,Н2/Ъ, i.e., the sound attenuation
coefficient decreases with increasing frequency (D{ is the
diffusion coefficient). This type of behavior of act has been
frequently observed experimentally.24 Thus, for Д~106

cmVs, which is typical for high temperatures, and Nj
~1(T16 cm-3, aC i t~u>~1 / 2 for co> 106 Hz; for

.Dj =; 10~9-10~ 10 cm2/s (room temperature), this type of
dependence is already observed for a> > 100 Hz.

Let us now consider the interaction of long-wave elastic
oscillations with nonthermal local disorder. The motion of
carriers of local disorder is controlled by the chemical poten-
tial gradient, i.e., it occurs by spatial diffusion. In the simple
case where the diffusion process does not involve several
types of carriers of disorder (e.g., if we consider the motion
of an impurity atom over the interstices), diffusion in the
field of the elastic wave continues until chemical potential
gradients of the crystal and the impurity become equal.

For more complicated types of motion of carriers of
local disorder, when several types of carrier are involved
(e.g., if we consider the motion of an impurity over vacan-
cies ), the perturbing force in the elastic wave field is due to
gradients of chemical potential difference between impurity
and vacancy, on the one hand, and the main lattice and va-
cancy, on the other. The sound attenuation coefficient a; d

and the change Asiid in the velocity of sound can be calculat-
ed from the formulas

Ms\T

As,i.d
(25)

= a T,dTd,nts'

т
•о

is f

300 500

FIG. 3. High-temperature attenuation of sound in CdS at 15-75 MHz. 1,
2—high-resistance nonphotosensitive samples, 3, 4—low-resistance sam-
ple; /, 2, 4—longitudinal waves, 3—shear waves; 1, 3, 4—propagation
along hexagonal axis.

where cnt is the concentration of nonthermal disorder and
Ta,nt =AA2- Numerical estimates show that
rd,nt ~ 10 ~ 1б-10 ~1 8 s for diffusion coefficients in the range
10~6-10~8 cm/s, i.e, this mechanism cannot be demon-
strated experimentally in a direct way.

However, the situation changes if the crystal contains
internal inhomogeneities that acts as sinks and sources for
carriers of local disorder. These inhomogeneities can take
the form of block boundaries, dislocations, and so on. Diffu-
sion of carriers of local disorder, initiated by the chemical
potential gradient produced by the elastic wave, continues
over the distance to the nearest sink or source, which is much
shorter than the wavelength Л of sound. To verify that the
conditions for the experimental detection of the mechanism
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are thus substantially improved, we rewrite rd M in the form

If we assume that diffusion takes place in the form of
uncorrelated hops, the condition u>rdnt = 1, i.e., the condi-
tion for the mechanism to be most effective, corresponds to
the requirement that the carrier of local disorder has dif-
fused to a distance Л during one wave period. If the separa-
tion between sources or sinks of disorder is rdis ^A, we find
that rd n, is greater by the factor Л 2/r^is . For example, for
Д = 10 ~6 cmVs and rdis = 10 ~6 cm, the condition
<wrdillt = 1 is satisfied for an elastic wave of 1 MHz.

Another source of interaction between elastic waves
and local non thermal disorder is the redistribution of its car-
riers within the unit cell due to the change in the position of
their potential-energy minima in the deformed crystal lat-
tice. This type of interaction has often been investigated for
different types of local disorder (see, for example, the review
given in Ref. 22). If it is possible to find r characteristic
positions of local disorder in the unit cell, then each of these
locations can be characterized by a strain tensor £ll,£ ' pro-
duced by a defect at the given point in the cell (p = 1,2,...,/-) .
If the carrier of local disorder is a single impurity atom, the
symmetry of the tensor ftj£} is determined by the symmetry
of the position of the defect in the lattice. If, on the other
hand, the carrier of local disorder is a set of several atoms
with its own intrinsic symmetry elements, the symmetry of
fl %* includes both the intrinsic symmetry of local disorder
and the position symmetry.22

We shall consider that the crystal contains an impurity
in the form of r types of particle, and that when it is subjected
to external deformation, its free energy must be rewritten in
the form24

p=l

(26)

where the last term represents the energy of interaction be-
tween the elastic wave and local disorder of type p. In the
absence of deformation, the condition for minimum F when
all the positions of local disorder in the cell are energetically
equivalent yields

where cnt = NQ/NA is the total concentration of local disor-
der.

The new equilibrium values of the concentration (c£t )
e

that reflect the redistribution of local disorder in the pres-
ence of the wave are found for

= const
P=I

from the condition for minimum F for each

looked upon as a relaxation process, i.e, we have to take into
account not the temporal but the spatial dispersion, and re-
gard c£, as the relaxation parameter. The sound attenuation
coefficient due to the redistribution of the orientation of non-
thermal local disorder is then given by22-24

Since all the displacements of the carriers of disorder
occur within one or a few unit cells, i.e., a<^A, this can be

(28)

The characteristic feature of this sound attenuation
mechanism is the strong anisotropy that distinguishes it
from the modulational contribution of thermal disorder and
enables us to classify the symmetry of local disorder22 on the
basis of acoustic measurements. For example, in a cubic
crystal, a shallow impurity atom produces local disorder of
cubic symmetry, localized on the boundaries of the unit cell.
Hence a plane elastic wave propagating along a space diag-
onal of the cube will not interact with this nonthermal local
disorder. In general, the positional symmetry of local disor-
der should be lower than the symmetry of the unit cell in the
crystal lattice.22

The relaxation time rnt is determined by the frequency
with which the potential barrier separating two impurity
configurations within the unit cell is overcome by the ther-
mal mechanism. In this sense, acoustic experiments provide
us with a unique possibility of determining the characteristic
cellular motion of carriers of disorder and, hence, the height
of the potential barrier.

We note that comparisons of barrier heights found from
acoustic data (<wrnt =1) with those found from diffusion
must be performed with some caution and must take account
of the particular diffusion mechanism. If diffusion is due to
the interstitial mechanism and takes the form of uncorrelat-
ed hops, the barrier height in the expression for the diffusion
coefficient A is probably close to that determined from
acoustic data. When diffusion involves the participation of
vacancies, the diffusion and acoustic barriers turn out to be
significantly different.

If the fil71. do not satisfy the conditions formulated
above, the strain produced by the elastic wave is not accom-
panied by the displacement of carriers of local disorder, so
that there is no contribution to the acoustic characteristics.

However, it is possible to use external factors, e.g., the
imposition of a static mechanical strain that alters the sym-
metry of local disorder. For example, the effect of platinum
and gold doping of silicon on the attenuation of sound was
investigated in Ref. 71 where it was shown that the relaxa-
tion maxima of a; appeared only when the samples were first
subjected to mechanical treatment. The explanation given in
Ref. 71 is based on the assumption that local disorder pro-
duces defects with orthorhombic symmetry and has six crys-
tallographically equivalent orientations. Transitions be-
tween them can occur by tunneling, as in the case of Jahn-
Teller centers. The result of this is that the effective symme-
try of local disorder is raised to cubic symmetry, which re-
moves all manifestation of relaxation in cubic crystals. On
the other hand, mechanical strains give rise to anisotropy in
the position of the centers, which reduces symmetry and
gives rise to the attenuation of sound.
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2.1.3. When carriers of disorder have nonzero electric charge,
and the acoustic wave is accompanied by an electric field,
this gives rise to processes that are analogous to those exam-
ined above, but do not require the corresponding symmetry
of disorder.72 The physics of the phenomena is identical to
thermal polarization of a dielectric73 and reduces to the re-
distribution of localized disorder in the field of the elastic
wave. Since these displacements occur on the scale of a few
unit cells, i.e., rdis <^A, the acoustic parameters can be calcu-
lated, as before, from relaxation theory.

The source of the electric field accompanying the elastic
wave can be either the piezoelectric or the strain potential
associated with local strain.

When the piezoelectric effect is present, the electric po-
larization due to the strain is"4

(29)

and the energy of interaction with a point defect with an
effective charge qeff is

where £}uk is the piezoelectric tensor, elm is the static permit-
tivity tensor, and Sm is the size of a hop in the direction of xm.

The strain potential Affc that produces the redistribu-
tion of the charged carriers of disorder in the unit cell under
the influence of the electric field is related to the strain gradi-
ent within the cell, i.e.,

£"mt = (31)

The electric field produced by the wave alters the probability
of displacement of charged defects in the direction of the
field.

The relaxation parameter g can be taken to the popula-
tion difference between the directions along and against the
field relative to some special plane:

(C9,nt)z (c<?,nt)l 1 + 1ШТ '

where it is assumed that, in the absence of the wave,

Standard evaluations now yield the following expres-
sion for the sound attenuation coefficient due to charged
carriers of disorder:72

l!fL_ (32)
2Ms3kBT

where Хш must be replaced either with (30) or (31). If the
carriers of local disorder have an intrinsic dipole moment
P}oc , the formula given by ( 3 1 ) remains valid, except that we
must now put ?eff<5m = (Лос ) m - We trius obtain the ultra-
sonic analog of thermal dielectric relaxation, and the charac-
teristic time constants found from ultrasonic and electrical
data are found to be equal. Of course, if the unit cell contains
several potential-energy minima, this given rise to several

relaxation time constants and we have to sum over these
constants in (31). Ultrasonic methods of finding cq_nt and rq

may be found to be more effective than electrical methods
when there is a danger that charge carriers may be injected
from electrodes into the dielectric, and may affect the re-
sults.

2.2. Local disorder in crystalline semiconductors

The above mechanisms of local disorder in acoustic pa-
rameters operate, at least in principle, in crystalline semi-
conductors as well. The presence of mobile and localized
carriers in the form of electrons and holes leads merely to a
renormalization of numerical values of the variables that in-
fluence the attenuation coefficient and the dispersion of the
velocity of sound. Thus, the electrons and holes can produce
a change in the Gruneisen constant due to the components of
the phonon spectrum, and there can be a change (due to the
contribution of carriers to the free energy of the crystal) in
the equilibrium velocity of sound. At the same time, diffu-
sion of impurities and thermal defects is accompanied by
transitions in the set of mobile and fixed carriers, and this
produces a change in the activation energy for translational
motion of carriers of local disorder, and so on.

In most experiments, local disorder is produced in semi-
conducting crystals by doping or by exposure to radiation.
Semiconducting silicon and germanium, and also AinBv and
A"BVI compounds have been investigated in particular de-
tail (cf. the bibliography in Refs. 22, 24 and 71). Such mea-
surements have revealed the presence of relaxation maxima
on a as a function of frequency and temperature after doping
with different impurities (Си, В, Со, Р, Fe, and so on).
These data have been used to determine the activation ener-
gy for the relevant processes, whereas orientation properties
have been used to establish the character of lattice distor-
tions (type of carrier of local disorder).

We note that manifestations of local disorder of this
type do not physically constitute a high-temperature phe-
nomenon: an increase in temperature is accompanied by a
reduction in the characteristic relaxation time of the rel-
evant processes, which means that the frequency of the ultra-
sonic waves used in the experiments can be increased, so that
the same (and not different) samples can be used to investi-
gate the orientational dependence of a and A.S, which un-
doubtedly improves the reliability of the conclusions drawn
from such data.

It has been found that the most characteristic types of
local disorder are associated with the creation of complexes
that include an impurity atom and dissolved oxygen atoms
(more rarely, atoms of the host medium), and exhibit tetra-
gonal or orthorhombic symmetry. The dependence of a on
orientation and concentration shows that the mechanism re-
sponsible for attenuation of sound is reorientation of elastic
dipoles in the field of the elastic wave, which was discussed
above. The separation of the contribution of local disorder
from the dislocational contribution, especially in elementary
semiconductors, usually presents no difficulty because of the
high quality of the crystals (dislocation density down to 10
cm ~ 2 ) although some experimental publications do not re-
port the value of this parameter. Moreover, it is important to
remember that the presence of dislocational disorder that
cannot be controlled may have a significant distorting effect
on experimental data for at least two reasons. First, impurity

935 Sov. Phys. Usp. 35 (1 1 ), November 1 992 M. B. Gitis 935



atoms condensing on dislocations do not participate in the
creation of elastic dipoles. Second, impurity atoms acting as
pinning points for dislocations modify the length of the oscil-
lating dislocation segments. This modifies the dislocational
contribution to the attenuation of sound which is a compli-
cated function of segment length, the parameters of the elec-
tronic and phonon subsystems, and frequency (see, for ex-
ample, Refs. 20 and 23).

The contribution of the phonon deformation potential
remains unaltered and increases linearly with temperature.

Mechanisms involving participation of local thermal
disorder are specific to the high-temperature range. How-
ever, experiments and calculations have shown70 that local
thermal disorder is not differentiated with respect to the type
of dielectric crystal, at least in elementary semiconductors,
because of the high energy of formation of this disorder and,
therefore, its low concentration up to temperatures ap-
proaching Tm.

Experiments and subsequent theoretical calculations
have shown that mobile and localized carriers provide an
additional contribution to the attenuation of sound in semi-
conductors. Here again we can distinguish two cases. If the
main parameters of the interaction between the carriers and
the elastic wave are functions of concentration, and of the
character of local disorder, the contribution of crystalline
local disorder to the parameters of the wave propagating
through the electrons and holes is found to be mediated in
accordance with the classification given above. If, on the
other hand, the elastic wave produces a change in the charac-
teristics of local disorder, which modifies the parameters of
the electron subsystem, then we say that there is a direct
interaction between disorder and sound.

The two types of interaction have significantly different
effects in highly-doped and weakly-doped semiconductors.
Strong and weak doping can be defined in terms of the degree
of overlap of the electron states belonging to different impur-
ities,74'75 and the corresponding conditions take the form
JVj r^ > 1 and NI TB ̂  1, respectively, where rB is the Bohr ra-
dius.

2.2.1.In highly-doped semiconductors, electrons have rela-
tively high mobility and can therefore be regarded as essen-
tially free. Even for relatively high rates of compensation dk,
the motion of carriers is not of the activation type. Since the
Fermi energy |" increases with the concentration of donor
impurity Ndon as Л^ (Ref. 74), whereas the energy of in-
teraction of electrons increases much more slowly, i.e., only
as Л^оп> tne ideality of the electron gas increases with in-
creasing local disorder in the absence of compensation, and
the carriers themselves are distributed uniformly through-
out the volume.

As the concentration JVac of acceptor-type local disor-
der increases, i.e., as the degrees of compensation increases,
the Fermi energy is found to decrease whereas the inhomo-
geneity of the distribution is of mobile carriers throughout
the volume becomes greater, i.e, their concentration ие be-
comes a function of position.

The attenuation of sound by free charge carrier was
probably first calculated in Ref. 76 where it was assumed
that the elastic wave perturbed the edges of the conduction
and the valence bands through the electronic deformation

potential Ле. A spatially inhomogeneous distribution of car-
riers is produced as a result, but diffusion processes tend to
smooth it out. The role of disorder in this analysis is thus
seen to reduce to the effect on electron and hole lifetimes
and, consequently, on the rate of inhomogeneity smoothing.
It was subsequently found that a different mechanism was
more effective in its contribution to the attenuation of sound
in elemental semiconductors. It relies on the particular
structure of the conduction band of silicon and germanium
in which the deformation produced by the wave lifts the en-
ergy degeneracy; it produces a redistribution of electrons
(holes) between the energy valleys and is characterized by a
finite relaxation time re d. Physically, the attenuation mech-
anism can be referred to as electron-deformational and con-
stitutes an analog of the attenuation of sound by the redis-
tributing elastic dipoles (see above), except that it occurs in
energy space and can be calculated from the same formulas
that give the result obtained by another method in Ref. 77
(the valley population difference is then the relaxation pa-
rameter), namely,

ле(Л
е)2сЛе

e2ps3*Br(l+cA2)'
(33)

where xe is a coefficient that depends on the wave type and
the degree of carrier degeneracy.

Numerous early experiments with n-Ge and n-Si doped
with group III and IV elements, and also the discussion of
them, are described in Ref. 21. Later experiments are report-
ed in Refs. 79-81. The numerical values of deformation po-
tentials reported in different papers are in reasonable agree-
ment and amount to 17.4 eV and 9.5 + 0.7 eV for n-Ge (Ref.
21) and n-Si (Ref. 80), respectively. For p-Si, the data re-
ported in Ref. 81 suggest that it is useful to introduce two
electronic deformation constants, one of which is 1.2 eV and
is due to the change in volume, whereas the other is 2.7 eV
and is due to pure shear deformations.

In general, the relaxation time re is given by

-1 (34)

where Д. is the electron diffusion coefficient.
At frequencies below 1 GHz, the second term in (34)

can be neglected. The intervalley relaxation time is then de-
termined by three factors,21 namely, scattering by thermal
phonons, by ionized impurities, and by neutral impurities.
The corresponding time constants are re ph ~ Т ~3/2, and
re j ~ Тl/2, and те ni, respectively. Scattering by neutral im-
purities is effective only at very low temperatures. The con-
tribution of ionized donors is not through scattering by the
Coulomb potential of the impurity, which is relatively inef-
fective, but through the process whereby electrons are cap-
tured from a valley by impurities, and are then released into
another valley.82 Since local disorder manifests itself only
through the last two terms, we readily see that intervalley
electron relaxation is ineffective in studies of the role of dis-
order in semiconductors at sufficiently high temperatures
(above 100 K). A detailed discussion of the temperature
dependence and order-of-magnitude estimates can be found
in Ref. 21.

At temperatures above 300-400 K, the electron-
phonon deformational interaction cannot be observed be-
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cause of the considerable reduction in re d and the masking
effect of the phonon and phonon-impurity attenuation
mechanisms.

Another type of mechanism that leads to energy loss in
semiconductors is the perturbation of the spatial distribu-
tion of mobile carriers by the propagating wave. This pertur-
bation can be produced either by a distortion of the band
structure of the semiconductor83 or by the electric field ac-
companying the elastic wave in piezosemiconductors.84'85

Weinrich76 has taken into account the modulation of
the band gap Д.Е8 by the propagating wave in the intrinsic
semiconductor:

л с- _ Iе i. С^Л'Л&£.„ —Л-.-г-"--!.. V.JH- )

erned by the finite lifetime т, of the mobile carriers and by
the diffusion of carriers due to the chemical potential gradi-
ent produced by the wave (see below). The attenuation coef-
ficient is found by solving the set of equations that includes
the wave equation and the continuity equations for the cur-
rent and the electrostatic displacement vector, into which a
self-consistent electric field has been introduced without us-
ing the Poisson equation, which ensures that the intrinsic
semiconductor is electrically neutral.

The sound attenuation coefficient due to the electronic
contribution is found to be

2ps\T(l + I)
ImM, (35)

In his description, the sound attenuation coefficient is gov- where

in which / = ne/pe is the ratio of the equilibrium concentra-
tions of mobile electrons and holes, це and /zp are the elec-
tron and hole mobilities, respectively, and rd e = De /s2 is the
characteristic time for the diffusion spreading of charge
clouds, which is inversely proportional to the diffusion fre-
quency <ud e. At high temperatures, Т = 500-600 К, the car-
rier lifetime in, for example, elemental semiconductors86 is
found to be 10~4-10~7 s and rde ~ 10~ " s. Hence, up to
the megahertz frequency range, we have

Ш Т,

2ps3kvT 1 + cAf
(35')

A mechanism for the interaction between mobile
charge carriers and an elastic wave was proposed in Ref. 70
and is analogous to that described above, except that it takes
into account the doping properties of local disorder. It is
known87 that local thermal disorder in semiconductors dis-
torts the original crystal lattice and produces additional lo-
cal levels in the band gap. For example, acceptor type levels
appear in the band gap of germanium and donor type levels
in the band gap of silicon. The result of this is that, at high
temperatures, the change in the concentration of mobile car-
riers, e.g., in n-type material, is due both to direct transitions
from the valence band to the conduction band and to the
influence of local thermal disorder (at such temperatures,
the impurities that produce the nonthermal local disorder
are usually all ionized). Under certain particular conditions,
these effects can even lead to a change in the sign of carriers
i.e, to the so-called thermal conversion. Ultrasonic oscilla-
tions that modulate the equilibrium concentration of ther-
mal disorder are therefore capable of producing a perturba-
tion of the equilibrium concentration of mobile charge
carriers, which leads to the appearance of local currents in
the conduction band, which are analogous to deformation
currents, and to the attenuation of sound, which can be re-
ferred to as the electron-defect mechanism.

It was noted in Ref. 70 that the direct contribution of
the modulation of thermal-disorder concentration to the at-

tenuation of sound in dielectrics can be neglected because
the energy of formation is high (2-3 eV) and, correspond-
ingly, the concentration is low (10 6 -10^ 7 cm" 3 ) which
amounts to about 0.01 dB/cm under optimum relaxation
conditions.

The sound attenuation coefficient due to the electron-
defect mechanism is calculated in Ref. 70. For example, for
n-type semiconductors, it is given by

-Im
M

1 + гейт
(36)

comp

When u>Tdie < 1, (от, > 1, and <wrcomp •
sumes the simpler form

comp

-1, this expression as-

(36')
+1)1+ <

where n,Tis the equilibrium concentration of mobile carriers
due to thermal disorder. For example, at high temperatures
(Г=;600 К) in germanium, for which the number of intrin-
sic band carriers ис is much greater than the concentration
7Vac of acceptors due to thermal disorder, the estimated nf is
0.5#ac at T= 700 K, while ne

r~1019 cm"3 (Ref. 86) and
JVac & 1018 cm ~~3. The estimates made for this temperature
range are typical for practically all the semiconductors (of
course, if we take account of the type of thermal levels pro-
duced by thermal disorder).

Numerical estimates of both contributions to sound at-
tenuation in germanium show that, in the region of their
maxima, they are of the same order of magnitude and
amount up to ten dB/cm at a frequency of about 108 Hz (if
we put Л е =17 eV, ne = 1018 cm~3, ne

r=1017 cm-3,
П„ = 10 ~2 3 cm3). It follows that they are difficult to sepa-
rate experimentally, especially if we recall that the carrier
lifetime can be different for different samples, and it is quite
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difficult to estimate the coefficient that relates the concen-
tration of a particular type of thermal disorder to the number
of thermal levels in the band.

The attenuation of sound was measured in Ref. 88 up to
1200 К is silicon and germanium at frequencies of 105 and
3 X 10s Hz, and the two maxima of a found for longitudinal
waves propagating in the [111] direction were ascribed due
to the deformational interaction in accordance with (35)
(for the maximum at the lower temperature) and to the re-
laxation of dissolved oxygen atoms in accordance with (28).
The fact that the maximum of a was observed at T= 670 К
at the frequency of 105 Hz leads to the estimate 10 ~~5 s for the
relaxation time, and the temperature shift of the maximum
can be used to show that the argument of the exponential
during the relaxation time is about 1 eV.

Measurements of the attenuation of sound in germani-
um and silicon were also reported in Ref. 70, but for longitu-
dinal and shear waves propagating in the [ 100] direction at
the higher frequencies of 107-108 Hz. The samples used in
these measurements had n-type and p-type conductivities
with mobile carrier densities at room temperature in the
range 1014-1017 cm~3. The dislocation density of all the
samples were determined on the surface and did not exceed
10 cm"2, which meant that the dislocation contribution
could be ignored.

The results of these measurements can be briefly sum-
marized as follows (see also Fig. 4): (1) sound attenuation
increases with increasing temperature, (2) the temperature
dependence of the sound attenuation coefficient a does not
depend on the type of ultrasonic wave or its direction of
propagation, (3) the sound attenuation coefficient of silicon
decreases with increasing frequency, and a similar tendency
is observed in germanium, but is less well denned and there is
no frequency dependence in the first approximation, (4) an
increase in frequency is accompanied by a change in the tem-
perature coefficient and in the temperature at which a be-
gins to vary appreciably with temperature, and (5) the sign

of current carriers and the concentration of dopants have no
effect (to within the experimental uncertainty) on the tem-
perature coefficient of a, but they do influence the tempera-
ture at which a begins to increase appreciably; the influence
of the dopants increases with decreasing frequency.

These results appear to demonstrate the considerable
effectiveness of the electron-defect mechanism. Actually,
the deformational interaction in silicon and germanium is
significantly anisotropic because of the multivalley charac-
ter of the conduction band (cf. Fig. 4). Moreover, the very
slight effect of dopants is inconsistent with the mechanism in
which the carrier lifetime acts as the relaxation time, espe-
cially since all the shallow impurities are found to be ionized
in this temperature range.

Moreover, in the electron-defect mechanism, the orien-
tational dependence of ae d is determined by the shape of the
characteristic surface £lik, which is probably nearly spheri-
cal for simple lattices. The slight effect of dopants can also be
understood because, at sufficiently high temperatures, when
the mechanism comes into its own, semiconductors such as
silicon and germanium have intrinsic conductivities.

It may therefore be considered that the relaxation peaks
observed in Ref. 88 are also due to the electron-defect attenu-
ation, especially since the characteristic relaxation time is
about 10 ~5 s and is in good agreement with the estimated
lifetime of thermal defects at these temperatures.

The electron-defect interaction can also be used as a
basis for an explanation of the specific frequency dependence
of a in silicon, since it is known87 that, in contrast to germa-
nium, in which monovacancies are the source of thermal
acceptor levels, the formation of thermal donor levels in sili-
con is associated with the creation of an impurity-vacancy
complex. The resulting local thermal disorder in silicon can-
not therefore immediately produce a thermal level in the
band gap. The standard transport equation must then be
modified in order to allow for the probability of formation of
a thermal level during the lifetime of local disorder. If we
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FIG. 4. Sound attenuation coefficient as a function of tem-
perature for longitudinal waves in semiconductors, a — Ge. /,
3 — direction of propagation [ 1 1 1 ] , 2, 4 — direction of propa-
gation [100]; 1, 2—15 MHz, 3, 4—85 MHz. b— Ge. 1—
л„= 1.8Х101

p0 = 10" cm - 3;
5—55 MHz.

2— p0= 1.7X10"1 cm-3, 3—
15 MHz. c— Si. /—15 MHz, 2—25 MHz,
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consider (a) that the characteristic time for the creation of
the level is actually the time for the impurity atom to ap-
proach the thermal defect to a distance necessary for the
creation of the complex, (b) that the transitional motion
takes the form of correlated hops, and (c) that the disposi-
tion of the impurities is random, then according to Ref. 70

the frequency dependence of a is nearly exponential and de-
pends on temperature.

The attenuation of sound at high temperatures, which
has similar specific manifestations, has also been seen in
non-piezoactive directions in CdS samples with room-tem-
perature conductivities oflO~ 8 -10~ 2 fl~' cm~'.

We note, by the way, that other manifestations of local
disorder in semiconductors that are unrelated to local cur-
rents are found to be of minor significance. In particular, the
change in the mean concentration of ionized carriers of local
disorder that occurs in the field of the elastic wave provides,
as does the change in the mean concentration of mobile
charge carriers, the corresponding contribution to the free
energy of the crystal, and may be looked upon as a relaxation
variable in the spirit of the above discussion. However, the
sound attenuation coefficient associated with this mecha-
nism in, for example, silicon and germanium, is found to be
small because of the local concentration of point defects,
since whatever the depth of the energy level created by the
point defect in the band gap, the dependence of the chemical
potential on the concentration of free charge carriers excited
into the conduction band (valence band) from the thermal
levels can be written in the form ~ In (Be), which is the usual
form for an impurity semiconductor (c is equal to the con-
centration of point defects when all the thermal levels are
ionized and В is a slowly-varying function of temperature
that, in the first approximation, is independent of deforma-
tion and carrier concentration) and a is determined by the
derivatives of the chemical potential.

The longitudinal electric field E accompanying the elas-
tic wave propagating in piezoactive directions in piezosemi-
conductors produces a substantial perturbation of the elec-
tron subsystem. Piezoactive directions in piezoelectric
materials are defined as those in which the propagating elas-
tic wave gives rise to an electric field with a well defined
longitudinal component because the effective electron-elas-
tic interaction is due to the tendency of, for example, the
electron subsystem to screen off longitudinal electric
fields.82'85 The efficacy of this interaction is much greater
than that of the mechanism discussed above, which means
that it can be exploited in studies of the properties of crystals
exhibiting a slight piezoelectric effect.

The standard set of equations includes the wave equa-
tion, the equations of continuity for the current density у and
the displacement D(el), and the corresponding expressions
for the current density and displacement in the presence of
the wave. The specific form of these equations depends on
whether the particular semiconductor material is monopo-
lar or bipolar.

For low concentrations of local disorder, its role re-
duces to the creation of local levels in the band gap, which
behave as trapping or recombination centers. These ques-
tions are frequently being discussed in reviews and research
publications in connection with the application of piezose-
miconducting materials to the amplification of sound and
the design of acousto electronic devices. A reasonably exten-

sive bibliography and a discussion of different aspects of this
topic can be found, for example, in Refs. 24, 33, and 89-92.

Analogous problems have also been discussed for the
interaction through the deformational potential in monopo-
lar and bipolar impurity semiconductors with and without
recombination and attachment centers (see, for example,
Refs. 93 and 97). This interaction is much weaker in the
long-wave range. Since there is a whole series of specific
band structures in the presence of individual local disorder,
it is very useful to have the general relation obtained in Ref.
97 by calculating the power released per unit volume per unit
time (for the case where the concentration of field carriers is
independent of position). By determining the crystal con-
ductivity for different band gap structures, it is possible to
obtain the sound attenuation coefficient in the form

a=K
1

ЕЕ2Г
Re(g/e)

Im(cr/«o) ] + [Re(cr/ew)] ( )

where KEE is the electron-elastic coupling coefficient that is
readily expressed either in terms of the piezoelectric con-
stant or the deformational interaction constant, a is the elec-
trical conductivity, and e is the permittivity.

An increase in the concentration of local disorder in
semiconductors may be accompanied by the appearance of a
large-scale ( as compared with the mean separation between
carriers of disorder ) potential due to fluctuations in the con-
centration of disorder. This potential is particularly signifi-
cant when disorder is due to donor and acceptor impurities
of similar concentration, i.e, when compensation takes
place.74'75 As a result, the distribution of mobile charge car-
riers within the volume becomes inhomogeneous.

If we suppose that the carrier mean free path is much
shorter than the typical dimensions of fluctuations, and the
latter are much smaller than the wave length of the elastic
wave, then we can use the hydrodynamic description. More-
over, the assumption that the mean free path of charge carri-
ers is much shorter than the characteristic size of electrical
inhomogeneities is equivalent to saying that the crystal has
more efficient carrier scattering mechanisms that are unre-
lated to fluctuations, e.g., phonon mechanisms. This sug-
gests that the mobility and the carrier diffusion coefficient
may not be functions of position. In this approximation, the
main set of equations describing the interaction between
elastic waves and mobile charge carriers remains the same as
in the homogeneous case, but the equations contain random
functions of position, namely, the charge carrier concentra-
tion ne (r) and the random internal electric field Ei (r), i.e.,
it is stochastic.

This problem was examined for n-type piezosemicon-
ductors in different approximations in Refs. 98-101, since
these effects had been investigated experimentally (see be-
low) in some detail in the piezosemiconductors CdS and
CdSe. The various formulas obtained are readily generalized
to the case of interaction via the electronic deformation of
potential on the assumption that the instantaneous (initiat-
ing) energy of interaction between the elastic wave and the
mobile charge carriers in the case of the piezeoelectric inter-
action is given by

= <?eff
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and for the deformational interaction by

U bit = V*tt' (38b)

where qea is the effective charge of the carriers, xm is the
cartesian position coordinate, and /&,*,„, is the piezeoelectric
tensor.

If we can divide the piezoelectric field due to the pie-
zoactive elastic wave into two components, namely, the reg-
ular component (E > and the fluctuational component E
with (E ) = 0, we can readily show that, since in real piezose-
miconductors (£/7 т)

2/(г/£)2

tions contains only (E } :

pd2u/dt2 =

ЛГЕЕ <1, the wave equa-

(39)

where f/w is the elastic energy of the propagating wave, и is
the displacement in the wave, x3 is the piezoactive direction
in the crystal, the wave equation is written in the form of a
projection onto this direction, and (...) indicates statistical
averaging over a volume that is large in comparison with the
size of a fluctuation in concentration.

Different approaches are thus seen to differ by the ap-
proximation used to evaluate <E>. For example, in Refs. 98
and 99, the sound attenuation coefficient is calculated by the
effective medium method. The resulting expressions are rel-
atively unwieldy, but become manageable in the approxima-
tion that is linear in (<5и2)/(ие)

2^1 and
(Snl) = <(ne - («e»

2for(rDH/rfl)
2<l, where /-DH is the

Debye-Huckel screening and /•„ is the characteristic size of
inhomogeneities.

The main conclusion of these researches was the de-
monstration of the fact that the presence of inhomogeneities
in the free-carrier distribution reduces the attenuation coef-
ficient by an amount proportional to {<5и2)/(лс)

2. More-
over, it was shown that, when <ude ><y, the frequency de-
pendence of the sound attenuation coefficient was
determined not by the mean electrical conductivity of the
crystal, (a), but by the effective conductivity aeS, defined
by102

0> = <7eff(E).

For a compensated doped semiconductor102

(40)

(41)

where cr0 is the dc electric conductivity and тм is the Max-
wellian time constant describing the spreading of a charge
cloud and equal to £/cr0.

Another approach was used in Ref. 100 in which a set of
two rigorous equations was obtained for (E) and E, which
was then solved approximately for typical special cases. For
very small fluctuations for which rjj •4(rM)Dc, the sound
attenuation coefficient was found to be

1 ХЕЕ Ь2) (42)

where A.^Al/B/A*; and Ь2 = Д2/2//>е<«е>2<гм>,
whereas the correlation functions for fluctuations in the in-
ternal electric field and in the concentration of carriers were
assumed to be exponential:

VE = A2, exp(-r//E), vn = Д2 exp(-/-/g,

where ДЕ, Дп, /Е, /n are the variances and the correlation
lengths of the corresponding quantities.

It is clear from (42) that, when small fluctuations are
present, the condition for the detection of a maximum of
а(сотм) differs from that in the homogeneous case, but the
height of the maximum remains the same.

When 6,<^1 and b2<£\, the small correlation lengths
ensure that (42) becomes identical with the expression for a
homogeneous piezosemiconductor.85

This situation arises in highly-doped uncompensated
materials in which high carrier concentrations ensure that
linear screening gives rise to Debye lengths that do not ex-
ceed a few dozen A.

When the typical dimensions of fluctuations are suffi-
ciently large, so that

the sound attenuation coefficient is significantly different
from the ne = const case:

- 2*
e'n 2 s

where

In contrast to the homogeneous distribution of carriers,
the condition for maximum attenuation in the presence of a
large-scale potential assumes the form

<о(тм) = (1 + *3)/(l - Ь4), (44)

i.e., it may be shifted from <a(rM) = 1 toward greater or
smaller values of the dc conductivity. A study was also made
of the possibility of amplification of sound by highly-doped
piezosemiconductors using a constant drag field E0. It was
found that sound amplification was possible when the di-
mensions of fluctuations in the internal field and the concen-
tration of carriers were sufficiently small, but the necessary
drag fields were somewhat stronger tha.n/j,E0 = s (homoge-
neous case). When the dimensions of fluctuations are suffi-
ciently large (this is the second condition), sound amplifica-
tion may be very difficult to observe and a change in the sign
of o£n does not occur even when (iE0 is much greater than s.

An attempt to move on to larger inhomogeneities with
(aru/s5( 1 was made in Ref. 101.

The principal result was the demonstration that, at least
in the approximation in which (<5я2)/(ле)

2^1, the mean
self-consistent electric field is as before expressed in terms of
the longitudinal component of the high frequency effective
conductivity crjjff (k.w.r,,):

although geometric dispersion of crjjff is found to occur.
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Substituting the last expression in (39), and performing
standard operations, we obtain

-kR2rr+ [*s-(**,) J

flK°)
o(0) '

(45)

1 -i

d"(l

o2 _ ( M ._L_. e^M/,. _ 2 ^1м/
Л 2-( 2 ] 151+ш2ы2 ^(Ц-^^У

= f?E ЦТМ)ИТМ)-(Й6-Ы2)
21

*"•" ~ 2 J

 [CO(TM) - (Ь6 - Лй2)
2 ]2 + [bs - (kRJ2 ]2'

Highly-doped compensated semiconductors may there-
fore be considered, in the simplest case, to contain two
sources of sound attenuation, namely, carriers at the perco-
lation level and carriers localized in droplets.

Let us begin by considering the contribution of unloca-
lized charge carriers. In an arbitrary inhomogeneous case,
we can combine the continuity equation for the displace-
ment and the current, and take account of the constitutive
relation of the piezoelectric medium. This yields the follow-
ing equation for the self-consistent electric field E produced
by the wave:

,
4тгпе(г)

(47)

and (<r(0)) is the mean dc conductivity.
Another approach for taking into account the influence

of the large scale potential created by disorder fluctuations
on the acoustic properties of a highly-doped semiconductor
was proposed in Ref. 103 where static averaging over the
volume was replaced with averaging over the energy E reck-
oned from the previous bottom of the conduction band (in
the undoped crystal) on the basis of the ergodic hypothe-
sis.104

It is well known that many properties of highly-doped
semiconductors can be successfully explained in terms of
band bending.74 This bending of the bottom of the conduc-
tion band is due to the spatial large-scale potential associated
with concentration fluctuations, e.g., fluctuations in the
concentration of donors in an n-type semiconductor. The
root mean square random potential (V } and the radius Ru of
typical fluctuations can be estimated from the formula74

^e2/3.
(46)

where Nt is the total concentration of donors and acceptors.
Hence it is clear that, as the mean concentration of disorder
increases, and also as the degree of compensation increases,
the range of changes in the large-scale potential increases
and the bent bottom of the conduction band can cross the
chemical potential £ at a value equal to ms (V) where trig is a
coefficient. Mobile carriers become localized in such regions
and electron droplets arise in the n-type semiconductor. The
attenuation of sound by electron droplets is discussed in Ref.
105.

In addition to localized carriers, the semiconductor also
contains electrons that can participate in metal-type dc con-
duction (without activation). They occupy the percolation
level E^.,, i.e., they possess the minimum energy that elec-
trons must have while moving on classically allowed trajec-
tories in order to pass through a random potential distribu-
tion to infinite distance. Numerical calculations show that
E^ zxmg, < V) (ms, < nig). In the first approximation, elec-
trons at the percolation level behave as in a homogeneous
sample although it is quite clear that, since the trajectory at
the percolation level is quite complicated, the formation of
electron bunches in the piezoelectric field is inhibited.

In general, the solution of (47) constitutes a relatively
complicated problem (some special cases were discussed
above). However, if the diffusion coefficient is small, or the
gradients produced by charged inhomogeneities are such
that the last term on the right hand side can be neglected, the
sound attenuation coefficient depends only on ие(г), and
averaging over the energies corresponding to all the possible
impurity configurations can be readily carried out. For the
Gaussian random potential distribution (see Refs. 74 and
103, and also Ref. 100), we find that

„ рег
x arctg — *^ , , - K

1 + aA^rexp[(VT<V> -

- Ерег)/*вГ1 - 1}
K -

(48)

where

in which Tp^., TV ,̂. are the relaxation time and the density of
states at the percolation level, respectively. The expression
given by (48) shows that inclusion of only the inhomogene-
ity in the electron density produces a significant reduction in
the attenuation coefficient and alters the dependence of a on
the frequency and conductivity if < V)/kB T> 1. Moreover,
in contrast to the homogeneous semiconductor, a variation
of frequency or electric conductivity produces different con-
ditions for the observation of a maximum. When looked
upon as a function of frequency, the attenuation coefficient a
has a maximum for сот^ =ехр( — (V)/kBT), whereas
when it is regarded as a function of temperature, the condi-
tion is

(49)

2kBT

It is clear from this expression that, in a semiconductor
with a random large-scale potential, the change in a due to a
change in temperature or in radiance on a photosensitive
sample produces significantly different results. By measur-
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ing a at several frequencies up to the maximum of a, it is
possible to obtain an estimate for the root mean square value
of the random potential.

Let us now consider the attenuation of sound by carri-
ers localized in droplets.105 When droplets are present, it is
essential to take into account their polarizability Pdr in the
piezoelectric field of the wave. According to Ref. 106, the
polarizability РЛт of a spherical droplet of volume F"dr, con-
taining charges qd{ with concentration ne d r and mobility
/"e,dr.isgivenby

and the polarization vector pdT is

Pdr = УЛс(пе/пе

If we consider that all the droplets have the same localized-
carrier density, then standard calculation of the sound at-
tenuation coefficient105 gives

EE <*e.dr>
ne>dr

Зе
-•rdr = 5T' (50)

establish equilibrium between the percolation level and the
droplets.

At intermediate temperatures, and in the first approxi-
mation, the measured sound attenuation coefficient should
be the sum of the contributions given by (48) and (50).

However, we must remember that, when electron drop-
lets are present and the temperatures are finite, there is a
definite probability of a thermal transition of electrons from
droplets to the percolation level, which results in vacancies
in the droplets, so that they behave like multiply-charged
centers.

In the electron cloud produced at the percolation level
in an n-type semiconductor, only a fraction/^ is found to be
mobile because some of the electrons in the cloud are trapped
by droplets and for a time трет dr leave the cloud for the per-
colation level. These processes are analogous to the effect of
traps on sound attenuation (see the bibliography in Ref. 24),
so that the sound attenuation coefficient due to electrons at
the percolation level can be calculated from the formula ob-
tained in Ref. 108 for a homogeneous semiconductor con-
taining attachment centers:

or,
• = 2s

where <«eidr > is the mean density of electrons localized in the
droplets ((«e,dr> + (ne>per> = (ие>, (ne,pcr> is the mean
density of electrons at the percolation level). Hence it is
clear that acoustic measurements, especially those per-
formed at low temperatures, when the concentration of elec-
trons at the percolation level is low, can serve as an effective
tool for finding the parameters of electron droplets without
depositing electrons on the sample. Thus, for <yrdr = 1,
("e,dr )/"e,dr = 0-0U andtne frequency of 109 Hz, the sound
attenuation coefficient is or г: 30 dB/cm. We note that an
analogous energy attenuation mechanism operates in the
case of microwave measurements.102

In a compensated highly-doped real semiconductor, the
concentrations of localized carriers in droplets are signifi-
cantly different. This means that we have to average over
Hedr in (50) because this quantity depends on the droplet
size. If we suppose that the well-depth distribution function
is Gaussian, we can express the well radius in terms of its
depth107 and take the average. Like (47), the resulting for-
mulas contain arctan (wrdr), which for narrow distributions
takes the form of the relaxation function. Two factors, noted
in Ref. 107, must be borne in mind when we investigate the
temperature dependence of the sound attenuation coeffi-
cient. First, the degenerate state of electrons in a droplet
becomes nondegenerate at higher temperatures. For exam-
ple, estimates made in Ref. 107 show that, in n-InSb with ие

~1015 cm~3, the degeneracy temperature is about 30 K.
Second, the well radius and, hence, the carrier concentration
in the droplet are functions of temperature. For example, for
a well depth of about kB T, the droplet radius is proportional
to Т2. At higher temperatures, the rise in the droplet radius is
slower. Moreover, it was noted in Ref. 107 that an increase in
temperature is accompanied by an increase in the activation
energy which has to be supplied to take the droplet electrons
to the percolation level, which changes the time necessary to

X f(«<TM> - a,)2 + (1 + a2/ee»2<TM>rd.e +

where

/e+^e

(51)

/e + ̂ per.dr

e p e r . d r

Td,e = wd,e-

Here it is important to emphasize that the effect of trapping
processes in inhomogeneous semiconductors is stronger
than in the homogeneous material because ие k is different in
different droplets and the droplets have a size distribution.
The spatial gradient of electron density is therefore deter-
mined not by the wavelength of sound, but by the droplet
separation /dr, so that rde is estimated to be 4тг2Д.Ло2/ЙГ

which increases rd e by the factor Я //dr.
The result of this is that the attenuation coefficient due

to electrons at the percolation level is reduced even more in
comparison with the homogeneous case.

Another model of disorder in piezosemiconductors is
investigated in Refs. 109 and 110 in which it is assumed that
the disorder takes the form of alternating layers with differ-
ent electrical conductivity. It is well known111 that, in this
configuration, the electrostatic displacement must satisfy
boundary conditions for discontinuous changes in a, which
results in a net surface charge on the separation boundaries,
so that a polarization relaxation process is observed when
there is a change in the sign of the external alternating elec-
tric field accompanying the elastic wave. The result is a
change in the attenuation coefficient for the piezoactive
wave, and also a change in the position of the maximum of
the attenuation coefficient a. The weak point of this model is
the requirement of a discontinuous change in a because the
smoother the transition from one region to another, the
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smaller the effect. In natural materials, such boundaries
probably accompany twinning because it is difficult to ima-
gine that they occur across the boundaries of fluctuational
inhomogeneities.

The effect of disorder on the attenuation of sound was
demonstrated in Ref. 112 and was subsequently investigated
in Refs. 103 and 113-115 although the possible uncontrolla-
ble manifestation of microinhomogeneities had frequently

been reported before.11^118

The attenuation of sound in piezoactive directions was
investigated in Ref. 112 for longitudinal and shear waves in
cadmium sulfide, highly-doped with copper (c = 10 ~ 3 ), in
which the concentration of mobile carriers and, hence, the
dc electrical conductivity were regulated either by illumina-
tion or by temperature. It was established that, despite the
fact that the condition а>(тм} = 1 was definitely satisfied,
and the effect of trapping levels was absent (because of the
particular frequency at which the measurements were tak-
en ), the attenuation maxima were not observed, as predicted
by the theory constructed for homogeneous samples.84'85

These experiments were continued in Refs. 112 and 113
and also in Refs. 114 and 115. The sound attenuation coeffi-
cient was measured in Ref. 102 for longitudinal and shear
waves at frequencies in the range 107-108 Hz in single-crys-
tal cadmium sulfide and selenide. The condition а>тлf < 1
was easily satisfied (rd e s; 10 ~10 s), which meant that trap-
ping levels due to local disorder had no effect on these mea-
surements. The dark conductivity of the CdS samples was
10"7-10~10 ft ~' cm ~1, whereas the corresponding figures
for CdSe were 10~8-10~9 fi~] cm'"1. The conductivity
was increased to 10 ~ 3 Q^1 by varying the illumination,
which ensured that <о{тм) could be varied in the range
<у(?"м)^1 to «{тм)>1. Variation of temperature in the
range 300-900 К was used to vary a and hence, а>(тм}.

Measurements showed that there was a large batch of
samples for which the maximum of a was observed for longi-
tudinal and shear waves propagating in piezoactive direc-
tions, but the position of the maxima on the a scale for
со = const was a rapidly varying function of the method used
to vary a (by illumination or temperature Fig. 5). More-

over, there was a batch of samples in which variation of crby
illumination did not produce the maximum of a for either
longitudinal or shear waves although the necessary condi-
tion for homogeneous samples, а>(тм) = 1, was satisfied. At
the same time, the maxima of a were observed by varying the
temperature, but not for со(тм ) г: 1 (Fig. 6).

Measurements of сг(со) also showed a strong depend-
ence on frequency although, obviously, the frequencies in-
volved in these measurements were much lower than the
relaxation frequencies of the electron pulses. The variance of
electrical conductivity decreases with increasing tempera-
ture and vanishes altogether at temperatures in the range
600-700 K. All these experimental results can be interpreted
in the spirit of the above theory as a manifestation of the
large-scale potential, since the microscopic homogeneity of
the samples was monitored by the electric-probe method.
The internal electric field introduced by local disorder pro-
duces a dephasing of the electron clouds produced under the
influence of the piezoelectric field of the elastic wave. Ac-
cordingly, and in contrast to the homogeneous case, the at-
tenuation of sound is no longer characterized unambiguous-
ly by the time constants (rM) and rd <_, and the function
a (a) ceases to have extrema, i.e, the piezoelectric attenu-

ation of sound by mobile carriers is not readily detected ex-
perimentally.

The long-term relaxation of photoconductivity ob-
served in these samples is also an indirect confirmation of
their microinhomogeneity, since, in accordance with Refs.
119 and 120, the large-scale potential prevents the recombi-
nation of photoexcited carriers and increases the relaxation
time.

The general properties of photoabsorption of sound by
inhomogeneous piezosemiconductors are discussed in Ref.
24.

Measurements of the piezoactive sound attenuation co-
efficient of CdS and CdSe are discussed in Ref. 115 where it
is reported that the measured photoabsorption of sound is
not in agreement with the theory of homogeneous materials,
and comparisons are with direct observations of structure,
performed with an electron microanalyzer. A correlation is

£
о
m-ом

s s

FIG. 5. Sound attenuation coefficient of photosensitive CdS as a function
of conductivity. 1-3 — a varied by varying temperature, 4, 5 — cr varied by
varying illumination, /, 4—15 MHz, 2, 5—2.5 MHz, 5—55 MHz.

FIG. 6. Same as Fig. 5. 1, 2, 4—a varied by varying temperature,.?—a
varied by varying illumination, 1 and 2,3—piezoactive direction of propa-
gation, 55 MHz and 25 MHz, respectively, 4—nonpiezoactive direction of
propagation, 25 MHz.
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established between these acoustic effects and surface impu-
rity clusters. In samples in which the departure from the
homogeneous-sample theory did not exceed 30-40%, the
surface cluster density reached 103 cm ~ 2 . It was also noted
in Ref. 115 that samples with greater manifestations of in-
homogeneity had an anomalously high real part of permit-
tivity at the frequency of the ultrasonic wave.

The contribution of electron droplets to the measured
sound attenuation coefficient is relatively difficult to deter-
mine experimentally. The principal criterion is probably the
loss of metallic conductivity when the strong doping condi-
tion is satisfied at low temperatures and for strong compen-
sation. It will be shown later that the photosensitivity of
sound attenuation and the absence of dc conductivity are in
themselves insufficient for the unambiguous identification
of the contribution of electrons localized in droplets to the
attenuation of sound because the same experimental effect is
produced by weak doping and strong compensation. Acous-
tic experiments in a magnetic field may be very useful in this
connection because, in the case of weak doping, the external
magnetic field deforms the electron wave function on a do-
nor and, as has been shown by Gal'perin et a/.,121 this leads
to a nonmonotonic function a(H). On the other hand,
а^ ~Н ~2 in the case of metal type conductivity. Unfortu-
nately, this magnetic-field dependence is strictly valid only
for homogeneous materials. The form of a(H) changes
when there are gradients of the concentration of mobile car-
riers, but it remains monotonic. The deviation from
<7e(r ~H ~2 was used in Ref. 118 to conclude that microinho-
mogeneities contributed to the attenuation of sound.

The various interactions of elastic waves with donor
and acceptor disorder discussed above have not yielded an
explanation of the entire range of experimental data now
available.

Figure 7 shows the measured sound absorption coeffi-
cient of single-crystal CdS containing local disorder in the
form of copper atoms, acting as acceptors, as a function of
concentration. These results were obtained by spectral
methods for concentrations of the order of 10~3) (Ref.
112).

It is clear from Fig. 7a that, for longitudinal waves, the
attenuation of sound in a piezoactive direction exhibits a
maximum that is entirely absent in the case of piezoactive
shear waves. This is in conflict with the different mecha-
nisms discussed above because, if it is the piezoelectric field
that perturbs the electronic subsystem, there should be no
difference between measurements on piezoactive longitudi-
nal and shear waves (except for the trivial manifestations of

the difference between the propagation velocities). The ex-
periments reported in Ref. 112 show that the interaction is
anisotropic and well defined only for longitudinal waves
propagating along the hexagonal axis (which is also a pie-
zoactive direction), suggesting that the corresponding
mechanism is due, on the one hand, to a change in volume
and, on the other hand, to the piezoelectric interaction. The
interaction is sensitive to the concentration of mobile carri-
ers, since the variation of conductivity by variation of illumi-
nation reveals a maximum of a for longitudinal waves at
constant temperature (Fig. 7). There is no photoabsorption
in the case of shear waves.

The results reported in Ref. 112 are confirmed in Ref.
115 where it is also noted that one particular batch of sam-
ples showed a significant difference between the attenuation
of longitudinal and shear piezoactive waves. A low concen-
tration of surface impurity clusters of up to 106 cm"2 was
observed optically for the same samples.

It may be considered that, because of the large fluctu-
ations in point-defect concentration, the concentration of
mobile charge carriers is significantly inhomogeneous
which, as was shown above, smears out the electron clouds
produced by the piezoelectric field and turns oft" the attenu-
ation mechanism. However, because of the presence of large
(dimensions amounting to dozens of A) fluctuations in the
concentration of local disorder, a new sound attenuation
mechanism is found to appear. It relies on the deformational
change produced by the longitudinal wave in the concentra-
tion of carriers of disorder (donors and acceptors) in a fluc-
tuation, i.e., a change in its polarization. Since these fluctu-
ations are immersed in the electron liquid, the change in
electrostatic displacement is accompanied by a redistribu-
tion of the mobile carriers that screen the fluctuation.

If we suppose that the fluctuations are Gaussian, and
take the form of a sphere of radius /Jf l, the change in the
displacement of one mean square fluctuation is of the order
of

Л/2'

where мн is the change in volume in the wave and qdis is the
charge on a carrier of local disorder. Correspondingly, the
estimated total change in the polarization of the volume is

where Affl is the number of fluctuations per unit volume and,

FIG. 7. Same as Fig. 5 for CdS + Cu. a: /, 2—longitudinal waves,
3—shear waves in piezoactive directions, 1—75 MHz, 2—25
MHz, 3—15—75 MHz. b: 7—300 K, 2—450 K, 5—530 K, 4—
610 K; /o—illumination at the beginning of changes in a.
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for the sake of simplicity, all the fluctuations are assumed to
have the same optimum radius. By repeating the discussion
given in Ref. 74, we reach the conclusion that the maximum
contribution to a in the absence of correlations is provided
by fluctuations of radius equal to the Debye-Hiickel length.
Standard operations then show that the sound attenuation
coefficient due to the piezofluctuational interaction is given
by

(52)

We note that the attenuation of sound by the above
mechanism occurs only near each fluctuation and is unrelat-
ed to the motion of mobile carriers due to their chemical
potential gradient created by a deformation in the wave. In-
homogeneities in the distribution of charged carriers due to
the large-scale potential have practically no effect on this
mechanism which continues to operate despite the removal
of the usual (see above) gradient mechanism of piezoelec-
tron interaction. Of course, if we take into account the size
distribution of the fluctuations around the optimum value,
we obtain

Й'Р,П = <ap,n>'

which produces a broader distribution ар_„ (U>TM ) as com"
pared with the Debye case. This is in agreement with experi-
ment (see Figs. 5-7). At the same time, numerical estimates
of ap fl, can be readily deduced from the data reported in Ref.
115 rather than from the mobile-carrier concentration
which is not accurately known. If we take the number of
fluctuations per unit volume to be (106)3/2 cm ~3, we find
for Д„~10~4 cm that ap,fl/ap%e =0.2-0.4 at 15 MHz,
which agrees with the experimental results reported in Refs.
112 and 115. This piezofluctuational mechanism explains
the basic experimental facts specific to highly inhomogen-
eous piezosemiconductors, namely, the effective attenuation
of sound only for longitudinal waves propagating along a
piezoactive direction, the photosensitivity of the sound at-
tenuation coefficient, and the failure of the usual mechanism
of attenuation of sound due to the piezoelectric field. When
the piezofluctuational interaction is adopted, the large real
part of the permittivity of the corresponding CdS and CdSe
samples is due to the fact that the original electric field ap-
plied along the piezoactive direction gives rise to volume
strain and, correspondingly, to an additional electrical dis-
placement which is seen experimentally as an increase in
permittivity.

2.2.2. In highly-doped semiconductors, there is little overlap
between electron states belonging to different impurities. In
accordance with Ref. 74, the dividing line between strong
and weak doping in the case of weak compensation is deter-
mined by the impurity concentration Ni for which we have
nonzero conductivity at absolute zero. For example, the
Mott metal-dielectric transition in n-Ge occurs for
N( = 1.5-1017 cm"3. The temperature dependence of the
sound attenuation coefficient in the region of this boundary
for weak compensation in germanium is shown in Fig. 8
(Ref. 79). The effect of dopant concentration on the sound

FIG. 8. Sound attenuation coefficient of doped germanium as a function
of temperature.

attenuation coefficient, calculated from the data in Ref. 79
for this range of disorder concentrations shows that its con-
tribution falls almost linearly with increasing disorder so
long as TV, < N{. For N-, $N-,, the function a ( N { ) is essential-
ly nonlinear and becomes flatter in the region of metal-type
conductivity.

It is clear from general considerations that for weak
doping and weak compensation, both charge carriers in the
band and carriers localized on individual elements of disor-
der contribute to sound attenuation. Depending on tempera-
ture, either contribution can become dominant.

The sound attenuation coefficient due to charge carri-
ers in the band can be calculated from (32) and depends on
the specific energy structure of the conduction band.

The contribution of localized charge carriers is dis-
cussed in Ref. 122 where it is shown that it is given by

Мое (53)

where cneu, is the concentration of neutral carriers of disor-
der, 4Д is the orbit-valley energy splitting, and xlx is the
deformation potential for localized carriers. For example,
for n-type germanium, the orbit-valley interaction ensures
that localized electrons can be either in the singlet Al or
triplet T2 states, where the separation between these states
depends on the type of impurity. Thus, in the case of Sb
doping, 4ASb = 0.32 meV whereas for As doping 4AAs

= 4.23 meV. The magnitude of the energy splitting deter-
mines the temperature range in which the contribution of
localized carriers is significant. The electron-phonon defor-
mation potential is not very sensitive to the type of impurity
and is equal to 12.4, 13.2, and 13.7 eV for Sb, P, and As,
respectively.

If we follow Refs. 79-81, we find that the combination
of these two mechanisms can explain the available experi-
mental data. For example, consider the attenuation of sound
in n-Ge. We note, first, that analysis of experimental results
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gives a -co2, i.e, the condition а>те < 1 is satisfied in all the
experiments reported in Refs. 79-81, 122, and 123.

As the temperature increases, the contribution of local-
ized carriers decreases for T> 100 К because there is a re-
duction both in their concentration and in the relaxation
time те which is determined in this temperature range by the
scattering of carriers by phonons. Their contribution can-
not, probably, be isolated for T> 100 K.

Conversely, the rise in a for T< 15 К can be related to
the contribution of localized carriers because, at these tem-
peratures, the carriers begin to condense on donors and this,
on the one hand, leads to an increase in their concentration
nloc and, on the other, to an increase in те which is deter-
mined in this temperature range by scattering by charged
donors and is proportional to Nt~

 l.
The concentration of disorder produced by the donor

dopant was explained in Ref. 79 by assuming that the donor
energy level was modulated by the large-scale potential, i.e.,
the energy gap A was so modulated. As N{ increases, the
density of states near an energy level is described by a nar-
rower Gaussian, which leads to an increase in the argument
of the exponential in the denominator in ( 53 ) . As far as the
first factor in (53) is concerned, most donors are filled be-
cause the degree of compensation is small. Unlocalized elec-
trons are scattered by neutral and ionized donors for which
re ~ N ~ ' , so that пте~ const. However, the above approach
gives the fact that a rapid increase in the sound attenuation
coefficient begins at a temperature at which there is a rapid
rise in electrical resistance of semiconductors such as germa-
nium, which is due to hopping conductivity. Moreover as we
have already noted, near the Mott transition, where features
such as E2 conductivity have been seen, the sound attenu-
ation coefficient is also found to exhibit certain peculiarities
(see Fig. 8). Let us therefore examine another mechanism
for the interaction of elastic waves that involves a manifesta-
tion of local disorder in weakly doped semiconductors.

The point is that when the degree of compensation is
low, many properties of the weakly-doped semiconductors
can be explained in terms of charged and neutral complexes
that appear in them at low temperatures.74 According to
these ideas, there are three types of complexes at low tem-
peratures and for low degree of compensation in weakly-
doped semiconductors, namely, to so called 0-complexes
consisting of acceptors of the same type, which have trapped
one electron and are therefore negatively charged, 1 -com-
plexes consisting of bound acceptor and ionized donor, so
that they are neutral, and 2-complexes consisting of two
charged donors and one acceptor between them, so that they
are positively charged. Considerations of electric neutrality
suggest that the concentration c(0) of the 0-complexes,
should be equal to the concentration cm of 2-complexes.
The binding energy of the complexes is of the order of

A propagating elastic wave alters the separation be-
tween the impurities and, consequently, the interaction en-
ergy. Since JVdon ф JVac , £don ̂ £ac (Ndon , JVac , £don , £ac are
the donor and acceptor concentrations and ionization ener-
gies, respectively), the changes in the concentrations of the
complexes are different, and this upsets local electrical neu-
trality. The concentrations of the 0-complexes and 2-com-
plexes become equal as a result of the redistribution local-
ized carriers. If the displacements of the electrons are looked

upon as random walks, the time r02 for equilibrium to be
established is ~Wd~n^c

3/Z>e and we obtain the standard re-
laxation process in which the relaxation parameter is
SN(2) - SN (0) and JVdon>ac is the total concentration of dis-
order. If we now calculate the relaxation sound attenuation
coefficient from (8), we obtain

«A,
а02,е - ,2»,-2/3,

02

1 +
(54)

If a~o)2, i.e, £Ут02< 1, the transition to impurity conductiv-
ity, which is accompanied by a sharp reduction in carrier
mobility and, correspondingly, an increase in r02, gives rise
to an increase in a by a few orders of magnitude. For 7Vdon

= 1016 cm-3, Nm = 1014 cm-3, r02 = КГ10 s, and fre-
quency of 500 MHz, we have a ̂ 10 dB/cm, whereas at
higher temperatures (about 20 K) and for r02=: 10 "12 s, this
contribution may compete with the modulation effect of lo-
calized transitions.122 The features on the temperature de-
pendence of mobilities near the metal-dielectric Mott transi-
tion appear in (54) through changes in r02.

In the case of strong compensation (to be specific we
consider an n-type semiconductor), the concentration of
electrons originating in the dopant is much lower than the
donor concentration. This is why, even at relatively low tem-
peratures, the electron concentration ne in the conduction
band is controlled by thermal band-band transitions. The
concentration determines the amplitude of the large-scale
potential and the typical size of fluctuations [see (46) ].

For Жdon.ac • : 1015 cm ~3 and n, s 1015 cm -3, < V) ex-
ceeds kB Т for Т = 100 К by roughly an order of magnitude
and, despite the high concentration of electrons in the con-
duction band, their spatial distribution is inhomogeneous.
Here again we can introduce the concept of the percolation
level, so that the attenuation of sound by unlocali/ed charge
carriers can be considered by analogy with highly-doped
semiconductors.

However, at low temperatures we have a specific situa-
tion because the Fermi level lies below the impurity level and
donor pairs are produced with a "shoulder" гв ^гю <£ Wd~n

1/3

on which there is only one electron. This electron executes
transitions between donors which, in accordance with the
hypothesis put forward in Ref. 124, is a source of high-fre-
quency electrical conductivity because the electric field up-
sets the detailed balance of electron transition probabilities
between the donors.

If the elastic wave is accompanied by an electric field,
we have a process that leads to the attenuation of sound
similar to the above dielectric ultrasonic relaxation:

apair = (•^EE/£lS)°ju:(cu)' (^5)

where crxx («) is the longitudinal high-frequency conductiv-
ity. This sound attenuation mechanism was discovered ex-
perimentally in the piezosemiconductor CdS in Ref. 125 at
gigahertz frequencies at low temperatures, and was subse-
quently examined in detail in Refs. 126 and 127. It was found
in these experiments that although the dc conductivity was
exceedingly low so that wrM>l, the samples had strong
photosensitive attenuation of sound that was a function of
the intensity and spectral composition of the illuminating
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radiation. The first suggestion that the process was due to
photoelectrons trapped by shallow impurity centers was
made in Ref. 126 where a calculation of ultrasound attenu-
ation by homogeneous piezoelectric crystals was also made,
taking into account mobile and localized carriers. The au-
thors of Ref. 126 considered that localization produced ad-
ditional polarization of the volume because a trapped elec-
tron has an 'intrinsic' dipole moment. However, estimates
made in Ref. 127 showed that, because of the symmetry of
the wave function of the localized electron, the contribution
of the polarization effect was lower by roughly three orders
of magnitude than the observed result. Moreover, it was es-
tablished in Ref. 127 that a~«' (Fig. 9) where t^0.9,
which is not in agreement with the Debye frequency depend-
ence that follows from Ref. 126. Moreover, the authors of
Ref. 127 found experimentally at the same frequencies that
there was a photodielectric effect, and established a propor-
tionality between a and the real part of the permittivity for
the different conductivities produced by illumination (see
Fig. 9).

These experimental facts were used in Ref. 127 as a ba-
sis for a description of losses in terms of the pair hopping
model proposed in Ref. 124 for the interpretation of micro-
wave conductivity whereby electrons tunnel from one local-
ization center to another vacant center without activation to
the conduction band. If we repeat the discussion given in
connection with electrical conductivity, we find that the
most relevant are donor pairs with a trapped electron, or
without a trapped electron, for which &rtunf s 1 where rtun e

is the characteristic tunneling time. This time depends on the
separation between the donors and on the height of the po-
tential barrier that must be traversed by the electron. Since
in the absence of the wave the transitions occur by the ab-
sorption and emission of a thermal phonon, the height of an
actual barrier must be Kbar ~ kB T. The dependence of r,un c

on distance is exponential for the so-called symmetric pairs,
i.e., pairs for which the difference Apair between the energies
of isolated donor states is zero. This dependence is deter-
mined by the exponential dependence of the overlap integral
on distance. In general, the barrier height and the overlap
integral I(r) are related by

<r = ̂ ir+'V). (56)

If we combine this with Fbar ~ kB T, we obtain the distribu-
tion of rtun e, around T^n,e that corresponds to а>т^с ~ 1.

As a result, the Debye frequency dependence averaged
over a broad тшп е distribution is of the power type. More-
over, as explained in Ref 128, a change in Nac at constant
degree of compensation near unity, reduces the frequency
dependence of apajr. Thus, for 7Vacs:1020 cm"3 we have
Aapair~<a08, and Aapair~<a065 for JVac = 1021 cm~3

(Aapair is the change in the sound attenuation coefficient of
the illuminated sample relative to the dark sample). The
difference Aapair is a very slowly varying function of tem-
perature between 2 and 20 K. An expression for apair was
obtained in Ref. 127 from the pair hopping theory,128 taking
into account the dependence of the photosensitivity of sound
attenuation due to the piezoelectric field on longitudinal
conductivity. This yielded a qualitative explanation of the
experimental results in which the degree of compensation
was treated as an adjustable parameter.

A systematic calculation of the pair-hopping contribu-
tions to sound attenuation in terms of the model given in
Refs. 124 and 129 was reported in Ref. 130 where the suscep-
tibility of the electron system was determined for arbitrary
cortune for piezoelectric and deformational electron-phonon
interactions. In contrast to the piezoelectric interaction, the
efficiency of the deformational interaction is determined by
the difference between the interaction energies for donors
located at л:, and x2'-

(57)

For a crystalline semiconductor in which we can ignore
the effect of the large-scale potential (46) on the deforma-
tion potential, Л .̂ = const (we know of no estimates of this
influence), and ddc(^Q, we must have (и| < г)х, ^(и,*)^.
This condition is relatively poorly satisfied up to the giga-
hertz range. Actually, for fs=5 GHz, the wavelength of
sound is about 10 ~ 4 cm. At the same time, when the concen-
tration of the donor impurity is 1015 cm ~ 3 , the mean separa-
tion between donors is 10 ~5 cm, so that гю 4,10 ~ 4 cm. The
lower concentration of donor disorder at constant compen-
sation reduces the attenuation of sound because of the reduc-
tion in the number of actual pairs although, of course, it
produces an increase in the deformation phase shift between
x, and x2- Explicit expressions for apair were obtained in Ref.
130 for different types of interaction and different frequen-
cies. If the interaction proceeds via the piezopotential, then
in order-of-magnitude estimates we have to put

15

1O

8 12 16 20
Ae."-103

m -
-о *

b
•Ч

J

2,5
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£ = E" (a) and frequency (b) in compensated CdS.
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(58)

in (54), whereas for the deformational interaction we must
set

*EE = Л'йе^/ЁР8*- (59)

There are good reasons to expect that the effect will be
observed in weakly-doped amorphous semiconductors for
which disorder in the host medium can ensure that
(Л^)Х| ^(Лй)Х 2 although we know of no experimental
studies of the deformational interaction of this type. We note
in passing that a deformational attenuation mechanism anal-
ogous to that considered above for weakly-compensated
weakly-doped semiconductors is possible in compensated
weakly-doped crystalline semiconductors. The point is that
in highly-compensated weakly-doped semiconductors there
are in addition to the Ndon — Nac donor pairs with small
donor separation and a localized electron, a further Л^ ne-
gatively charged acceptors and 2Nac — Ndoa positively
charged donors. In the course of deformation produced by
the elastic wave, only the energy of the donor pairs changes
significantly due to the overlap integral, so that their number
must also change. However, this upsets the charge neutrality
and gives rise to the diffusion of electrons between nearest
acceptors, donors, and pairs, which establishes equilibrium.

The characteristic relaxation time for this process is
long because several hops are required over several donors.
An approximate formula can readily be obtained from (54)
and can then be averaged over the distribution of distances in
the donor pairs.

If the sample is not sufficiently well compensated, it is
experimentally very difficult to separate the contributions of
hopping and band mechanisms in the sound attenuation co-
efficient. Low temperature studies involving a magnetic field
offer this possibility because an external magnetic field dis-
torts the wave function of an electron on a donor with the
result that the overlap integral depends on the angle between
the dipole moment of the pair and the external magnetic
field. Practically all reported studies involving a magnetic
field in ultrasonic measurements were performed on p- and
n-type InSb with different compensation. The results ob-
tained are discussed in detail in a recent review.121

2.3. Manifestations of disorder in crystalline conductors

In metallic conductors, local disorder in the form of
point defects does not produce such varied manifestations as
in semiconductors. It is clear that the reasons for this must
be sought in their band structure and the high concentration
of free electrons. The result is that, in the entire ultrasonic
range, the screening effect of electrons ensures that all the
defects can be looked upon as electrically neutral, whatever
their intrinsic electronic structure. They therefore affect
only the vibrational spectrum of the original lattice, and the
presence of free electrons influences only the interatomic
forces. Moreover, the high concentration of electrons en-
sures, because of screening in the long-wave case, that their
motion is only slightly perturbed by electromagnetic fields
created by deformation in the ultrasonic wave. The attenu-
ation of sound associated with the modulation of the elec-
tron distribution function by the elastic wave via the defor-
mation potential,131 and also with the high concentration of

carriers, is found to be small, and the corresponding sound
attenuation coefficient is determined by the electron mean
free path which at moderate temperatures in typical crystals
is short in comparison with the wavelength of sound up to
the gigahertz range (because of collisions between elec-
trons). For the same reasons, the mean free path is practical-
ly independent of temperature and of disorder concentration
at temperatures of the order of 100 K.

The modulation of the phonon distribution function by
the phonon deformation potential can in principle lead to
effects similar to those discussed above for dielectrics. In the
case of longitudinal waves, they are very difficult to demon-
strate experimentally even in high-grade metals because of
processes associated with thermal conduction in which the
leading part is played by electrons (and not phonons) which
ensure relaxation times that are short in comparison with the
phonon relaxation times. The sound attenuation coefficient
associated with electronic thermal conduction increases in
proportion to the temperature together with the thermal
conductivity.132

Numerical estimates of the sound attenuation coeffi-
cient above the Debye temperature133 yield

As in the case of dielectrics, a temperature gradient is
not established for shear waves propagating in highly-sym-
metric directions, so that, in principle, it is possible to inves-
tigate the contribution of local disorder to collective phonon
processes. However this is very difficult to do experimental-
ly because the growth process in metallic crystals is accom-
panied by the appearance of a large number of dislocations as
compared with dielectrics. The dislocational contribution
thus becomes comparable with, and often greater than, the
contribution of phonon processes. Since the concentration of
dislocations and the length of dislocation loops can be mea-
sured directly only on the surface of metallic crystals, the
interpretation of experimental ultrasonic data must be con-
ducted with considerable caution despite the large number
of publications on dislocation effects in ultrasonic measure-
ments ( see, for example, Ref . 78). This is due to the fact that
the frequency and temperature dependence of a is very sensi-
tive to the combined effect of ultrasonic frequency and dislo-
cation parameters such as the length of dislocations and of
the individual oscillating segments, the mechanism respon-
sible for the damping of the oscillations of dislocations, and
so on. The introduction of local disorder changes the length
of the dislocation segments oscillating in the ultrasonic wave
and, hence, the entire contribution of dislocations to the at-
tenuation of sound. This is why in each specific experimental
situation we have to analyze the combined frequency, tem-
perature, concentration, and (whenever possible) ampli-
tude dependence of a before we can separate the contribu-
tions of the different mechanisms. The wider are the
variations, the more reliable will be the conclusions that can
be drawn in this way. The most convenient approach is to
investigate the interaction between dislocations and non-
thermal disorder when the latter is produced by illumina-
tion. These questions are examined in detail in the review
given in Ref. 134. The principal conclusion there, from our
point of view, is that the contribution of dislocations that
interact with disorder decreases with increasing tempera-
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ture. This means that high-temperature acoustic measure-
ments are an effective means of separating out the manifesta-
tions of local disorder.

All that we have said so far is also valid for the experi-
mental detection of the direct interaction between elastic
waves and thermal and nonthermal local disorder. In the
latter case, studies of the orientational dependence of a in
different waves are particularly effective. It is precisely for
this reason that the redistribution of elastic dipoles produced
by nonthermal local disorder has been investigated in partic-
ular detail in metallic crystals. At temperatures up to 600-
700 K, the low mobility of elastic dipoles ensures that the
frequency at which acoustic measurements are made is
usually less than 1 MHz (see, for example, Ref. 22). The
measurement range is extended in Refs. 18 and 135 to 1200
К and up to 100 MHz. Metals with the bcc structure have
been investigated in particular detail (they include W, Mo,
V, Nb and Fe + 3% Si). High frequencies were used to ex-
cite different types of wave (longitudinal, fast and slow
shear) in small crystals in different directions100'110'111 (Fig.
10). Analysis of the orientational dependence of a obtained
for a given crystal can be used to determine the components
of the tensor Пл and thus obtain information about the dis-
tortions due to local disorder of a particular type in the lat-
tice.135 Moreover, as already noted, analysis of the position
of the maximum of a on the temperature scale at different
frequencies can be used to estimate the height of the barrier
involved in the reorientation of the carrier of local disorder.
For example, a niobium single crystal was used in Ref. 18 in
experiments with longitudinal waves in the [ 110] direction,
and it was found that the barrier height was approximately
33 kcal/mole, whereas for shear waves propagating in the
same direction the corresponding figure was about 26.4
kcal/mole. This order of magnitude of activation energy
corresponds to displacement of oxygen atoms within the
unit cell. The difference between the activation energies can
be ascribed to the fact that the deformations produced in
these waves gave rise to displacements in different crystals
directions and therefore involved tunneling through differ-
ent potential barriers.

The reduction in the contribution of dislocations with
increasing temperature enables us to use the high-tempera-
ture range for studies of thermal disorder, especially since
the concentration of the latter rises exponentially with in-

creasing temperature. Measurements in metals with the bcc
structure are particularly suitable for these purposes in the
case of longitudinal waves propagating along the space diag-
onal for which nonthermal disorder in the form of elastic
dipoles is found to be ineffective.18 Such measurements of
the sound attenuation coefficient have been made on Al, W,
Mo, V (Ref. 18), Ni (Ref. 135), In, Sn, andPb (Ref. 136).
Figure 11 shows the results obtained for Al with longitudinal
waves propagating in the [111] direction at 15, 25, and 55
MHz. The experimental procedure was such that only the
change in the sound attenuation coefficient, Да(Г), was
measured as a function of temperature. The temperature
range was 300-800 К and the measurements showed that
Да ( Т ) had a maximum whose position shifted toward high-
er temperatures with increasing frequency, as predicted by
the theory. The rise in Да continues at higher temperatures.
Since the melting point of aluminum is 903 K, it was possible
to establish the conditions under which local disorder in the
form of FrenkeP defects can become significant. If we use

(24) to analyze the experimental data in Ref. 18, we find
that K2 = 0.55 eV, u, = 0.9 eV, r* = 3 x l O ~ 1 3 s, which
means that the energy of formation of a Frenkel' defect in the
form of a vacancy plus and interstitial atom is about 0.7 eV.
This value is in good agreement with the defect formation
energy calculated from entropy measurements reported in
Ref. 63. Inclusion of the interaction between the elastic wave
and thermal disorder, and also the dislocation contribution
(dashed curve in Fig. 11) results in reasonable agreement
between calculations and theory.

A monotonic rise in Да without a frequency depend-
ence has been observed in high melting-point metals at all
frequencies in the range 15-85 MHz, suggesting that the
condition сотсл > 1 was satisfied. It is then possible [see
(21 )-(28) ] to calculate the height of the barrier that must
be overcome in the creation of local disorder. The barrier
height is found to be 0.3, 0.29 and 0.27 eV for tungsten,
molybdenum and niobium, respectively. These figures are
very close to the values of kB Tm (0.32, 0.25,0.24 eV, respec-
tively) and this was used in Ref. 18 to conclude that the
carriers of local disorder in high-melting-point metals for
T< Tm are crowdions, the creation of which produces 'local
melting,' i.e., the shifting of the linear chain of atoms from
the positions of equilibrium. Similar results were also ob-
served in nickel at the same frequencies, but the measure-

-£
CO

FIG. 10. Sound attenuation coefficient in niobium; 1, 1'—fast shear
wave, 2,2'—slow shear wave, 3,3 '—longitudinal wave, 1-3—25 MHz,
l'-3'—\5 MHz.
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FIG. 11. The sound attenuation coefficient for longitudinal waves in alu-
minum as a function of frequency for the following frequencies: 15 MHz
(Л, 25 MHz (2), and 55 MHZ ( 3 ) .

ments were performed in a saturating magnetic field in order
to exclude the contribution of magnetic processes to Да (Т).

The measurements were performed in Ref. 136 at lower
frequencies (up to 10 MHz) at temperatures in the range
400-500 K, using longitudinal and shear waves in different
crystallographic directions. Some metals were found to ex-
hibit a maximum of а ( Т ) whereas others were found to have
monotonically strongly increasing a ( t ) . Analysis of experi-
mental results based on(21)-(23), using independent mea-
surements of creation and annihilation energies of FrenkeP
defects obtained from positron annihilation experiments,137

gave good agreement with experiment. We note by the way
that it was found in Ref. 137 that these low-melting-point
metals had an anomalously low concentration of thermal
point defects, which was reflected in the low values of the
attenuation coefficient determined by the resonance meth-
od. This is probably also related to the linear variation of the
elastic moduli of these metals with increasing temperature,
which extends right up to the melting point.

We note in passing that the determination of the contri-
bution of local disorder from the temperature dependence of
elastic moduli requires considerable caution if the condition
штсл •х, 1 is not satisfied, since it is essential to exclude a var-
iety of factors such as temperature effects in the energy of
interatomic interaction due to changes in anharmonism, in-
cluding thermal expansion, changes in the nature of bonds in
semimetals and semiconductors, and so on. An analysis of
different situations in a number of dielectrics, semimetals,
and semiconductors was reported in Ref. 23. In the follow-
ing Section we confine our attention to the effect of topologi-
cal disorder on the numerical values and temperature de-
pendence of elastic moduli.

2.4. Manifestations of disorder in superionic conductors

Superionic conductors are materials with ionic conduc-
tivity whose numerical value exceeds О.Ш"1 cm~' and
whose activation energy is low (about 0.1 eV). It is therefore
difficult to draw a sharp boundary between ionic crystals
and superionic conductors on the basis of their electrical
properties because, as will be seen from the references given
below, acoustic effects that are in some way related to ionic
conduction are often due to superionicity.

Nevertheless, structurally, there is no doubt about the
properties of ionic conductors, i.e, we can speak of a specific
superionic phase in which the number of spatial potential
energy minima for one of the ionic components significantly
exceeds the number of ions of this component. The result is a
sharp rise in the mobility of one of the ionic components as
compared with ordinary ionic crystals whereas other com-
ponents form a stable crystal lattice. We thus have a particu-
lar form of disorder where in the interior of the periodic
structure produced by ions of a particular type there are
more mobile ions of another type, whose concentration, mo-
bility, and interaction with the stationary lattice may vary
between different crystals within relatively wide limits. For
example, in/3 — Agl, which exists below 400 K, we know139

that the iodine ions form a hexagonal lattice and the silver
ions lie in the interior of regular tetrahedrons.

The transition to the а-phase occurs above 420 K. In
this phase, the iodine ions form a bcc lattice and, in the silver
sublattice, there are 42 almost equivalent crystallographic
positions for every 2 cations [12 equivalent tetrahedral posi-
tions, i.e., 12 (d), 24 positions with coordination number
equal to 3, i.e., 24 (h), and, six octahedral positions, i.e.,
6 (b) ]. The largest volume for the silver ions lies in the interi-
or of distorted tetrahedrons in the 12 (d)-positions and the
smallest volume lies in the interior of the distorted octahe-
drons in the 6 (b)-positions. The transition from the /?-
phase to the а-phase is accompanied by a jump in the electri-
cal conductivity by four orders of magnitude and a reduction
in the activation energy by a factor of several times.

In another typical superionic conductor, namely, a-
RbAg4I5, 16 ions of silver are distributed over 56 inter-
stices. I4° These 56 interstices consists of two sets of 24 equiv-
alent positions (Ag II and Ag III) and 8 equivalent positions
(Ag-c). The Ag II positions form pairs arranged so that they
cannot be simultaneously occupied by silver ions. At tem-
peratures above 208 K, the Ag II positions (transition to the
a phase) contain a substantial number of mobile ions and
play an important part in the geometry of conducting chan-
nels typical for superionic structures.

The close correlation between the behavior of acoustic
parameters and translational ionic mobility can be illustrat-
ed by the example of PbF2. This is a superionic conductor
which also has a high electrical conductivity at high tem-
peratures, which is mostly due to Frenkel' defects and inter-
stitial anions.138

Neutron scattering data obtained for PbF2 show that, at
the upper limit of the specific heat anomaly (T~625 K),
about 30% of the fluorine atoms leave the (1/4, 1/4, 1/4)
sites. The process then continues at a slower rate up to the
melting point (Fig. 12a). Figure 12b shows the temperature
dependence of the sound attenuation coefficient and other
elastic moduli141 from which it is clear that the increasing а
and the significant change in the elastic moduli occur pre-
cisely in the temperature range in which ions transfer to new
positions in the lattice, the predominant one being (1/3,1/3,
1/3). These positions lie at the center of the face of the tetra-
hedron consisting of lead ions138 and, probably, are charac-
terized by a significantly shallower energy minimum as com-
pared with a lattice site. It is interesting to note that the
transition to the superionic state is accompanied by a signifi-
cant change in the elastic moduli due to the volume change
in the wave. On the other hand, the elastic modulus c44 is
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FIG. 12. The change in the crystal parameters of PbF2 accompanying the
transition to the superionic state. Dashed curves—calculated values ""for
25% and 50% occupation of the sites (curves / and 2, respectively).

unaffected by the appearance of the mobile ions. The contri-
bution to the elastic moduli of PbF2 due to the change in the
occupation of interstices was calculated in Ref. 141 using the
theory reported in Ref. 142 for 25% filling (dot-dash curve /
in Fig. 12b) and 50% filling (dot-dash curve 2 in Fig. 12b).
The change in the filling of the interstices can be used to
explain the behavior of elastic moduli during the onset of
superionic conductivity, but their temperature dependence
is found to be very different.

The loss of stability in part of the lattice and the appear-
ance of disorder in the system of anions or cations leads to a
~ 30% change in the modulus cl2. The contribution of Fren-
keF defects is discussed phenomenologically in Ref. 143 and
is calculated in Ref. 141, but the experimental results could
not be explained.

The close correlation between the dc behavior of a ( t )
and cr( T) has also been noted for typical superionic conduc-
tors such as #-RbAg4I5 (Refs. 144 and 145) and also/ff-Agl
(Ref. 146) and so on.

All this shows that the dominant mechanism of the in-
teraction between elastic waves and the ionic subsystem is
the interaction with carriers responsible for the dc conduc-
tivity which, judging by the sound attenuation coefficient,
are almost delocalized charge carriers in the semiconduc-
tors. Analysis of conductivity measurements147 shows that
the concentrations of localized and delocalized charge carri-
ers produced by the damaged sublattice in superionic con-
ductors are very similar. For example,147 in a-Agl at 427 K,
the concentration of delocalized ions is about 25%; at 630 K,

the figure is 60%. In RbAg4I5 at 230 K, the concentration of
mobile ions is 2.5% and the figure at 300 К is 10%. More-
over, in accordance with the estimates reported in Ref. 147,
the subdivision of mobile ions into localized and delocalized
is generally somewhat arbitrary.

Thus, at the above temperatures, the time spent by a
mobile ion localized and delocalized states in a-Agl is
0.9/1.4 ns and 0.6/0.9 ps, respectively, whereas for RbAg4I5

the figures are 0.15-6 ps and 0.25-2.5 ps.
If the ionic conductor exhibits the piezoelectric effect

then, as in piezosemiconductors, the source of the imposed
force that leads to the redistribution of mobile carriers is the
piezoelectric field accompanying the elastic wave. Precisely
the same situation obtains in dielectrics with appreciable
ionic conductivity: £-AgI (Ref. 146), Ag3SbS3 (Ref. 148),
Ag8HgS2I6 (Ref. 149),LiIO3 (Refs. 150-152), andLi2B4O2

(Refs. 152 and 153). The dc conductivity of these materials
lies in the range 0.1-0.001 П ~ ' m"~' which enables us to
observe the relaxation maxima of a(T), with a being regu-
lated by the temperature, in the megahertz frequency range.

The sound attenuation coefficient is as before described
by (37), and the difference between the character of motion
of mobile ions and free electrons in semiconductors can be
taken into account by means of the frequency function a{co)
by analogy with inhomogeneous semiconductors. The elec-
trical conductivity of superionic conductors has been deter-
mined in a variety of different lattice and continuum mod-
els,138'147 and also by using the two-well potential with one
well of the order of kB Т (Ref. 144).

The physical difference between these models is that, in
the former, the function of the external electric field is to
produce only the drift of the mobile charge carriers (that
occupy the shallow potential wells), whereas in two-well po-
tentials, the external electric field modifies the transition
probability between the potential minima and then produces
the directed drift of excess carriers that have entered the
shallow well. The result of all this is a shift of the 'center of
gravity' of the explanation of the origin of the Drude-type
frequency dependence of сг(со), well known from numerous
experiments. For example, in continuum models, the motion
of ions is regarded as continuous in the highly anharmonic
periodic potential of the skeleton. Restoring forces acting at
the minima of the potential produce oscillatory motion
which is replaced by diffusion once the barriers are over-
come. The mobility//j (со) сап be calculated in terms of the
ion velocity correlator written as a continued fraction.154 In
the simplest case of a two-term continued fraction, we have

е? + е^2'

1 +
(60)

where mt is the mass of the mobile ion (carrier), rt is the
'coefficient of friction' representing the interaction between
the mobile ion and the oscillations of the skeleton ions (ions
of the unmelted lattice), {U" (x)) is the second space deriva-
tive of the ion energy in the potential well of the skeleton,
averaged over the volume, and rv is a measure of the time
spent by the ion at the minimum of U. Substituting (60) in
(37), we obtain
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1 +

2 ' (61)

In the case of the piezoelectric field accompanying the elas-
tic wave, we have, as before,

When

(62)

and (61) becomes identical with the Gurevich-White for-
mula with a Maxwellian relaxation time since a-, = q^iNt.
The approximate form of (61), given by (62), describes the
contribution of ionic conduction to the attenuation of sound
in piezoelectric crystals.

In some complex crystals that exhibit the piezoelectric
effect and ionic conduction,148 the measured positions of the
maxima of a are found to be different from the positions
corresponding to Maxwellian relaxation inhomogeneous
materials for/Z; (a) =//(0). This demonstrates either that
/Hi is frequency dependent or there are local electric fields
that are associated with fluctuations in the concentration of
ions, similarly to what happens in the inhomogeneous semi-
conductors discussed above.

We note in passing that it is relatively easy to detect
experimentally the attenuation of sound by the Gurevich-
White mechanism because it is anisotropic and is seen only
in the case of piezoactive waves. If there is no piezoelectric
effect, the interaction between the elastic wave and the mo-
bile ions is of the deformational type. The sound attenuation
coefficient for this case is estimated in Ref. 144 as the ratio of
the Joule heat per unit volume to the energy of the elastic
wave. Dimensional considerations apparently lead to the
expression

a;i= (a(0)/«)(a>r2wiA)2

(63)

where r2Wii is the separation between the shallow minimum
of the two-well potential and the saddle point.

Mobile ions can contribute to the attenuation of sound
via the deformation potential in the same way as in semicon-
ductors. However, the elastic wave now modulates the depth
of the potential wells in conducting channels and not the
edges of the conduction band. This causes a redistribution of
mobile ions over the wells, i.e., an electric current, since the
number of wells is much greater than the number of mobile
ions. The electromechanical coupling coefficient can be cal-
culated from (59) in which q{ must be interpreted as the ion
charge.

Since the deformational interaction is characterized by
a very strong frequency dependence of the sound attenuation
coefficient, the experimentally determined relation a ~co2 in
such typical superionic crystals as RbAg4I5 (Ref. 145) and
PbF2 (Ref. 141) can be explained by assuming that
ft, (a>) ~//j (Q)/(o2(e2(o>el) at frequencies of a few dozen
MHz because we know that а(ш) of superionic conductors
is described by the Drude formula and toTM > 1 (typically,
the magnitude of cr(0) in superionic conductors is about 100

fi m ). The result of all this is that we obtain not only a
quadratic frequency dependence of a, but also a~a(co), in
agreement with experiment. The order-of-magnitude esti-
mate for a is 0. 2-0.8 dB/cm, whichisalsoin agreement with
experimental data.

The attenuation of sound may also be due to charge
carriers localized in the two-well potential. They are the ana-
logs of donor pairs with one localized electron, and are re-
sponsible for sound attenuation in semiconductors. How-
ever, since in the case of superionic and ionic conductors we
are interested in temperatures of 100 К or above, we have
over-barrier carrier transitions. Moreover, in contrast to
semiconductors, two-well potentials can be assigned partic-
ular positions in the lattice, which means that each well in a
pair has its own deformation potential, say, Al and Л2, re-
spectively. Moreover, the 'shoulder' of the pair, rpair, is a
constant, so that, even if we take rpair </l into account, the
transitions of an ion in a pair are due to the difference
Л, — Л2 and not to the deformation gradient. The result is
that the ultrasonic wave modulates the transition probabili-
ties between the potential wells (as in the above ultrasonic
relaxation), and this produces a change in the polarization.
The corresponding sound attenuation coefficient in the ab-
sence of the piezoelectric effect is [cf. (54) and (59)]

loc,i
pair Moc.i (64)

where N^ is the number of symmetric singly-filled poten-
tial wells (symmetric wells are defined as those for which the
pre-exponential factor in the expression for the relaxation
time, rlocд, is the same on the right and on the left of the
saddle point; rloCii = rf^ exp( Vloc/k^T) where У1ж is the
barrier height that must be overcome in a transition from
one well to the other in the pair). Similarly to the case of
semiconductors, the expression given by (63) can be readily
generalized to the superionic semiconductor exhibiting a pi-
ezoelectric effect.

It is clear that, when the times of dielectric (on local-
ized ions) and Maxwellian relaxations on mobile ions are
very different, the two mechanisms operate independently.
In the opposite case, the two mechanisms must be consid-
ered together, using the standard set of equations in which
the permittivity has both real and imaginary parts:154

e = e, - «2,

tie
(65)

_ £ .— £п т

where e0 is the permittivity of the unmelted lattice and
the relaxation part of the permittivity. It is readily shown
that for the deformational interaction

Де

The experimental separation of piezoelectric and defor-
mational mechanisms must as before rely on the orienta-
tional relations. Moreover, the application of a steady exter-
nal electric field E0 that has a different effect on the two
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components (through translational mobility and the change
in the pair population) may be useful.

Another approach to the evaluation of the sound at-
tenuation coefficient in superionic conductors is proposed in
Ref. 154. To ensure that one type of ions is fixed, it is as-
signed a mass of 1 000 times the mass of the mobile ions. The
transport coefficients that appear in the sound attenuation
coefficient and are associated with viscosity (shear and
bulk) and thermal conduction (volume expansion coeffi-
cient and thermal conductivity) are calculated from the ex-
perimental radial distribution function g ( r ) for different
temperatures and a suitably chosen pair potential. This
yields a quadratic frequency dependence for a and the re-
quired order of magnitude for RbAg4I5, Ag3Si, and PbF2. Of
course, the total neglect of the periodic potential can hardly
be justified, but calculations performed in the spirit of the
liquid model can be used to isolate the contribution of the
unmelted lattice. Experiment shows that the sound attenu-
ation coefficients of melts of superionic conductors (salts;
see Ref. 156, for example) are not very different, indicating
that the effect of the periodic potential is quite small. Other
theoretical models that have been used with varying degrees
of success to calculate the sound attenuation coefficient of
superionic conductors are described in Refs. 157 and 158.

In addition, we also note the recent investigation re-
ported in Ref. 160 in which a study was made of the super-
ionic (proton) conductors CsDSO4 and CsHSO4. The tran-
sition to the superionic state in these materials is very well
defined: the elastic moduli are reduced by 50% and the
sound attenuation coefficient increases by an order of mag-
nitude. In the superionic state, the investigated temperature
interval is small and it is difficult to draw any conclusion
about the temperature dependence of a. Nevertheless, it is
concluded in Ref. 160 that the attenuation of sound is due to
the redistribution of local disorder within the unit cell of the
main crystal lattice. However, because electrical conductiv-
ity data are not reproduced, it is quite difficult to draw any
conclusion about the dominant relaxation mechanism.

The main experimental results and computational
schemes employed for superionic conductors and ionic con-
ductors thus show that the sound attenuation coefficient can
contain contributions due to nonlocalized and localized
manifestations of disorder in one of the ionic subsystems.
The main criterion for distinguishing between the mecha-
nisms that manifest themselves in the course of nonlocalized
motion is a~a(a>~) anda~co2. The mechanisms responsible
for electrical conduction and sound attenuation are identi-
cal. Hence acoustic experiments, which are more difficult
than electrical experiments, are also more promising in the
case of low-resistivity superionic conductors as a means of
excluding the effect of electrical contacts on experimental
data, and also when different types of wave are employed.
This can be used to determine the components of the defor-
mation tensor from data on a(o)) and
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