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This paper presents a review of investigations of the mixed state in artificial microstructures based
on type II superconductors. It discusses bridge contacts of dimensions which are large compared
to the coherence length, as well as planar multielement structures and layered superconducting
structures. The present state of this field and the short-range prospects for its development are
analyzed.

INTRODUCTION

The investigation of the mixed state in artificially pre-
pared superconducting microstructures is a problem of pres-
ent importance. This field of research unites two apparently
distant areas of superconductivity: microelectronics and
high-current superconductivity. There are three aspects that
contribute to the great interest in this field. First, by creating
superconducting microstructures one can tailor the proper-
ties of a material in a manner that would not be possible by
other means. Second, these structures provide additional
possibilities both for determining the interaction of an indi-
vidual vortex with an inhomogeneity (elementary pinning),
and for finding the bulk pinning force (the procedure for
summing these elementary forces). This direction of re-
search is important because the maximum critical current Ic

that can flow in type II superconductors without energy dis-
sipation is governed by the ability of the defects to prevent
the motion of (pin) the vortex lattice. The theoretical calcu-
lation of the bulk pinning force is in general a complicated
problem. In the absence of a unique general theory there
exists a host of theoretical approaches for solving specific
problems. In this sense, the study of the mixed state in super-
conducting microbridges is agreeably different: these inves-
tigations can be carried out by a single approach based on the
Ginsburg-Landau theory.' Third, the variety of vortex mi-
crobridges is interesting from the point of view of microelec-
tronics, since the ordered coherent motion of the vortices
generates electromagnetic radiation. The importance of this
area of research has not been diminished since the discovery
of the oxide-based high-temperature (high-T1,.) supercon-
ductors, which, as has been shown, are type II superconduc-
tors with a short coherence length £(0) ~ 10 A (Ref. 2).

In order of their significance, one can distinguish three
kinds of artificial superconducting microstructures: bridge
contacts, planar multielement structures, and layered super-
conducting structures. This review presents an analysis of
the properties of these devices. It will touch very little on the
properties of Josephson junctions. In the past decade this
topic has received a great deal of attention, and some excel-
lent monographs have been published, e.g., Refs. 3 and 4.

1. VORTEX MICROBRIDGES

1.1. A brief classification of microbridges

The processes occurring in bridge junctions are deter-
mined largely by the following parameters: the characteris-
tic dimensions of the bridge, and, depending on the tempera-
ture, the coherence length £( T) and the mean free path / of
the electrons in the bridge. Among the characteristic dimen-
sions is the so-called effective length of the microbridge. It is
necessary to introduce this quantity because for a finite vol-
tage across the bridge the modulus of the order parameters,
which characterizes the superconducting state, changes, not
only in the microbridge itself, but also in a certain region
around it. This parameter has the meaning of the distance
along the microbridge in which this process is localized. The
most interesting case from the applied point of view and for
simplicity of analysis is that where the characteristic dimen-
sions of the bridge are small compared to J"( T) and to Л (T),
the penetration of the field in the superconductor, but large
compared to min [/, (£0/)°5 ], where £0 is the range of action
of the kernel in the equation of self-consistency for determin-
ing the energy gap in the spectrum of excitations in a clean
superconductor, and moreover, when the temperature is
near the critical temperature of the "banks" of the bridge.
This circumstance allows us to use in the analysis of the
processes in the bridges the Ginsburg-Landau equations, to
which the more complicated equations of the microscopic
theory of superconductivity reduce in this case. The equa-
tions for the order parameter ф at distances from the contact
much less than £( T) and for a superconducting current den-
sity^ are5

V2y = 0, ( l . la)
j, / 1 Л |_ ч

/' ~ Im(v VV)> * '

where V2 is the Laplacian. As a result, the behavior of the
bridge contacts is described by at most two equations for the
current / and the voltage V (Refs. 4, 5)

(1.2л)

V = (П/le) d f / d t ,
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where R is the resistance of the contact in the normal state,
/c is the critical current of the contact, t is the time, <p is the
phase difference of the order parameter, and ft is Planck's
constant. Equation (1.2a) represents the current flowing
through the contact as a sum of the superconducting compo-
nent, Ic sin <p and the ordinary normal component V/R.
Despite its simplicity, the resistive model gives a good quali-
tative, and in some cases quantitative, description of the ef-
fects that are of the greatest interest from the point of view of
applications observed in various Josephson structures. This
is why this model is so widely used. For example, the dc
Josephson effect arises when the current through the junc-
tion is less than the critical current, /</,.. Then the phase
difference is such that Is = I and there is no voltage across
the junction. If a weak link is created not by a superconduc-
tor (but by a dielectron, for example), this result is not
a priori obvious. A magnetic field penetrating into the Jo-
sephson junction of a superconducting loop containing such
a junction attenuates the superconducting current, and it is
thereby possible to use this effect for making sensitive de-
vices. If FT^O, then tp increases and the superconducting
current /s varies in time (oscillates with the frequency
2e V/fi even if F4s a constant. This is the so-called ac Joseph-
son effect. The coefficient of proportionality between the ap-
plied voltage and the oscillation frequency is 483.6
mHz/^V. One of the manifestations of the ac Josephson ef-
fect is the appearance of current steps on the current-voltage
(I-V) characteristics of the contacts, when they are placed
in an external magnetic field. The positions of these steps are
given by

microscopic theory was used to calculate the I-V character-
istics of a short microbridge. It was shown that for high vol-
tages

(1.3)

where и is the number of the current step and a> is the fre-
quency of the radiation. This effect can easily be explained
by the resistive model if only a single term 1Ш sin at is re-
tained on the right-hand side of Eq. (1.2a), where /„, is the
amplitude of the ac current induced in the contact by the
external radiation.

In addition, the actual properties of Josephson junc-
tions with direct conductivity, which includes short bridge
contacts, are much more complicated than the resistive
model implies. This comment applies particularly to tran-
sient processes. A number of effects are observed on these
contacts that cannot be explained by that model. Among the
most interesting effects of this sort are a frequency depend-
ence of the amplitude of the superconducting current, the
induction of supeconductivity by external electromagnetic
radiation, the existence of excess current, and a series of fea-
tures on the I-V characteristic, located according to the rela-
tion Vn = 2Д/ие, where Д is the gap in the spectrum of ele-
mentary excitations and и is an integer. A theoretical
analysis of these effects is difficult because the simplified
non-steady-state Ginsburg-Landau equations, on which the
resistive model is based, are valid only for gapless supercon-
ductors. In spite of these difficulties, a definite degree of suc-
cess has been obtained in understanding the processes in
these contacts. For example, Aslamazov and Larkin6 have
shown that a high-frequency electromagnetic field can cause
effective cooling of the electrons at the contact, which also
leads to an increase in the critical current of the contacts in a
microwave field. In the work reported in Refs. 7 and 8 a

whereas in the resistive model this characteristic quickly be-
comes ohmic. An interesting mechanism for the appearance
of a gap structure in the I-V characteristics, based on multi-
ple Andreev reflections of quasiparticles at the boundaries of
the microbridge, has been proposed in Refs. 9 and 10.

Bridges with a length /т>£(Г), Я (Г), and with a
width w and thickness d smaller than those last two quanti-
ties, are narrow superconducting channels. It is well
known1' that in such structures the generation of a voltage is
associated with phase-slip centers. Since the width and
thickness of the bride is less than the penetration depth of the
magnetic field, the current is distributed uniformly over the
transverse cross section, and in the region of applicability of
the Ginsburg-Landau theory the critical current is given by
the depairing current

/c = (1.4)

where Hc (T) is the thermodynamic critical magnetic field
and с is the velocity of light. Skocpol12 has observed good
agreement between the experimentally determined critical
current density and the current density given by this formu-
la. If the transport current is greater than /c, then the fila-
ment goes over into the resistive state. Unlike the situation in
short bridges, in long bridges it is difficult to observe coher-
ent effects resembling the Josephson effect. Ordinarily such
effects arise in connection with the presence of "weak spots'
in the sample—small inhomogeneities at the sample edges.

Processes of another kind are seen in short but wide
bridges, where /т<|(Г) and w>^(T). The main effects
characteristic of Josephson junctions, such as the current
steps produced by an electromagnetic field in the I-V char-
acteristics at voltages given by relation (1.3), can be ob-
served in these bridges. This was shown to be the case first by
Anderson and Dayem,13 and their conclusions were con-
firmed in a number of studies, e.g., Ref. 14. In these experi-
ments the measurements were carried out on thin-film con-
tacts with a constriction a few microns in width. The bridges
were prepared by vacuum deposition through a mask. Ex-
amples of the I-V characteristics measured in Ref. 13 are
shown in Fig. 1.

For bridges of variable thickness the boundaries of the
formation of Abrikosov vortices were found in supercon-
ducting bridges of various dimensions.'5''6 In these papers it
was proposed that the effective widths of the bridges coin-
cide with /m, i.e., the nonlinear processes are localized at the
contacts. In bridges of variable thickness this is made possi-
ble by their small thickness as compared to the thickness of
the "banks." The calculations were carried out for tempera-
tures near Tc on the basis of the Ginzburg-Landau equa-
tions. Figure 2 shows a diagram of the possible states derived
in these investigations. As the length of a wide microbridge
increases there is a transition at /m = 3.49 g ( t ) in a bridge of
variable thickness from the formation of Josephson vortices,
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FIG. 1.1-V characteristics of a contact based on a tin film in a microwave
field of frequency (in GHz) 1) 0.28; 2) 0.94; J) 3.8; 4) 6.8; and 5) 9.35.
Scale on the current axis is 133 fiA (Ref. 13).

which do not contain a non-superconducting core, to the
formation of ordinary Abrikosov vortices. The experimental
limit determined in Ref. 18 for tin microbridges of variable
thickness proves to be close to the theoretical value. This
limit was found from the deviation between the behavior of
microbridges in a microwave field as implied by the resistive
model, and the Josephson behavior as the temperature was
lowered and thus the temperature-dependent coherence
length was varied. Contacts with constriction dimensions
greater than the effective penetration depth of a magnetic
field (AL = Я 2/d) in thin superconducting films are similar
in their properties to ordinary superconducting films.

1.2. Vortex microbridges formed of ordinary low-
temperature superconductors

The properties of the contacts are quite different for
constrictions of different dimensions. In microbridges that
are small compared to coherence lengths the normal and
superconducting components of the current are distributed
uniformly over the entire contact. In bridges with large di-
mensions the Josephson effects are due to the periodic mo-
tion of the quantized vortices in the narrowest part of the
contact, that is, in this case the simple dependence between
the current and the phase difference can no longer be ob-
tained. The formation of current steps in the I-V character-
istics of these microbridges is due to the synchronization of
the motion of the vortices by an external electromagnetic
field. In large bridges it is not possible to refer to the Joseph-
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FIG. 2. Possible dimensions of microbridge contacts (Ref. 16).
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son effect in a strict sense, since in the region of the contact
not only the phase, but also the amplitude of the order pa-
rameter changes. In the experiments of Anderson and
Day em13 the formation of steps on the I-V characteristics
was extremely sensitive to an external magnetic field. Some-
times the step structure on the characteristics disappeared
even in a magnetic field of —0.1 G. This effect happens be-
cause even a small magnetic field can allow the vortices to
penetrate into the film and into microbridges made from the
film, and the additional vortices there can greatly hinder the
synchronization of their motion. At the same time, there are
papers, e.g. Ref. 19, where the step structure on the I-V
characteristics was observed in very strong magnetic fields
( S I kG). The measurements were made on bridges with
large dimensions (up to 20//m long), prepared from tin or
lead films by means of pulsed electrical breakdown. More-
over, in this paper the experimenters observed an increase in
the voltage spacing between the current steps when the mag-
netic field on the microbridge was increased.

Films of Sn or In are most frequently used to study the
properties of bridge contacts. Films of these superconduc-
tors are very easy to prepare by vacuum deposition, and their
superconducting transition temperatures are close to those
obtained for bulk samples. The difficulties in working with
these materials are due to the formation of whiskers and
hairline cracks during thermal cycling from room tempera-
ture to the temperature of liquid helium. During cooling the
metal contracts more than the substrate, and therefore the
film is inelastically elongated. Upon being heated to room
temperature the film then is compressed. The formation of
stresses leads to degradation of the sample. Films of the re-
fractory metals Nb, V, and Та are less susceptible to degra-
dation, which to a large measure explains the heightened
interest in investigations of microbridges based on those
metals.20~22 However, in these superconductors the coher-
ence length is considerably less than in tin and indium. For
niobium, for instance, £0 = 350-400 A. Because of these
short coherent lengths, it is extremely difficult to make a
microbridge with constriction dimensions less than the co-
herence length.

It is well known4 that bridges with large dimensions are
not as good as bridges with small ones or other Josephson
contacts from the point of view of their use in a variety of
electronic devices. Nonetheless, the use of these bridges is of
considerable interest. In addition to the observation of ef-
fects similar to the Josephson effect in these contacts, they
are of interest because their properties are determined by the
behavior of a small number of vortices. This facilitates the
theoretical analysis of their properties. Moreover, in the case
of wide bridges the effective penetration depth of a magnetic
field, which determines the size of the electromagnetic re-
gion of a vortex, is ordinarily greater than the dimensions of
the bridge. For low voltages, where the interaction between
the vortices is small, it is possible to have them move in a
single row. This case has been analyzed in Refs. 23 and 24.
Aslamazov and Larkin24 have studied a contact made up of a
superconducting film of thickness d with two cuts along a
common straight line, where the distance between the ends
of the cuts is w <^A, (Fig. 3). It was shown in this paper that
the principal results do not depend on the shape of the con-
tact, which has a strong influence only on the critical current
/c. For a superconducting current density js in the region of

A. N. Lykov 813



FIG. 3. Superconducting contact with two quantized vortices (Ref. 24).

the contact where it is less than the critical current density
the following expression was used in Ref. 24:

J = (1.5)

The equation for the phase <p of the order parameter is ob-
tained from the condition div j = 0 and has the form

V2<f> = { (1.6)

with the boundary condition d<p /dn = 0 (here n is the nor-
mal to the surface of the superconductor). Solving the La-
place equation Eq. (1.6), one can find the phase distribu-
tion, the current density in the region of the contact, and the
forces acting in this region on the vortices.

The current lines are hyperbolae with foci at the points
x = + w/2. The x axis, as shown in Fig. 3, lies in the plane of
the film and lies crosswise to the bridge, with the origin at the
center of the bridge. The current density./ on the x axis in the
region of the contact is

J =
Jid [(w/2)2 - *2]1/2'

(1.7)

For a vortex on the* axis on the edge of the contact at a point
close to w/2, the force on it is

"/0Кн'-2хп)]
1/2

j_ Ч \ 1 / 2

"1Ч,| j
- 2*mj

(1.8)

where xm are the coordinates of the rest of the vortices that
also are located on the x axis, I0 = c2fid/&eA2 and is of the
order of magnitude of the critical current of a contact with a
dimension ~|", and qn = +1, depending for each vortex on
its direction. It follows from Eq. (1.8) that the force of at-
traction of the vortex towards the edge of the contact (the
first term) increases with its approach to the edge faster than
the force of interaction with the current (the second term).
Therefore, for small currents there is an energy barrier that
prevents the vortex from entering the contact. The barrier
for the formation of the first vortex vanishes at the critical
current /c, which is determined from the conditions of equa-
lity of these forces at x-(w/2)~g. From this we obtain
Ic =I0(w/g)1/2. Near the critical temperature it varies as
(ГС-Г)1 2 5.

If the contact already contains vortices, then the barrier
to the formation of new vortices is changed. From formula

(1.8) it follows that in this case the barrier vanishes at a
current / = /c + Д/, where Д/ is

w- 2x
1/2

(1.9)

A vortex formed at the edge must move to the center of the
contact. As can be seen from formula (1.8), at a distance
greater than £ from the edge the force of attraction to the
edge is less than the force of interaction with the current.
Furthermore, the ratio of the force acting on the vortex from
the other vortices [the third term in formula (1.8) ] to the
force of interaction of the vortex with the current is of the
order of magnitude Д//7. For small voltages across the con-
tact, where Д/</, the motion of the vortices occurs mainly
as a result of the force of interaction of the vortex with the
transport current. To find the form of the I-V characteris-
tics, Benacka et a/.19 used the usual equation of viscous mo-
tion of a vortex

T/dxn/dt~Fn, (1.10)

where щ is the coefficient of viscosity, for which there exists
an expression in terms of the microscopic parameters of the
superconductor,25 and Fn is the force of interaction of the
vortex with the current. The latter is given by the expression

(1.11)

i.e., as seen from formula (1.7), this force is proportional to
the current density at the position of the vortex.

As a result of these calculations the expression for the I-
V characteristics of wide but short bridge contacts, as has
been shown in Ref. 24, can be written as

1 — 1=1
с с i и-

1/2 *(nut?i/e(V))\
1/2

m (w/2) -

(1.12)

where (V) is the average voltage on the contact and
xm = x(mirft/e(V)) is the coordinate of the mth vortex. In
this model the critical current is determined by the force of
the interaction of the vortex with the edge of the bridge. If
the current through the contact is changed, then the number
of vortices in it are also changed, which results in a change in
the number of terms in formula (1.12). Kinks then appear
on the I-V characteristics (Fig. 4). A qualitative picture of
the generation of a vortex can be seen in the following way.
At any instant of time a superconducting current equal to its
maximum critical value flows through the contact, along
with a normal current Д/. The electric field that is produced
at the edge of the contact causes a phase change Д#> in the
order parameter and a decrease in the superconducting cur-
rent by an amount proportional to (A^)2. The time t over
which the superconducting current decreases and the nor-
mal current correspondingly increases by an amount ~ Д/
can be found from the condition A^> /t ~ Д/~ (Д#>)2. There-
fore, t~ (Д/) ~ l/2. A further phase change, resulting in the
formation of a vortex, occurs very rapidly. Hence, the char-
acteristic time for the formation of a vortex in the contact is
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sin(cut (1.17)

FIG. 4. Current-voltage characteristic of a vortex contact (Ref. 24).

f0 ~ (Д7) 1/2. This time does not depend on the size of the
contact. Since, if Д///с < 1 it is determined only by the
width of the contact and does not depend on the bias current,
in this limit the period of vortex motion is equal to the time of
formation of a vortex. Because the average voltage is inverse-
ly proportional to this period, < V) ~ (Д7)1/2, the shape of
the I-V characteristic is the same as for small ridges, that is,
it is hyperbolic.

For large currents (7>/c) another approximation is
valid for the I-V characteristics:

(V)-A(T)I2,

where

A(T) =

(1.13)

(1.14)

This shape of the voltage vs current curve can be accounted
for by the following reasoning. Relation (1. 2b) is a very gen-
eral one in superconductivity, and the passage of each vortex
makes a change of 2-irin the order parameter at two points of
the "banks" sufficiently far from the bridge. In this way, one
finds that the average voltage is proportional to the total
number of vortices in the contact and inversely proportional
to the time for a vortex to move through it, while both of
these quantities are proportional to the current passing
through the contact. Here it is assumed that the vortices do
not move very fast, so that the coefficient of viscosity 77 does
not depend on the current.

If a constant current passes through the contact, a peri-
odic alternating voltage can be generated in it, with a period
tg that depends on the time of motion of the vortex chain.
This voltage can be expanded in a Fourier series:

,,,,4V(t) = ixp( lxikt\ (1.15)
/t=-oo

where xm (?) is the coordinate of the wth vortex at time t.
For currents that are close to /c the voltage spectrum is full
of harmonics. As the current increases the amplitude of the
first harmonic increases and the amplitudes of the higher
harmonics decrease.

If the contact is placed in an external alternating elec-
tromagnetic field with a frequency a> the total current
through the contact acquires an alternating component

In this case the condition for the generation of each new
vortex is given by formula (1.9) as before. However, the
quantity /(/„)— 4 should be substituted on the left-hand
side of this formula, where /(?„) is now the total current at
the time of generation of the nth vortex.

When the frequency со of the external radiation is a mul-
tiple of the frequency of the motion of the vortices, then, as
before, the vortices are created in equal time intervals
Т = (2-irk /a). Here the average voltage { V > is related to the
frequency со of the external field by (V) = fico/^-irek. Equa-
tion (1.12) becomes

/ + Iusind = /(Йа>/2й), (1.18)

where the right hand side is the current corresponding to the
voltage fuo/2ek in the absence of an alternating current. It is
clear that, depending on the phase 8 of the current at the
instant of creation of a vortex, the average current through
the contact can take on different values for the same voltage.
This means that there is a step of width 21 ш on the I-V char-
acteristic at the voltage fuo/2ek.

An analogy to wide bridge contacts with Josephson
structures also is found in the investigation of the effect on
these devices of an external magnetic field. The dependence
of the critical current of microbridges on the external mag-
netic field has been calculated in Ref. 23. Since the
"Meissner" state is destroyed when H Ф 0 because of the cre-
ation of vortices oriented along the field, the curve of /c (Я)
also oscillates in a manner like that of the analogous curve
for a tunneling Josephson junction. The period of the oscilla-
tions is determined by the magnetic flux quantum
(0o = TTcfi/e) divided by the area of the bridge. In the pres-
ent investigation the pinning of Abrikosov vortices was not
taken into account, and the critical current was determined
from the condition of the interaction of the vortices with the
boundaries of the microbridge.

The asymmetry of the contact results in the following
change in the pattern of motion of the vortices: the vortices
will be created only at one edge of the contact, pass entirely
through the region of the contact, and disappear at the other
edge. As a consequence, the asymmetry changes the numeri-
cal coefficients in the functions presented above.

Most of the results of these theoretical investigations
have been verified experimentally. The work of Ref. 26 may
be cited in this connection; there a Pb-Nb-Pb bridge of vari-
able thickness was studied. The experimenters used ion im-
plantation to weaken the order parameter in the niobium
microbridge. Table I lists the parameters of the bridges that
they studied (db means the thickness of the bands of the
microbridge).

The I-V characteristics and the curves of /c (7") were
found to be in good agreement with the curves calculated
theoretically from relation (1.12). The high-frequency
properties of these bridges are evidence for the coherent sin-
gle-line motion of the vortices in the bridges. Crozat et a/.26

measured the emission at 2 GHz generated by these bridges.
A somewhat unexpected result was the behavior of the am-
plitudes of the steps formed on the I-V characteristics by
irradiation with electromagnetic radiation; it proved to be
close to that obtained theoretically for the resistive model.
This common behavior of vortex bridges and microbridges
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TABLE I.

Bridge

124B2
110C2
143Л1

d, nm

33
33
33

d., nm0

800
600
800

',»• /""

1,2
4,5
0,8

w, fim

1,2
1,8
2

rc, к

6,8
6,6
6,2

R, П

7
15
4,5

1(0), nm

8,5
8,5
7,5

A^O), nm

750
750
1200

small compared to the coherence length requires further
clarification.

Complex phenomena, in particular the formation of
current steps on the I-V characteristics at voltages given by
relation (1.3), have been observed in microbridges of large
dimensions made of type I superconductors. The resistive
state in these materials is due to the motion of flux tubes.
These tubes are formed by the coupling of quantized mag-
netic vortices that are generated in the bridges by the bias
current. The dimensions of these tubes reach tens of mi-
crons, so that it is possible to see their motion by magnetoop-
tical methods.27

1.3. Microbridges made of superconductors with high critical
temperatures

Microbridges made of high-temperature (high-Г,.) su-
perconductors and having dimensions that are large in com-
parison with coherence lengths are of considerable interest
because they exhibit the properties of Josephson junctions at
high temperatures.28^*2 When they are placed in a micro-
wave field their I-V characteristics have current steps at vol-
tages given by the usual Josephson relation (1.3), and it has
been found that they can be used to make SQUIDs. This list
of publications is far from complete. A more complete list of
publications dealing with the Josephson effect at contacts of
high-71,. superconductors can be found in the review of Lik-
harev and Kupriyanov.43

It has been established that the high-71,. superconduc-
tors are of type II, with an extremely short coherence
length,2 about 10 A. Prior to the discovery of the high-7^
superconductors, microbridges of NbN (Refs. 27-30) and
superconductors of the A15 structure23'31"36 were studied in
great detail. These superconductors, as is the case for the
recently discovered high-Tc superconductors, have a short
coherence length: £0 ~ 30-40 A (Ref. 44) and relatively high
critical temperatures, up to 23.2 К for Nb3Ge. Such short
coherence lengths make it extremely difficult to make
bridges with constrictions that are smaller than £( Г). One
can use two approaches to analyze the properties of contacts
made of superconductors with high critical temperatures.
One of them, described above, is the usual vortex mecha-
nism, with allowance for the high operating temperatures
and the short coherence lengths. The second approach is
based on the fact that these superconductors, especially in
the case of bulk high-7^ samples, are easy to prepare in
granular form. They consist of a conglomerate of anisotropic
granules separated by nonstoichiometric interlayers, a form
that is due to the details of the synthesis (they are prepared
by a solid-state chemical reaction at high temperatures), and
to the complexity of the crystal structure. These samples can
be regarded as a collection of superconducting granules elec-
trically coupled by Josephson junctions. The complex
granular structure is found ordinarily in high-Tc supercon-
ductor films. The granularity of the superconducting sam-

ples has a strong influence on their electromagnetic proper-
ties. Moreover, to weaken the link between the banks and to
localize the processes better, microbridges made of these ma-

terials usually receive additional treatment. The techniques
used for this purpose are erosional treatment by passing mi-
crosecond current pulses through the bridges,32 radiation
treatment,31 and controlled ion etching.30 As a result, addi-
tional inhomogeneities with dimensions comparable to the
coherence length are formed in the microbridge, which
might be responsible for the typical Josephson behavior of
these contacts. Nevertheless, this does not diminish the im-
portance of studying ordinary microbridges with constric-
tion dimensions considerably larger than the coherence
length, particularly since these contacts exhibit some simi-
larity to the usual Josephson junctions.

Besides their similarity to ordinary Josephson junc-
tions, microbridges based on epitaxially grown high- Tc films
and superconductors with the A15 or Bl lattice are different
from them in some important ways. For example, they have
an unusual temperature dependence of the critical current.
We recall that /c (7

1) of tunneling Josephson junctions and
microbridges with small constriction dimensions varies lin-
early, IC(T)~TC — T, near Tc. In microbridges with a short
coherence length a power-law relation has been observed,
/c (T) ~ (Tc — T)a, where the exponent a can have various
values, 1.25, 1.5, 2, or 2.5. Various I-V characteristics have
been observed in the autonomous regime by various investi-
gators. For example, in microbridges made of NbN and
Nb3Sn I-V characteristics have been observed28'30 very
close to a hyperbolic shape, (F}~(72 — /2)1/2. In a num-
ber of papers33"36 these characteristics, on the other hand,
had a parabolic shape, close to the form { V ) ~I2.

In experiments with microbridges made of NbN, A15,
and В1 superconductors, another limiting case is usually ob-
tained, where w and /m are both >£(Л- In this limit the
critical current is determined not by the interaction of the
vortices with the contact boundaries, but by the interaction
with inhomogeneities in the superconductor. Thus, in addi-
tion to the radiophysics aspects, there is a considerable
amount of pinning of Abrikosov vortices in these micro-
bridges. The necessity of taking this phenomenon into ac-
count was first pointed out by Janocko et al.29 in their inves-
tigation of NbN microbridges. The most obvious
demonstration of the effect of pinning on the behavior of
these microbridges is the dependence of the critical current
on the magnetic field (Fig. 5), which is typical of type II
superconductors and completely different from the analo-
gous dependence for Josephson junctions.23

By taking into account the pinning of Abrikosov vorti-
ces one can explain the similar behavior of the micro-
bridges.45 The Josephson properties of the contacts in these
experiments was accounted for by analogy with Ref. 24, with
a single essential difference—the interaction of the vortices
with the inhomogeneities within the bridge was taken into
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FIG. 5. Magnetic field dependence of the critical current of a NbN bridge
for 7"= 4.2 К (Ref. 29).

account, not the interaction with the edges of the bridge. The
microstructure of bridges made of films of intermetallic
compounds consists of a collection of small ( < 103 A) col-
umnar grains, whose boundaries are vortex pinning centers.
For ordinary currents passing through the microbridge (< 1
mA) an estimate of the self-magnetic field shows that in the
absence of an external magnetic field there is only a small
number of vortices spaced apart in a chain at a distance
much greater than the size of the grains. If we neglect the
elastic interaction between the vortices and the lattice, then
the bulk pinning force can be found by a direct summation of
the elementary pinning forces, which depend on the nature
and size of the inhomogeneities. To estimate the elementary
pinning force it is assumed that the size of the inhomogeneity
in the plane of the film is smaller than the coherence length
but larger than the radius of action of the kernel that figures
in the equation of self-consistency for the determination the
energy gap in the excitation spectrum. In this case we obtain

where 8 V is the volume of the inhomogeneity, which is some
kind of non-superconducting inclusion. This formula is ob-
tained by dividing the energy gain of the superconductor
when a vortex passes through the inhomogeneity by the
characteristic distance over which this energy varies. The
energy difference will be greater if the inhomogeneity has
dielectric properties. The critical current of the bridge in this
case is determined by the equality of the Lorentz force,
which tends to break the vortex loose from the inhomogene-
ity, and the pinning force, which holds it there. The condi-
tion for the separation of a vortex gives a critical current
1<.(Т)~си)/р(Т)/ф0~(Тс-Т)гл. In the limit
A(T)/g(T)^-\, which is satisfied by all superconductors
with high critical temperatures, this "core" pinning mecha-
nism is very effective. If it is assumed that the inhomogene-
ities are thin planes perpendicular to the plane of the film
and oriented along the direction of current flow through the
bridge, then /p (T) ~ H2 ( T ) ~ (Tc - T)2. If it is assumed
that the dimension of the inhomogeneities exceeds the co-
herence length, then fp(T)~H2

c(T)£(T)~(TC-T)'Л
As the temperature approaches the critical temperature,
where the effectiveness of the pinning centers falls off sharp-
ly, the critical current must be determined from the condi-

tion of entry of a vortex into the bridge, that is, its interaction
with the boundaries of the bridge. In this case the nature of
the function /c (T) must change: from IC(T)~(TC-T)2 5

at low temperatures to /c (T) ~ (Tc — T)'2S. In this way,
the experimentally determined temperature dependence of
the critical current of bridges made of high- Tc superconduc-
tors can be easily explained.

To find the shape of the I-V characteristics in this case
one must take into consideration not only the viscous motion
of the vortices, but also the thermally activated flux creep.
Experiments carried out with bulk samples of Pb-In and
Nb-Zr have shown that for T^0.5TC the value of U/kB T is
102-103, where kB is the Boltzmann constant and U is the
depth of the potential well of the pinning center.46 There-
fore, the probability of thermal hopping of a vortex from one
pinning center to another is extremely low. It is another situ-
ation for superconductors with a high critical temperatures
and short coherence lengths for a number of reasons:

a) In bulk superconductors bound vortices, consisting
not of a single vortex, but sometimes 102-103 vortices, are
coupled together, so the vortex pinning energy must increase
in about the same proportion.

b) Measurements of the I-V characteristics in micro-
bridges have usually been carried out near Tc, which for the
high-Tc superconductors is very high, and thus increases the
energy kB T of the thermal fluctuations.

c) The coherence length is short, and consequently, be-
cause of the relation Ic ~ U/g, the critical current can be
large when the wells are shallow.

It is of particular importance to take into account the
thermal activation of flux creep in high- Tc superconductors,
where it even affects the temperature dependence of the up-
per critical magnetic field.47 In the work of Anderson,48 ana-
lyzing the behavior of bulk type II superconductors in a uni-
form magnetic field, it was shown that for currents smaller
than the critical current as determined from the condition of
equality of the pinning force and the Lorentz force, hopping
motion of vortices from one potential well to another, that is,
from inhomogeneity to inhomogeneity, is possible on ac-
count of thermal fluctuations. An electric field is produced
because of this vortex motion. Anderson derived the follow-
ing formula for the electric field strength:

E = ^оВехр[-1/(Г)(1 - I-I^)/k^T]/c, (1-20)

where /C0 is the critical current in the absence of fluctuations
and v0 is a quantity having the dimensions of velocity. This
quantity is not well known. On the basis of formula (1.20) it
is possible to calculate the form of the I-V characteristics of
wide bridge contacts made of type II superconductors in the
case we are considering, where the critical current is deter-
mined by the pinning of individual vortices. A particularly
simple formula can be derived in the limit where the distance
between the pinning centers is much greater than the coher-
ence length. In this case, the time that a vortex remains in a
contact, which is determined by the voltage across the con-
tact, is made up of the time it remains at the pinning center
plus the time of viscous motion through the contact if there
were no inhomogeneities in the contact. The residence time
in pinning centers can be estimated from formula (1.20).
Since there are usually a large number of such centers in a
bridge of micron size, the total time residence r at the cen-
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ters is the sum of the times that the vortex is located in all the
pinning centers, where the residence time of a vortex in the
/th potential well is

If a bridge contains strong pinning centers, for which
U,/kB 7> 1, then the main contribution to the total time will
come only from those centers

т - exp[t/ v(l - /-/rl.,ykw,T]. П 22)r *• max^ с,шах' ь * \ !•*•£•/

This follows from the fact that in the limit t/max /£„ 7> 1 the
effect of creep on the form of the I-V characteristics will be
significant only if 1 — I-I^^ -»0, that is, if /-»/c,max. For
this current through the junction the quantity 1 — I-I&1

will be considerably different from zero for the shallower
pinning centers, so that т, <rmax. Henceforth the subscript
max will be omitted.

The time of viscous motion of the vortices through the
contact in the absence of inhomogeneities can be found from
Ref. 24. If it is assumed that the pinning force is usually
greater than the force of interaction with the boundaries of
the bridge, it can be shown that the I-V characteristics will
have the following shape:

V = A(T)I2{1 + A(T)I explU(T)(l -

(1.23)

where R0 = v0lm /we2 and A ( T) is given by formula (1.14).
From expression (1.23) it follows that if thermal fluctu-
ations are taken into account the voltage across the contact is
also different from zero for currents less than /c0 . In order
for this effect to be appreciable, the ratio between the depth
of the potential well and the energy of the thermal fluctu-
ations kB Т must not be too large. Estimates show that this
case occurs not only in thin-film bridges made of the high- Tc

superconductors, but also in superconducting bridges made
of the A15 or Bl material. For currents that exceed /c0 for-
mula (1.23) rapidly tends to a quadratic dependence
У^ A(T}I2.foi currents small compared to Ic0 the equation
for the I-V characteristics is close to formula ( 1 . 20 ) . Experi-
mental confirmation has been obtained in Refs. 42 and 49 for
the existence of thermally activated flux creep in micro-
bridges made of A15 superconductors and in microbridges
prepared from epitaxial films of ¥Ва2Си3О7_.,. Good
agreement was obtained between the I-V characteristics and
formula ( 1 .23 ) . Figure 6 shows an example of a curve of V /I
as a function of the bias current for a YBa2 Cu3 O7 _ x micro-
bridge.42 The quantity V/Iis plotted on a logarithmic scale.
In agreement with formula (1.23), the function \n(V/I)
plotted against /is linear for small voltages. Moreover, using
these curves, Zhukov et a/.42 were able to determine the
depth of the potential wells. Previously, a similar depend-
ence was obtained for microbridges made of superconduc-
tors with the A15 lattice.45

By the use of pinning, one can explain effects typical of
Josephson junctions in microbridges of type II superconduc-
tors. For example, the superconducting quantum interfer-
ence can be explained by the periodic penetration of quan-
tized magnetic vortices into the superconducting loop. It is
more interesting to analyze the role of pinning in effects that
are similar to the ac Josephson effect.45 In this case the cur-

20
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FIG. 6. The function ln( V/I) plotted against /in the autonomous regime
(Ref. 42).

rent steps at voltages of nfiat/le are formed because the times
of separation of the vortices from the pinning centers are
synchronized by the microwave radiation. The total current
passing through the junction in a microwave field can be
written in the form (1.17). The equation that determines the
time of separation of the vortices from this center is

JP> (1.24)

where Fn is the Lorentz force, which is proportional to the
current through the contact and Fd is the force acting on a
vortex by those previously separated. When the voltage on
the contact is close to nfua/2e, then because of the additional
synchronization induced by the microwave radiation in the
times of separation of the vortices from the pinning centers,
the separation frequency, and consequently the voltage on
the contact does not change with a change in the transport
current. For this reason a current step appears on the I-V
characteristic.

The number of Abrikosov vortices in a bridge can be
varied by an external magnetic field. The synchronization
condition for the motion of the vortices in contacts of large
dimensions can be considerably altered. In Ref. 50 it was
observed that a weak magnetic field (~ 10 G), which has
little effect on the critical current, completely suppresses the
Josephson step structure in the I-V characteristics of large
microbridges prepared of Nb3Sn. This effect is a result of the
fact that in bridges with large dimensions the synchroniza-
tion of the vortex motion is hindered when there are a large
number of them in the bridge.

As was remarked previously, the second method of ana-
lyzing the properties of microbridges made of superconduc-
tors with a high critical temperature is based on the fact that
they are easily prepared in granular form. A large number of
theoretical and experimental investigations have been car-
ried out on granulated superconductors based on Al, NbN,
and Sn.51~53 If the Josephson coupling between the granules
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is strong, that is, if the current passing between them is able
to suppress the order parameter in the granules, then these
superconductors can be regarded as ordinary "dirty" super-
conductors. In this case, their resistive properties are deter-
mined by the interaction of the Abrikosov vortices with the
inhomogeneities in the samples. In the case of a weak link
between the granules, the Josephson current between the
granules is small and it can have no effect on the order pa-
rameter in the granules. By creating a constriction in a su-
perconducting film, one can see that the contact between the
banks is made through a small number of granules. In the
case of high- Tc superconductors the situation arises where
the contact is made by no more than two granules.54'55 This
possibility is interesting for applied purposes. As a result, the
usual Josephson relation (1.28) is valid for the critical cur-
rent, that is, the contact will have classical Josephson prop-
erties. One of the distinguishing features of these contacts is
the rapid falloff of the critical current in a magnetic field.56

The Josephson behavior of bridge contacts in the case of
granular samples has been observed many times, both for the
high-jTc superconductors and for microbridges based on su-
perconductors with the A15 lattice or NbN (Refs. 25, 27).
In addition, there have been experiments carried out on sin-
gle-crystal films, in which ordinary vortex behavior has been

observed.39'57

Even though the vortex bridge contacts are inferior to
Josephson junctions in terms of their radiophysical proper-
ties, nonetheless their study is of great interest. From the
theoretical point of view they are interesting because their
dimensions are small so that the analysis of the vortex behav-
ior in them is simpler than it is in ordinary bulk supercon-
ductors, and as a result, their study can yield information on
the elementary interactions of the Abrikosov vortices with
inhomogeneities in the superconductor. The vortex bridges
are also interesting from the experimental point of view,
since they exhibit beautiful coherence effects that resemble
the Josephson effect. Further progress in this direction de-
pends on the technology of preparing the microbridges. In
particular, by making contacts with sharply defined geomet-
ric dimensions it will be possible to determine more accu-
rately the depth of the potential wells of the pinning centers
and the motion of the vortices.

2. THIN-FILM MULTIELEMENT MICROSTRUCTURES

2.1. Vortices in thin-film superconductor films

2.1.1. Weak magnetic fields

First of all, let us recall the properties of Abrikosov
vortex structures in thin films (d^A; Ref. 58). Within the
superconducting film the following equation in cylindrical
coordinates is valid for the vector potential

V 2 A=A~ 1 (A-0)6z, (lla)

current distribution around the vortices:

J = —; -(А-ф),

where the Z axis is perpendicular to the surface of the film
and Ф is a vector with the components Фг = Oz = 0 and
Фв = фо/2-irr. Since in this case the current can be screened
only within the thickness of the film, the magnetic field can
penetrate a much larger distance than in the bulk supercon-
ductor. Solving equations (2. la) and (2. Ib), we can find the

(2.2)

where H0 and У0 are the Struve and Neumann functions,
respectively. The magnetic part of the vortex energy еы per
unit length of the vortex is given by the integral

(2.3)

where у is the Euler constant and hM = curl A is the local
magnetic field near any vortex. The latter expression was
derived in the limit Лх >|". Here the energy of condensation
(ec) per unit length of a vortex is given approximately by the
relation

•Of 1 (2.4)

while the self-energy Un of a vortex is determined by the sum
of these energies:

Un = (2.5)

where e is the self-energy per unit length of a vortex.
Unlike the case for bulk superconductors, the interac-

tion between vortices in thin films is long-range, and the
following expression holds for the interaction potential be-
tween two vortices aligned in the same direction:

W(r) = ̂ [Я0(г/2А±) - У0(г/2А±) ]/16лА± = dWt, (2.6)

where Wt is the interaction energy per unit vortex length.
Two approximations come from relation (2.6). For

(2.7)

(2.8)

and for large distances (т>Я1 )

Щг) =

i.e., the interaction between the vortices does not fall off ex-
ponentially as it does in bulk superconductors, but consider-
ably slower. The cause of this difference is that in thin films
the vortices interact not only in the film itself, but through
the space surrounding the film.

Another important difference between the vortex struc-
tures in the interior of a superconductor and those in a film is
that in the latter case below the upper critical magnetic field
Hc2 the magnetic induction В is close in value to the external
magnetic field down to very small magnetic fields. More-
over, because the thickness of a superconducting film is fi-
nite, the vortex structure is three-dimensional, unlike the
two-dimensional structure in a bulk superconductor. The
situation is considerably simplified for a thin film (d^, Л )
where one can neglect the variation of the order parameter
i/>(r) and the local magnetic field H,(r) transverse to the
film.
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2. 1.2. Strong magnetic fields

Tinkham59 first noted the possibility of a vortex struc-
ture in thin films. At low temperatures the vortices form a
three-dimensional lattice with a period given by the relation

An accurate investigation of the mixed state in thin films has
been made by Maki.60 In the study of the mixed state in
superconductors it is frequently convenient to use reduced
units: lengths in units of A, energy density in units ofHl/4ir,
magnetic fields in units о{т/2Нс , and current density in units
of ^/2Нс/4тгЛ. The Ginzburg-Landau free energy func-
tional 3t for such a film is written as

1 for 0 < z < d,
0 for z < 0 and' for z > d, (2.9)

where г is a two-dimensional vector in the(.*,.y) plane of the
film. By a variation of the functional (2.9) one obtains equa-
tions similar to the Ginzburg-Landau equations for bulk
superconductors:60

(2.10a)

curl curl A =

(2.10b)

The appearance of the function g(z) in the case of a thin film
dictates that the magnetic field outside the film is three-di-
mensional. Nonetheless, Eqs. (2.10a) and (2.10b) imply
that in thin films, just as in bulk superconductors, a three-
dimensional lattice of Abrikosov vortices is formed near the
upper critical field (when Яс2 — Я<Яс2 ). The free energy
is given by the expression

F=

where/3A is a parameter that in the Abrikosov theory of the
mixed state61 determines the energy of the vortex lattice near
the upper critical magnetic field:

о i 4л if i J\\ 7 / ̂  1 л \
рА = (V 7/(\V )) > (2.12)

and/* is a function with a value smaller than unity that goes
monotonically to zero as the film thickness decreases. Fur-
thermore, that function depends only weakly on the form of
the lattice in the film. We recall that in the case of a bulk
superconductor the function/* is replaced by unity.

As is well known, a triangular lattice is isotropic in its
elastic properties and is described by the bulk and shear
moduli. One of the consequences of the long-range nature of
the interaction between vortices in a film is the incompress-
ibility of the vortex lattice in thin films (the bulk modulus is
infinite). Since bending strains of the vortices in thin films
can also be neglected, only the shear strains will have any
significant effect on the behavior of the vortex lattice. The
shear modulus is defined as

where a is the angle of shear of the vortex lattice. The value
of this quantity has been calculated in Refs. 62-65 for var-
ious values of the Ginzburg-Landau parameter, various film
thickness, and various magnetic field strengths. Returning
for convenience to real coordinates, one can write the ex-
pressions for the shear modulus in thin films in three limiting
cases

(Т), (2.14а)

^(Т), (2.14Ь)
2 2ft = 0,472d(Hc2 - Н)/(2* - /), (Ф0/Б)1/2

(2.14с)

Thermal fluctuations have a large influence on the
properties of a vortex lattice, and this influence is particular-
ly strong in the case of thin films. It has been observed that at
finite temperatures not only can the vortices oscillate about
their equilibrium positions, but the lattice can even melt and
transform to the liquid state.66 The condition for the melting
of a vortex lattice is given by the relation

= d2F/da2, (2.13)

where jTM is the melting point of the vortex lattice. In zero
magnetic field a transition from the superconductor state to
the dissipative state is also possible via the motion of vortices
formed in the film as a result of thermal fluctuations.

2.2. Experimental results obtained with superconducting
films with longitudinal corrugations

When a film is of nonuniform thickness, the vortices,
tending to minimize the energy, occupy the regions where
the film is the thinnest. If the thickness of the film varies
randomly in space, then distortions will be formed in the
regular triangular vortex lattice. The situation is different if
the variation of the film thickness in space is strictly period-
ic. The first experiments on the effect of an ordered surface
relief on the pinning of vortices were carried out by Morrison
and Rose.67 These investigators used a diffraction grating to
impress grooves with a triangular cross section on the sur-
face of an In-2% Bi alloy sample. They measured the critical
current passing along the grooves in a magnetic field perpen-
dicular to the sample surface. According to their results, the
bulk pinning force is directly proportional to the blaze angle
of the grooves and inversely proportional to their spacing. If
the grooves are narrower than the coherence length they
have little influence on the magnitude of the pinning. The
explanation for the pinning mechanism proposed in that pa-
per was based on the increase in the energy of the vortex as it
moves along the sloping side of a groove, a result that follows
from formula (2.5).

A large series of investigations has been carried out by
Martinoli and his coworkers on the mixed state in corrugat-
ed superconducting films.68'73 They used aluminum films
deposited in an oxygen atmosphere. These films have a very
small amount of random pinning. Because of their high resis-
tivity and small thickness, the effective magnetic field pene-
tration depth is greater than the film thickness. Therefore,
the interaction between the vortices is long-range, even
though the London penetration depth /1L in aluminum is
small. The corrugations in these experiments were usually
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produced in the following way. The deposited aluminum
film was coated with a photosensitive material and then
grooves were formed in this photosensitive layer by the inter-
ference of two He-Cd lasers. After this photosensitive layer
was given the appropriate treatment, the aluminum film was
etched to produce the desired profile.

In a magnetic field given by the relation

(2.16)
+ nk + k)

where и and k are integers, the vortex lattice coincides with
the corrugation. In the commensurate phase, where all the
vortices are located in the depressions, the vortex lattice is
undistorted and the bulk pinning force is equal to the sum of
the elementary interactions of each vortex with the inhomo-
geneities of the film. In the experiment this showed up in
peaks in the curve Ic (B) at B = Bnk (Fig. 7), when the
transport current flows along the corrugation lines.68 In that
experiment the corrugated film was of aluminum ~0.5 /гт
thick with a corrugation depth of 200 A and a period /lg

= 1.9/лп.
If the transport current flowing parallel to the corruga-

tions exceeds the critical current /c, then viscous flow of the
vortex lattice occurs. In the general case of В ^Bnk the in-
teraction between the vortices and the periodic pinning
structures distorts the vortex lattice, but if В = Bnk these
distortions are not present and the vortices move synchron-
ously in identical pinning fields. The viscous motion of vorti-
ces in corrugated films was studied experimentally in Ref. 69
with films similar to those of Ref. 68. An effect was observed,
related to the ac Josephson effect. Current steps were formed
on the I-V characteristics when the films were irradiated in
an external electromagnetic field with В = BIO (Fig. 8). The
positions of these steps were given by

Emn = (2.17)

where и and т are integers.
In addition, Martinoli and his coworkers70 detected

electromagnetic radiation directly as the vortex lattice
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FIG. 7. Critical current density as a function of the magnetic field for a
corrugated Al film (Ref. 68).
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FIG. 8. I-V characteristics of a corrugated Al film in an rf field. The
numbers on the curves indicate the attenuation in dB of the power of the
electromagnetic radiation. The critical current of the film is 6.4 mA, the
amplitude of the rf current without attenuation is 70 mA. The curves are
vertically shifted along the current axis (Ref. 69).

moved in the corrugations of the film. It was found extraor-
dinarily difficult to produce coherent motion of the vortices,
so that the generated power was small (~10~1 5 W) and
frequency range (30-50 MHz) in which the radiation was
produced was narrow. These results indicate that ordered
motion of the vortex lattice is possible only if the velocity is
low. Therefore, it is an important matter to discover the
mechanism responsible for the instability of the vortex lat-
tice. One such mechanism is the destruction of the order of
the vortex lattice by random pinning centers. A natural
means of overcoming this difficulty is to use more perfect
films, that is, films with only a small amount of random
pinning forces.

2.3. Theoretical models of the interaction of a vortex lattice
with corrugated films

2.3.1. Statistical interaction of a vortex lattice with a
corrugated film in weak magnetic fields

1) Я1 </lg. A phenomenological model based on the
work of Pearl58 has been developed by Martinoli et a/.,71 and
describes the static and dynamic properties of vortex lattice
in corrugated films. It was assumed that the film is very thin
[d<^A (T) ], and its thickness varies sinusoidally:

d(r) = d + bd cos [q(r - r0) ], (2.18)

where q is the wave vector of the modulation (|q| = 2tr/Ag)
and Дй? is its amplitude, with kd/d-4.1, while the vector r0

gives the position of the vortex lattice relative to the corruga-
tion. For simplicity we assume that Ag < Aj. and x > 1. In this
case the self-energy of a vortex is given by relation (2.5),
while the formula for the interaction energy Wn. of two vor-
tices located at r, and rr is similar to expression (2.6):

wu.=
ЯФ1

2(4лД)2
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where ra. = |r, — rr |. /•„. %>AL the interaction between the
vortices is given by relation (2.8) and does not depend on the
thickness of the film. It follows from expression (2.19) that
the free energy density of the system is given by

2A

+ 4

exP t'Q(r/ ~

ехр(-й,Г//,) exP[/q(r/ - r0) ]},

(2.20)

where/0 is the free energy density for a smooth film and Af is
the area of the sample. For simplicity two quantities are in-
troduced in formula (2.20):

(2.21)

(2.22)

The equilibrium position of the vortices is found by minimiz-
ing the free energy with respect to the position. In this way, it
is necessary to write for each vortex the following expression

A/// = 0. (2.23)

Expression (2.20) implies that when the reciprocal lat-
tice vector g of the vortex structure is equal to the wave
vector of the modulation, that is, when

qr; = Тлп, (2.24)

the vortex lattice coincides with the corrugation. Simple cal-
culations show that this equality is satisfied when the mag-
netic induction is given by formula (2.16). It can be seen
from (2.20) and (2.24) that when the vortex lattice matches
the corrugation the energy of interaction between the vorti-
ces becomes isotropic, since exp(/gr,) = exp(igr/r) = 1.
Here the free energy density can be written as

(2.25)

It follows from this expression that the free energy of the
vortex lattice, following the corrugation, varies sinusoidally.
Since the free energy is a minimum when this coincidence
occurs, the function jc (B) should have maxima. With the
use of expression (2.25) one can readily determine the criti-
cal current density for this case

(2.26)

This formula predicts that the critical current decreases
monotonically with increasing temperature in the matching
field, at which the coincidence occurs.

The model advanced above, despite its apparent obvi-
ousness, has some defects, and consequently there are ex-
perimental results that contradict it. For example, Tang et
a/.73 have observed an anomalous temperature dependence
of the critical current of corrugated films (Fig. 9). In these
experiments the usual configuration was used, in which the
transport current was along the corrugations and the mag-
netic field В = Bto

 was perpendicular to the surface of the
film. The peak on the curve of/c (T) cannot be accounted for

0,S2 0,9<t 0,SS 0,3S 1,00

FIG. 9. Anomalous temperature dependence of the critical current of a
corrugated superconducting film for Д = Я, 0 (curve /), and for an uncor-
rugatedfilm (curve2) (Ref. 73).

on the basis of expression (2.26). To explain the results the
authors studied the action of thermal fluctuations on the
vortex lattice. They believed that below the temperature T*
the main influence of the thermal fluctuations is to decrease
the order parameter, while above T* the vortex lattice is
softened. As a consequence, the pinning of the vortices at
TZ, T* becomes more effective, and this should produce a
peak in the curve of /c (T).

2) Я1 ~^g. Other explanations of this phenomenon are
possible. This form of the curve of /c (T) was predicted by
Radovic et a/.,74 who studied corrugated films with a period
comparable to A(T). In this case Pearl's equations (2.1a)
and (2. Ib) for the vector potential A become

(2.27a)

(2.27b)

( 2.28 )

Ф).

The solution of these equations yields

J(r) - <J(r)> (1 + ̂  cos [g(x - x0) ]} -

where in this formula and hereafter the average values ob-
tained from Pearl's equations58 will be used for uniform
films. The perturbation of the vector potential, ДА(г), due
to the modulation, has been calculated for the general case in
Ref. 74. In the limit /4 Ag it is given by the simple expression

AA(r) r)) cos [q(x - (2.29)

In this limit the correction to the magnetic energy is found
by analogy with Eq. (2.3) by the integral

еш^ = £ J J (< cos W* - 2«
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Десс/ = 2 j (?<!)) COS(gX0), (2.31)

where { Ам > is the local magnetic field near a vortex without
the modulation, A A M = curl (ДА), and J0 and Jl are the Bes-
sel functions of the indicated order. Since Af c < Дгм for a
film with a large Ginzburg-Landau parameter x, the correc-
tion A£C to the vortex energy can be neglected. As the tem-
perature is changed the Bessel function J0 also changes. At
some temperature T* denned by the relation
<£(r*))=:0.4/lg, it changes sign. For T<T* the Bessel
function of zero order is positive, J0(q(£ > ) > 0, and the ener-
gy minimum of the vortices occurs when the condition
cos(<pc0) = — 1 is satisfied. In this case the vortices tend to
occupy the thinnest regions of the film. When J0(q(£ ) ) < 0,
the vortex centers, conversely, tend to occupy the thickest
regions of the film. At low temperatures the size of the nor-
mal nonsuperconducting vortex core is small in comparison
to the period of the corrugation. This situation is close to the
limit Ag >AX examined in Ref. 71. The energy minimum in
this case occurs when the vortices occupy the thinnest re-
gions. When the coherence length becomes comparable to
the corrugation period the magnetic energy is governed by
the superconducting currents flowing in the regions with the
maximum and minimum thickness. Then it is energetically
favorable for the vortex centers to be located in the thickest
regions.

This unusual temperature dependence of the vortex en-
ergy causes the nonmonotonic temperature dependence of
the critical current. Its value, as usual, is found from the
equality of the Lorentz force with the pinning force resulting
in this case from the presence of the corrugations. For
В = Впт the following expression is obtained

Figure 10 shows a plot ofy'c m ( T) calculated in Ref. 74 using
typical values of the corresponding parameters of the super-

0, SO 0,65 0,90 0,95
VTC

1,00

FIG. 10. Critical current density of a superconducting film with param-
eters b.d/d = 0.1, d= 103 A, /= 500 A, and x = 5, as a function of the
reduced temperature. The solid line shows the curve calculated from for-
mula (2.32) and the dashed line the results of calculations with allowance
for Дес; formula (2.31) (Ref. 74).

conducting films. This figure shows that there is good agree-
ment between the theoretical curve and the experimental
one shown in Fig. 9.

The peaks in the curve of/c (T) can be accounted for by
the effect of the magnetic field produced by the transport
current, which is usually neglected in comparison to the ex-
ternal magnetic field. The magnetic field of the transport
current causes a gradient in the vortex density in the plane of
the film, which makes it difficult to match the external mag-
netic field with the corrugations and decrease the net pin-
ning force. As the temperature is lowered the gradient in the
vortex density in the sample increases, which also causes the
observed decrease in the critical current.

2.3.2. Static Interaction of a vortex lattice with corrugated
films In a strong magnetic field

A theoretical analysis of superconducting corrugated
films cannot be complete without an examination of behav-
ior of these films in strong magnetic fields (Hc2 — H^Hc2).
This case has been considered by Kuzii,6S who studied a thin
film with a rather long wavelength sinusoidal corrugation
(As$>d). Here, in the Ginzburg-Landau functional (2.9),
which is applicable to uniform thin films, it is necessary to
replace g(z) by g(z)K, where

(2.33)q = -j— (cos в, sin 0)
A

and в is the angle between the vectors ex and q. By minimiz-
ing the free energy obtained in this way it is easy to find the
modified Ginzburg-Landau equations

\ii>\2\i>), (2.34)
loedr "]"\ixdr "}T ~~^T

I \ / л \
curl curl A = lg(z)K Fv* Mr; - A I V - V173^: + A IV*

I L \BCdT I \IXOT I

(2.35)

Kuzii65 examined the case of a vortex lattice commensurate
with the corrugation. The procedure of the calculation is
similar to that for calculations of the analogous functions by
Ami and Maki75 for bulk superconducting alloys with sinu-
soidally varying concentrations of impurities.

To solve the system of equations (2.34) and (2.35) Ami
and Maki used the system of orthogonal functions of Eilen-
berger,76 which are defined as follows:

1/4

(2.36)

(2.37)

where

r =
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and i?3 is the elliptical theta function of Reimann. The Eilen-
berger functions are solutions of the equation

where АО = and

я = - у 2 л + 1), n- 0,1,2,...;
'

= «Л- С2.39.)

(2.39b)

where ел is the unit vector in the direction of the л axis. This
equation is formally analogous to the Schrodinger equation
for the motion of a particle of charge 2e in a static magnetic
field B. As any such trial functions in perturbation theory
they satisfy the orthogonality condition

The two-dimensional periodic function <pQ(r ) describing the
vortex lattice in the x-y lane has the periods

r, -0,0), (2-40)

If the small amplitude of the thickness modulation is taken
into account the Eilenberger functions for the vortex lattice
can be written as

The coefficient wl is found from the linearized equation
(2.34), having the form

(2.42)

Substituting the function (2.41) into this equation, follow-
ing Ref. 65, we obtain

(2.43)

(2.44)

where

и = (g2 + lx2 - 2хЯ)/2эс2,

(2.45)

where I(x) = 1 if x is an integer and zero otherwise, and т
and я are the integral values x of the function I(x) in expres-
sion (2.45). Minimizing E in second order in Ld/d we ob-
tain

(2.46)

(2.47)
v = (q2 + 2x2 - 4xH)/4xH.

These expressions for E and wl differ from the correspond-
ing ones for a bulk layered superconductor only in the coeffi-
cients и and u. In the case of a bulk superconductor the term
in x1 is absent in the numerators of these coefficients. This
difference is due to the fact that the left-hand side of the
linearized equations (2.34); that is, it is due to the fact that
the corrugation affects not only the gradient term. As a re-

sult, when the vortex lattice is commensurate with the corru-
gations the free energy is given by

F=-
[x + зеи(2со5(дг0) (M/d) - Я]2

(2.48)

The free energy has a minimum when the term
KuQ cos(qr0) Ac? /d has a maximum and the coefficient /?A

has a minimum. As is well known, /?A has a minimum for the
triangular lattice and the maximum of the term is equal to
T' — xu exp( — q2/4xH)kd/d, in which case all the vortices
are located at regions of minimum film thickness. If the field
is slightly displaced from the matching field, which is de-
fined by relation (2.16), the vortices remain in the regions of
minimum thickness, but the lattice is deformed and the coef-
ficient /9A increases.

As usual, the critical current is found from the condi-
tion that the maximum pinning force and the Lorentz force
be equal. In reduced coordinates this equality is expressed by

Ve-F+2<jc)xH = 0. (2.49)

The extra coefficient 2 in the second term is due to the use of
reduced coordinates. This condition gives the following val-
ue for the critical current

Qd
Г •> oll/Z
\(ж-Н)2 . т'2| , 3(зе-
[ 1 6 + 2\ + 4

3/2

(2.50)

This relation is valid for H = Bmn. When the critical current
is calculated for a magnetic field that is not far from these
values, edge effects are important, and taking them into ac-
count results in a larger critical current. The following sec-
tion analyzes this effect.

2.3.3. Dynamic Interaction of a vortex lattice with a
corrugated Him

In the motion of vortices, forces due to their viscous
motion act on those vortices in addition to the Lorentz force
and the pinning force. The equation of motion of the vortices
is derived from the condition of balance of these three forces.
For a sinusoidal variation of the film thickness this equation
is

r,drn/dt = Fn + qAe sin [Ч(г„ - r0) ], (2.51)

where щдгп /dt and Fn = j X Фо/c. This equation is like the
one for determining the phase difference of the order param-
eter in the resistive model of the Josephson junction (Section
2.2.1.). Moreover, the rate of change of the phase difference
in a superconductor is proportional to the vortex velocity;
that is, to find the voltage across the sample one must use an
equation analogous to (1.2b). Thus, Eq. (2.51) implies, for
example, that the I-V characteristic of a corrugated film in a
magnetic field must have the hyperbolic form characteristic
of a Josephson junction

<£(0>~('2-'2)'/2, (2-52)

where ( E ( t ) ) is the constant component of the electric field
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on the film. Its alternating component is given by the formu-
la

m=l

(2.53)

where u>, = 2irc{E )/AsBnk . If the film is placed in an elec-
tromagnetic field with a frequency ы, then, as in the case of
Josephson junctions, interference is observed between this
field and the intrinsic emission, and steps appear in the I-V
characteristics,69 located at

(2.54)

Since, as follows from formula (2.53), the intrinsic radiation
has a whole spectrum of harmonics in addition to the funda-
mental, subharmonic steps should be observed on the I-V
characteristics.

2.4. Vortex lattices incommensurate with the corrugations

2.4.1. Vortex lattice Incommensurate with the corrugations at
zero temperature

Interesting phenomena occur when the vortex lattice is
not commensurate with the corrugations. In this case the
object of the investigations is in many ways related to a lat-
tice of atoms in a periodic one-dimensional field. The behav-
ior of a vortex lattice in a thin film is governed by two factors:
its elasticity and its interaction with the periodic potential of
the corrugated film. Since the bulk modulus for a vortex
lattice in a thin film is infinite, the transverse shear strain of
the vortex lattice plays an important role in this case. For
this strain, the elasticity of the lattice is characterized by the
following force constant

Dt(k) = Kfi2, (2.55)

where K, — цф^/В and k = q — g. The elastic interaction
between vortices in a superconductor results in the forma-
tion of a regular triangular lattice. However, when the vor-
tex lattice and the corrugations are not commensurate, their
interaction causes a distortion of this lattice.

1) Я<//с2. Unlike the work of Martinoli,71 where the
discrete nature of the vortex lattice was of primary impor-
tance, in the work of Pokrovskii and Talapov77 and of Bur-
kov and Pokrovskii,78 the properties of a continuous strain
field were studied, neglecting the effect of thermal fluctu-
ations. The mismatch S is defined as

wnk

Burkov and Pokrovskii78 have shown that there are critical
values of the mismatch Scnk which separate regions of com-
mensurate and incommensurate phases. In the commensur-
ate phase the long-range order of the vortex lattice is main-
tained, but for S Ф 0 the unit cell is deformed. An example of
such a deformation in the case of magnetic fields close to Blo,
the fundamental matching field, is shown in Fig. 11. In the
incommensurate phase a soliton structure arises; this phase
has regions, large compared to the period of the vortex lat-
tice, in which the vortices are located in the troughs of the
corrugations, and these regions alternate with narrow
stripes (solitons) in which there are N + \ vortices in TV per-
iods of the substrate. The solitons are situated at an angle of

в<в

FIG. 11. Changes in the shape of the vortex lattice in the commensurate
phase for various values of the mismatch parameter (Ref. 72).

45° to the corrugations. Since in this case the energy of the
system is invariant under a translation of the lattice by an
arbitrary distance, the phase of the critical current in an in-
commensurate lattice is zero. In a real situation the defects
of the film and the corrugation create additional pinning
centers, so that the critical current in the incommensurate
phase does not go to zero.

To describe a system of Abrikosov vortices the follow-
ing Hamiltonian was used in these investigations

Я = J [0/2) (дх/дх - ду^/ду - 2<5)2

+ (и/2) (дх^/ду + дУ1/дх)2 + V(x{) ] dxdy, (2.56)

where л, andj>, are the components of the displacements of
the vortices from their equilibrium positions along they and
x axes in the commensurate phase, and the transport current
/is in the direction of the у axis. In the London case, (£0 <^AL

and Я<Яс2 ) the potential V(x\ ) can be written as

H

(2.57)

Since the bulk modulus of the vortex lattice is infinite, we
have дхг/дх + dyt/dy = 0. The commensurate phase in the
interior of the sample corresponds to the solution in which
all the vortices are located at the minima of the potential
V(xl) (see Fig. 11). However, in a narrow layer near the
boundaries of the sample the symmetry of the distribution
relative to the corrugations is broken. These vortices are dis-
placed from their equilibrium positions, and if the modula-
tion of the potential V(x,) is sufficiently small, that is, for a
shallow corrugation, the barrier that prevents the generation
of solitons vanishes. It is clear that in this case Eq. (2.26)
does not apply, and, because of the motion of the solitons a
voltage is generated that prevents the ordered motion of the
vortex lattice as a whole. The critical current is given by the
condition

" -
(2.58)

that is, the critical current is determined mainly by the shear
modulus. In corrugated films for H^Hc2 the shear modulus
is given by the expression

ft = 1.47-10-3(00Я
3)1/2С(вЬ/Я±), (2-59)

where С(а0/Д1 ) is a dimensionless function calculated in
Ref. 78. If floMlt then G = 4.2, and in the other limit
(where a0<AL ), G = a0/AL. Substituting this relation into
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Eq. (2.58) we can determine the dependence of the critical
field on the initial mismatch

.
In

min

(2.60)

A plot ofy'c (H), calculated from relation (2.60) for the re-
gion of the commensurate phase is shown in Fig. 12. As can
be seen, if the boundary phenomena are taken into consider-
ation we obtain a smooth variation of/. (H). If the creation
of solitons at the boundary between the commensurate and
incommensurate phases is not taken into account, that is, if
<5 = Scnk, one would observe a sharp falloff of the critical
current to zero. Another interesting phenomenon has been
predicted in Ref. 78. Near the maximum possible mismatch
<5ci calculated in this paper, one ought to see a region of
instability of the vortex lattice in the commensurate phase.
In a certain range of variation of the mismatch parameter
Sc < S < <5cl the commensurate phase is found to be metasta-
ble. Since jc = 0 in the incommensurate phase, the critical
current depends on the initial phase of the vortex lattice, that
is, hysteresis is possible.

2) Яс2 - H^H. The edge effect of matching also has a
large effect on the magnitude of the critical current in strong
magnetic fields.65 In Ref. 65 the same Hamiltonian was used
for the calculation, and the dependences of the critical cur-
rent on the magnetic field came out to be similar to the de-
pendences jc (H) for weak magnetic fields.

2.4.2. Mismatch of the vortex lattice with the corrugation at a
finite temperature

It is well known66 that in thin superconducting films
thermal fluctuations have a strong effect on the vortex lat-
tice, softening it, and even melting it near Tc. Therefore, in
corrugated films the behavior of a vortex lattice at finite tem-
peratures must be quite different from that at zero tempera-
ture. The transition from the incommensurate to the com-
mensurate phase of the vortex lattice at a finite temperature

has been studied in Ref. 72. Following this work, let us con-
sider the case of complete matching 5 = 0, which is particu-
larly simple. Under the action of thermal fluctuations the
vortices undergo Brownian motion about their zero-tem-
perature equilibrium positions. The equation of motion of a
vortex with the coordinates г„ can be written as

qAe sin(qru) + £ G (/-/') тц -
Г

(/*/')

= 0.

(2.61)

In this equation, two new terms appear in addition to the
usual terms describing the vortex lattice; these are G( / — / ' ) ,
the matrix of the elastic interaction between the vortices in
the lattice, and FL(t), the Langevin force, which satisfies the
relation

- f). (2.62)

Equation (2.62) is solved by the usual procedure of trans
forming to k-space:

- <»0 We», (2.63)

where ru (со) are the amplitudes of the normal modes and
ekp are unit vectors for the longitudinal (p = /) and the
transverse (p = t) strains in the vortex lattice. Linearizing
equation (2.61 ) and taking into account only the transverse
modes of oscillation of the vortex lattice, we obtain

(2.64)
D,kt

where Dk, is an element of the diagonalized matrix of the
elastic interactions related to the transverse modes of oscilla-
tion of the vortex lattice, and Fj_kt (ca)is the transverse Four-
ier component of the Langevin force. The fluctuation-in-
duced motion of the vortices about the equilibrium positions
causes a decrease in the effective value of the periodic pin-
ning potential (AeR), which in turn causes the matching of
the vortex lattice with the corrugations when <5^0. The de-
crease A£R causes a logarithmic increase in the mean square
deviation of the vortices from their equilibrium positions.
The temperature dependence of A£R has been calculated in
Ref. 72. In the case of a shallow corrugation, where

(2.65)

where Tlu is the temperature of the phase transition of the
vortex lattice from the commensurate to the incommensu-
rate phase. Its value at В = В,0 is given by

r/u = rc (1-0.31-Sj-), (2.66)

FIG. 12. Curve of jc (H) for the commensurate phase near
Д,,, (Ref. 78).

where Ra is the resistance per square of the film. Close to the
phase transition, that is, for Г-» Tla, the effective potential
tends to zero and the vortex lattice becomes unstable.

For an experimental check of these results Martinoli et
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TABLE II.

Film

Ail
AI2

d,A

200
200

M/d

-0.2
-0.2

A g ,/um

0.79
0.77

* 0 . n

15
35

тс,к

1,89
2,16

CS,0"VA

365
223

\(0)^)'/г,А

4300
6140

a/.72 have studied the function /c (Г) for corrugated alumi-
num films at temperatures close to the critical temperature.
The samples were prepared by holographic photolithogra-
phy. Their characteristic dimensions are listed in Table II.
Since the critical current depends on the effective pinning
potential (2.65), for Б = Blo and the usual sinusoidal corru-
gation (2.18) the following formula can be used for the tem-
perature dependence of the critical current:

(2.67)

For comparison, if the interaction of the thermal fluctu-
ations is neglected, then we obtain the usual dependence

(2.68)

It follows from formula (2.68) that with an increase in the
temperature T-> Tlu the smearing of the pinning potential by
the thermal fluctuations causes a sharp decrease in the criti-
cal current /с,т (T) to zero. The experimental curve of
Ic,m(T) obtained by these workers (Fig. 13) supports the
correctness of this formula. The solid lines on this figure
show the curves given by expression (2.67), and the dashed
lines represent the function (2.68). The agreement between
theory and experiment confirms the validity of this method
of taking into account the effect of fluctuations on the vortex
lattice in corrugated superconducting films.

10-'
(VT)/TC

superconducting film at В = B,0 I
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2.5. Chains of channels in superconducting films

An interesting method of using superconducting micro-
structures for the study of the mixed state has been applied in
Ref. 79. This paper studied superconducting two-layer films
containing a chain of narrow channels with weak pinning.
Figure 14 shows schematically these structures (Fig. 14a is a
view from the top and 14b is the transverse cross section).
These structures consist of NbN layers separated by narrow
channels of Nbo.66Ge0.34. Because of their granularity, the
NbN films contain a very large number of elementary pin-
ning forces. In amorphous Nb066Ge0.34 films, on the other
hand, the pinning forces are small. This chain contained 200
individual channels. To avoid bending of the vortex fila-
ments fairly thin layers of superconductor were used. Since
vortices passing through the NbN layers are strongly
pinned, the dynamic resistance of the samples in the mixed
state studied in this investigation was governed by the mo-
tion of vortices in the Nb066Ge034 channels. Because the
critical current of the samples is determined by the interac-
tion of the vortices in the channels with the immobile vorti-
ces passing through the NbN layers, one can expect that the
motion of the vortices in all the channels commences simul-
taneously. Using these structures allowed Pruijboom eta I.79

to measure the resistivity of the samples in the mixed state as
a function of the external magnetic field. The investigations
showed that the bulk pinning force in these structures obeys
the following relation

Py = Q.Q94j*/wc, (2.69)

where wc is the width of the Nb0.66 Ge0 34 channel. The curve
obtained is close to the theoretical one calculated in Refs. 80
and 81 on the assumption of collective pinning.

The coherent motion of Abrikosov vortices at a high
velocity in wide and relatively short bridge contacts suggests

S5 nm 10pm

I liHil —

FIG. 14. a) View from the top of the two-layer structure from Ref. 79; b)
transverse cross section of the same structure.
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the possibility of the same motion of the entire collection of
vortices in corrugated superconductor films. When the
transport current flows perpendicularly to the corrugations
these films can be represented as a chain of series-connected
wide bridge contacts of variable thickness. In these struc-
tures all the vortices in a chain must move. Moreover, the
interaction of the vortices in adjacent chains can result in an
ordered motion of all the vortices. This idea was advanced in
Ref. 82, and has been confirmed experimentally. The corru-
gated tin films used in this work were prepared by electron-
beam lithography with the use of a positive resist and subse-
quent plasma-chemical etching of the previously deposited
tin film. The film thickness was from 1000 to 2000 A. The
region containing the corrugations was prepared in the form
of bridges, whose length and width were 10/urn. This work
studied the nature of the action of microwave radiation on
these structures. Figure 15 shows I-V characteristics in a
microwave field of the same power but with different mag-
netic fields. As can be seen from this figure, in fields close to
the matching field, that is for В = Bto, the I-V characteris-
tics of the contacts have stepped features at the voltages

= 5nttco/e. (2.70)

The existence of current steps is evidence for the synchro-
nous motion of the vortices over the entire contact; that is,
ordered motion is obtained in all 10 rows of vortices. For the
formation of the nth current step on an I-V characteristic it
is necessary that the frequency at which the vortices enter
the film be equal to пы/2-гг. In a time equal to the period of
the radiation the vortex lattice must shift by a distance
2/tg/-/3~, so that the velocity of the vortices reaches at least
3-105cm/s.

This idea may prove to be helpful for the purpose of
developing generators of electromagnetic radiation based on
superconducting structures. Figure 16, taken from Ref. 83,
shows schematically a structure of this type. The supercon-
ducting film has a double corrugation of the same period.
The superconducting film has a double corrugation of the
same period. The transverse dark lines correspond to the
deeper grooves, and the other lines, arranged at an angle of
60° to the former, are the shallower grooves. If a current

'S

FIG. 16. Thin film structure with a double corrugation in a magnetic field
(Ref. 83).

greater than the critical current passes through this film then
the Abrikosov vortices in a field equal to Bm will move along
the deep grooves. In the special case where the shallower
grooves have a sinusoidal profile an electric field with a
strength given by relation (2.53) should be set up in the
sample. To decrease the effect of randomly situated pinning
centers it is better to make the transverse channels of a nor-
mal metal. In this case the superconductivity in the structure
is maintained by the proximity effect.

2.6. Films with an ordered lattice of holes

This section will deal with the interaction of a vortex
lattice with another periodic thin-film structure, a triangular
lattice of holes. This problem was first addressed in a paper
by Fiory, Hebard, and Somekh.84 The lattice of holes was
prepared by electron lithography. The thin film structure
had the following parameters: hole diameter 0.5 /an, spacing
between holes 3 /urn, and thickness of superconducting film
0.1 jiim. As usual, the films used were of granular aluminum,
deposited in an oxygen atmosphere. The critical current was
observed to depend nonmonotonically on the magnetic field
(Fig. 17). The more pronounced peaks on the curve of /c (B)
were observed at В = nBm, where the matching field Bm is
found from the usual geometric considerations:

10 20

FIG. 15. I-V characteristics of corrugated superconducting films in a
microwave field of frequency 800 MHz, with the same power for the
curves but different magnetic fields (in Gauss):/) \~I;2) 17.4;5) 17.8; 4)
18; 5) 18.2; 6) 18.6 (Ref. 82).

1:1.500K
2-1.700
3-1.780
4-f.SOO

FIG. 17. Critical current in a film with a lattice of holes as a function of the
magnetic field for various temperatures (Ref. 84).
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where ab is the spacing between the holes. The authors as-
sumed that in the film containing the holes a magnetic field
equal to a multiple of Bm forms a coupled bunch of л vortices
near each hole. The interaction potential between the vorti-
ces and a cylindrical hole of radius rh has been determined in
Ref. 85 and is given by

It can be seen that these holes can be effective pinning
centers in superconducting films.

There are two possible ways of explaining this phenom-
enon. In the first, it is assumed that the holes are shallow,
that is, the pinning force is small compared to the elastic
forces of the vortex lattice. In this case one can use the results
of Martinoli7' for the explanation of similar curves in the
case of corrugated films. When the vortex lattice matches
the lattice of inhomogeneities in the film there is a minimum
in the free energy, which also leads to a maximum in the
curve of /c (B).

An interesting approach to the analysis of /c (B) in
these structures has been proposed by Blamire.86 He regard-
ed the holes as having a fairly high pinning potential com-
pared to the elastic interaction of the vortices. Figure 18
shows the occupation of the holes by vortices in two cases: a)
В is slightly larger than Bm; b) В is slightly less than 2Bm. In
the former case a single vortex is found in almost every hole,
but there are a small number of holes (Fig. 18a) which con-
tain one additional vortex. In the latter case, conversely, al-
most all the holes contain just two vortices, while a small
number of them contain only one (Fig. 18b). An analysis of
the forces87'88 shows that the extra vortices (case a) or the
vortices located near a vacancy (case b) are acted on by an
additional force approximately equal to the force of repul-
sion of the vortices (case a) either in the holes or located
nearby (case b). Therefore, these extra or deficient vortices
can more easily than the rest of the vortices move under the
action of the Lorentz force. It is clear that the voltage across
the sample is given by

V=N^0(v)lm, (2.73)

where Nv = \B — nBm \/ф0 defines the degree of mismatch
between the vortex lattice and the hole lattice, и is an integer,
and ( v ) is the average velocity of the vortices. Since the Lor-
entz force on a vortex is proportional to the current, the

velocity (v) increases monotonically with the current. Ex-
perimentally, the critical current is defined as that value of
the transport current passing through the sample for which
the voltage across the sample attains a certain small value,
near nBm, where a small number of excess or deficient vorti-
ces are present in the film, it is necessary that a large current
pass through the bridge to cause these vortices to move suffi-
ciently fast, according to relation (2.73). At this field a peak
should appear on the curve of Ic (B), and a graph of the
current at which the vortices can leave the potential wells of
the holes and start moving, plotted as a function of the mag-
netic field, exhibits steps: the current falls off smoothly as the
magnetic field increases, and then for B^nBm it has a sharp
dropoff. This behavior occurs because it is easier to set into
motion the excess vortices than the deficient vortices when
the vortex lattice and the hole lattice are perfectly matched.
On the basis of these arguments, Blamire86 calculated IC(B),
the curve of which is shown in Fig. 19. It can be seen that
there is good agreement between this theoretical curve and
the experimental curve obtained by Fiory and his cowork-
ers.84

Fiory et a/.84 used granular aluminum films in which
the pinning is extremely weak. The work reported in Refs. 89
and 90 was focused on the influence of lattice matching in
porous films with rather strong pinning. The lattice of holes
was prepared by means of electron beam lithography with a
positive resist and plasmachemical etching of the previously
deposited tin film. The film thickness ranged from 300 to

2000 A. The unit cell was an isosceles triangle with a height
and base of length either 0.8 or 1.0 fim. The tin films that
were used had a critical current and a pinning force consid-
erably larger than in the granular aluminum films. In these
experiments a shift was observed in the peaks as functions of
nBm, where the position of the peaks depended on the way
the magnetic field varied. In an increasing magnetic field the
peaks shifted towards lower magnetic fields relative to nBm,
and, conversely, in a decreasing magnetic field they shifted
towards higher fields. The amount of the shift increased with
a reduction in the temperature and in the integer n. If the
sample was heated above Tc prior to each measurement,
then the peaks were observed near nBm (Fig. 20). This be-
havior was explained by invoking the magnetic field gradient
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FIG. 18. Schematic representations of two cases of quantized vortices
filling a film with a hole lattice, a) Extra vortex in a lattice of holes each
filled with just one vortex; b) a vortex vacancy in the lattice of holes, each
containing two vortices (Ref. 86).

FIG. 19. Variation of the critical current determined for a constant vol-
tage level, calculated in Ref. 86.
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FIG. 20. Dependence of the critical current on the external magnetic field
strength for a lattice of superconducting thin-film holes at Т — 3.33 К. /)
Increasing field; 2) decreasing field; 3) variation of the field with the
sample temperature above Tc (Ref. 90).

that arises in the plane of a sample with strong pinning
centers. In an increasing magnetic field the vortex density at
the edges of the film is greater than in the center, and conver-
sely, in a decreasing field the density at the edges is smaller.
Because of this gradient the vortices move as required to
establish the equilibrium mixed state. Since the current den-
sity in wide films is higher at the edges that in the center, the
critical current is determined mainly by the interaction of
the vortices with the pinning centers at the edges of the film.
If the vortex lattice at the edges of the film matches the hole
lattice a peak should appear on the curve of/c (B), a conclu-
sion which also explains the observed hysteresis in IC(B).
The interaction of the vortices with the pinning centers falls
off with increasing temperature, which should lead to a de-
crease in the hysteresis. In addition, the mutual repulsion of
the vortices also reduces this interaction as и increases, so
that the shifts in the peak positions should also be reduced.
In this way, the magnetic field gradient can prevent match-
ing of the vortex lattice with the hole lattice. This matching
should be observed if the sample is cooled in the magnetic
field.

Measurements have also been carried out90'91 on the
temperature dependence of the upper critical field of super-
conducting films with a lattice of microscopic holes. An ex-
ample of such a dependence is shown in Fig. 21. This figure

shows that this dependence differs considerably from the
straight line H1

Л ~ Т — Tc valid for ordinary superconduct-
ing films. Structure appears on the background of a square
root dependence Я £2 ~ (Т — Tc)°-5 when the magnetic field
is a multiple of the matching field Bm. This structure appears
because the superconducting order parameter is suppressed
by the magnetic field to a lesser extent than when the vortex
centers are situated in the holes, i.e., when В = nBm. The
square root dependence of the upper critical field is charac-
teristic of the upper critical field in the parallel direction for
thin films [d<g(T)]. Therefore, the square root depend-
ence Hc2 ~(T- Tc )

05 is evidence that the hole walls are
much thinner than the coherence length.

Measurement of the critical current in a static magnetic
field В = Вт provides information on the elementary pin-
ning forces. It has been observed90 that when В = Вт the
dependence of the critical field on the temperature far from
Гс, where ,f (D<2rh, goes as/С(Г)~(Г- rc)

1 5.As7; is
approached there is a sharp decrease in Ic. This type of be-
havior is easy to explain: If the hole diameter in the film is
greater than the coherence length, then the relation
/p zzgHl/% ~ (Г - Гс)' 5 holds for the elementary pinning
force, which determines the critical field.

An interesting problem of superconductor microelec-
tronics is the development of memory cells based on Abriko-
sov vortices. In any cell based on such a film there must be
two stable states: with and without a vortex. The speed of the
vortices in these structures and the energy released in this
motion determine the speed of information processing and
the packing density of the elements. Desirable materials for
memory cells are films with the highest possible vortex ve-
locity and the lowest possible coefficient of viscosity. Possi-
ble schemes of generating single vortices and detecting them
have been published in Ref. 92. Furthermore, for the oper-
ation of these devices it is necessary to have films with little
random pinning.

A model of a memory based on a superconducting film
with a hole lattice has been proposed by Hebard and Fiory.93

An important element of this scheme is a system of narrow
films that control the arrangement of the vortices. A sketch
of this structure and a cross section in one of the directions
are shown in Figs. 22 and 23. The external magnetic field
applied to this structure is determined by the condition, Eq.

H, Oe

90

80

70

60

SO

W

30

го

10

0

'\
зв„

v
2Bm

..'Л

FIG. 21. Temperature dependence of the upper critical magnetic field
of a 600 A tin film with a hole lattice (Ref. 90).
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structures is the subject of a review by Jin and Ketterson.94

The most interesting effect along these lines is the two-di-
mensional (2D) to three-dimensional (3D) transition. This
transition involves the following. If the period As of the
layered structure is not much greater than the coherence
length £z (0) in the direction perpendicular to the layers,
then there is a temperature T' such that if T' < Т< Tc, then
£z (T) >AS, while if T< T', then £z (T) <A S . Near Гс the
parallel critical magnetic field varies linearly with the tem-
perature H^2(T)~TC — T; that is, the layered structure be-
haves as a three-dimensional superconductor. At low tem-
peratures, where T< T', the parallel critical field obeys a
square root dependence

-~(ТС-Г) 1/2
(3.1)

FIG. 22. Memory cell based on a superconducting film with a hole lattice
(Ref. 93).

(2.71), of matching the vortex lattice with the hole lattice.
The processing of information is accomplished by the mo-
tion of the vortices into positions above the holes in the films.
The main elements of this structure are the Josephson junc-
tions with the electrodes J1 and J2. These junctions are locat-
ed above the holes. Above each junction there is a pair of
insulated superconducting films S1 and S2. To write a unit of
information in any cell it is necessary to move a vortex from
location A to location B. This is done by passing a current
pulse simultaneously through films SI and S2. The expected
switching time for a contact with a small capacitance should
be of the order of 10 ~ 1 2 s. The energy dissipated in a switch-
ing cycle depends on the critical current of the Josephson
junctions and may be of the order of 5 • 10 ~1 0 ergs.

3. PINNING IN LAYERED SUPERCONDUCTING STRUCTURES

3.1. Introduction

In layered superconducting structures the supercon-
ductor layers alternate with other layers, either of another
superconductor (S/S'), a normal (non-superconducting)
metal (S/N), a semiconductor (S/s), or an insulator (S/I).
The study of the equilibrium properties of artificial layered

FIG. 23. Transverse view of Fig. 22. V(A) and V(B) show the two equiva-
lent positions of the quantized vortex in the structure, corresponding to
"0"and"l" (Ref. 93).

which is characteristic of thin [d^( T) ] superconducting
films.95 This phenomenon is due to deformations of the vor-
tex core in layered superconductors, for which the cross sec-
tion is determined by two quantities |"z ( T ) and £( T). For
small £z ( T ) the vortices can be located in the space between
the superconducting layers, and consequently they no longer
contribute to the depairing of the superconducting current
carriers. In this case the vortices are similar to Josephson
vortices.

Since the discovery of the high-rc superconductors
there has been renewed interest in the effect of fluctuations
on the properties of layered superconductors. As is known,96

in a purely two-dimensional superconductor the fluctu-
ations in the phase destroy the long-range order, which is
restored when there is even a very small coupling between
the layers.97 A magnetic field parallel to the layers by weak-
ening the interaction between them, increases the role of the
fluctuations. In this process an important role is played by
the details of the vortex structure in the layered supercon-
ductors. In the case of a large anisotropy, when £z ( T ) is
small, the thermal fluctuations easily destabilize the vortex
lattice, and the kinks that are formed in the vortices because
of their tendency to be located between the layers destroys
the long-range order of the vortex lattice even in a perpendic-
ular external magnetic field.98 In the case of strong thermal
fluctuations the formation of new vortices is possible in the
individual layers (this is the well-known Kosterlitz-Thou-
less mechanism) and vortex rings (fluxons) can form in the
interlayers between the layers. In principle, these fluxons
must weaken the interaction between the superconducting
layers. The appearance of two-dimensional superconductiv-
ity in this case prevents the fluctuation-induced formation of
vortices in these layers. It has been shown99'100 that the tem-
perature at which the two-dimensional superconductivity is
destroyed in layered superconductors as a result of this pro-
cess is usually above the 3D-2D transition. Nevertheless,
the formation of fluxons has a large effect on H JJ2 (7") (Ref.
100), leading to the formation of a series of step-like struc-
tures in it. The magnetic field, penetrating between the su-
perconducting layers, splits them into groups because of the
matching effect and weakens the interaction between these
groups. As a consequence, 2D superconductivity can arise in
these groups of layers. In the range of magnetic fields given
by the condition и(Я)<8, where n is the number of super-

831 Sov. Phys. Usp. 35 (10), October 1992 A. N. Lykov 831



conducting layers in the 2D layer (this number, of course,
increases with decreasing magnetic field), structure appears
because of the fluctuation-induced generation of vortices.
This is a consequence of the fact that in strong magnetic
fields the temperature at which the two-dimensional super-
conductivity is destroyed is above the temperature of the
3D-2D transition. The presence of the structure on the
curve of H JJ2 ( T ) in the range of magnetic fields defined by
the condition nc <«(//) <9 is related to the formation of the
2D phase, where the upper limit to the number of layers ис

separating the fluxon chains is determined by the tempera-
ture at which the superconductivity is destroyed by the
fluxon mechanism. A test of this hypothesis requires layered
structures having thin superconducting layers (~10 A)
with a relatively large distance between them.

On the other hand, the study of the mixed state and
pinning in layered superconducting structures has not as yet
received adequate attention. For randomly distributed inho-
mogeneities the procedure for finding the bulk pinning force
Pv depends on the magnetic field strength and the type, the
size, and the density of the defects. The problem is compli-
cated by the large density of vortices in ordinary magnetic
fields. For example, for В = 1Т there are 5 • 10'° vortices per
cm2. In this context, the ordered superconducting micro-
structures are a suitable object of investigation. To simplify
the procedure of summing up the elementary pinning forces,
/p, one should have strict periodicity in the properties of
these structures in space. As mentioned above, in the case of
matching of the vortex lattice with the defect lattice one can
neglect the elastic properties of the vortex lattice, so that the
bulk pinning force is determined by a simple summation of
the elementary pinning forces;

Pv = kBf/фо, (3.2)

where k is the number of pinning centers in the superconduc-
tor per unit length of the vortex filament. At the same time,
for the bulk pinning force the following simple expression is
valid1

= JcxB' (З.За)

and allows one easily to find Pv experimentally. Usually, the
transport current flows perpendicularly to the magnetic
field, and thus the vector equation (З.За) becomes a scalar
equation

p

v=Jc

B- (3.3b)

It follows from relation (3.2), therefore, that in the case
of matching of the vortex lattice with the ordered defect lat-
tice the elementary pinning force can be determined experi-
mentally. Such experiments are important, since there are a
large number of problems involved with pinning, especially
if one has in mind not simply qualitative dependences and
effects, but quantitative ones. The use of superconductors
with an ordered lattice of inhomogeneities therefore permits
a deeper study of pinning.

Unlike planar structures, where the dimensions are
presently limited to ~ 103 A, it is possible by layer-by-layer
deposition to prepare superconducting structures with a pe-
riod of ~ 10 A and even less. Moreover, these structures are
of interest from the applied point of view. For example, as
follows from relation (3.1), the parallel critical magnetic

field H |2 in them may be considerably higher than the upper
critical field in bulk superconductors.

3.2. Experiment

The first studies of pinning in layered superconducting
structures were by Raffy and his coworkers,102'104 using
layered films based on a Pb-Bi alloy. The films were pre-
pared by deposition in a vacuum from separate sources with
two electron guns. The deposition rate of the Pb was main-
tained constant and that of the Bi was varied sinusoidally in
time. The resulting concentration of Bi (Cimp) in the films
varied in thickness along the x axis also sinusoidally with a
period of from 700 to 8000 A:

cimp(r) = C«j[l + rsinCbw)*,-11- (3.4)

The critical current that flows along the layers decreases
monotonically in the direction perpendicular to the layers
with increasing magnetic field. It is a completely different
situation in a parallel field. Figure 24 shows the curves of the
critical current as a function of the magnetic field for sam-
ples with different modulation amplitudes Г but with the
same period As = 2000 A. The most important feature in
comparison with a homogeneous sample obtained by anneal-
ing the layered sample is that the critical current is consider-
ably higher in layered samples, and it increases with the
modulation amplitude. Moreover the function Jc (H) has a
maximum whose position depends mainly on the modula-
tion period and on the temperature. As the modulation peri-
od decreases, the maximum in Jc (H) shifts towards higher
fields. Its position is not determined by the matching field,
i.e., it is not equal to Blo, where the matching field for
layered samples is determined by the usual geometric rela-
tion similar to (2.16) for corrugated structures. Instead of
the period of the corrugated structures Я„ one must use the
period of the layered structures.103 In addition, as the tem-
perature is increased the maximum shifts towards lower
fields, and beginning with the temperature at which the co-

f.-ro'f A/cm2

Н, kOe

FIG. 24. Jc (H) for layered samples with different amplitudes of modula-
tion of the Bi impurity concentration, with the modulation period 2000 A;
Ref. 102. 7) Annealed sample; 2) Homogeneous sample.
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herence length is equal to the half period of the layered struc-
ture it vanishes.104 This behavior is evidence for the core
mechanism of elementary pinning in these structures.

Some recent publications have dealt with the experi-
mental investigation of the pinning force in layered struc-
tures. 105~"2 Unlike the work of Raffy and his coworkers, a
great deal of attention was paid in these studies to structures
based on refractory metals and their compounds, with a ten-
dency to use interlayers that would be effective pinning
centers. The most interesting of the results obtained are dis-
cussed below.

Broussard and Geballe105 studied Nb-Ta layered struc-
tures. The samples were prepared by magnetron deposition.
They used two targets, niobium and tantalum, separated in
space. The sapphire substrate was heated during the depo-
sition. Two sets of these structures were studied. In one,
identical and fairly thick titanium interlayers (500 A) were
used, with the thickness of the niobium layers varying from
98 to 490 A. The second set of samples, all had the same ratio
of the thickness of the individual niobium and tantalum lay-
ers, but different periods A s . The most interesting result of
this work was the lack of scaling of the pinning force with a
change in the operating temperature. A similar phenomenon
has been observed by Raffy and his coworkers. '°4

Vermeer et al.106 have studied the angular dependence
of the critical current of the layered structures Mo/V and
Nb/Pd, with Jc being determined by the magnetic moment,
which in turn was determined by measurements of the
torque N,. This method is based on the dependence on the
critical current of the gradient of the magnetic induction of
the field captured by the superconducting sample. This criti-
cal current density is given by the relation

(3.5)

where в is the angle between the direction of the magnetic
field and the sample surface, and Fs and /?s are the volume
and radius of the sample. The samples were prepared by
magnetron deposition in an ultrahigh vacuum apparatus.
The Nb and Pd layers were of equal thickness, 170 A. The
Mo/V samples had a more complicated structure; each peri-
od consisted of two V layers 196 A thick separated by a
thinner 101-A V layer, and each of these layers was covered
by a thin (50 A) molybdenum interlayer. A large anisotropy
of the pinning force was observed: F^p/Fp = 30 at В = 0.15
Т.

Interesting results were obtained in a study of Nb/NbTi
layered structures.107 The period of the layered structure of
the samples was 500 A. In this investigation Antognazza et
al. used measurements of /c (H,T) to obtain additional in-
formation on the magnetic phase transition. In the work of
Takahashi and Tachiki"3 it was predicted that Н\г (Т) for
layered samples consisting of alternating layers with identi-
cal critical temperatures but with different diffusion coeffi-
cients should have a sharp break at a certain temperature T*.
This break in the curve of H\2(T) arises because when
T<T* the wave function of the superconducting current
carriers is localized in the layers with the smaller diffusion
coefficient, which contains, for example, a larger number of
impurities, while for T> Т * it is localized in the layers with
the larger diffusion coefficient. As a consequence, \ЭН\2дТ \
is considerably smaller at high temperatures than at low

temperatures. This behavior of H Ц2 ( Т ) has been observed in
layered structures.'u In the work of Antognazza et al.107 it
was found that the shift of the nucleation of the supercon-
ducting phase from the dirty to the clean layers produces
structure on the curve of /c (7") in a field parallel to the lay-
ers. Figure 25 shows examples of these curves for various
temperatures. The critical current was determined from the
I-V characteristics. When the temperature is above T* su-
perconductivity appears only in the niobium layers and the
curve of Ic (H) has no structure. At low temperatures a
break appears in this curve at H = 30.5 kG. This is consis-
tent with the nature of the dependence ЯЦ2 ( T ) , which also
was determined in that investigation. At T = 4.3 К a break
appeared in the diagram just at Я = 30.5 kG. For H < 30.5
kG the maximum of the order parameter lay in the niobium
layers and at high fields in the NbTi layers.

To obtain more effective pinning centers, Yetter et al.108

used thin (20 A) interlayers of the antiferromagnetic metal
chromium. The superconducting layers were of a Pb-18 A Bi
alloy. The effectiveness of these antiferromagnetic interlay-
ers is due to the fact that they suppress the order parameter
in the superconducting layers to a depth of ~g(T). The
strong effect of these interlayers, however, requires that
rather thick Pb-18 A Bi layers be used in order to retain the
superconductivity, and this limits the range in which these
structures can be studied. In those experiments the samples
were prepared by alternate deposition of the alloy and chro-
mium, with the Pb-18 A Bi layers deposited thermally and
the chromium layers with the use of an electron gun. To
decrease the effect of surface pinning, thicker, 300 A Cr lay-
ers were deposited at the beginning and at the end of the
deposition of the superconducting structure. Figure 26
shows the bulk pinning force as a function of the magnetic
field in parallel and perpendicular fields. This figure shows a
large anisotropy: Fp{\ >Fpi.

In a perpendicular field the pinning force is governed by
the interaction of the vortices with the boundaries of the
granules. Calculation of the elementary pinning forces and
the summation of these forces to determine the bulk pinning
force are difficult in this case. The situation is considerably
simplified for the calculation of these forces in a parallel
field. It is known1 1 5 that near the boundary separating the
antiferromagnetic and the superconducting films the super-
conducting order parameter falls to zero and the thermody-
namic critical magnetic field varies in this region as

ДЯС/ЯС = (3-6)

30'\
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FIG. 25. Critical current as a function of the parallel magnetic field for a
sample with Л, = 500 A (Ref. 107).
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FIG. 26. Perpendicular and parallel pinning forces as functions of the
magnetic field for a layered Pb-Bi/Cr sample; total sample thickness 9 100
A, II layers (Ref. 1 08).

where x is the distance from the granule. Figure 27 shows
schematically an example of ДЯС/ЯС for the layered struc-
ture Cr/Pb-Bi. It follows from formula (3.6) that in the case
of thin (fif<|") superconducting interlayers the order param-
eter decreases on the average (Fig. 27b). The variation of the
modulus of the order parameter in the direction of the x axis
results in the generation of pinning centers. A formula was
found108 for the determination of the elementary pinning
force

/n
(3.7)

where g, is the shortest reciprocal lattice vector of the vortex
lattice and 77, is the Fourier transform of the function
( - ДЯС/ЯС). It follows from formula (3.7) that/p ^200
N/m2, which is close to its experimental value.

Confirmation of the strong suppression of the super-
conducting order parameter by antiferromagnetic interlay-
ers is another result obtained in Ref. 108. In a parallel field
and for sufficiently thick superconducting layers the pinning
force increased with decreasing thickness, i.e., with increas-

-50nm 50 nm

FIG. 27. Schematic representation of the variation of Hc:a) near a single
chromium layer and b) for a layered structure (Ref. 108).

ing density of pinning centers. However, at d~ 3£ an abrupt,
approximately severalfold decrease was observed, which
demonstrated, in agreement with formula (3.6) and Fig. 27,
the ineffectiveness of the pinning centers when they are sepa-
rated by a distance less than or of the order of the coherence
length.

The layered structures of the S/s and S/I type, used in
the work reported in Refs. 109-112 have important advan-
tages from this point of view. First, these interlayers, par-
ticularly the oxides, have little effect on the order parameter
in the superconducting layers. Therefore, the period of such
a structure can be made very short, down to tens of ang-
stroms. Second, in these interlayers the order parameter
tends to zero, and as a consequence these interlayers must be
effective vortex pinning centers. A number of interesting re-
sults have been obtained for structures of this sort. For ex-
ample, Murduck et al.109 have studied the layered structure
NbN/AIN, prepared by dc reactive magnetron sputtering.
The thickness of the insulating A1N layers was 20 A, and
that of the NbN layers was in the range from 30 to 350 A.
The samples used contained 30 layers of NbN and 31 layers
of A1N. It was observed that, as in Ref. 106, the pinning force
in a parallel field and the anisotropy (the ratio /Сц//с 1) in-
creased with decreasing thickness of the superconducting
layers. This means that pinning occurs at the boundaries of
the layers. The critical current density for these samples in a
parallel magnetic field was 105 A/cm2 at В = 21 Т.

Kadin and his coworkers"0 studied the current-carry-
ing capacity of layered structures formed by layers of refrac-
tory metals (Nb,Mo, W) and semiconductors (Si,Ge).The
structures were prepared by rf magnetron sputtering. The
layer thickness for the various samples varied from a few
angstroms to 50 A, and the number of layers from 20 to 400.
In these samples in a magnetic field parallel to the layers, the
critical current was found to be anisotropic relative to the
direction of the magnetic field. This anisotropy was observed
even in the case of layers much thinner than the coherence
length (one of the samples had 7 A niobium layers and 8 A
silicon layers). Those investigators attributed the observed
effect to the fact that the metal interface with the semicon-
ductor and the semiconductor interface with the metal have
different properties, which can result in a difference in the
forces of interaction between the vortices and these inter-
faces.

Pinning in S/I layered structures has also been studied
in Refs. I l l and 112. For these experiments Nb-NbO.,
structures were used. The niobium layers were deposited by
dc magnetron sputtering to a thickness in the range 300 to
1000 A. The oxide interlayers were formed by oxidation of
the niobium layers. The results of these investigations were
in agreement with the theoretical concept of two pinning
mechanisms. In layered structures with a long period, where
Hc2 (7*) >510, the critical current in the strong fields is de-
termined by shear deformation in the vortex lattice. As both
the period of the layer and the magnetic field strength are
reduced the lattice is disrupted, the vortices enter a regime of
fluid flow, and the bulk pinning force is determined by the
direct summation of the elementary pinning forces in the
oxide layers. Evidence for this picture comes from the way in
which the bulk pinning force varies as a function of the mag-
netic field and of the interlay er thickness, and from the mag-
nitude of this force. The pinning force for the case
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Яс2(Л>510 in strong fields is close in form to
Pv (A) ~ (I — h)2, which is characteristic of pinning deter-
mined by shear deformation. To this situation corresponds
the fact that the oxide layer interacts with only a small num-
ber of the vortices. For example, in the case of samples with
d = 900 A in a parallel field close to Я |2 (Т = 4.2 К), if it is
assumed that the vortex lattice is thereby only slightly dis-
torted, then only a quarter of the vortices are found to inter-
act with the interfaces between the layers. In the case of
samples with long periods, when Hc2(T) >510, the critical
current Jc (H) at low temperatures is close to that derived by
Raffy et al.102-104 In addition to a peak in /c (Л, whose posi-
tion depends mainly on the temperature, the bulk pinning
force has a peak at the matching field at В = B10. Thus, the
matching effect can appear in layered structures with an ef-
fective modulation of the order parameter. Another form of
behavior of the pinning force has been observed for samples
with a short period, with Яс2(Г)сб10. In this case
/*v (h)~h(I — A), which is characteristic of the direct sum-
mation of the elementary pinning forces. It has been ob-
served"2 that the temperature scaling behavior for these
structures breaks down (Fig. 28) because the upper critical
magnetic field varies with the temperature. Here, with a
variation only in the temperature it is possible to go from a
high density of pinning centers to the limit of a low density, a
result that also explains qualitatively the change in the form
ofPv(h). The unimportant role of surface pinning in these
structures can be explained by the irregularity of their sur-
faces, which makes it easy for vortices to penetrate into the
interior of the sample.

In layered samples with thin superconducting interlay-
ers it is easy to carry out the summation over the elementary
pinning forces if the elastic interaction between the vortices
is neglected. Assuming that the elementary pinning force is
due to the change in the amplitude of the order parameter at
the superconductor/insulator interface we find

- h), (3.8)

where dn is the thickness of the insulating interlayer. The
factor (1 — A ) in this formula comes from the decrease in
the energy of condensation in a magnetic field. This form of
behavior is possible if the elementary pinning forces exceed
the elastic interaction between the vortices in the lattice. It
was found that in accord with expression (3.8) the tempera-

a.e 1,0

FIG. 28. Normalized dependence of the pinning force on the reduced
parallel magnetic field for a Nb-NbO structure with Я, = 600 A. 1—
T= 4.18 К, Я[!2 = 18 kOe, Рт„ = 8.7-10* N/m3; 2— T= 4.8 К, Н\г

= 11.4 kOe, Pmm = 1.3-10" N/m'; 3—T= 5.4 К, Я«2 = 5.5 kOe, Pmalc

= 2-107 N/m'. The solid line shows P(h)~h(\ - h) (Ref. 112).

ture dependence of the critical current /c ( T ) with h constant
for samples with a short-period layered structure is close in
form to /c (T) ~ (Гс - T)2, where Tc is the critical tempera-
ture of the sample.

3.3. Theory

The experiments of Raffy et al. stimulated a number of
theoretical papers.75'116Л 17 Among these papers the work of
Ami and Maki75 should especially be noted. There, the Ginz-
burg-Landau theory was used to calculate /c (Я) and
Pv (H) for the case of matching vortex and inhomogeneity
lattices. It was assumed in the calculations that the impuri-
ties affect only the diffusion coefficient D. Since the electron
mean free path is inversely proportional to the concentration
of inhomogeneities, Eq. (3.4) gives D(r)
= A,{l + rsin[q0(r-r0)]}-1, where |q|=2irAls,
r0||q0, and 0<|r0|<A8. The number of layers in the sample is
assumed to be infinite. The Ginzburg-Landau equations in
reduced coordinates become

1
H-rsm[q0(r-r0)](K0

-r^-A

J =

(3.9)

(3.10)

where x0 is the Ginzburg-Landau parameter in the case
Г = 0. The solution of these equations, as usual, is sought
near Яс2. For this purpose it is assumed that the magnetic
field H is along the z axis. For a homogeneous superconduc-
tor, i.e., for the case Г = 0, the solution of equations (3.9)
and (3.10) is well known.61 Qualitatively those investigators
express the solution in the form of a regular triangular lattice
of quantized magnetic vortices in the superconductor. As is
the case for corrugated films, the matching of the vortex
lattice with a lattice of inhomogeneities is possible in layered
superconductors in a certain range of magnetic field near the
matching field, defined by a simple geometric relation of
type (2.16). Here the unit cell of the vortex lattice is already
a distorted triangle (Fig. 29).

The system of Eilenberger76 orthogonal functions
(2.36) and (2.37) was used to solve the system of equations
(3.9) and (3.10). The order parameter was determined by

FIG. 29. Arrangement of the unit cells of the vortex lattice in a layered
structure. The center of the vortex is indicated by the dark dot (Ref. 75).
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the use of a linear approximation to Д(г) in Eq. (3.9), that
is, the last term is neglected. It is admissible to do this be-
cause the order parameter is small near Hc2. Moreover, it is
assumed that the Eilenberger function for the vortex lattice
can be written in the form (2.41). To retain only two terms
in the expansion of this function is permissible if the ampli-
tude Г of the variation of the impurity concentration is
small. When the magnetic field is changed the vortex lattice
will not only be distorted but also rotated about the z axis.
Below, it is assumed that one of the sides of the parallelo-
gram forming the unit cell is always directed along the x
direction and the inhomogeneity lattice rotates relative to
this cell (Fig. 29). In the general case the impurity concen-
tration varies along the vector

q0 = -j— (—sin в, cos в). (3.11)

Since Г<^ 1, the expression for the diffusion coefficient can
be written as

~ 2gsin [Vr - ro) »>

where

Solving the linearized equation (3.10) and substituting
into it the Eilenberger functions of form (2.36) and (2.37),
Ami and Maki determined the coefficient w, and the eigen-
value of this equation. Then the procedure of calculating the
free energy was similar to the approach of Abrikosov.61 The
critical current, as usual, was determined from the condition
of balance of two forces, the Lorentz force and the pinning
force. The spatial variation of the impurity concentration
plays the role of the pinning centers. In writing Eq. (3.13) it
was assumed that the current flows in the plane of the layers.
In this model it is assumed that when the vortex lattice and
the inhomogeneity lattice do not match, the critical current
through the sample goes to zero. This is a consequence of the
assumption that the amplitude of the impurity concentra-
tion is small, and as a result the elastic interaction among the
vortices in the lattice exceeds the elementary pinning force.
With this assumption a superconducting current arises only
in the region of matching of the vortex and defect lattices. In
the work cited,75 the investigators considered the special
case of matching where В was near Bn0 . In these regions of
matching the free energy is given by the expression

> = ± + B2-
1

+ 2gQ(B)Sm(q0r0)]}2,

where x0Q(B) and /3A are defined by

So-^l-r2)"2,

(3.14)

(3.15)

(3.16)

x В
-

p,e=-° [-A2T^2 + ̂ 1-
(3.17)
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It can be seen from Eq. (3.14) that the free energy varies
periodically in space and direction with the period of vari-
ation of the impurity concentration. The critical current is
determined by the maximum value of the pinning force due
to the periodic variation in the inhomogeneity concentra-
tion. The calculations carried out in Ref. 75 show that

3/2

1/2

(3.18)

Figure 30 shows examples of the variation of the critical
current and the amplitude of the modulation of the free ener-
gy, AF, as functions of the external magnetic field. Reduced
units are used. The parameters that characterize the sample
are assumed to be the same as the experimentally determined
characteristics of the samples from the experiments of Raffy
et al.l02-104 if, as Ami and Maki did, one separates out from
the experimental curves of the critical current, as a function
of the magnetic field the part of the current determined only
by the interaction of the vortex lattice with the layered struc-
ture, then good agreement is obtained between theory and
experiment. This agreement is found not only in the shape of
the curve Jc (H), but also in the positions of the maxima.

M. Kulic and L. Dobrosavljevic"6 also calculated the
critical current density and the pinning forces in layered su-
perconducting structures with matched vortex and inhomo-
geneity lattices. Unlike the work of Ami and Maki, where
the calculations were carried out for magnetic fields close to
Hc2, in these calculations it was assumed that the magnetic
field was in the range Яс, <^Я^Яс2 and that the sample had
a finite thickness Ds >Д ( Т ) . Although the external magnet-
ic field is usually comparable to the upper critical field in

B.G

FIG. 30. Theoretical dependence of the critical current on the magnetic
field. The inset shows the dependence of the amplitude of the free energy
modulation on the magnetic field (Ref. 75).
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experimental investigations, the work of Kulic and Dobro-
savljevic"6 is of definite interest, mainly because both bulk
and surface pinning were studied. They assumed that the
impurity concentration in the sample varied sinusoidally ac-
cording to Eq. (3.4) along the x axis with these restrictions
on the period and amplitude: Г <^ 1 and As ^A ( T ) . The mag-
netic field was taken to be along the z axis, with the transport
current flowing along the^ axis. The vortex lattice in the x-y
plane could be represented as a series of vortex chains direct-
ed along the у axis. The spacing between the nearest-neigh-
bor vortices in any row was a i. By means of this approach the
investigators were able to use the method developed by
Schmidt"8 for the investigation of the interaction between
vortices and the surface of a superconductor. The free energy
of the vortices in thick and homogeneous films of unit thick-
ness and unit height can be written as

F = (3.19)

To determine the free energy and the pinning force it is first
necessary to find the distribution of the magnetic field in the
sample. This is done with the London equation, which takes
into account the spatial variation of the penetration depth of
the magnetic field:

(3.20)

where B = B /ДЯС and A = AS/A0.
The first term in (3.21) corresponds to the interaction

of the vortices with the surface of the semiconductor, and is
inversely proportional to the thickness of the sample. The
second term in this expression comes from the volume inter-
action of the vortex lattice with the lattice of inhomogene-
ities. This term does not depend on the sample thickness, and
is proportional to the amplitude of the variation of the impu-
rity concentration. As shown in Eq. (3.21), the relation be-
tween these pinning mechanisms depends on the quantity
ГД./А0. In the case of a thick film with a rather large modu-
lation amplitude, where Г5/А0> 1, surface pinning can be
neglected, and conversely, when TDS/A0~ 1 surface pinning
is as important as bulk pinning.

One of the main shortcomings of the work of Refs. 75
and 116 is that it does not allow for the dependence of the
pinning force on the magnetic field and the dimensions of the
sample. Besides the approach developed in these papers,
which is based on the Ginzburg-Landau equations, a com-
pletely different method"7 can be used to calculate pinning
in layered structures. This method takes into account the
elastic properties of the vortex lattice, and it makes up for the
shortcomings noted above concerning the calculations of
Ref. 75 and 116. Lowell"7 has considered the vortex lattice
as a one-dimensional elastic continuum. Its behavior, when
the Lorentz force is constant in space and is directed, as
usual, along the x axis, is governed by the balance between
the elastic and pinning forces. When the pinning force is
smaller than the elastic interaction (/p <^a,) the equation is

where А» •= -Х- sin (3.22)

dx

H,r (r, ) is the magnetic field produced at the point with the
coordinates (x,,0) in the x-y plane by a row of vortices inter-
secting the x axis at the point xr; here г, = (x,,0) and
r,.m = (xr,ma\ ), withm = 0,1,2,... . This approach is val-
id for superconductors with a large Ginzburg-Landau pa-
rameter. Since Л 2 is proportional to the concentration,

In this case к also varies in space: in the region of the maxi-
mum concentration x = x0(\+T). Equation (3.20) is
solved by means of a Fourier transformation. After deter-
mining the magnetic field, the authors of Ref. 116 calculated
the Gibbs free energy; then minimizing it, they were able to
find the equilibrium vortex lattice in the layered structures,
and then using the usual relation (2.49) for the pinning
found the dependence of the critical current on the magnetic
field near the matching field Blo

+ 2ГЧЧ — --?
B ф

- e~Bl)

•i1 + (вГ)2(эг0Г/я)2]
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(3.21)

where x is the coordinate of the nth vortex, a^ is the distance
between the vortices in a chain, and xt(x) is the displace-
ment of a vortex from its equilibrium position. Since x, and x
are related by x = «a, + дс„ Eqs. (3.22) can be written as

d*
rsm- (3.23)

where the following notation is introduced:

A0 AC.

х2(х) = -X + —X,

Equation (3.23) is readily solved,"7 and with the appropri-
ate boundary conditions the solution gives the dependence
x2(x). As a result the net pinning force Fp is obtained by
integration

(3.24)

where dn(u\m) is the function defined by Milne-Thomp-
son,"9
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z = (дс'/pm172) + (£»/2pW
1/2),

m = (Wp/^a2)*2 = x2/p2;

and x0 and *, are constants specified by the boundary condi-
tions.

Using this approach, Lowell"7 obtained two important
results. The first was for the case of matching vortex and
inhomogeneity lattices (a, = A S ) , where he found the de-
pendence of the pinning force on the sample thickness (Fig.
31). For thin samples (Ds ^p) the pinning force is close in
form to Nfp (Nis the number of layers), that is, close to the
pinning force that arises when each vortex interacts synch-
ronously with the inhomogeneities in the superconductors.
For thick samples, (Д. S/>) the pinning force is approxi-
mately Fp = 4Nfp/Ds, that is, in this limit the total pinning
force does not depend on the sample thickness, and another
rule must be used for summing the elementary pinning
forces: Fp ~/p

/2. The results obtained by Lowell are in agree-
ment with previous model calculations"9 based on the ap-
proaches described in the monograph of Campbell and
Evetts.l01 The second important result of the work of Lowell
is the calculated magnetic-field dependence of the pinning
forces over a wide range of magnetic field. This dependence
was calculated in two important limits: Д, ̂ p and Ds >/>,
i.e., for the two cases of a small and a large number of layers.
Figure 32 shows examples of this dependence of the resul-
tant pinning force on the magnetic field. In accordance with
Fig. 31, for DJp = 0.3, it was assumed that F0 =/pZ)s/As,
and for the curves Ds/p = 5 and 10, F0 = 4/p/>//ls. In that
paper it was also observed that the peak of the critical cur-
rent as a function of the magnetic field in the region of
matching of the periods of the vortex chain and the layered
structure is much narrower than in the experiments of Rafiy
et a/.102'104 I believe that a probable cause of this phenome-
non is the low rigidity of the vortex lattice as compared with
the elementary pinning force. Because the bulk modulus of
the vortex lattice is finite in layered superconductors unlike
in thin films, it is important to investigate the effect of the
self-magnetic field of the transport current on the calculated
dependences. In the theoretical papers mentioned in this re-
view it has been assumed that this field is much smaller than
the external magnetic field.

After the discovery of high- Tc superconductors, which
ordinarily are naturally layered structures, the study of the

1,00

0,05

10

FIG. 32. Pinning force as a function of the magnetic field for various
values of the parameter D, /p (Ref. 117).

mixed state in these materials became a matter of interest. It
was observed that a periodic structure of the mixed state was
formed also in the direction of the external magnetic field in
layered superconductors with weak coupling between the
layers (£z>/ls), i.e., S/I superconductors. This structure,
which consists of sharp periodic bends in the vortex lines, is
formed in a magnetic field Яс1 <£Н-£Нс2 at an angle to the
layers.121 Qualitatively, the nature of its formation can be
understood by the following considerations. When the mag-
netic field is parallel to the layers, the vortex centers, tending
to minimize the free energy, must be located between the
superconducting layers. This condition leads to the forma-
tion of periodic bends in the vortices in an inclined magnetic
field. The extra energy of such a bend is given by

(3.25)
xy>

FIG. 31. Total pinning force as a function of the number of pinning
centers in a chain for matching vortex and inhomogeneity lattices (Ref.
117).

As a consequence, the formation of the bends results in a
jump in the dependence of the torque on the angle in a small,
nearly zero field. This phenomenon was observed experi-
mentally in studies of high- Tc superconductors in Ref. 122.

3.4. The prospects of layered superconducting structures

First off all it should be noted that from the point of
view of understanding the nature and mechanisms of pin-
ning it is very important to study the mixed state in layered
structures. For example, in these superconductors it is possi-
ble, as mentioned above, to determine the elementary pin-
ning forces. This topic is also important. For example, even
in such theoretically and experimentally well-studied struc-
tures as the S/N structures, the mechanism of elementary
pinning is still unclear. In addition to such an obvious mech-
anism as pinning due to the suppression of the order param-
eter in the normal-metal interlayers by the proximity effect,
it has been shown123 that it is also important to take into
account the reflection of electrons at the layer boundaries.
Even in the case of thin layers of normal metal, where pin-
ning due to suppression of the order parameter is small, the
second pinning mechanism remains important.

Layered structures are also interesting from the point of
view of making superconductors with higher critical cur-
rents, since non-superconducting interlayers can be effective
pinning centers, and making them with higher critical mag-
netic fields in the direction parallel to the layers. I believe
that layered structures based on thin perforated supercon-
ducting films are also of particular interest in this context.
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Here, the period of the layered structure and the period of
the hole lattice must be comparable with the coherence
length. In these structures the holes, being effective pinning
centers as is the case with single-layer films, must, as noted in
Section 2.6, increase the upper critical field in the direction
perpendicular to the layers; that is, in these structures one
can expect an increase over ordinary bulk superconductors
in the upper critical field and in the critical current.

In conclusion, I would like to discuss the possibility of
using layered structures in superconducting electronics.83

This idea is based on the fact that the period of the layered
structures can be very small, down to a few angstroms. This
opens up additional possibilities for the creation of new su-
perconducting elements, including elements whose principle
of operation is based on the motion of vortices. It is obvious
that in short and in narrow microbridges made of layered
superconducting films placed in a parallel magnetic field, a
voltage is induced because of the motion of a single chain of
vortices. At the contact there should arise an alternating
voltage with a frequency/^, = e( V)/irfi. To increase the gen-
erated power one can exploit the usual idea—use contacts in
series in a chain for the alternating component of the voltage
and in parallel for the dc components. Figure 33 shows a
possible design for the connection of such bridge contacts.
The inductances allow the contacts to be connected in paral-
lel for dc and in series for ac. The equality of the constant
voltage on the contacts guarantees equality of the generated
frequency. The required phase matching of the radiation
generated by the different contacts is provided in this case by
a mechanism specific to vortices: by the magnetic pairing of
the vortices in the superconductors separated by the insulat-
ing layer.124 By varying the magnetic field strength, one can
shift one vortex chain relative to another and thereby adjust
the phase of the generated radiation. This idea is of particu-
lar interest for high-/1,, superconductors, which, as is well
known are natural layered superconductors, with interlayer
distances of the order of several tens of angstroms. More-
over, in growing the films it is usually the case that the layers
lie in the plane of the substrate. Thus, by using single-crystal
high-rc superconductor films it is possible by ordinarily
lithography to make a structure like the one shown in Fig.
33. The small period of the layered structure should make it
possible to increase the upper limit of the frequency of the
radiation generated by the vortex lattice as it moves in a field
with a periodic potential.

FIG. 33. Method of connecting bridge contacts made of layered structures
(Ref. 83).

CONCLUSIONS

The use of ordered microstructures provides new, even
quantitative, information on the elementary pinning forces
and gives rise to interesting effects based on the coherent
behavior of the Abrikosov vortices in them. A great deal of
progress has been made in these fields. I believe that at the
present time a very important problem is the study of quasi-
periodic structures and the pinning that occurs in them. The
reason for this opinion is that such structures are intermedi-
ate between a completely ordered superconducting lattice
and a random system of pinning centers, which exists in or-
dinary superconductors. One of the principal goals of the
present review was to call attention to this problem, and to
show that there are interesting problems both from the fun-
damental and the applied point of view. It should also be
mentioned that the rapid development of technology gives
grounds to anticipate that shortly it will be possible to make
more complicated and more perfect superconducting micro-
structures. This dynamism also indicates the immediate im-
portance of this field of research.

In conclusion, I would like to express my sincere grati-
tude to A. A. Abrikosov for his attention to this work and his
constant advice at various stages of this work, and also to V.
V. Kuzii for fruitful discussions.
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