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We review the propagation of optical and hydrodynamic perturbations in a gas having
nonequilibrium internal degrees of freedom. We discuss the nonequilibrium processes that lead to
variation of the refractive index and self-focusing via the effect of kinetic cooling and
nonequilibrium vibrational excitation of molecules. We analyze the propagation of small and
nonlinear perturbations, as well as shock waves, in nonequilibrium gases.

INTRODUCTION

Interest in nonequilibrium phenomena in the physics of
gases arose at the end of the twenties of this century in con-
nection with studies of anomalous dispersion and absorption
of ultrasonic waves. The explanation of anomalous absorp-
tion (and dispersion) required departing from the usual
views of dissipation of the energy of ultrasonic waves via
processes of viscosity and heat conduction and bringing in
the mechanism of retarded energy exchange between the
translational and internal degrees of freedom of the mole-
cules. Thus the physics of gases faced for the first time real
processes that lead to breakdown of equilibrium among the
internal degrees of freedom of the molecules. Translational
nonequilibrium, i.e., breakdown of equilibrium among the
translational degrees of freedom of the molecules, began to
be studied considerably earlier, at the end of the past century
and the beginning of this century, in connection with prob-
lems of calculating transport coefficients. The viscosity, heat
conductivity, and diffusion coefficients, as was shown in the
theory of inhomogeneous gases, differ from zero only in the
case in which the velocity distribution functions differ from
Maxwellian. However, this type of a nonequilibrium at that
period was of more interest to engineers than to physicists,
since the physicists in their experimental practice had not
yet faced real processes that lead to an appreciable break-
down of the Maxwell distribution.

An entirely different fate overtook acoustic nonequilib-
rium. Already in the forties, after the prediction of broaden-
ing of shock waves owing to relaxation processes, it became
clear that the acoustic breakthrough into nonequilibrium is
not an exception. One will encounter fast processes with a
nonequilibrium distribution of energy among the internal
degrees of freedom each time whenever the characteristic
time of an external agent is of the order of the relaxation
time.

However, essentially the establishment of nonequilibri-
um molecular physics as an independent science began only
in the sixties, and is due to the laser revolution in physics and
chemistry. One of the fundamental results of the laser revo-
lution, besides the invention and incorporation into practice
of the unique laser technology, consists in attracting the at-
tention of physicists to nonequilibrium media, and in partic-
ular, to nonequilibrium gases.

Nonequilibrium gases include not only the active medi-
um of gas lasers. They include the upper atmosphere, the
interstellar medium, including the interstellar clouds, dis-

charge plasmas, etc. From the physical standpoint a non-
equilibrium molecular gas amounts to an unusual state of
matter, the peculiarity of whose properties is determined by
the possibility of varying within certain limits the store of
internal energy and its distribution among the degrees of
freedom of the molecules.

The study of nonequilibrium gases essentially enables
physicists to discover a new stratum of phenomena. For
many centuries humanity used only the mechanical proper-
ties of gases, then in turn came in the thermal, electrical, and
chemical properties. Precisely these fields for many years
defined the face of molecular physics. Then the situation
changed. The shape of modern molecular physics is deter-
mined by the study of nonequilibrium phenomena.

At present nonequilibrium molecular physics is taking
its first steps. Among its advances we should mention the
development of nonequilibrium kinetics of atomic and mo-
lecular processes in reacting gases and the active media of
gas lasers, as well as the theories of propagation of optical
and hydrodynamic perturbations in nonequilibrium gases.
Whereas the former group of problems has been dealt with in
considerable detail in the review and monograph literature,
the hydrodynamic and optical aspects of the behavior of a
nonequilibrium gas have essentially been presented only in
the original studies.

The interest in the optical properties of a nonequilibri-
um gas involves the fact that here the most striking nonequi-
librium effects have been revealed up to now. We can classify
them into two groups: nonequilibrium emission and propa-
gation of optical perturbations in nonequilibrium media.
While nonequilibrium emission has been rather well studied,
the interaction of laser radiation with nonequilibrium gases
is only beginning to be studied.

The interest in the hydrodynamics of nonequilibrium
systems is governed primarily by the fact that this is one of
the new fields of modern hydrodynamics. In classical hydro-
dynamics, to speak simply, the role of physicists ended at the
instant when the fundamental hydrodynamic equations had
been established. Further development here took the path of
overcoming mathematical difficulties. The situation was dif-
ferent in the hydrodynamics of nonequilibrium systems. It
now is passing through the stage of formulating the funda-
mental equations and for revealing new physical effects. In
many ways this is a field of activity of physics, and naturally
the role of physicists is large here.

The plan of the review is as follows. Section 1 reviews
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the fundamental properties of a vibrationally nonequilibri-
um gas. Section 2 is devoted to the optical properties of a
nonequilibrium gas. Primarily here we discuss the nonequi-
librium processes that lead to a change in the refractive index
and self-focusing owing to the effect of kinetic cooling and
nonequilibrium vibrational excitation of molecules. Section
3 discusses the hydrodynamic behavior of a nonequilibrium
gas: the propagation of small perturbations, waves of finite
amplitude, and shock waves.

1. A NON-EQUILIBRIUM GAS

1.1. The hierarchy of relaxation processes in molecular
kinetics

Generally speaking, molecular collisions in a gas are
accompanied by a change in the translational, rotational,
vibrational, and electronic energy of the collision partners.
Moreover, chemical reaction and ionization of the particles
can occur. The probabilities (or effective cross sections) of
these elementary processes, as a rule, differ strongly among
themselves. The latter situation has the result that the excita-
tion of certain groups of degrees of freedom in molecular
gases requires differing numbers of collisions. Thus one can
speak of the rates of individual relaxation processes or of the
characteristic times (relaxation times) of individual pro-
cesses. We understand a relaxation process to be one of es-
tablishment of an equilibrium or quasiequilibrium energy
distribution in a group of individual degrees of freedom in
the molecular gas.

At temperatures of the order of 103 К the characteristic
times of the individual relaxation processes in a molecular
gas form the following hierarchy:

'TT . TRT « Tyy - « Гch (1.1)

Here TT-T, TRT, ТУТ, and т} are the characteristic times of
establishment of equilibrium among the translational, rota-
tional, vibrational, and electronic degrees of freedom, rvv is
the characteristic time of exchange of vibrations among mol-
ecules (VV exchange), and rch is the characteristic time of
chemical transformations. One can understand the physical
cause of the difference in relaxation times, which is a conse-
quence of the difference of probabilities (or cross sections)
of the different elementary events upon estimating the mag-
nitude of the Massey parameter.

The greatest efficiency of energy exchange between the
translational and internal degrees of freedom of the mole-
cules is observed in collisions for which the Massey param-
eter is

hv-1- (1.2)

Here &.E is the difference in energy of the levels between
which the transition occurs, v is the mean velocity of relative
motion of the pairs of colliding particles, and r0 is the radius
of intermolecular interaction. When

>1 (1.3)

energy exchange is difficult. One can see this even from the
example of a collision of a harmonic oscillator with a struc-
tureless particle. The condition (1.3) implies that the per-
turbation of a molecule by an incident atom, which is the
cause of the vibrational transition, is adiabatic in character.
Yet as we know, in this case "S /ы is an invariant (% is the

vibrational energy, and 5 is the frequency of the vibrations).
That is, the vibrational energy is not changed by the colli-
sion. More exactly, the change in the vibrational energy is
Д£~e~F, where Fis an adiabatic factor proportional to the
Massey parameter.

The Massey parameter for a vibrational excitation as a
rule is much greater than unity, and for rotational excitation
is of the order of unity. Actually, for O2-Ar collisions ac-
companied by vibrational excitation we have we

= E/h= 1580 c m ~ l , r 0 ~ 10~8 cm, and y~3x!04 cm/s.
Thus we have &Er0/hv~ 14.

In the rotational excitation of homonuclear molecules
we have ДЯ = Ej + 2 - Ej = Be(4j + 6), where
j=j~(kB Т/Be)1/2. Since for O2 we have Be = 1.45 cm ~',
then for T= 300Kwehave£e//~12, while A£>0/Au~1.4.

The hierarchy of (1.1) pertains to the typical case. For
light molecules or molecules lying in upper rotational levels
we have rRT > r^. For heavy molecules rvx is considerably
smaller than for light molecules. Hence the case can occur in
which rVT ~ rvv. With increasing temperature rch decreases
more rapidly than rVT, and therefore, beginning at a certain
temperature we have rch ~rVT • For example, for an O2-Ar
mixture this boundary is 8000 K.1'2

The meaning of the hierarchy of relaxation times of
(1.1) for analyzing nonequilibrium processes is that under
certain conditions the process of relaxation of individual
groups of degrees of freedom can be treated in isolation. In
this case the certain conditions mean that, in analyzing con-
crete relaxation processes, one selects time scales on which
all the faster processes have finished, while the slower ones
have not started. As applied to problems of vibrational relax-
ation this means that, at times of the order of т^, one can
assume the processes of translational and rotational relaxa-
tion to have finished and take account only of their result—
the formation of a Maxwell-Boltzmann distribution with a
single temperature for the translational and rotational de-
grees of freedom. On the other hand, for times of the order of
rVT one need not take account of dissociation processes,
since they are not yet started.

1.2. Kinetic processes in a vibrationally nonequilibrium gas

Among all the relaxation processes, vibrational relaxa-
tion can be singled out in terms of its energy capacity and
duration. The vibrational reservoir of an N-atom molecule
includes 3./V-6 degrees of freedom (for a linear molecule ЗЛ^-
5). However, only 6 (or 5) degrees of freedom belong to the
fraction for translational motion and rotation. The duration
of vibrational relaxation is determined by the time rVT. For
O2 at room temperature rVT amounts to ~ 108 TO, while at
temperatures 5 X Ю3 К it is of the order of 102 r0, where r0 is
the mean time of free flight.3

The noted features of vibrational relaxation explain the
rather high level at which it has been studied and the wide-
spread use of nonequilibrium vibrational effects in physics.

There are several levels of description of vibrational re-
laxation. The most widespread ones are description in terms
of macroscopic variables (e.g., the mean vibrational energy)
and the microscopic description by using the distribution
function of the vibrational energy or the populations of the
individual vibrational levels (level kinetics). The choice of
the level of description depends on the specifics of the prob-
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lem and the phenomenon being studied. For example, in re-
laxational hydrodynamics as a rule one can restrict the treat-
ment to the macroscopic description. Conversely, in
chemical kinetics or laser physics, one requires a level de-
scription.

In the macroscopic description the fundamental equa-
tion is the relaxation equation for the mean vibrational ener-
gy e per unit mass, which for diatomic molecules has the
form

de/dt= -(£ - £O)/TVT. (1.4)

Here £0 is the equilibrium value of the mean vibrational ener-
gy per unit mass, and rVT is the vibrational relaxation time.
For a system of harmonic oscillators we have

£0(Г) =

where т is the mass of the molecule, and fia> is the magnitude
of the vibrational quantum.

Equation (1.4) has a rather broad region of applicabili-
ty. It functions well up to a temperature of the order of the
characteristic temperatures, i.e., where one can neglect an-
harmonic effects. The characteristic temperatures for most
molecules are rather high. Thus, for H2 we have Й5/Д:В

= 6300 К, for N2 3400 K, for CO 3100 K, for O2 2300 K,
etc.

Equation (1.4) is valid for polyatomic molecules if in
the latter the exchange of energy between the different vibra-
tional modes occurs faster than the energy exchange be-
tween the translational degrees of freedom and the low-fre-
quency vibrational mode. In this case we should understand
£0 to be the mean energy of the low-frequency mode, while
we substitute т = rVTcv/c, in place of rVT, where cl is the
heat capacity of the low-frequency mode, and cv is the total
heat capacity of all the vibrational degrees of freedom.

Despite the relatively simple form of the relaxation
equation (1.4), it allows one to predict or explain rather
subtle effects. Let us explain what we have said using the
example of a nonequilibrium thermal explosion.4

Upon intense pumping of energy into the vibrational
degrees of freedom of a molecular gas (e.g., in a discharge or
under the action of laser infrared radiation), a nonequilibri-
um two-temperature gas is formed. The vibrational tempera-
ture TV of such a gas can appreciably exceed the temperature
of the translational degrees of freedom. We can speak of a
vibrational temperature if VV exchange is the fastest pro-
cess. However, such a two-temperature state may prove to be
unstable. With increasing pumping intensity 7\, will in-
crease, and hence also the energy transferred to the transla-
tional degrees of freedom. If it cannot be removed from the
system by heat exchange with the surrounding medium, then
the gas will begin to heat up. Increase of the gas (transla-
tional ) temperature will lead to acceleration of the process
of VT exchange (rVT decreases with increasing tempera-
ture), which heats the gas even more, etc. The result of this
process will be an avalanche-like discharge of the excess vi-
brational energy into the translational degrees of freedom
( thermal explosion ) and formation of a new high-tempera-
ture regime with T~TV. Thus thermal explosion (along
with dissociation ) is an upper bound of the store of vibra-
tional energy that can be accumulated in the system.

In the simplest case thermal explosion is described by a

system of two equations corresponding to the balance of vi-
brational and translational-rotational energies. The equa-
tion of balance of the vibrational energy

de
At

_ , (1.5)

is obtained if one adds to Eq. (1.4) terms describing the
diffusion loss of vibrationally excited molecules upon inter-
action with the wall (the second term on the right-hand side,
where rd ~R %/D is the characteristic time of diffusion, D is
the diffusion coefficient, and R0 is the radius of the tube),
describing radiation deactivation (the third term), and the
intensity of pumping.

The equation of balance of the thermal (translational-
rotational) energy has the form

(1.6)
dt2' VT

where 7"w is the temperature of the wall. In the steady-state
case with account taken of TVT > rd, rr and £ > £0, equations
(1.5) and (1.6) imply that

Т f f

(1.7).

If we represent the temperature dependence of rVT with the
exponential

TVT = TVT ехр(-ЙГ),

в = (Т — Т„ )/7w> Tyj = TVT I r_ TV,

then (1.7) acquires the form

0 = *exp($), (1.8)

where х = дт*тл/( r°T /св Г) . Equation ( 1 . 8 ) has one stable
solution for x~ I /be, where e is the base of natural loga-
rithms, and it has no solution when к > I/be.5 The lack of a
solution means that the initial physical assumptions are
false. First of all, the assumption of the existence of a two-
temperature regime in which the transport of heat occurs via
a diffusion mechanism, is not valid. The new regime will be
close to equilibrium with Г~ Tv , and it must be studied by
using the kinetic equations. The change of regime corre-
sponds precisely to thermal explosion.

The microscopic (level) description of relaxation pro-
cesses is based on a system of gas-kinetic equations of bal-
ance type for the populations of the individual vibrational
levels Nn .

2 For a single-component diatomic molecular gas
this system has the form

T = ( S Л*Л« - X

X 2ш,
m,s,l

+ f ( 1 01
m,s,l

= 0,1,2,.... (1.9)

Here Pmn is the probability of a m-n vibrational transition in
a single collision (the probability of VT exchange), Z is the
number of collisions undergone by a molecular per unit time,
and Qsl

mn is the probability of a transition (VV exchange) in
which two colliding molecules in the vibrational states m
and s go after collision into the states и and /. When / = s we
have
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m,s,l

if 2mn depends weakly on s, while N= 2SNS. In (1.9) we
have m=£n, s^l.

The singling out of the terms describing VV exchange
into a separate group is justified by the fact that, among all
the possible processes of VV exchange, the most effective one
is resonance (or near-resonance) exchange, in which
\ (Em - En ) - (E, - Es ) \ < kB T. The characteristic time
of resonance VV exchange is rvv <rVT- F°r example, for
NO at room temperature6 we find

TV V- (l/ZG?i)-68r0(T0=l/Z),

T V T ~ 1/ZP10~3,2-103T0.

The gas-kinetic equations (1.9) are valid when two con-
ditions are fulfilled. First, the inequality must be fulfilled
that TVT > rw ̂  TRT ; second, one can neglect triple collisions
under the conditions being studied. The first condition en-
ables us to consider Pmn and Qs^n to be functions of a single
translational-rotational temperature. In other words, when
ГУТ > rw ̂  rRT > the process of vibrational relaxation occurs
on the background of a Maxwell-Boltzmann distribution of
energy among the translational and rotational degrees of
freedom. The second condition, as in the classical Boltz-
mann equation, imposes an upper bound on the pressure.
The ratio of the number of triple to double collisions is of the
order of Nrl , where N is the number density of particles,
while r0 is the radius of intermolecular interaction
(r0~2x 10- 8 cm). If we denote by P™ a.ndP™ the proba-
bilities of VT exchange in double and triple collisions, re-
spectively, then the condition for neglecting triple collisions
can be written in the form

Equation (1.12) with allowance for the detailed-balance re-
lationship

» «1,

or

(1.10)

where/» is the gas pressure in atmospheres. In (1.10) the
probabilities of VV exchange can also appear instead of the
probabilities of VT exchange.

The ratio P^/P^ is not known. If we assume rather
arbitrarily that the ratio is of the order of 10 to 100, the role
of triple collisions must be analyzed starting at pressures of
10 to 100 atmospheres.

As we have already pointed out, the system (1.9) has
two characteristic time scales-TVT and TVV . Since as a rule
TVT ̂  Tv\ > we can speak of a quasi-steady-state distribution
that is formed at times ?<TVT • In this case the first term on
the right-hand side of (1.9) need not be considered at all,
and we can find the steady-state distribution from the condi-
tion of vanishing of the second term. As was shown in Ref. 7,
this is equivalent to the condition

Q?mnNmNs = Qw,iNnNt ( 1 - 1 1 )

If we examine systems of harmonic oscillators and restrict
the consideration to only single-quantum transitions (they
occur with overwhelming probability2), then we can write
(1.11) in the form

fbS,S~t' 1 Д7- » г /">£"'" 1 > ^ А Г \ 7 ' f 1 1 О \

implies that

(1.13)

(1.14)

Here the vibrational temperature Tv is determined by the
store of vibrational energy existing at the given instant.

In an isolated system the distribution of ( 1.14) relaxes
(with the characteristic time rVT ) to a Boltzmann distribu-
tion with Tv = T, where Г is the gas (translational) tem-
perature.

In a closed system in which, for example, a constant
population of the first vibrational level is maintained, 7\,
will always differ from T.

The Boltzmannization of the existing store of vibration-
al energy via VV exchange leads to a number of interesting
effects. Let us study one of them. In spectroscopic practice,
to measure the vibrational temperature of the non-radiating
components (homonuclear molecules), one often uses the
following method. One adds to the non-radiating system a
small admixture of radiating molecules (e.g., one adds NO
or CO to N2). One assumes that the vibrational tempera-
tures of the radiating and nonradiating molecules are equal.
Therefore by measuring the emission spectrum of the admix-
ture one can find the vibrational temperature of the main
component. Let us examine the accuracy of this "molecular
thermometer" from the standpoint of the relaxation pro-
cesses that occur.

In a binary mixture of diatomic molecules, owing to VV
exchange in collisions of identical molecules in each of the
components A and B, a Boltzmann distribution is estab-
lished with its own vibrational temperature. If the vibration-
al quanta of the A and В molecules do not differ very strong-
ly ( <УА — ав |/U>A ^1)» then exchange of vibrational
quanta in collisions of differing molecules A and В (VV
exchange) occurs more slowly than VV exchange in each
component, but faster than VT exchange. Thus at times
t ~ rvv , <^ TVT °ne can speak of a quasi-steady-state distribu-
tion of vibrational energy between the components. It is
found from an equation analogous to ( 1. 12) :

Upon taking account of the principle of detailed balance

exp

(1.16)

and the presence of a Boltzmann distribution in each of the
components (N$ = N% exp( -E*/kB T$ ) and Nf = N$
exp ( - E f/kB Г v ) ) , then Eq. ( 1 . 1 5 ) implies that2

(1-17)
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The relationship (1.17) shows that VV exchange, i.e.,
exchange of vibrational quanta between the components,
mixes the initially existing store of vibrational energy, while
establishing correspondence between the vibrational tem-
peratures Г0 and rv.

We also see from (1.17) that the "molecular thermom-
eter," e.g., B, always shows a different temperature from
component A, i.e., T^^T^. Thus, for example, for a mix-
ture of N2 and CO (£,(N2)/fcB =3390 K,
£,(CO)/A:B = 3120 K) upon rapid expansion to Т = 1000
К the difference 7"V(CO) - TV(N2)~15Q К when
TV (CO) ~ Tv (N2) -2000 K.

At high levels of vibrational excitation at which the
mean vibrational energy of the molecule is larger than a vi-
brational quantum, one must take into account the anhar-
monicity of the molecular vibrations. Molecular anharmoni-
city weakly affects VT exchange. It can alter the rate of VT
exchange but not the final state. The final steady state in the
region where VT exchange predominates will always be de-
scribed by a Boltzmann distribution with a vibrational tem-
perature equal to the translational temperature. The situa-
tion is completely different in VV exchange. The steady state
in a system of anharmonic molecules that is formed under
the action of an actually predominating single-quantum VV
exchange differs in principle from a Boltzmann distribution.
Equation (1.12) implies, with account taken of (1.13), that
the steady-state distribution has the form

Nn = exp [ - Гтг« - (En/kB T) ] , (1.18)

Here 7Tr = (E^k^) - (El/kBT) is determined by the
total store of vibrational quanta at the given instant of time.
Here Tl is the "temperature" of the first vibrational
level (ЛГ, = N0exp(-Ei/kBT)), while En = nEt

— b.En(n — 1), where AJ? is the anharmonicity constant.
The distribution (1.18) was first derived in the study of
Treanor, Rich, and Rehm, and is often called the Treanor
distribution.8 When Д.Е = 0 it goes over into a Boltzmann
distribution with E^/k3/Tv = /Tr + (Ei/ks T).

The distribution of (1.18) differs substantially from a
Boltzmann distribution. When Tl < T, which corresponds to
conditions in the relaxation zone behind the front of a shock
wave, we have yTr > 0, while the population in the higher
vibrational levels is lower than the equilibrium value at the
temperature T. Conversely, when 71, > T, i.e., under condi-
tions of rapid expansion of the gas or intense vibrational
pumping, we have yTr < 0, and the population of the upper
vibrational levels is greater than the equilibrium value. Fig-
ure 1 (curve 1) shows the Treanor distribution for CO mole-
cules for TI = 2700 and T= 325 K.

The rising branch of the Treanor distribution, which
corresponds to an absolute inversion, is not realized in prac-
tice. This involves the fact that processes of VT exchange
predominate on the upper levels, leading to a Boltzmann
distribution with a vibrational temperature equal to the tem-
perature of the translational degrees of freedom. In the inter-
mediate region of vibrational quantum numbers where the
probabilities of VT and VV exchange become comparable
(e.g., for CO at room temperature we have Pn +i<n~Q °'+ 1>я

for n ~ 20-30), the Treanor distribution goes smoothly over
into the Boltzmann distribution through a plateau (see Fig.
1).

30 50 n

FIG. 1. Relative populations of vibrational levels of CO molecules at
Г, = 2700 К and various gas temperatures. Curve 1 corresponds to the
Treanor distribution at T— 325 K.

The important role of Treanor distributions with a pla-
teau and a descending branch (see Fig. 1) is determined by
the fact that when Tl>T the mean store of vibrational ener-
gy per molecule for such distributions is larger or consider-
ably larger than for a Boltzmann distribution with a vibra-
tional temperature equal to T{. The latter circumstance is
widely employed in laser physics, e.g., in CO lasers based on
vibrational-rotational transitions.9 Other examples of opti-
cal manifestations of vibrational nonequilibrium are dis-
cussed in the next section.

2. OPTICAL MANIFESTATIONS OF NONEQUILIBRIUM

2.1. Polarizability of vibrationally excited molecules

The optical manifestations of nonequilibrium in gases
encompass a very large set of phenomena. A nonequilibrium
energy distribution among the internal degrees of freedom
on molecules determines such well-known effects as the am-
plification and generation of laser radiation, changes in the
absorption and emission spectra of nonequilibrium gases,
and finally, changes in molecular characteristics (dipole
moments, polarizabilities, hyperpolarizabilities, magnetic
susceptibilities, nuclear quadrupole coupling constants,
chemical shifts, etc.).

In this section we shall discuss the optical properties of
a nonequilibrium gas involving a change in the polarizability
of molecules upon nonequilibrium vibrational and rota-
tional excitation.

Vibrational and rotational excitation of molecules, as,
e.g., effected by optical or electronic pumping, leads to a
change in the geometric structure of the molecules. Thus,
upon vibrational excitation the mean distance between the
atoms in the molecule increases (owing to mechanical an-
harmonicity ), as does the amplitude of vibration of the mol-
ecules. The change in the mean (and mean-square) dimen-
sions of the molecules affects the electrical characteristics-
the dipole moment, the polarizability, and the hyperpolari-
zability. Actually all the listed characteristics depend on the
geometric dimensions of the molecules: the dipole moment
contains the length to the first power, the polarizability has
the dimensions of volume, etc.

The change in the electrical characteristics of the mole-
cules leads to a change in the optical properties of the medi-
um. Thus, in line with the Lorenz-Lorentz formula

(2.1)
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where л is the refractive index, Nis the number density of the
molecules, and a is the mean polarizability. If we denote by
as the polarizability of molecules in the 5th vibrational-rota-
tional state, then a = I,sysas, where ys is the population of
the sth level normalized to unity.

We see from (2.1) that a nonequilibrium vibrational-
rotational excitation alters the refractive index by altering
the mean polarizability of the molecules. In turn this leads to
the appearance of new effects. Let us take up two of them,
which must be taken into account in the interferometry of a
nonequilibrium gas and in describing the propagation in it of
resonance infrared radiation. In the adiabatic approxima-
tion we can represent the mean polarizability a of the mole-
cules in the form of the sum of electronic, vibrational, and
rotational components. The electronic component of the po-
larizability is determined by the electronic transitions from
the given vibrational-rotational state. The vibrational and
rotational components respectively depend on the vibration-
al-rotational and rotational transitions.

In the visible region of the spectrum the vibrational and
rotational components of the polarizability are small in com-
parison with the electronic component. According to the
estimates given in Ref. 10, the vibrational polarizability for
CO2 in the visible region (6328 A) amounts to 3.9X 10~3

A3, while the total polarizability is a(a>, 300 K) = 2,636 A3.
The total static polarizability is a (300 K) = 2.93 A3, while
the contribution of the vibrational polarizability is 0.33 A3.
As we proceed into the infrared region, the contribution of
the vibrational polarizability increases and becomes appre-
ciable in a region close to single-photon vibrational reso-
nance. Below, if not especially stipulated, we shall under-
stand the mean polarizability to be the electronic component
of the polarizability.

Direct calculation of the electronic polarizability by the
Kramers-Heisenberg formula is difficult, since usually we
do not know the dependence of the strengths of the elec-
tronic transitions on the vibrational and rotational quantum
numbers. Therefore it is more convenient to expand the po-
larizability in a series in terms of the normal coordinates. If
we restrict the treatment to terms of second order of small-
ness in the normal coordinates Q, then we can write for di-
atomic molecules

as(s I a \ s)

(2.2)

Here a(0) is the polarizability of the excited molecule, the
first term in the square brackets stems from the mechanical
anharmonicity (b3 is the coefficient of Q3 in the expansion of
the potential of the intramolecular interaction in the normal
coordinates), the second term is the electrooptical anhar-
monicity, and the last term in (2.2) involves the correction
to the energy in second-order perturbation theory. The val-
ues of the derivatives of the dipole moment with respect to
the normal coordinates are calculated by quantum-mechani-
cal methods or are determined from spectroscopic data.10

The generalization of (2.2) to the case of polyatomic

molecules is rather obvious. We must sum (2.2) over all the
normal coordinates, take into account the degeneracy of the
normal vibrations, having replaced s+(l/2) with
s+ (r,/2), where r} is the degeneracy, and include terms
arising from the anharmonic interaction of the normal vibra-
tions. A concrete expression for as for CO2 in a given vibra-
tional-rotational state is given in Ref 10. Expressions for the
dipole moment, the polarizability, and the hyperpolarizabi-
lity of polyatomic molecules in the ground state were derived
in Ref. 11, and in a vibrationally excited state in Refs. 12-16.
(Misprints are found in the formulas for the dipole moment,
the polarizability, and the hyperpolarizability in Refs. 12-
16.)

The contribution of vibrational-rotational transitions
to the polarizabilities of molecules of CO were studied theo-
retically in Ref. 17. A detailed review of the studied (bibliog-
raphy of about 130 names) on the influence of vibrational
and rotational excitation of molecules on the static and dy-
namic polarizability and hyperpolarizability is found in Ref.
18.

We see from (2.2) that the vibrational contribution av

to the electronic polarizability (av = as — a<0>) is propor-
tional to the vibrational quantum number s or, after averag-
ing over the distribution on vibrational energy, to the mean
number of vibrational quanta s per molecule. The value of 5
varies depending on the distribution function. Thus, for the
CO molecule at Т = 75 К and the temperature of the first
vibrational level Г, = 2050 K, averaging over the Boltz-
mann distribution (Ns = N0 exp(Es/kB T)) yields s = 0.3,
while averaging over the Treanor distribution (Ns

= N0 exp[ - yrrs- (Es/ksT)], 7Tr = [(Гf ' - Т ~')
E/fen]) yields ?^0.8.2

Apparently the maximum value of s amounts to several
times unity, which corresponds to the appearance of vibra-
tionally excited CO molecules in chemical reactions.

The absolute contribution of the vibrational increment
to the electronic polarizability is small. According to the
estimates10 for CO2 the total vibrational and centrifugal (ro-
tational) contribution to the electronic polarizability varies
(in units of a3, =0.14818 A3) from 0.163 at 300Kto0.648 at
3000 K, which corresponds to a relative change in the refrac-
tion of 2.7% over the interval 300-3000 К at Я = 6328 A.
The estimates that we have presented correspond to an equi-
librium state of the carbon dioxide gas. In nonequilibrium
excitation of CO2 the fraction of av in the electronic polariz-
ability can increase severalfold. The significance of this re-
sult is not restricted to the fact that the vibrational contribu-
tion to the polarizability can be measured. An important role
of the vibrational increment consists in the fact that it gov-
erns an entire set of new effects. In particular, this pertains to
the change in the refractive index upon vibrational excita-
tion of a molecular gas.

2.2. Interferometry of a nonequilibrium gas

The interferometric study of gas flows (or gases at rest)
is one of the most widespread methods of determining the
density and gas temperature. The interferometric method of
determining density is based on the Gladstone-Dale rela-
tionship, which connects the refractive index и with the den-
sity p
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(п - \)/р = К, (2.3)

where К is the Gladstone-Dale constant, which depends on
the composition of the gas and the wavelength of the light.
Equation (2.3) follows from (2.1).

In an interferometric experiment one measures the
phase difference of two beams (shift of interference bands),
from which one easily calculates the change in the refractive
index я, which is associated with the change in the density
До by the relationship Дя = АГДр. Generally the constant К
will depend also on the temperature. The temperature de-
pendence of К was first studied in Ref. 19, and can be repre-
sented in the form

К = *„(! + «Г), (2.4)

where x~ 10 ~5 deg ~ ' . The correction xT, in line with the
abovesaid, takes account of the variation of the polarizabili-
ty with the temperature. Thus we have

Дя = (дп/др)Лр + (дп/дТ)ЛТ. (2-5)

In equilibrium heating the contribution of the second term is
small (see Ref. 10). It can be estimated if one uses (2.3) and
(2.4) and the equation of state of an ideal gas. In this case we
have20

(2.6)
(Эи/Э/э)Др'

When T~ 102-103 К we find Дп^/Дп,, ~ 10 ~ 2-10 -3.
In nonequilibrium vibrational heating the contribution

of the second term becomes appreciable. Neglecting it in
calculating the density from interferometric data can lead to
errors. Thus, according to the estimates of Ref. 12 for CO at
Т = 300 К and Tv = 5000 К, the ratio of the density p*
calculated from (2.3) with account taken of the nonequilib-
rium vibrational contribution to the Gladstone-Dale con-
stant to the density p determined from the ordinary Glad-
stone-Dale relationship equals/o*//o~0.85.

If we proceed from the density to the gas temperature,
then replacement ofp Ъур* will lead to a change in T. This
effect must be taken into account, e.g., in determining the
depth of kinetic cooling and recalculating experimental data
on the characteristic relaxation times.21

Taking account of Длг in nonequilibrium vibrational
excitation does not amount only to determining the correc-
tion to the measured magnitude of the density/?. There is a
large group of experiments in which vibrational excitation
precedes heating of the gas. Thus, for example, in pulsed
laser infrared excitation of a molecular gas, initially the vi-
brational degrees of freedom are heated, and only then in the
course of the time of VT exchange (or time of nonresonance
VV exchange) the temperature of the translational degrees
of freedom varies. Thus, in the pulsed excitation of the vibra-
tional degrees of freedom the change in the refractive index
in the first instants of time will track the redistribution of
energy within and among the vibrational degrees of freedom
and only later reflect the heating of the gas. Direct interfero-
metric observation of the contribution of vibrational excita-
tion to the change in the refractive index was performed in
Ref. 20 for the gases SF6 and C2H4.

We note that vibrational excitation also alters other mo-

lecular characteristics, e.g., the hyperpolarizability,18 the
magnetic susceptibility,22 the NMR spectral parameters,23

etc. Moreover, the change in polarizability upon vibrational
excitation must affect the intensities of Rayleigh and Raman
light scattering. However, all these problems have practical-
ly not been developed as applied to a nonequilibrium gas.

2.3. Self-focusing of laser radiation Induced by
nonequilibrium vibratlonal excitation of molecules

The change in the refractive index upon nonequilibrium
vibrational excitation can serve as the cause of another ef-
fect-self-focusing of laser radiation. Attention was called to
this first in Ref. 24.

It was noted in Sec. 2.1 that the contribution of the
vibrational polarizability to the total polarizability of mole-
cules is small. However, the pattern changes if resonance
interaction of the radiation with the material occurs. In
agreement with the Kramers-Heisenberg formula, the vi-
brational polarizability av can be written in the form

"I,

(2.7)

where the/?; T are the components of the dipole moment, and
= (Es, — Es )/fi is the frequency of the vibrational tran-(O

sition. We see from (2.6) that, in the region close to single-
photon resonance (a>->a>s,s), the magnitude of av becomes
appreciable and can compete with the electronic-vibrational
contribution av by enhancing or weakening the action of av

(the signs of 5V and av

 can differ). The authors of Ref. 20
explain the increased change in the refractive index of SF6

upon vibrational excitation with increasing wavelength in
the interferometer by the influence of the vibrational polar-
izability. The relative changes in Д«/(« — 1) observed in
Ref. 20 at the wavelength Л = 0.63 fim amounted to from
(6.0±0.5)XlO~3 to (2.3±0.3)X10-2 upon changing
the vibrational temperature Tv from 800 to 1800 K. At
Л — 3.39 pm the deviation Ди/(и — 1) varied from
(1.2±0.3)XlO~ 2 to (4.4±0.7)X10~ 2 upon changing
TV from 900 to 1900 К (Fig. 2).

An increase in the polarizability of the molecules, and
hence in the refractive index, owing to excitation of vibra-

An/fn-1)

500 15OO
I

500 1500

FIG. 2. Change in the refractive index of SF6 upon vibrational excitation.
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tional degrees of freedom in the interaction with resonance
infrared radiation can lead to focusing. Actually, in the
propagation of high-power laser radiation a medium is
formed in the channel of a laser beam with a nonequilibrium
vibrational excitation of the molecules, i.e., with an elevated
refractive index, which is the cause of self-focusing.

For a qualitative estimate of the effect of self-focusing
we can use the known expression for the self-focusing length

Rs = e0(/i/2A«)1/2.

Here л is the refractive index of the medium before arrival of
the laser radiation. Ди is the change in refractive index in-
duced by the laser radiation, and a0 is the initial radius of the
light beam. If we use the results of Ref. 20, i.e., assume that
for SF6 n/(n- 1) =2.3X10 ~2 at TV = 1800 K, while
n — 1 = 2X10~ 6 at/7 = 2 Torr, then when r0 = 1 mm, we
haveR( ~3Xl0 3 mm.

Reference 25 presented experimental dependences of
the radius of the light beam on the distance in a cuvette con-
taining the gas SF6 for different values of the intensity of
laser radiation at an SF6 pressure of 6.4 Torr, which could be
explained by the excess vibrational excitation of the SF6. The
self-focusing length varied in the range (0.6-1) X103 mm
upon varying the intensity of the laser radiation from 0.1 to 1
J/cm2.

In quantitative estimates of self-focusing one must take
account of two other possible effects besides the change in
polarizability-the fall in temperature due to kinetic cooling
and electrostriction.

The effect of kinetic cooling involves the situation that,
under certain conditions in the first instants after absorption
of infrared radiation by polyatomic molecules, the gas will
be cooled rather than heated.26 One can understand the
physical cause of this effect using the example of air. Upon
passage of the high-power radiation of a CO2 laser through
the atmosphere, the CO2 molecules absorbing the radiation
go from the 10°0 to the 00°1 level. The reverse conversion of
the vibrational energy of CO2 and of the N2 molecules in
resonance interaction with CO2 into thermal energy (into
energy of the translational degrees of freedom) occurs more
slowly than the process of populating the 10°0 level, which

has been depleted by the resonance absorption of energy.
Therefore, in the first instants of time after the action of the
radiation, one will observe cooling of the gas, rather than
heating. Cooling of the gas under conditions of constant
pressure will be accompanied by an increase in density. In
turn this leads to increased refractive index, i.e., focusing.
Detailed calculations of self-focusing owing to the effect of
kinetic cooling were performed in Refs. 27 and 28. In partic-
ular, it was shown in Ref. 28 that the light beam of a CO2

laser of power 500 kW/cm2 and radius 0.5 cm propagating in
dry air with a 5% addition of CO2 undergoes self-focusing
owing to kinetic cooling in which the intensity on the axis at
a distance of ~ 8 m increases almost sevenfold. The influence
of the effect of electrostriction on the change in refractive
index is usually small. It is of the same order of magnitude as
the change in the refractive index due to the Kerr effect.20

However, we note that the problem of the Kerr effect in a
nonequilibrium gas has not been solved, although the Kerr
constant (just like the Gladstone-Dale constant) must de-
pend on the vibrational temperature, or more exactly, on the
mean store of internal energy. The influence of electrostric-
tion on the variation of density has been analyzed in greater
detail in Ref. 29.

Detailed calculations of the change in refractive index
due to the factors listed above and of the dynamics of self-
focusing have been performed in Refs. 29-33.

Figure 3, taken from Ref. 29, shows the dynamics of
focusing of the radiation of a pulsed HF laser in an H2O-N2-
O2 medium close to the composition of the moist atmosphere
at altitudes of 10-40 km. Here I/I0 is the intensity of the
radiation normalized to the initial intensity (I0 = 100
MW/cm2). 70 = r/a0 is the radial distance in the beam with
respect to the initial radius of the light beam (a0 = 10 cm),
Z = Z /LD is the distance along the track with respect to the
diffraction length (LD = 976.2 m). We see from Fig. 3 that,
owing to formation of a focusing lens in the channel of the
beam, the radiation intensity on the axis of the beam in-
creases (the maximum value of/is reached in the cross sec-
tion Z= 1), although it should decline owing to diffrac-
tional divergence and absorption (dot-dash line). With
increasing time the maximum of / is shifted toward larger

FIG. 3. Focusing of the radiation of a pulsed HF laser in an
H2O-N2-O2 medium. Solid line-///0, dot-dash line-///0 at
t = 0, i.e., without taking account of formation of a focusing
lens, dashed line-6n/n. The values o f I / I 0 and Sn/n pertain to
the instant of time t = 4.5rp, where the relaxation time тр of the
absorbed vibrational energy is much shorter than the pulse dura-
tion.
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values of Z, while in the cross section Z < 1 the decrease in
density caused by heating of the medium begins to have an
effect (in Fig. 3, which corresponds to the time t = 4.5rp,
cooling of the medium occurs). For large / a further shift of
the maximum in the /(Z) distribution occurs, and a region is
formed on the axis of the beam with Sn < 0.

The possibility of controlling the dynamics of self-ac-
tion enables one to attain a decreased loss of energy to scat-
tering in a given cross section of the track of propagation and
to obtain the maximum power density.

As we have already stated, the optical manifestations of
nonequilibrium are not restricted to a change in the molecu-
lar characteristics. Vibrational-rotational nonequilibrium is
distinctly manifested in many phenomena, e.g., in the in-
frared radiation of the upper atmosphere of the Earth and
other planets. The upper atmospheres of the planets are rar-
efied gases subjected to the constant action of the corpuscu-
lar and electromagnetic radiation of the Sun. Under this in-
fluence a nonequilibrium molecular medium is formed in the
upper atmospheres, which governs the nonequilibrium char-
acter of the infrared radiation in vibrational-rotational tran-
sition. The interest in nonequilibrium infrared radiation is
primarily determined by the fact that it plays an extremely
important role in the thermal regime of the upper atmo-
spheres and can yield interesting information on the pro-
cesses in these media. In particular, it was shown in Ref. 34
that at altitudes above 115 km for Venus and 70 km for Mars
an inverted population exists in theOOl and 100 levels of CO2

molecules. Thus one can classify Venus and Mars as the first
natural laser objects in the infrared range that have become
known to us (the atmospheres of Venus and Mars predomi-
nantly consist of CO2 molecules).

3. HYDROOYNAMIC PROPERTIES OF A NONEQUILIBRIUM
GAS

The hydrodynamic behavior of a nonequilibrium gas is
characterized by two features that distinguish it from an
equilibrium gas. First, in a change in the parameters of the
medium caused by hydrodynamic movement, the flux of en-
ergy between the internal and translational degrees of free-
dom of the molecules is altered. In turn, this affects the hy-
drodynamic and thermodynamic parameters of the medium.
Second, a perturbation of the fields of the hydrodynamic and
thermodynamic quantities in a nonequilibrium medium di-
rectly affects the intensity of heat loss and energy pumping
due to an external energy source (discharge, laser radiation,
chemical reaction, etc.), which determine the nonequilibri-
um store of energy in the internal degrees of freedom and the
heating of the gas. The joint action of these two factors leads
to the appearance of new effects that will be discussed in the
last part of the review using the example of propagation of
small and finite perturbations, as well as shock waves, in a
nonequilibrium gas.

3.1. Propagation of small perturbations in a nonequilibrium
gas

As is known, when small hydrodynamic perturbations
appear in a homogeneous flow of a gas of structureless parti-
cles, two types of waves arise-acoustic, which propagate
with a velocity determined by the sum of the velocities of the
flow and of sound, and entropy waves, which move with the
velocity of the flow.35 In the entropy waves the variations of

the pressure and the velocity are zero, and only the density
and the temperature vary. From the mathematical stand-
point the appearance of acoustic and entropy waves involves
the features of the solution of the linearized hydrodynamic
equations, which lead to a finite set of eigenvalues and eigen-
functions, with which one can describe any small perturba-
tion arising in the gas. In the simplest case of one-dimension-
al motion, the linearized system of hydrodynamic equations
(equations of continuity, motion, and energy) will consist of
three first-order equations with respect to the three indepen-
dent variables (e.g.,p',p', and v', corresponding to perturba-
tions in the pressure, density, and velocity). The solution of
this system of equations defines three eigenfunctions (and
the eigenvalues corresponding to them), two of which will
describe acoustic waves propagating in opposite directions,
and one an entropy wave.

In the propagation of perturbations in a molecular gas
initially at equilibrium the picture is complicated primarily
by the breakdown of equilibrium between the internal and
translational degrees of freedom. The nonequilibrium ener-
gy distribution alters the adiabatic compressibility, which
determines the velocity of sound, which leads to anomalous
dispersion of sound waves. This effect is well known experi-
mentally. The first theory of this phenomenon was proposed
by Herzfeld and Rice,36 and was subsequently developed
successfully by Knezer (see Ref. 37). A general thermody-
namic theory of relaxation processes in a sound wave was
first created by Mandel'shtam and Leontovich.38

If the hydrodynamic perturbations are propagating in a
nonequilibrium gas new effects arise. In particular, sound
waves can be amplified. The physical mechanism that leads
to amplification consists in the following. The exchange of
energy among the internal and translational degrees of free-
dom in different periods of the sound wave occurs in differ-
ent ways. The discharge of energy into the translational de-
grees of freedom in the half-period of the sound wave
corresponding to temperature increase can exceed the re-
verse process in the half-period where the temperature is
below the equilibrium value (the fundamental factor affect-
ing the rate of energy exchange is the temperature, and as the
latter increases the discharge of energy is enhanced).

To understand the fundamental features of propagation
of sound waves, let us study the very simple case of propaga-
tion of a sound wave in a gas whose steady but nonequilibri-
um state is being maintained by pumping energy into the
vibrational degrees of freedom by a power / and a heat
withdrawal from the translational degrees of freedom of
power Q (I and Q are referred to unit mass) .39>4° The equa-
tions of continuity, motion, and energy will have the follow-
ing form:

+ div(yov) = 0,

dv

_
At P dt

(3.1)

(3.2)

(3.3)

Here Я = ур/[ (7 — 1 )p] + E, where 7 is the adiabatic in-
dex without taking account of the vibrational degrees of free-
dom, p,p, and v are the density, pressure, and velocity of the
gas, and e is the vibrational energy per unit mass. We shall
write the relaxation equation for £ in the following form:

911 Sov. Phys. Usp. 35 (11), November 1992 A. I. Osipov and A. V. Uvarov 911



de
dt 1, (3.4)

Here £0 (Т) is the equilibrium value of the vibrational energy
for the given temperature T, and r(p,T) is the vibrational
relaxation time. Together with the equation of state, the sys-
tem (3.1)-(3.4) forms a closed system of equations. Small
perturbations are described by the linearized equations that
arise upon substituting into (3.1)-(3.4) solutions in the
form

A + A' (3.5)

Here A =p, p, T, v, or £-the parameters of the unperturbed
medium, while Л ' is the perturbation, which is assumed to be
small. Substitution of (3.5) into (3.1) and (3.4) enables one
to find the dispersion relation associating the frequency a>
with the wave vector k. The concrete relationships are deter-
mined by the boundary conditions. For a running sound
wave of frequency ca, the complex value of the wave vector
Re k(ca) = i Im k(a~) determines the phase velocity and the
coefficient of absorption (or amplification) of the sound
wave. The variation of k(a>) throughout the range of fre-
quencies has been analyzed in Ref. 39. The frequency de-
pendence of Im k(o)) is determined by the concrete form of
the characteristics of the heat removal and the pumping,
especially in the region <от^1. Its distinctive feature is the
existence under certain conditions of a critical frequency
ujcr. Figure 4 shows the dispersion curve for one of the var-
iants of the calculation. In the general case the critical fre-
quency <acr is determined by the form of the thermal fluxes
that bring about heat removal and pumping. However, it will
always decrease with increasing pumping intensity and re-
laxation time, and increase with increasing efficiency of heat
removal. That is, it will be determined by the store of vibra-
tional (internal) energy and the rate of the transition into
the vibrational degrees of freedom.

At high frequencies (<yr> 1) the condition for amplifi-
cation has the form

Im* m(y - 1Г

_2 д In т \
- i a in г) т dT

(3.6)

where m is the mass of the molecule, £B is the Boltzmann
constant, and cv = де^/дТ is the heat capacity of the vibra-
tional degrees of freedom. The amplification effect increases
with increasing dependence of the relaxation time on the
temperature (dIn r/'din T<0) and with increasing vibra-
tional nonequilibrium (m(e — £0)/kBT). The last term in

«or

FIG. 4. Frequency dependence of the absorption curve.
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(3.6) corresponds to the ordinary dissipation of sound in a
gas having internal degrees of freedom. With increasing re-
laxation time the amplification coefficient declines; how-
ever, with decreasing magnitude of та larger magnitude of
pumping / is required to maintain the same degree of non-
equilibrium, since £ — £0 = IT. For CO at p = 100 Torr,
T= 500 K, and for the vibrational temperature Tv = 700
K, we obtain Im k — 10m"1. Let us point out for compari-
son that the amplification coefficient for infrared radiation
in a CO laser is of the order of 0.1 m ~ ' .

We note that the presented scheme of discussions is gen-
erally valid also in analyzing nonequilibrium for the other
degrees of freedom, and also for a more complex dependence
of the pumping intensity on the parameters of the system.

A brief history of the theoretical studies of the amplifi-
cation of sound waves is the following. The possibility of
amplifying sound waves was first studied using the example
of a gas discharge under conditions in which the temperature
of the electrons exceeds the temperature of the heavy parti-
cles.41'42 Reference 43 discussed the possibility of manifesta-
tion of this amplification mechanism for a nonequilibrium
population of the other degrees of freedom. Reference 44
studied the mechanism of amplification of sound waves in a
system of two-level and multilevel particles having a non-
equilibrium population, and performed numerical calcula-
tions for an H2-CO mixture. Reference 45 analyzed different
mechanisms of amplification of sound waves in a discharge
with account taken of the internal degrees of freedom of the
gas molecules, and found the conditions of amplification.
Srinivasan and Vincenti46 studied a nonequilibrium gas
whose state was being maintained by a chemical reaction,
radiation, or energy transfer from electronically excited im-
purities. As a result they obtained the conditions of amplifi-
cation of high-frequency perturbations. References 47-57
were devoted to various aspects of the theory of propagation
of sound in nonequilibrium media. In particular, Ref. 54
took account of the possibility of a nonequilibrium state, not
only of the vibrational, but also of the rotational degrees of
freedom. Reference 56 found the conditions of sound ampli-
fication for a gas having a nonequilibrium store of energy in
excited electronic states of molecules. As we have already
noted above, the behavior of a nonequilibrium gas over a
broad range of variation of the parameters must not be ana-
lyzed without taking account of the influence of pumping
and heat removal. This situation was pointed out in Refs. 39
and 40. A brief review of the results obtained in these studies
is given at the beginning of this section.

Up to now we have been discussing the study of the
dispersion relationships for a running sound wave. How-
ever, we should note that the entire complex of traditional
problems of acoustics arises in problems of propagation of
sound in a nonequilibrium gas, e.g., the study of standing
waves, reflection of sound, etc. These problems have been
studied very little up to today, although recently several
studies have been published,58"60 where results have been
used to solve them that were obtained in the analysis of the
propagation of radiation in an active medium. We should
note that this analogy has been noted already rather long
ago, while even in Ref. 44 the possibility of amplification of a
sound wave was discussed from the standpoint of the acous-
tic analog of a laser (we note also the recently published
paper, Ref. 61, where it was proposed to use a supersaturated
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vapor as the nonequilibrium medium for such a system).
However, the transfer of the results of optics to acoustics
demands a certain caution. And while for the steady-state
vibrations of a bounded medium58 such a transfer is appar-
ently possible, in problems of reflection of sound one must
approach this analogy with caution. For example, in the re-
flection of sound from the boundary of equilibrium and non-
equilibrium gases, oscillations of the boundary arise, which
can strongly affect the result of calculations (at least this
influence is substantial in analogous problems for an equilib-
rium medium35).

The analysis that we have performed of sound propaga-
tion did not take account of the influence of the viscosity
terms. We see from (3.6) at high frequencies the "relaxa-
tion" amplification (or absorption) does not depend on the
frequency, whereas with increasing frequency the influence
of the viscosity terms increases (upon taking account of the
viscous forces, the imaginary part of the wave vector is pro-
portional to the square of the frequency35). The limiting fre-
quency above which one must take account of viscous effects
is determined by the relationship <a ~ ( TTO) ~ 1/2, where r0 is
the time of free flight.62'63 The influence of the viscous terms
will have the strongest effect in a nonlinear regime, which
will be discussed in the following sections.

In the low-frequency region (сот<^\) the imaginary
part of the wave vector will be, just as for the viscous effects,
proportional to the square of the frequency. This enables us
to draw an analogy between these processes, since the action
of the relaxation absorption is analogous to the action of
viscous forces. This analogy has a deeper grounding. When
car < 1 one can eliminate the relaxation equation by consider-
ing the relaxation process in the zero-order approximation
in сот to have finished, while its incompleteness (in the first
order in сот) is manifested in the equation of motion in the
form of an additional term corresponding to the second vis-
cosity. We note that this approach imposes no restrictions on
the magnitude of the perturbation. The small parameter is
the quantity сот (in this case we should treat со ~' as a certain
characteristic time that appears in the problem). This proce-
dure for an equilibrium gas has been discussed in detail in
Ref. 1, while the nonequilibrium case has been presented in
Ref. 64 and will be discussed in detail in the next section.

At the same time, it will be incorrect to speak of a sec-
ond viscosity at frequencies сот £ 1, since at these character-
istic times we cannot reduce the equations of relaxation hy-
drodynamics (3.1)-(3.4) to the equations of equilibrium
hydrodynamics with an additional dissipation. An analo-
gous situation arises generally also with the shear viscosity.
One can derive the Navier-Stokes equation from the gaskin-
etic Boltzmann equation only under the condition COTO ̂  1. If
the condition COTO > 1 is satisfied in the propagation of sound,
then this phenomenon must be treated on the basis of the
Boltzmann equation.

In closing the review of the theoretical studies, we note
an important circumstance. The study of sound waves at
frequencies сот"£ 1 in a nonequilibrium gas without taking
account of the gradients of the unperturbed parameters and
the boundary conditions is qualitative in nature. Actually, in
real steady-state systems either the bounded volume of the
nonequilibrium gas (in flow-through systems the character-
istic dimension in L * S V*T, where v* is the velocity of flow,
whereby the gradients of the unperturbed parameters are

significant at this distance), or in the case of a gas at rest,
considerable temperature gradients arise from the heat re-
moval. Therefore in real systems the influence of inhomoge-
neity of the nonequilibrium gas is imposed on the effects
discussed above, and this must be taken into account in con-
crete calculations.

The experimental data on the study of amplification of
sound waves are very meager. The study of acoustic insta-
bilities in discharges began at the beginning of the sixties. In
Ref. 65, upon modulating a dc glow discharge over a broad
range of modulation frequencies, oscillations were found in
the discharge at certain frequencies corresponding to the
acoustic modes of the discharge tube. In Ref. 66 a modula-
tion was observed in the electron density and in the emission
in the process of decay of a discharge, which was explained
by the appearance of pressure waves generated by the dis-
charge, while in Ref. 67 acoustic vibrations were detected
that arose in the discharge under certain conditions. The
interaction of a sound wave with a discharge leading to mod-
ulation of the emission and of the electron density was stud-
ied in Refs. 68-72. The characteristics of sound waves creat-
ed in a discharge were studied in Refs. 73-76. The
amplification coefficient of a sound wave in a discharge tube
in inert gases was measured in Ref. 75. In the recently pub-
lished Ref. 76 the amplification coefficient was measured not
only in the inert gases (He, Ne, Ar), but also in molecular
gases (N2, air, and an N2-Ar mixture). We note the funda-
mental experimental results of these studies. The sound am-
plification coefficients measured in Refs. 75 and 76 are of
about the same order of magnitude. However, as was noted
in Ref. 76, they exceed by about tenfold the theoretical value,
while in Ref. 75, as was shown in Ref. 76, good agreement of
the theory with experiment was erroneously obtained. Ref-
erence 76 discussed a number of the factors that might de-
press the theoretical estimate and, in particular, studied the
limitations of the hydrodynamic approach under the condi-
tions being discussed. Since quantitative estimates are lack-
ing in Ref. 76, we can consider the problem of the discrepan-
cy of the theoretical and experimental data on amplification
of sound waves in a discharge to be open.

We note also a number of experiments to study the
propagation of sound waves in a reacting gas with the exo-
thermic reaction H2 + C12 -> 2HC1.77'79 These experiments
observed a difference between the absorption of sound in the
gas without reaction and in the process of reaction. The de-
creased absorption in the reacting gas could be explained by
the appearance of amplification caused by the heating of the
gas by the exothermic reaction. The mechanism of amplifi-
cation is determined by the dependence of the reaction rate
on the temperature. The agreement of theory and experi-
ment in the region of low reaction rates was rather good. At
high reaction rates the calculated coefficient exceeded the
experimental value by twofold. We must note that in inter-
preting the results of Refs. 77-79, and also in the numerical
simulation,48'79 the strong vibrational excitation of the HC1
molecules being formed was not taken into account. The
characteristic times of the vibrational relaxation processes in
these experiments coincide in order of magnitude with the
period of the sound vibrations. The experiments in Refs. 77-
79 were performed in the buffer gases Ar77'78 and SF6,

79

which were used to decrease the reaction rate. However, we
should take account of the fact that a new process arises on
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adding SF6-exchange of vibrational energy between SF6 and
the vibrationally excited HC1 molecules formed in the reac-
tion. This process has not been studied at present. Taking
account of vibrational nonequilibrium and the broader fre-
quency spectrum in the experiments enable one to study
more fully the influence of a chemical reaction and vibra-
tional nonequilibrium on the propagation of sound.

3.2. Nonlinear low-frequency perturbations and the second
viscosity coefficient

Amplification of hydrodynamic perturbations should
lead to the appearance of nonlinear effects, which in turn will
hinder further growth of the perturbations. The process of
propagation of the perturbations is described by the stan-
dard system of equations of continuity, motion, energy, and
relaxation. However, it is rather complicated to find an ana-
lytic solution of this system in a general form. Therefore a
number of methods have been developed in the literature for
describing nonlinear perturbations. These methods can be
successfully used also for a nonequilibrium gas. The further
plan of presentation is the following. First we shall discuss
the scheme of description of finite hydrodynamic perturba-
tions in which the relaxation processes are taken into ac-
count by using the second viscosity coefficient. Then we
shall analyze the effects of quadratic nonlinearity for high-
frequency perturbations.

As was already noted in Sec. 3.1, formally the second
viscosity coefficient can be calculated from the imaginary
part of the wave vector. However, the physical meaning of
the second viscosity coefficient is revealed most distinctly if
we transform from the equation of relaxation hydrodyna-
mics to the equations of ordinary equilibrium hydrodyna-
mics. In this case terms arise in the equations of motion that
correspond to the appearance of a second (bulk) viscosity.
Here the small parameter that enables one to transform from
the system of equations of relaxation hydrodynamics to the
equations of equilibrium hydrodynamics will not be the di-
mensionless magnitude of the deviation of the hydrodynam-
ic quantities from the equilibrium values, but the product of
the characteristic frequency and the relaxation time^ = сот.
In this case we can assume that in the zero-order approxima-
tion (fi = 0) the relaxation process is completed, while the
remaining local nonequilibrium in the next order of approxi-
mation at each instant of time is determined by the fields of
the hydrodynamic quantities at that very instant of time. In
this case the variables e and/? can be represented in the form1

(s is the total entropy per unit mass):

variables. Thus, for example, we have Em(p,s)^Em(p,T),
but here also the value of the relaxation time т is changed.
This feature was noted in Ref. 80 for the case of a gas initially
in equilibrium (see the note there in the section on anoma-
lous sound absorption). After determining e(l) and eliminat-
ing it from the linearized system of equations, we obtain the
equation of motion in the form being sought

(0) + grad(| div v)

with the second viscosity coefficient

(3.8)

(3.9)

Here c0 and с are the equilibrium and frozen velocities of
sound. Thus the transformation to describing nonequilibri-
um in terms of second viscosity means a contraction of the
means of description-instead of the four variables/э, s, v, and
E that satisfy the system of equations of relaxation hydrody-
namics, three remain-/?, s, and v, which are determined by
solving the equations of ordinary hydrodynamics. This sim-
plification is attained at the cost of coarsening the time scale.
Processes that occur at times of the order of the relaxation
time are not studied, while only their result is important,
leading to the expansion in (3.7).

The amplification of sound in nonequilibrium media
(negative absorption coefficient) can be interpreted as the
existence of a negative second viscosity coefficient in the vi-
brationally nonequilibrium gas.52'54 The method of obtain-
ing this coefficient from analyzing the propagation of a
sound wave was discussed in the first subsection of this sec-
tion. A rigorous derivation of the expression for the second
viscosity coefficient in a medium initially in equilibrium, not
restricted to the acoustic approximation, and based on the
general idea of contracting the method of description pre-
sented above, is given in Ref. 64. A nonequilibrium system
with pumping and heat removal is characterized, besides the
relaxation time, also by the effective time of pumping and
heat removal, the smaller of which we shall denote by rsourc<..
If l/Tsource <<y «^ 1/T, then the intensity of the sources can be
considered constant, and the scheme of calculation present-
ed above is retained. The change in the entropy 5 is deter-
mined by the equation

е = е(0)(г. /°> s, w) + ЦГ-'(г,Р, s> v)

(0) f^
\ /p,S,£|C

(3.7)

Here the values with zero indices correspond to the equilibri-
um parameters. Thus, for example, pm (p,s) corresponds to
the pressure that would exist in the system having the given
density p and entropy s if the system were in equilibrium
with respect to the internal degrees of freedom (in this case
vibrational). This approach is analogous to the Enskog-
Chapman method and was studied in Ref. 1 for a gas initially
in equilibrium. The values of the parameters with zero in-
dices can vary depending on the choice of the independent

ds
At

J_
Tv

Q
7"

(3.10)

where Tv is the vibrational temperature. In a nonequilibri-
um gas the quantity s will already be of the second order of
smallness. Therefore j in this case will not be distinguished in
any way among the other variables. Depending on the choice
of independent variables, the values of the equilibrium inter-
nal energy will differ. This, as has already been pointed out,
is characteristic also of a gas initially at equilibrium. Here
the values of/>(0) and s will be changed. One can derive the
following expression64 for the second viscosity coefficient in
the variables of the total energy per unit mass E and p:
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Неге у is the adiabatic index without taking account of the
vibrational degrees of freedom. If т ~ rsource, in the time т in
the zero-order approximation not only is the relaxation pro-
cess completed, but also the process of synchronization of
the sources with the instantaneous fields. This leads to a
change in the expression for the pressure, which acquires the
form

+^

(3.12)
JCj

Here, in addition to f = em + fiew + ..., one takes account
of the expansion E = E(0) + fiEw + ... . The correspond-
ing second viscosity coefficient has a rather unwieldy form
(seeRef. 64).

We note two substantial differences in the properties of
the second viscosity of gases initially in equilibrium and in
nonequilibrium. First, in introducing the second viscosity
coefficient for a nonequilibrium medium a further contrac-
tion of the method of description occurs. Besides the process
of relaxation of the energy, also one does not treat the pro-
cess of synchronization of the sources with the hydrodynam-
ic fields. In the former case (u>7"source < 1) this process is con-
sidered to be frozen, and in the latter case (u>rsource -̂  1) it is
regarded to be very fast and only its result is considered.
Second, the second viscosity coefficient, just like the absorp-
tion coefficient, loses its original meaning as a characteristic
of the medium in the case wrsource ^ 1 when r-»rsource, since
it begins to depend on the concrete form of the sources of
heat removal and pumping.

The second viscosity coefficient can acquire a negative
value (see (3.11)). This situation does not contradict the
second law of thermodynamics, in line with which the mate-
rial constants of the medium (coefficients of shear viscosity,
diffusion, and heat conductivity) are always greater than or
equal to zero. The appearance of a negative second viscosity
is consistent with thermodynamic concepts if the production
of entropy is not negative. In the case under discussion we
have

and we have o>0 independently of the sign of g. In (3.13) we
can separate out the term associated with |":

<7 = ffn + Af div v. (3.14)

In contrast to ordinary thermodynamics, where
a = J4div v)2, a negative value of |" does not change the sign
of a, since the additional term in the entropy production
proves to be small in comparison with the production of en-
tropy cr0 under unperturbed steady-state conditions.

We note that the description of the hydrodynamic be-
havior of the system by using the equations of motion with a
negative second viscosity coefficient is bounded in time.
With increasing amplitude of the perturbation and develop-
ment of nonlinearity, higher harmonics arise, and the condi-

tion сот < 1 , under which the second viscosity has a meaning,
ceases to be fulfilled. Apparently this situation must be taken

into account in treating the quadratic nonlinearity for per-
turbations with сот < 1 in a medium having a negative second
viscosity,52'81 since the growth of the higher harmonics can
occur far faster than the appearance of the nonlinear effects
obtained from analy/ing the Burgers equation with a nega-
tive second viscosity. An example of the acceleration of the
formation of harmonics owing to nonequilibrium will be dis-
cussed in the next subsection for perturbations with the
characteristic frequency &>> 1/r.

3.3. Nonlinear hydrodynamic waves in a nonequilibrium gas

Nonlinear equations of motion (Euler's equations)
were first integrated without the assumption of smallness of
the nonlinearity by Riemann (see Ref. 35 ). Riemann started
with the equations of hydrodynamics in the one-dimensional
case supplemented with the equation of state p = p(p). The
Riemann method consists in the idea that the nonlinear sys-
tem of equations is reduced to a linear one by substitution of
variables. This can be done in the one-dimensional case.
Analysis of the solution showed that the regions of compres-
sion move in the course of propagation at velocities greater
than the rarefaction regions. This leads to deformation of the
profile of the wave as it propagates. The front of the wave
becomes steeper until the condensation wave converts into a
shock wave. The further treatment ceases to be valid, since it
takes no account of either the viscosity or the heat conduc-
tivity, the roles of which increase with increasing gradients.

In the Riemann solution, as we have already said, the
nonlinearity is not considered to be small. However, from
the physical standpoint the formulation of the problem by
Riemann is restricted to the region of applicability of the
equation of state/? =p(p). The adiabatic equation of state
describes isentropic processes, while the real change in en-
tropy of acoustic waves is of the third order of smallness (in
the Mach number Mas = v/cs ) . Thus the Riemann solution
correctly describes the behavior of an intense sound wave in
the second approximation.

One can take simultaneous account of the nonlinear
and dissipative effects by using the Burgers equation.79 It is
not exact, since it cannot be derived from the equations of
hydrodynamics of a viscous liquid without additional sim-
plifications. At the same time, it describes rather well non-
linear waves in media with dissipation, since it takes account
of all the fundamental terms of the second order of small-

(3.13) ness.
If we denote by primes the deviations of the hydrody-

namic quantities from the steady-state values, then the
Burgers equation for/»' has the form

,d
дх

s- о t\= 0, (3.15)

where в = t — (x/cs), the dissipative coefficient is
8= [(4i7/3) + (y— l ) 3 y ^ 1 ] X ( 2 c J ) ^ 1 , and the nonlin-
ear parameter is b = (y + l)/2Cj. The equation for v also
has exactly the same form, since for simple waves p = p ( v ) ,
p=p(v).

The Burgers equation for a small nonlinearity goes over
into the known linear equation for dissipative media, while
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in the absence of dissipation it goes over into the Riemann
equation for simple waves.82

The qualitative picture of the evolution of a sound wave
of finite amplitude described by the Burgers equation looks
as follows. In the first stage in the process of propagation of
the wave, a distortion of the form of the profile occurs and
culminates in formation of a sawtooth signal. In the second
stage the form of the front is stabilized. In the competitive
conflict of the nonlinear and dissipative effects, "equilibri-
um" arises. However, the oscillating value of the signal am-
plitude declines, since the action of the dissipative effects is
not compensated in any way. In the third stage the ampli-
tude of the wave no longer depends on is value at the input.
The wave again becomes harmonic and decays according to
the laws of linear acoustics. A solution of the Burgers equa-
tion describing the evolution of an initially harmonic pertur-
bation was obtained by Khokhlov (see Ref. 82).

A new factor appears in the propagation of nonlinear
hydrodynamic waves in nonequilibrium gases having an ex-
cess of vibrational energy-energy exchange between the vi-
brational degrees of freedom and the hydrodynamic motion.
The additional energy "feeding" the wave process can lead
to two new effects. First, the process of inversion of the wave
is accelerated. The amplification of the wave in the vibra-
tionally nonequilibrium gas enhances the role of the nonlin-
ear factor, and the nonlinear effects are manifested earlier.
Second, energy pumping begins to compete with the dissipa-
tive processes. This can have the result that, after reversal of
the wave, a steady-state regime is formed, in which the dissi-
pative losses will be fully compensated by the influx of ener-
gy from the internal degrees of freedom.

A quantitative description of the evolution of nonlinear
hydrodynamic perturbations in a vibrationally nonequilibri-
um gas was given in Refs. 62 and 63. The starting point is the
generalized Burgers equation (for <ur> 1)

— « oj «-

dx
(3.16)

This differs from (3.15) in the term 0p', which takes ac-
count of the amplification of the wave by energy exchange
between the internal degrees of freedom and the hydrody-
namic modes. In (3.16) we have

(У-ВР
2(ур/р)1/2т

(ЗЛ7)

Just as in (3.6), cv denotes the heat capacity of the vibra-
tional degrees of freedom (cv =де0/дТ), т = т(р^,е),
Q = Q(p,s,e).

The generalized Burgers equation (3.16) is obtained
from the equations of continuity and motion, supplemented
with the relaxation and entropy equations (3.4) and (3.10)
in the approximation U>T> 1, apart from terms of the second
order of smallness inclusively in the small hydrodynamic
perturbations. In the frequency range <ur > 1, where the gen-
eralized Burgers equation (3.16) is valid, the dissipative
(viscosity), nonlinear, and relaxation effects are manifested
in different ways. As was already noted in Sec. 3.1, the ratio
of the viscosity term 8 ( д 2р'/дв 2 ) to the relaxation term is of
the order of а)2тт0. Thus, at frequencies

("o)
1/2 (3.18)

the relaxation effects predominate over the viscosity effects.
Therefore in (3.16) we can neglect the third term, which
describes the Stokes (viscous) absorption. The quasilinear
equation obtained here is relatively simple to analyze. If a
perturbation is propagating in the medium whose profile for
x = 0 has the form

(3.19)

(3.20)

then we have62

p' = exp(0x)f(z), в-:

The solution (3.20) describes the amplification (or damp-
ing) of the wave and the distortion of its profile. We can most
easily convince ourselves of the latter if we treat the case
/3x <^ 1. In this approximation we have

p'(x,t)=f(e-x(C-
l-bp')).

Then, with respect to the stationary medium, a fixed value of
p' will propagate with the velocity cf = (c~' — bp') ~',
which is greater for greater p'. The distance at which reversal
of the wave occurs and a break is formed, as determined by
the condition dp'/dx = 0, is

/p = ln [1 +P(bf)~l]p~l. (3.21)

Equation (3.21) implies that a break is formed only when
P /bf > — 1. For positive/5, corresponding to an excess of
vibrational energy in the nonequilibrium gas, this condition
is always satisfied. When Д < 0, a break is formed only when-
ever the profile has a sufficiently great steepness/' < — /9 /b.

The distortion of the profile of the wave in the process of
propagation alters the harmonic composition of the pertur-
bation. If/(z) =PQ sin(z), then the solution (3.20) acquires
the form

p' =
2/„(иД)!

2ycsp
(3.22)

We see from (3.22) that, in addition to a uniform in-
crease in the amplitudes of all the harmonics proportional to
exp ( PX ), an accelerated pumping of energy occurs from the
first harmonic into the higher harmonics, since
[exp(/?x) — l]/b>x, and a break is formed more rapidly.
With increasing amplitude of the higher harmonics, the
Stokes absorption begins to play a substantial role. There-
fore in the region of wave reversal one must take account of
the omitted viscosity term. Equation (3.16) can be solved in
general form by using the Hopf-Cole substitution
p' = 28(d In <p /дв)/Ь. As a result we obtain

(3.23)

In the steady-state case we have ф(в,х), and Eq. (3.23) can
be easily integrated:
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1/2

(3.24)

where у = In <p, while the value of С is determined by the
initial and boundary conditions.

The pressure profile in a steady-state regime is deter-
mined by (3.24). At smally, which corresponds to small в
(Fig. 5), we have

p1 = 1-|̂  = -/9(1 - 2C)&b~l. (3.25)

In the neighborhood ofy0 = In (2C)/2, corresponding to the
extremum ofdy/дв, we find

:[c-i-M J/2,

(3.26)

wherej>(0*) =У0-Finally, v/heny~y2, where9-T/2 (Jis
the period of the perturbation), we have

'T \1 -в I. (3.27)

The solutions (3.25)-(3.27) show that an initially sin-
usoidal signal propagating in a vibrationally excited gas ac-
quires in the course of time a steady-state sawtooth form,
and subsequently evolves without change of form. We em-
phasize that the arguments that we have presented do not
take account of the change in the temperature regime of the
medium and describe the formation of discontinuities mov-
ing with a Mach number of the order of unity.

Finally, at very high frequencies, at which u>Vr° > 1, the
relaxation processes prove to be frozen, and can be neglected
as compared with the Stokes absorption. In this case the
process of propagation is described with good accuracy by
the Burgers equation (3.15).

The conversion of a weak discontinuity into a shock
wave has been studied both for a gas initially at equilibri-
um83'84 and for a nonequilibrium gas, 85~87 including account
taken of continuous pumping.87 The approach of these stud-
ies is based on applying the conditions of compatibility for a
weak discontinuity. The advantage of this method consists
in the fact that in enables one to describe the behavior of the
leading front of the perturbation also for a non-steady state
of the gas ahead of the wave. However, one can find the time
for formation of a shock wave only in the case in which the
discontinuity is formed at the leading front of the perturba-
tion. If the gas ahead of the front is homogeneous and in a

FIG. 5. Pressure profile at the initial instant of time (1) and in a steady-
state regime (2).

steady state, then the results obtained by the method pre-
sented in this subsection completely coincide with Refs. 85
and 86, but the treatment performed in the steady-state case
has a number of advantages, since it enables one to obtain
more information.

An equation of the type of (3.16) is known in the theory
of plasmas88 and of chemically reacting suspensions in gas-
es.89 In Ref. 62 Eq. (3.16) was derived for a vibrationally
nonequilibrium gas and analyzed in detail. A steady-state
solution of (3.24) was found also upon studying the Burgers
equation in a medium having parameters varying according
to a certain law, and was analyzed in Ref. 90, which was
published simultaneously with Ref. 62.

An equation similar to (3.16) was derived in Ref. 91 for
a medium having a source of the release, while in Ref. 92 the
results of Ref. 62 were generalized to the case of cylindrical
and spherical waves. We note Ref. 93, which studied analyti-
cally the propagation of nonlinear perturbations in a vibra-
tionally nonequilibrium gas under the condition л>т> 1 and
other simplifying assumptions for the case in which the pa-
rameters of the medium ahead of the wave depend on the
time, as well as Ref. 94, which studied the propagation of a
sound wave in a vibrationally nonequilibrium gas in a non-
linear regime in the case in which the relaxation time strong-
ly depends on the temperature.

To calculate the formation of a shock wave in a flow of
gas mixture with variable parameters, one must consider a
more complicated system of kinetic equations instead of
(3.4). Such calculations were performed in Ref. 95 for a
CO2:N2:H2O mixture being used in hydrodynamic CO2 la-
sers, where the propagation was studied of sound and en-
tropy waves, as well as the influence of various parameters of
the system on shock-wave formation.

There are no direct experiments on the propagation of
nonlinear hydrodynamic perturbations in a nonequilibrium
gas at present. We note the experimental studies, Refs. 96-
98, where the interaction was studied of sound waves with a
discharge. The linear effects that arise in this interaction
were studied in Refs. 68-72 (see Sec. 3.1). With increasing
wave amplitude new processes arise-variation of the dis-
charge current, and appearance of combination frequen-
cies,96'98 which indicate the nonlinear character of the inter-
action of the sound wave with the discharge. No theoretical
analysis of these effects has been performed.

3.4. Features of the propagation of shock waves in
nonequilibrium gases

The propagation of a shock wave is accompanied by
heating of the gas. In diatomic and polyatomic gases the
heating process is two-step in type. At first, behind the front
of the shock wave, in the viscous density jump, one observes
an increased temperature of the translational degrees of free-
dom. The thickness of the viscous condensation jump for
sufficiently strong shock waves is of the order of the mean
free path. Then, in the extended relaxation zone an excita-
tion of the internal degrees of freedom occurs (the rotational
degrees of freedom have certain specific features: the rota-
tional relaxation time for most molecules does not strongly
differ from the time of free flight; therefore usually the trans-
lational and rotational degrees of freedom are considered
jointly in studying kinetic processes in a shock wave).

In the excitation of the internal degrees of freedom the
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translational temperature falls, while the temperature of the
internal degrees of freedom rises (Fig. 6). It is convenient to
analyze the distribution of the parameters behind the front
of the shock wave on ihepV diagram ( V = \/p). The ther-
modynamic parameters on both sides of the shock discontin-
uity are connected by the laws of conservation of mass flow,
momentum, and energy. For a one-dimensional flow in a
system of coordinates associated with the front of the shock
wave, we can write the conservation laws in the form

pv =plvl, p +pv2 =

(3.28)
Я + (f V2) = Я1 + (vf/2).

Here the subscript 1 denotes the parameters of the gas in the
region ahead of the shock wave. The equations of (3.28)
correspond to the case in which the partial derivatives with
respect to time in the equations of continuity, motion, and
energy can be neglected. This is possible if the length £,„ of
the region being studied following the wave is substantially
shorter than the characteristic length at which the param-
eters of the gas vary owing to non-steady-state processes.
Here the parameters p, v,p,H,plt i>j, plt and H, can depend
on the time, but the relationships of (3.28) remain valid. In
the case being studied, L^ corresponds to the relaxation
zone.

We can establish a connection between the values ofp,
V, and/?,, Vl from Eq. (3.28):

я, - я + 4( + F)(p - Pl) = 0. (3.29)

Here we have Hr =#(/>1,F1), H = H(p,V). By analogy
with the Poisson adiabatic, Eq. (3.29) is called the Hugoniot
shock adiabatic. For an ideal gas we have H = ypV/(y — I),
and (3.29) acquires the form

(3.30)

If we fix the initial state of the gas plt Vlt then the shock
adiabatic (3.30) defines the set of possible final states of the
gas (Fig. 7). The concrete choice ofp and V depends on the
velocity У! of the shock wave. Graphically this velocity is
determined by the slope of the straight line AB drawn from

FIG. 6. Temperature distribution in a shock wave. Region /-unperturbed
gas, region Л-relaxation zone, wave moving from right to left.

FIG. 7. Hugoniot adiabatic. Curves / and // differ in the value of

the initial to the final state (the ratio (p — />,)/( Vv — V)
equals the slope of the line). Thus, by fixing the initial condi-
tions Pi and K, and the velocity of the shock wave (the slope
of the line AB), one can find the final statep2, V2. The posi-
tion of the Hugoniot adiabatic in the/> Fplane depends on the
magnitude of y. The value of у will differ at the beginning
and at the end of the relaxation zone. At the beginning of the
relaxation zone all the degrees of freedom except the transla-
tional and rotational ones can be considered to be frozen,
since the relaxation time r> TO. Therefore at the beginning of
the relaxation zone we have, for example, у = 7/5 for di-
atomic molecules. At the end of the relaxation zone a state is
reached of complete thermodynamic equilibrium, and, for
example, for diatomic molecules at high enough tempera-
tures we have y2 = 9/7 (dissociation and ionization are not
taken into account). Thus, in general, two Hugoniot adiaba-
tics can start at the pointy, Vv One of them (7) corresponds
to excitation of the rapidly relaxing degrees of freedom
(translational and rotational) and describes the state of the
gas at the beginning of the relaxation zone. The second one
(//) determines the parameters of the gas at the end of the
relaxation zone, i.e., in the region where complete statistical
equilibrium is reached. The adiabatic /steeper than //, since
at the same density the pressure under conditions of freezing
of the vibrational degrees of freedom will lie higher than in a
state of complete equilibrium, inasmuch as the energy of
compression is distributed over a smaller number of degrees
of freedom.

Thus the relaxation processes in the shock wave occur
as follows in agreement with the shock adiabatic. Initially
the system transforms jumpwise from the stated to the state
В (this process is localized at the front of the shock wave).
Then the system slowly evolves from the state В to the state
С along the segment BC.

Now let us discuss how shock waves propagate in a non-
equilibrium gas (for the sake of definiteness, in a gas of vi-
brationally excited molecules). Let a shock wave pass
through the nonequilibrium gas, whose velocity is such that
the translational temperature directly behind the front of the
shock wave will be smaller than the vibrational temperature
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ahead of the front. As before, in the relaxation zone pro-
cesses of vibrational-translational energy exchange will oc-
cur, but they now lead to a different result. Under the condi-
tions being discussed the process runs in the opposite
direction: the vibrational degrees of freedom are cooled,
while the translational ones are heated (Fig. 8). At first
glance this seems to be a curious, but an inessential differ-
ence. Actually, the inverted course of the temperature leads
to a fundamental difference.

In problems corresponding to Fig. 7, the distribution of
the parameter behind the shock wave are fully determined
by the velocity of the shock wave or the Mach number Ma.
For example, for an ideal gas the temperatures ahead of the
front (Г,) and behind the front (Г2) are associated by the
relationship35

Т2 ^ [2уМа2 - (у -
Г1 (У- l)2Ma2

- l)Ma2 + 2]
(3.31)

where, as usual, the Mach number Ma equals the ratio of the
velocity of the shock wave vl to the local velocity of sound in
the unperturbed gas.

In a nonequilibrium gas the situation fundamentally
changes. Now the temperature T2 will depend not only and
not so much on the number Ma as on the initial conditions.
Thus a shock wave entering into a nonequilibrium gas will
(under certain conditions) change in velocity until full
agreement of all parameters sets in. As will be shown below,
this is possible only for velocities that exceed or equal a cer-
tain minimum value determined by the initial distribution of
temperatures and type of gas.

Actually the conservation equations in the form (3.28)
remain valid also in the case of a gas initially not in equilibri-
um. The sole difference consists in the fact that, in the specif-
ic enthalpy in the region ahead of the shock wave (for a gas
of diatomic molecules)

H (3.32)

the mean vibrational energy per unit mass £, will no longer
equal the equilibrium value determined by the temperature
TV In the simplest case the nonequilibrium store of vibra-
tional energy ahead of the front of the shock waves can be
characterized by the temperature ГУ1. The connection be-
tween £; and !TVi is determined by the relationship

FIG. 8. Temperature distribution in a shock wave propagating in a non-
equilibrium gas. Region /-unperturbed nonequilibrium gas, region II-
relaxation zone, wave moving from right to left.

(3.33)

where m is the mass of the molecule, and fuio is the magnitude
of a vibrational quantum. When ГУ1 = Г, the problem re-
duces to the previous one, i.e., to the problem of propagation
of shock waves in a gas initially in equilibrium.

Solving the system (3.28) with account taken of (3.32)
leads to the relationship99-100

7Ma2 - 1 7(Ma2 - 1)
- -r- + -— IT—

9,6Ma2m(£l - e2) "

(3.34)

Here/?2 and £2 correspond to the end of the relaxation zone,
while the Mach number is calculated for the velocity of
sound with frozen vibrations.

We see from Eq. (3.34) that steady-state shock waves
exist when

Ma2 - \\ _ 9,6m(el - e2)
Ma (3.35)

Under ordinary conditions, i.e., in the propagation of a
shock wave in an equilibrium gas, we have £2>el. Therefore
the inequality (3.3) is fulfilled for any value of Ma. Conver-
sely, for shock waves in a vibrationally excited gas under
conditions where e2 <£, there is a minimum Mach number
whose value is determined by the initial conditions and the
properties of the gas. For example, for HF under the initial
conditions Г, = 300 K, TV1 = 2000 K, and/?! = 5 Torr, the
minimum number Ma= 1.8. At the same initial transla-
tional temperature pressure at TV, = 3000 K, the minimum
number Ma is now equal to 2.6. The appearance of a mini-
mum Mach number can be interpreted on the basis of deton-
ation concepts.

Let us study the process of variation of the parameters
of the gas in a shock wave propagating in a gas initially in
nonequilibrium in tbepV diagram (Fig. 9). In the diagram
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curve / corresponds to the Hugoniot adiabatic for the gas
with frozen vibrational degrees of freedom. The pointy, F,
corresponds to the initial conditions. The adiabatic / de-
scribes the state of the gas directly behind the front of the
shock wave at the beginning of the relaxation zone. One can
construct a shock adiabatic for the equilibrium state of the
gas at the end of the relaxation zone. As before, it is de-
scribed by Eq. (3.29), with the difference that Hl is deter-
mined by Eq. (3.32) with the nonequilibrium value of £lt

and H2 with the equilibrium value of ег. The latter situation
is fundamental, since H2 does not go over into Hl when
p2=P\, V*=V\- Therefore the equilibrium adiabatic
(curve /7) will lie higher than the frozen adiabatic. Then the
intersections of the adiabatics corresponds to the values of
p* and V2 at which the equilibrium value of e2 equals e,. The
transition from the state pv K, to the state p2, V2 occurs in
the same way as in the equilibrium case. Initially in the shock
front the gas transforms jumpwise from the state 1 to the
state 2' on the frozen adiabatic. Then in the relaxation zone
the gas is additionally heated and its pressure increases. A
different situation arises if the final state 5 lies below the
point of intersection of the adiabatics. As in the previous
case, the gas transforms jumpwise to the state 3' on the fro-
zen adiabatic. Then in the relaxation zone the gas reaches the
state 3, whereby the variation of the parameters on the path
3-3' will be opposite to that which is observed in the transi-
tion 2-2'. Namely, in the relaxation zone on the path 3-3'
the translational temperature will increase, while the pres-
sure and the density fall. The minimum value of the Mach
number at which steady-state propagation of shock waves is
possible is determined by the slope of the tangent to the equi-
librium adiabatic drawn from the point /.

Also another form of solution is possible, which arises
in the case of intersection of the straight lines proceeding
from the point / with the adiabatic II when F> Vr These
regimes correspond to combustion waves35'101 propagating
with a low velocity and having a broad relaxation zone. In a
number of cases for a chemically reacting gas such waves are
observed experimentally.101

The propagation of shock waves in nonequilibrium gas-
es is a new field of physical gasdynamics, which at present is
developing intensively. Let us list briefly the fundamental
studies pertaining to this field.

The similarity between the behavior of nonequilibrium,
chemically reacting gases, and of vibrationally excited gases
has been noted in Ref. 102, which treated the possibility of
appearance of detonation and combustion waves in a vibra-
tionally excited medium. Calculation of the steady-state re-
gimes of propagation of shock waves in a gas with vibration-
al and dissociative nonequilibrium was made in Refs. 99,
100, and 103 (we note also Ref. 104, which treated combus-
tion waves). The structure of the relaxation zone of a deto-
nation wave was studied in Ref. 105, and numerical calcula-
tions of the structure of the relaxation zone of a steady-state
wave for a strongly nonequilibrium gas were conducted in
Ref. 106. The stability of detonation waves was discussed in
Ref. 107 on the basis of the criterion of Shchelkin.101 How-
ever, one should note that the Mach numbers corresponding
to a detonation regime for a gas in vibrational nonequilibri-
um, in contrast to the Mach numbers of a classical detona-
tion, are not very large, while the dependence of the time of
vibrational relaxation on the temperature is weaker than the

Arrhenius relation (see Sec. 3.1). This situation does not
allow one to study a two-front model for describing a detona-
tion in a vibrationally excited gas. Moreover, the Shchelkin
criterion, which determines the stability of a detonation
wave, is approximate in character and one needs a rigorous
solution of the problem of stability, namely a treatment of
the stability of the wave with respect to small perturbations
for the concrete kinetic scheme of the processes in the relaxa-
tion zone. For a chemically reacting gas in the case of a sim-
ple irreversible reaction with a rate constant determined by
the Arrhenius relationship, such a problem has been treated
(see, e.g., Ref. 108). For a vibrationally nonequilibrium gas
no solution of this problem exists at present.

A numerical calculation of the formation of a shock
wave and a non-steady-state regime of its propagation in a
vibrationally nonequilibrium gas was performed in Ref.
109-112. The problem of non-steady-state propagation is
simulated in an experiment in which the shock wave enters a
restricted region occupied by a nonequilibrium gas. The fun-
damental question here consists in how rapidly this wave is
accelerated (decelerated) and approaches a steady state of
propagation, and also what is the structure of the region
behind the front of the wave.

The degree of nonequilibrium for the same degree of
pumping will be greater, the greater is the relaxation time т,
but here the time of attaining a steady-state regime will in-
crease with increasing т, and realistic dimensions of the ex-
perimental apparatus can prove insufficient for formation of
steady-state regimes. A decrease in the relaxation time be-
hind the wave front is possible only as a result of an increase
in the degree of nonequilibrium produced by an increase in
the intensity of pumping. In such a case, the wave velocity is
higher and the time of attaining a steady state regime is low-
er. However, one can obtain high degrees of nonequilibrium
only in a pulsed regime (or in the flow-through case—over a
limited length) owing to the finite rate of heat removal. But,
in this case the increase in the velocity of the wave is still
restricted, since in the process of propagation of the shock
wave the degree of nonequilibrium of the unperturbed gas
decreases.

Numerical calculations confirm these qualitative con-
clusions. For example, for nitrogen with fixed translational
and vibrational temperatures of 300 and 200 K, respectively,
the time to reach a steady-state regime amounted to 7s,100

which corresponds to a distance of several kilometers. At the
same time, for a greater degree of nonequilibrium (for a tem-
perature of the first level of 400 K), owing to a decrease in
the relaxation time because of anharmonic effects, the re-
quired time now amounts to 20[is. However, maintenance of
such a nonequilibrium for times greater than the relaxation
time seems problematical.

To decrease the relaxation time, Ref. 113 proposed us-
ing a mixture of nitrogen and water vapor. Of course, this
diminishes the actually attainable degree of nonequilibrium
under steady-state conditions. Reference 113 also studied
the propagation of a shock wave through a non-steady-state
relaxing gas. As we should expect, the amplification of weak
shock waves upon pulsed vibrational pumping is substantial-
ly smaller than for the steady-state case. In other words, the
wave is not able to approach in velocity the steady-state Jou-
guet regime corresponding to the initial nonequilibrium.
The factors that we have discussed restrict the variation of
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velocity of the wave owing to nonequilibrium effects, al-
though these eifects are large enough that one can establish
them experimentally.

In recent years many studies have been published on
experimental investigation of shock waves in nonequilibri-
um gases. We note first of all the general features of these
studies. As a rule, one studies the propagation of a shock
wave in a discharge plasma of different types, and one must
take account not only of the relaxation of the energy of the
internal degrees of freedom, but also of the change of state,
both owing to relaxation effects and to the reaction of the
plasma to the change of state of the medium. Another factor
that influences the velocity of a shock wave is an inhomogen-
eous distribution of the temperature that always exists be-
tween the discharge and the equilibrium gas. This distribu-
tion leads to acceleration of the wave upon entering the
discharge zone, and one requires sufficiently precise experi-
ments to distinguish the "nonthermal" effects.

In Refs. 113-116 a great increase was observed experi-
mentally in the velocity of shock waves in the plasma of a
glow discharge and a considerable decrease in their ampli-
tude. The observations were performed with pressure trans-
ducers and probes. In Ref. 117 in studying the propagation
of a pulsed gasdynamic perturbation in a decaying plasma of
an electron-free UHF discharge in air, a substantial decrease
was observed in the amplitude of the pulse and also an in-
crease in its width. The authors attributed this to the possible
influence of relaxation phenomena. The results of other ex-
periments did not confirm the strong change in ampli-
tude and velocity of the wave on entering the discharge re-
gion. In Refs. 118 and 122 good agreement was obtained for
a glow-discharge plasma in air with calculation of the accel-
eration of the wave owing to the temperature gradient. In
Refs. 119 and 121 in studying the propagation of shock
waves in a HF discharge in CO2, a 10 to 20% increase was
found in the velocity of the wave as compared with the pre-
dicted values obtained by taking account of the acceleration
of the wave due to the temperature gradient. References
119-121 are of interest in that an interferometric method
was used to measure the waves, which enabled obtaining
more complete information than with pressure transducers.
Reference 121 also measured the intensity of the CO2 radi-
ation at the wavelength of 2.7 jj,m, which proved higher than
the calculated value. The authors explained this effect by the
excitation of the vibrational degrees of freedom behind the
front of the wave. We note also Refs. 123 and 124, where the
interaction of a shock wave with the decaying plasma of a
laser spark in air was studied. In Ref. 123 in recording a wave
by a shadow method, disappearance of the wave in the plas-
ma region was found, with subsequent restoration of the
front on exit from the plasma. It was found in Ref. 124 in
recording by an interferometric method that on entering a
plasma the front of the wave was transformed into vortex
structures. These effects, which were associated with the
manifestation of the inhomogeneity of the problem, at pres-
ent have practically not been studied.

The study of the laws of propagation of shock waves and
other hydrodynamic perturbations in nonequilibrium gases
essentially constitute a new field in hydrodynamics. From
the physical standpoint we can distinguish here two sets of
problems whose study can lead to new effects. First is the
problem of stability of motion of a nonequilibrium gas. The

presence or nonequilibrium can damp or amplify small per-
turbations that arise in gasdynamic flows. Second is the
problem of controlling the intensity of shock waves. By
changing the properties of the medium through which the
shock wave is propagating, one can attenuate or amplify the
wave.

All these problems now are increasingly attracting the
attention of physicists.

CONCLUSION

As we have already pointed out, the field of interests of
nonequilibrium molecular physics is not restricted to study-
ing the optical and hydrodynamic properties of nonequilib-
rium gases. The existence of an excess store of internal ener-
gy alters practically all the properties of the medium, and
this affects a very large number of the micro- and macropro-
cesses in the most varied fields of physics, including acous-
tics, physical gasdynamics, optics, and physicochemical ki-
netics. In this regard nonequilibrium molecular physics
faces the problem of analyzing anew all the processes in non-
equilibrium media that depend on the store of internal ener-
gy and the rate of energy exchange between the translational
and internal degrees of freedom of the molecules, and dis-
covering the new effects that arise here. The investigation of
this set of problems is just beginning. Of course, now it is
difficult to estimate in full scope the results that can be ob-
tained in nonequilibrium molecular physics. However, the
prospects that open up here are very alluring, since already
the first advances have led to a laser revolution.
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