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An analysis is given of the properties of a cluster cut from a face-centered and a body-centered
cubic lattice and also from a hexagonal crystalline lattice about a certain center. The clusters have
a shell structure and contain tens and hundreds of molecules. The binding energies of molecules
and the surface energy of the cluster are shown for different occupation numbers and for three
types of structure of the cluster, and also for different temperatures. It is shown that the concept of
surface tension is valid for clusters containing tens of molecules, but from the point of view of the
binding energy of the surface molecules a cluster consisting of hundreds of molecules is not a
macroscopic particle even at relatively high temperatures. An expression is obtained for the
surface energy of a cluster.

1. INTRODUCTION

A cluster is a system of bound atoms and molecules. A
cluster consisting of a large number of atomic particles, gen-
erally speaking, is not a macroscopic system. This means
that the parameters of the cluster are not always a monoton-
ic function of the number of particles in it. The sharpest
change in the parameters of a cluster occurs in passing
through the socalled magic numbers.1"5 The most stable
configurations correspond to the magic numbers, and there-
fore the extracting clusters from a source cluster with magic
numbers of atoms will be characterized by higher currents
than clusters with close values of the number of atoms.

It is commonly accepted that the surface atoms of a
cluster form a shell and that the magic numbers of atoms in a
cluster correspond to the completion of filling a particular
shell. With such an approach the different parameters of a
cluster as a function of the number of particles in it must
have a discontinuity at a magic number of atoms in the clus-
ter and must vary monotonically as the shells are being
filled. This is confirmed by various experimental investiga-
tions.6"9 In such a case one can assume that the surface prop-
erties of a cluster are determined by the last shell of atoms. In
order to understand the degree of validity of this assertion it
is necessary to analyze the surface properties of clusters
within the framework of different models. In this article
such a comparison is carried out for clusters between atoms
or molecules of which a short-range interaction exists.

2. SURFACE ENERGY OF A CLUSTER

Let us determine the surface energy of a cluster. We
examine first the macroscopic condensed system from which
a cluster may be cut out. Then we shall use for the cluster the
results obtained for the macroscopic system.

We introduce the surface energy of the macroscopic
system as the energy which is expended per unit area in cut-
ting the element of the condensed system. Let Л'Ье the den-
sity of molecules (or atoms) in the condensed system, and
b.H be the energy expended on converting the condensed
body into a gas (vapor) expressed per molecule. We shall

calculate this quantity for different models assuming a
short-range nature of the interaction between the molecules
in the system. Another essential assumption is connected
with the fact that in the process of cutting the nature of the
distribution of molecules on the surfaces being formed does
not change, which holds for the system being considered
with short-range interaction between molecules.

We shall use first the random model assuming a random
nature of the distribution of the molecules within the system.
Then on the surface of area S there are SN2'3 molecules on
each side of the surface. In each of these molecules half the
bonds are broken, i.e., the energy stored in one molecule
situated on the surface is equal to H /2. From this we obtain
the surface energy per unit area for the given model:

£surf = (1)

We now consider a more realistic model when the atoms
or molecules of the system form one of the crystals with close
packing that has a cubic face-centered lattice.10"14 In this
crystal each of the molecules has 12 nearest neighbors with
which it interacts. A cubic face-centered lattice can be com-
posed of two lattices inserted one into the other. In each of
these lattices the molecules are situated on parallel planes
forming on them a square net with the side of the square
being a (a is the distance between neighboring molecules of
the structure). The distance between neighboring planes for
each of the lattices is equal to a -/2~, and they are shifted with
respect to each other in such a way that each of the molecules
of one lattice is situated at the center of the parallelepiped
(with side of the square a and of height a /2~) which is the
elementary cell of the other crystalline lattice.

Let us determine the specific surface energy of the lat-
tice assuming that the cut has been made between two planes
of the lattice. Introducing D the energy of breaking a bond
between each pair of nearest neighbors we find LH = 6D
since each molecule has 12 neighbors. Each molecule of the
surface layer has 8 neighbors, each molecule of the next layer
has 12 neighbors. Since the density of the molecules on the
surface is equal to I/a2 we obtain £surf = ID /a1. Since the
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density of the molecules in a face-centered lattice is equal to
we obtain from this

: ДЯЛГ2/3/3-21/3 = 0,26ДЯ-#1/3. (2)

We see that this model gives a result close to the result of a
random model. Apparently the expression for the specific
surface energy is not sensitive to the model.

We use these results for the cluster treating it as a mac-
roscopic system. We assume that the cluster is similar to a
drop and has the structure of a cubic face-centered lattice.
We note that such a drop model implicitely assumes that the
cluster has a closed shell. The total energy of the cluster
consisting of и molecules and having the radius r (this ener-
gy is expended on converting the cluster into a gas consisting
of free molecules) is equal to

en = АЯ-И -

Utilizing the connection between the number of molecules in
the cluster and its radius и = 4тг/2~('"/о)2/3, we have

АЯ-П - (2тг/3)1/3ДЯ-я„2/3 (3)

From this we obtain the binding energy of the nth mole-
cule as

<ДЯ(1 -0,85/Г1/3), п (4)

It may be seen from this formula that the contribution of the
surface energy to the binding energy of the molecule is signif-
icant even in the case of a large number of molecules in the
cluster. We note that, in accordance with the model being
used, this result takes into account the structure of the shell
of the cluster and is a certain average characteristic. Actual-
ly the binding energy between the molecule and the cluster
depends on the degree of filling of this and other shells of the
cluster, and also on the nature of the shell.

3. CLUSTER WITH THE STRUCTURE OF THE FACE-
CENTERED LATTICE

In order to determine the roles of different factors in a
cluster with an unfilled shell we shall examine the surface
effects for a cluster with dense packing which may be cut out
from a cubic face-centered lattice. We shall carry out this
operation of forming the cluster with the aid of a face-cen-
tered lattice in the following manner. We choose one of the
molecules of the lattice as the cluster center. Then we in-
clude in the cluster only those molecules of the lattice the
distance of which to the cluster center does not exceed a
definite value. Such a cluster may arise for example in the
case of interaction of an ion with atoms of an inert gas. Then
the ion is a cluster center, and the atoms interact only with
the nearest neighbor, and within the inner region of the clus-
ter each atom has 12 nearest neighbors.

Let us construct the cluster under consideration. We
choose as the z axis the direction perpendicular to the planes
of the lattice, and for the x and у axes we choose the direc-
tions from the central atom to the atoms closest to it on a
plane of the lattice. The cluster under consideration has
many planes of symmetry. We divide the possible types of
symmetry into two groups. To the first of them we assign the
symmetry with respect to the transformation x+±y+±z, and
to the second the symmetry with respect to the transforma-

tions хг± — x, y+± —y, z+± —z. We choose as the unit of
measurement the distance between neighboring planes of the
lattice a/^2 (in these units the distance between nearest
neighbors is equal to т/2). In virtue of the indicated symme-
tries the groups of molecules in the cluster form shells in
such a way that all the molecules of the appropriate shell are
at the same distance and transform into each other under the
transformations indicated above.

Table I shows the coordinates of the molecules of the
appropriate shell of the cluster in the order of increasing
radius of the shell. Coordinates are shown of that molecule
for which z <x <y and all the coordinates are positive. Co-
ordinates of other molecules can be obtained from these by
appropriate transformations (x<± y<±z; x-> — x, y-> —y,
z^-z).

One can conventionally divide the shells into several
types. Shells of one type are characterized by the same sym-
metry, and also by the same character of filling the shell,
including also the number of nearest neighbors in the pro-
cess of filling the shell. The number of nearest neighbors for
molecules of a particular shell and also the surface energy of
the cluster after that shell has been filled is contained in Ta-
ble I. If the nearest neighbors are molecules of the same cell
then the number of nearest neighbors for molecules of a giv-
en shell varies in the process of it being filled. This is noted in
Table I. From an analysis of the data of Table I it follows that
the concept of shells of a large cluster does not possess such a
categorical character which we have implicitly been assign-
ing to it. Indeed, in this case we depend on an analogy with
atoms, the description of the structure of which is based on
the shell concept. A change in the structure of the atom as
the nuclear charge increases is associated with the filling of a
definite shell. For heavy atoms competition between two
shells is possible as the charge of their nuclei increases. The
number of electron shells participating in the structure of
actual atoms can attain values up to 18.

If we take a cluster with the number of molecules run-
ning into tens or hundreds, then there will be several shells
for which the distances from the center do not differ greatly,
and the bonding energy with the molecules of the cluster of
molecules of these shells as they are being filled are also
close. Thereby the results presented above in confirming the
shell concept of a cluster testify concerning the specific prop-
erties of this concept in the case of a cluster. On the one hand,
in the structure being considered, just as in any shell system,
its parameter being investigated—the energy of bonding of
the last molecule changes abruptly when the filling of the
shell is completed and the transition to filling the next shell is
made. On the other hand, competition is possible of several
shells at once. This means that sequential filling of individ-
ual shells occur in the process of growth of the cluster, but
the choice of a particular shell from a number of possible
ones can change depending on several factors.

In constructing the cluster under consideration we
started from the presence of a center assuming that the inter-
action with the center selects the sequence of the shells of
atoms. In the presence of other factors this sequence may
change. For example, in the case of the Аг„+ cluster the most
suitable structure is considered to be the structure of an ico-
sahedron10 which has the magic numbers 13, 55, 147, 309,
and 561. This is in agreement with experiment9 for the first
three magic numbers. For the cluster under investigation
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TABLE I. Parameters of the shells of a cluster with the structure of a face-centered cubic lattice.

Coordinates of
the molecule of
a shell

Oil
002
112
022
013
222
123
004
114
033
024
233
224
015
134

125
044
334
035
006
244
116
235
026
145
226
136
444
055
017
345
046

Square of
the distance
to the center

2

4
6
8

10
12
14

16

18

18
20
22
24
26
26
30
32
34
34
36
36
38
38
40
42
44
46
48
50
50
50
52

Number of transfor-
mations
1 group

3
3
3
3
6
1
6
3
3
3
6
3
3
6
6
6
3
3
6
3
3
3
6
6
6
3
6
1
3
6
6
6

2 group

4
2
8
4
4
8
8
2
8
4
4
8
8
4
8
8
4
8
4
2
8
8
8
4
8
8
8
8
4
4

8
4

dumber of near-
est neighbors

3
4

3 — 5
5

4 — 6
3
5
4
5
5
6

3 — 5
5

4-6
5 — 6
5 — 6

5
3 — 5

6
4

5
5

5,6
6

5,6
5
6
3
5

4 — 6
4 — 6

6

dumber of mol-
ecules in the
cluster

13
19
43
55
79
87

135
141
165
177
201
225
249
273
321
369
381
405
429
435
459
483
531
555
603
627
675
683
695
719
767
791

Surface energy
(D) in filling the
shell

42

54
102
114
138
162
210
222
246
258
258
306
330
354
378
402
414
462
462
474
498
522
546
546
570
594
594
618
630
654
702
702

with close packing and a specified center only the first of the
magic numbers indicated above are characteristic, and even
they correspond to shells of the cluster the binding of the
molecules of which with the core of the cluster is not maxi-
mal. Thus, we arrive at a conclusion that in the cluster under
consideration containing tens and hundreds of molecules
competition of many shells occurs.

4. SURFACE PROPERTIES OF A CLUSTER WITH CLOSE
PACKING

The results entered in Table I provide complete infor-
mation on the energy characteristics of the cluster being ex-
amined expressed in terms of the energy characteristics of
the molecules which are on its surface. This enables one to
understand the acceptability of the simple models consid-
ered earlier and, if it is possible, to introduce corrective mea-
sures into them. We shall note the differences with the model
in which a layer of a cubic face-centered lattice is chosen as
the surface of the cluster. Since the basis of both models is the
same these differences are particularly interesting.

First, having chosen a layer of the face-centered lattice
as the surface of the cluster we automatically obtain the re-
sult that all the molecules of the inner layers have 12 neigh-
bors, i.e., in the formation of the surface properties of the
cluster only the surface layer participates. In the case of a
cluster with a center many shells simultaneously determine

its surface properties. For example, for the largest cluster in
Table I containing 791 molecules such shells are 046, 055,
345, 017, 444, 136, 226, 145, 026, 116, 235 and 244. The
molecules of each of these shells have less than 12 neighbors
(but not less than 6).

Another difference between clusters under considera-
tion is associated with the value of the binding energy of the
molecule being attached. In filling a layer of a face-centered
lattice the molecule being attached has between 4 and 8 near-
est neighbors. When the layer has been filled, each molecule
of the surface layer has 8 nearest neighbors. This circum-
stance was used in the expression for the surface energy of
the cluster. For the cluster under consideration with a cen-
ter, the maximum number of nearest neighbors is 6. This is
associated with the geometry of constructing the cluster.

The participation of many shells in the creation of sur-
face properties of the cluster makes it more difficult to distin-
guish clusters with a closed shell. Such a cluster should have
maximum stability. Within the framework of the model,
where the surface of the cluster is a layer of the face-centered
lattice, in the case of a closed shell this layer is totally filled.
The numbers of molecules in a cluster with a closed shell
should be the most highly distinguished magic numbers of
the cluster.

It might seem that a closed shell must be characterized
by the maximum binding energy of the surface molecules.
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We shall introduce it in such a manner that the binding ener-
gy of the last molecules included in the cluster is equal to 6D
(i.e., they have 6 nearest neighbors). We note the conven-
tional aspect of the definition that has been used. For exam-
ple, in the case of a cluster with the last shell being 035 (429
molecules) that falls under this definition, the molecules of
the preceding shell 334 have 5 nearest neighbors each; in the
case of a cluster with the last shell being 046 (791 molecules)
any molecule of the cluster has no less than 6 nearest neigh-
bors.

According to Table I the binding energy of the molecule
being attached is an irregular function of the number of mol-
ecules in the cluster even for large values of these numbers.
Being averaged over several shells within the limits of a sin-
gle closed shell, this quantity has a relatively large amplitude
of fluctuations, which does not permit the use for it of mono-
tonic dependences as functions of the number of molecules,
as is the case in the simplified models (cf., formula (4)).
Naturally this quantity should grow with an increase in the
number of molecules in the cluster. However, for example,
for the 7th closed shell 125 the average binding energy of the
molecule being attached is equal to 5.5 D, while for the 12th
shell, which includes the 444,055,017 shells, when the clus-
ter contains twice as many molecules this quantity is equal to
4.64 D. The difference between these values is close to the
amplitude of the change of the average binding energy of a
molecule for the occupation numbers under consideration
(naturally, without taking into account the first shell).

The conclusion that we have reached confirms the the-
sis that a cluster containing even a large number of molecules
is not a macroscopic system. Its parameters as a function of
the occupation numbers are jumpwise discontinuous func-
tions whose values are of an irregular nature. There is there-
fore no point in representing these parameters in the form of
a monotonic function of the occupation numbers as this
would have occurred for a macroscopic system. One can
only speak of a certain average value of the corresponding
parameter. Thus, for the cluster under examination the aver-
age value of the binding energy of the last molecule amounts
to 4.8 + 0.3 D if the number of molecules in it is less than
429, and is equal to 5.1 + 0.4 D if it contains less than 791
molecules. In carrying out this averaging we did not take
into account the first shell of the cluster.

Here one can expect that the surface energy of the clus-
ter is with a certain degree of accuracy a regular function of
the number of molecules in it since a large number of mole-
cules belonging to different shells of the cluster make a con-
tribution to it. Thus for a cluster with the external shell 046
which contains 791 molecules 12 shells of the cluster con-
taining 356 molecules, i.e., nearly half of the molecules of the
cluster participate in the formation of the surface energy.
Table I provides values of the surface energy of clusters with
closed shells. These values are approximated by the formula
(8.2 + 0.2)и2/3 where n is the number of molecules inaclus-
ter and the surface energy is expressed in units of the binding
energy between two nearest neighbors. We note that formula
(3) for the model of a face-centered lattice gives in these
units for the surface energy the expression 7.7и2/3, and this
coincides with the previous result within the limits of its
accuracy. Within the framework of a random model in ac-
cordance with formula (1) the surface energy of the cluster
is equal to irr2 • &H-N2'3, where r is the radius of the cluster,

and ./V is the density of molecules in it. In terms of the units
used earlier we obtain for the surface energy of the cluster
7.2и2/3 which agrees with the results of other models.

5. CLUSTER WITH OTHER STRUCTURES

The basic virtue of the method under consideration is its
simplicity. It might seem that an analysis of a cluster con-
taining tens or hundreds of molecules is possible only on the
basis of numerical methods using computers. However, as
can be seen from the material presented a cluster containing
hundreds of molecules with pairwise interaction and having
a given crystalline structure can be constructed by simpler
mathematical methods. This provides simple possibilities to
"touch" the cluster and study its individual properties. This
will permit one to understand the general regularities of the
physics of clusters. In particular, one of the fundamental
questions in the physics of clusters which is being discussed
here is whether a cluster including tens and hundreds of mol-
ecules is a macroscopic particle or not. It is clear that conclu-
sions from an analysis of such a cluster will be more convinc-
ing if they refer to different structures of a cluster.

The methodology presented above enables one to con-
struct clusters with different crystalline structures. Below
we shall carry out these operations for a cluster with a body-
centered lattice.11"14 This lattice can be constructed from
two cubic lattices inserted into one another so that each mol-
ecule of one of them turns out to be at the center of the cube
formed by the other lattice (Fig. 1). Each molecule has 8
nearest neighbors.

It is convenient to choose for the unit of length one half
the constant of each of the cubic lattices. In terms of these
units the distance between nearest neighbors is equal to /3~.
The convenience of such units consists of the fact that in
terms of them the three coordinates of each molecule are
integers and they are either all even or all odd. This simpli-
fies the procedure of constructing the cluster which includes
shells in the order of their distance from the center. The
parameters of a number of shells of the cluster are shown in

FIG. 1. Cubic body-centered lattice. Circles with a dot inside indicate
positions of molecules of one layer, circles with a cross inside correspond
to the position of molecules of another layer. Then the layers alternate.
The distance between adjacent layers is equal to a/V3, the edge of a square
of a layer is 2a/V3.
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TABLE II. Parameters of shells of a cluster with the packing of a body-centered cubic lattice.

Coordinates
of the mole-
cule of a shell

111
002
022

113

222

004

133

024

224

115

333

044

135

244

006

026

335
226

444

155

117

046

246

137

355

008

337

028

446

228

066

157
555
266
048

119
357
248

Square of
the distance
to the center

3
4

8
11
12

16

19

20

24

27

27

32

35

36

36
40

43
44

48

51

51

52

56

59

59

64

67

68

68

72

72

75

75

76

80

83

83

84

Number of transfor-
mations

1 group

1

3

3
3

1
3

3

6
3

3
1
3

6
3
3
6
3
3
1
3
3
6
6
6
3

3

3

6
3
3

3

6
1
3

6
3

6
6

2 group

8
2
4

8

8

2

8

4

8

8

8

4

8

8

2

4

8

8

8

8

8

4

8

8

8
2

8

4

8

8

4

8

8

8

4

8

8

8

Number of
bonds of a
molecule of
the shell

1

4
2
3
4
4
2
4

3
4

4

2

3

4

4

4

3

4

4

2

4

4

3

4

4

4

3

4

4

4

2

3

4

4

4

4

3

4

Vumber of
moleules in
the cluster

9
15
27
51
59
65
89
113
137
161
169

181

229

253

259

283

307
331
339

363

387
411

459

507

531

537

561

535
609
633
645
693

701

725

749

773

821

869

Surface energy of
the cluster (D) as
the shell is filled

28
28
52
76
76
76
124
124

148

148

148

172

220

220

220

220

244

244

244

292

292

292

340

340

340

340

364

364

364

364

388

436

436

436

436

436

484

484

Table II. The number of nearest neighbors of the molecule in
a shell shown in Table II uniquely determines the binding
energy of the molecules on being attached to the cluster. Just
as before, we assume that only the short-range interaction
between nearest neighbors is significant. Therefore the bind-
ing energy of the molecule is equal to the product of the

number of nearest neighbors with which it establishes a bond
and the binding energy of the dimer D. It can be seen that the
number of nearest neighbors in the attachment of a molecule
does not exceed 4.

Figure 2 shows the surface energy of a cluster with the
structure being considered containing 400-800 molecules.

300 -

400

FIG. 2. Surface energy of a cluster with the structure of a face-
centered cubic lattice as a function of the number of molecules in it
(solid line). The dotted curve corresponds to the approximation
formula (5).

800
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The average value of the surface energy in units of D
amounts to (5.3 + 0.2)и2/3 where n is the number of mole-
cules in the cluster. This formula is applicable starting with
tens of molecules in the cluster.

The results that are shown confirm the general conclu-
sion. There is no point in expressing individual parameters of
the molecules of the cluster as a function of the occupation
numbers, in particular, the binding energy of the molecule
being attached. This quantity experiences jumps after filling
of the appropriate shell. As regards the surface energy, it is
determined for the cluster just as for a macroscopic particle.

To analyze the expression for the surface energy of a
cluster we consider one more close packed structure-the
hexagonal lattice.11"14 If we consider the molecules of this
structure situated on one of the planes then each of the mole-
cules in the plane has 6 nearest neighbors forming a regular
hexagon. The molecules are situated along parallel lines, so
that the distance between them along the line is equal to a,
the distance between nearest neighbors, and the distance be-
tween the lines is equal to a \j3/2, and the molecules of the
next line are displaced with respect to the molecules of the
preceding line by a distance a/2. The molecules of the next
plane are situated within the hollows of the preceding one,
while the molecules of the third layer are situated above the
molecules of the first layer. If one models the molecules by
spheres of radius a/2 then each of the spheres touches 12
others, six of which are in the same layer, three in the layer
lying above it, and three in the layer lying below it. The
distance between the layers is equal to а д/3/2.

A cluster cut out from the lattice under consideration
possesses a symmetry on being rotated through the angle
2ir/3 about an axis perpendicular to the planes in which the
molecules are situated, and also on reflection with respect to

that one of these planes in which the center is located and
also to the plane perpendicular to it that passes through the
center. Fig. За shows positions of molecules in the cluster
containing 347 molecules, and also the square of the distance
of these molecules to the center (in units of a). Layers are
picked out which are situated above the layer in which the
center is situated and which is designated as the zeroth layer.
From symmetry considerations the same disposition of mol-
ecules also occurs in four layers of cluster lying below the
zeroth layer. The number of molecules of the corresponding
shell of the cluster and the number of molecules in the clus-
ter, if this shell is the last one, are shown in Table III.

Having counted the number of nearest neighbors that
each molecule has we will find the surface energy of the clus-
ter. For a cluster containing n = 347 molecules we find that
194 molecules situated within 18 shells have fewer than 12
nearest neighbors. In units of the binding energy of the dimer
D the surface energy is equal to es = 394. For a cluster con-
sisting of л = 257 molecules on the surface (i.e., with incom-
pleted bonds) there are 164 molecules belonging to 16 shells.
The surface energy is equal to es = 338. Approximating the
surface energy in the standard manner we find es

= (8.16 +0.18) л2/3

We write a general expression for the surface energy of a
cluster basing ourselves on the results obtained for three
types of structures. We represent the surface energy of a
cluster in the form

£s =ЛДЯ-и2 / 3.

The values of the coefficient A obtained for clusters of the
examined structures are shown in Table IV. Summarizing
these results we obtain the following expression for the sur-
face energy:
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FIG. 3. Position of molecules in layers of a hexagonal
lattice. a-Empty circles (e.c.)-position of molecules of
the initial layer, dark circles (d.c. )-position of circles of
the first layer. b-D.c. and e.c.-positions of molecules of
the second and third layers respectively. c-D.c.-position
of molecules of the fourth layer. The numbers indicate the
square of the distance from the corresponding molecule to
the center in units of distance between nearest neighbors
and are placed above the corresponding points.
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TABLE III. Position of the molecules in the
cluster cut out from a hexagonal crystalline
lattice.

Layer

0

I

1

2

0

1

2

0

1

2

1

3

2

0

1

3
3
0
1
2
1

3
4
1
3
2
4
0
3
0
1
4
3
2
4
1

Square of the dis-
tance to the center

1

I

2
8/3
3
3

11/3
4
5

17/3
6

19/3
20/3

7
7

22/3
25/3

9
9

29/3
10

31/3
32/3

11

34/3
35/3
35/3

12
37/3

13
13

41/3
43/3
44/3
44/3

15

Number
of

molecules

6

6

6

2

6

12

12

6

12

12

6

6

12

12

12

6

12

6

6

24

12

12

2

12

6

12

12

6

12

12

12

12

6

12

12

12

Number of mol-
ecules in the
cluster

—
13
19
21

—
39
51
57
69
81
87
93

105

—
129
135
147

—
159
183
195
207
209
221
227
—

251
257
269

—
293
305
311

—
335
347

= (1,35±0,02)ДЯ-п2/3. (5)

It is convenient to use this formula for a cluster or a drop the
nature of the interaction between molecules of which on the
surface is the same as inside.

We note another special feature that refers to the sur-
face energy of a cluster. Clearly a real cluster that has one of
the structures being examined can contain a small number of
vacancies or impurity molecules. This will affect the param-
eters of the individual molecules situated near them. Corre-
spondingly the vacancies and the impurities can determine
such parameters of a cluster as the ionization potential, the
affinity energy, the resonance energy of photons, etc. How-
ever, the surface energy is determined by the large number of

TABLE IV. Values of the parameter Л =£s/
(Д//-л2 / 3) for clusters cut out from different
crystalline lattices.

Type of lattice

Cubic face-centered

Cubic body-centered

Hexagonal
Average

A
1,33 ±0,07

1,33 ±0,5

1,36 ±0,03
1,35 ±0,02

molecules so that the influence of these factors on the surface
energy of the cluster is not great.

One more remark refers to the principle according to
which the cluster was assembled. Specifically, it included
molecules the distance of which from the center does not
exceed a certain value. This had a determining influence on
the shape of the cluster close to spherical. The existence of a
surface tension of the cluster justifies its spherical shape, and
thereby also the method of constructing it. From the point of
view of the shell structure of a cluster such a method of con-
structing a cluster guarantees its optimal energy characteris-
tics corresponding to the minimum surface energy of the
cluster containing a given number of molecules. This refers
to zero temperature when the sequence of filling the shells by
adding molecules to the cluster is determined by the binding
energy of the molecules so that those shells are being filled
for which the binding energy is higher. At a finite tempera-
ture holes are formed in the inner shells, but this does not
alter the general natue of the structure of a cluster.

6. SURFACE ENERGY OF A DROP

The above analysis of clusters with close packing shows
that the surface of a cluster has a complicated topography.
As the cluster grows the parameters associated with individ-
ual elements of this topography, such as the binding energy
of an individual molecule, the ionization potential, the ener-
gy of affinity to an electron, etc. vary in an irregular manner
experiencing sudden jumps after the corresponding shell has
been filled. This does not allow one to determine reliably the
dependences of these parameters on the number of particles
in a cluster, one can only determine their average values with
a certain error. Conversely, the surface energy which is pro-
duced by all the molecules that can emerge on the surface of
the cluster is insensitive to the topography of the cluster sur-
face. Therefore in determining the surface energy of the clus-
ter one can treat it as a macroscopic particle and conversely,
in analyzing the macroscopic particle one can use the results
obtained for a cluster. On this basis we use the results ob-
tained earlier for the analysis of a macroscopic drop.

Utilizing formula (5) for the surface energy we define
the surface tension Es as the ratio of the surface energy to the
area of the surface of the cluster. We obtain a formula close

0,28ДЯ-ЛГ2/3, (6)

where Д// is the energy of converting the macroscopic sys-
tem to gas evaluated per molecule, and N is the density of
molecules in this condensed system which we consider to be
isotropic. We shall use this formula for systems of arbitrary
structure. On the basis of this formula we have for the sur-
face tension of mercury and water 0.36 and 0.23 J/m2 respec-
tively. The real values of these quantities are respectively
0.48 and 0.07 J/m2. The general conclusion from this com-
parison and from general considerations consists of the fact
that the relations that we have obtained are not suitable for
systems in which the interaction of the molecules on the sur-
face differs from their interaction within the system. In par-
ticular, the obtained formulas are not suitable for polar li-
quids and solutions. These results can be used for systems
with a strong interaction between atoms and molecules in
which the interacting particles retain to a certain extent their
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TABLE V.

n
X

у

40

8
16

80
12
25

100
14
29

200
22
46

400
34

73

800
52
116

1000
60
135

individuality. In particular, this refers to metals and oxides.
In so doing we should expect an accuracy which we obtained
for the surface tension of mercury.

Macroscopic particles1' of not very great size have a
high surface energy. We shall use expression (5) for the sur-
face energy obtained for clusters treated as being closely
packed which contain и molecules:

e, = 1,35ЛЯ-п2/3. (7)

We introduce the specific area of the surface of a particle S
which is the ratio of the area of the surface of the particle to
its mass:

S = 3/rp,

where r is the radius of the particle, p is the density of the
matter in it. From this we obtain for the specific surface
energy:

es =0,27(/>/т0)
2/3АЯ-5, (8)

where m is the mass of the particle, and m0 is the mass of an
individual molecule.

It is convenient to use this formula for porous systems.
In particular, representing the aerogel SiO2 in the form of a
set of spheres bound together, we find that its specific inter-
nal energy is equal to es/Sm = 2 J/m2 (m is the mass of an
individual particle; the value15 ДЯ = 133 kcal/mole has
been used). From this, in particular, it follows that for an
aerogel with a typical value of the specific area of the internal
surfaces' = 1000 mVg the specific internal energy is equal to
2kJ/g. This energy is comparable with the specific energy of
gunpowder (2.5-5 kJ/g).

Let us consider the liberation of energy on the coales-
cence of two drops or clusters. They then form a new drop
with a lower surface energy. We assume that the coalescence
of the drops occurs relatively rapidly and the excess of ener-
gy is spent on evaporating a portion of the molecules in the
drop, each of which contains и molecules, while x molecules
evaporate. Then in accordance with formula (7) we have the
following equation for the energy balance:

2,7ДЯ-я2/3 = 1,35ЛЯ-(2п - х)2/3 + ЛЯ-х.

We see that this equation does not depend on the binding
energy of an internal molecule and can be written in the form

* = 2,7n2/3-l,35(2n-;c)2/3. (9)

In Table V we provide solutions of this equation. For com-
parison we also give there values of the number of molecules
y= 1.35и2/3 which can evaporate drawing on the surface
energy of one of the drops. This energy, for example, is liber-
ated when the drop attaches to a plane surface.

7. THERMODYNAMICS OF CLUSTERS WITH CLOSE
PACKING

Let us make more precise the basic assertion of the pa-
per, which follows from an analysis of constructed clusters,

which consists of the fact that the surface energy of the clus-
ter can be defined with a certain degree of accuracy as a
function of the number of particles in the cluster, while for
the binding energy of the molecule being attached such a
dependence has no meaning. The binding energy of the mol-
ecule being attached Деи is the derivative of the total energy
of the cluster with respect to the number of particles, so that
Де„ is related to the surface energy. If one traces how the
surface energy of a cluster increases as new molecules are
added to it (cf., Fig. 2) it is possible to establish that each
molecule attached to the cluster leads to an increase in the
surface energy by an amount ДЯ — Дг„. We see that the
derivative of the surface energy with respect to the number
of molecules in a cluster is not a regular function of the num-
ber of molecules. Therefore those problems where it is essen-
tial to know the total energy of the cluster (for example,
energy liberation on the coalescence of two clusters), the
cluster can be regarded as a macroscopic particle. In those
problems where the derivative of the surface energy is essen-
tial, the macroscopic approaches are inapplicable. The rea-
son for the difference between a cluster and a macroscopic
particle consists of the fact that in the very method of con-
structing the cluster the crystalline structure has already
been imbedded. Therefore the binding energy of the mole-
cule being attached may assume definite discrete values and
this refers to clusters of any size. However these assertions
refer to zero temperature. Obviously thermal motion of the
molecules may alter this situation.

First let us determine how the structure of a cluster
changes as a result of thermal excitation. Even at low tem-
peratures the excitation energy of a cluster is quite high.
Indeed, we shall regard the vibrations of molecules in a clus-
ter as classical ones. Then the energy 3(и — 2) Г/2 which
significantly exceeds the binding energy of an individual
molecule (Г is the temperature expressed in energy units) is
concentrated on the vibrational degrees of freedom of the
cluster which contains и molecules. This energy can be uti-
lized for forming vacancies in a cluster and transfer of mole-
cules from filled shells of the cluster to more distant unfilled
shells.

Basically vacancies arise on the surface of the cluster
and from there the molecules go over to the external unfilled
shells of the cluster. This effect disturbs the previously dis-
cussed closed structure of the cluster when one of the shells
of the cluster is filled sequentially and after it has been filled
the building of the next shell occurs. The temperature effect
makes the cluster "full of holes" so that it acquires several
unfilled shells with different binding energies of the mole-
cules. This effect is stronger the larger the cluster. Figure 4
shows the number of vacancies in the surface shells of the
cluster containing a number of molecules close to 791 and
which has the structure of a face-centered lattice. We desig-
nate as surface shells of the cluster under discussion, which
contains a number of molecules in the neighborhood of 791,
the shells 017, 345, and 046 where the binding energy of the
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FIG. 4. Number of vacancies in the surface shells of a cluster with the
structure of the face-centered cubic lattice as a function of the number of
molecules in the cluster (the values of the parameter x = 7УДЯ are
shown).

important are the shells 336, 127, and 225 with the binding
energy of molecules in them being 5/) and the total number
of molecules which can be situated in the shells being equal
to 96. These shells are the ones that are being filled most
effectively. Figure 5 presents the population of these exter-
nal shells depending on the number of molecules in the clus-
ter at different temperatures.

The temperature effect under consideration leads to an
increase in the surface energy of the cluster (Fig. 6) and to a
smoothing out of the energy parameters of the cluster as a
function of the number of molecules contained in it. Indeed,
at low temperatures as one shell is being filled and another
one is beginning to be filled the binding energy of the mole-
cule being attached experiences a jump. As the temperature
increases the new shell begins to be filled before the preceed-
ing shell has been completely filled. And this makes the
change in the binding energy of the molecule more smooth.

We consider one more parameter of the cluster under
examination. The distribution of clusters among shells cor-
responds to the Fermi-Dirac case, so that the parameter of
the cluster is the chemical potential //„ which is determined
from the relation

• n, (10)

molecules is equal to 6D. The total number of molecules in
these shells is equal to 96. At low temperatures (x = Т'/
Д//-»0) as new molecules are added to the cluster contain-
ing и < 791 molecules they occupy the vacant places in the
surface shells, and for л = 791 the surface shells are com-
pletely filled and the external shells are completely vacant.
As the temperature increases the external shells begin to be-
come filled even before the surface shells have been filled.
Therefore in the surface shells there are vacancies even for
и>791. Their number is greater, the higher the tempera-
ture.

Among the external shells of the cluster under consider-
ation containing a number of molecules close to 791 the most

where nk is the number of states in the k th shell, and ДеЛ is
the binding energy of the molecule in the shell when n mole-
cules are present in the cluster. As the shell is being filled and
a transition occurs to a new shell the chemical potential
changes from the binding energy of the molecule in the shell
being filled to the binding energy in the new shell. This tran-
sition becomes smoother the higher the temperature (Fig.
7).

8. THE CLUSTER MODEL OF THE CONDENSATION

The dependence of the surface energy on the number of
molecules in the cluster, which has a stepwise nature at low
temperatures and becomes smoothed out as the temperature

m
25

20

10

=0

770 780 790 800 П

FIG. 5. Number of molecules in the external shells of a cluster where the
binding energy of the molecule is equal to 5Д at different temperatures
(the values of the parameter x = Г/ДЯ are shown).

700
770 790 800 n

FIG. 6. Surface energy of the cluster under consideration as a function of
the number of particles in it at different temperatures (values of the pa-
rameter x — Г/ДЯ are shown).
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FIG. 7. The chemical potential of a cluster as a function of the number
of particles in it expressed in units of/). Values of the parameter x = T/
ДЯ are shown.

increases, affects the nature of the processes associated with
the attachment of molecules to the cluster and the evapora-
tion of molecules belonging to the cluster. We briefly consid-
er one of such processes corresponding to condensation of
molecules in a supersaturated vapor which occurs through
the formation and growth of nuclei, with the nuclei being
clusters. Our aim is to understand how the parameters of the
clusters affect the rate of condensation.

We give a sketch of the general theory of the condensa-
tion being examined assuming that the growth and decay of
nuclei is associated with the addition of molecules to the
cluster and evaporation of molecules. We examine the kinet-
ic regime when the mean free path of the molecules is large
compared to the size of the cluster. We write the time of
evaporation of molecules from the cluster in the form
т0ехр(Де„/Г) where Де„ is the binding energy of the nth
molecule in the cluster, and the rate of capture of free mole-
cules by the cluster is equal to jcrn where an is the cross
section for the capture of molecules by the cluster which is
proportional to the cross section of the cluster; the flux of
incident molecules is equal to

j = N(T/2nm)l/2,

where N is the density of the molecules in the gas phase, and
т is the mass of a molecule. We introduce the pressure of the
saturated vapor Psa, ( T} in such a way that at the density of
molecules corresponding to it the times of evaporation and
capture of a molecule are equal to one another for clusters of
a large size. The degree of supersaturation of the gas or vapor
(p is the gas pressure) is equal to:

S=p/PS3t = лу70ехр(-ДЯ/Г). (И)

We write down the kinetic equation for the density of
clusters Nn containing n molecules. We have:

where an is the cross section for the capture of a molecule by
a cluster containing n molecules. We then concentrate our
attention on the principal elements of the process and there-
fore we shall neglect the dependence of the parameters TO

and Деп on n. Equation (12) has a steady-state solution:

(13)

Using Eq. (13) we analyze the classical theory of con-
densation where the binding energy of a molecule Дг„ is a
monotonic function of the number of particles in the cluster.
Using for the binding energy of the nth molecule of the clus-
ter an expression of the type (4) we have, taking into ac-
count (5):

Де„ = ДЯ - 2ЛДЯ-/Г1/3/3.

The relation (12) assumes the form:

Nn-llNn

From this we obtain the critical number of molecules in the
cluster

«сг=(2ХДЯ/ЗГ1п5)3, (14)

which corresponds to minimum population. Clusters of
smaller size will evaporate, clusters of greater size will grow.

In order to determine the rate of condensation it is nec-
essary to solve the system of equations (12). The problem is
simplified due to the fact that at each transition the number
of molecules in the cluster changes by unity. Since the values
of n which determine the rate of the process are great, con-
sidering и as a continuous parameter one can reduce the
system of equations (12) to the Fokker-Planck equation:

dN_

where

(15)

«„ = ехр(-Д£(1/Г){5 ехр[(Дед -

*„ = ехр(-Де„/Г){5 1}/2т0

In the case of the classical theory of condensation we obtain
that for л = ncr we have an — 0. The time of condensation
on attainment of the critical parameters is determined by the
quantity b (nc r) = exp( — Де„/Г)/г0, with it being basi-
cally expended on going through the range of Дл determined
by the relationship

i^An - 1. (16)i fl/i

By the same token the time of condensation after attaining
the critical parameters amounts in order of magnitude to
тДл2, where т = ta0exp (Д£„ /Г) is the time of evaporation
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FIG. 8. The binding energy of the molecule being added to the cluster
as a function of the number of particles in it, expressed in units of D.
Values of the parameter x = Г/ДЯ are shown. The dotted line charac-
terizes the average value of the binding energy in accordance with
formula (5).
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of a molecule from a cluster of critical size.
Now on the basis of the relationships obtained above we

present the general picture of the process of condensation,
taking into account the properties of real clusters. In doing
this it is essential that the binding energy of the molecules to
the cluster is a nonmonotonic function of the number of mol-
ecules in the cluster, with this feature of being nonmonotonic
being preserved as the temperature is increased. From this it
follows that the distribution of clusters with respect to size in
the process of condensation has the following form. The
maximum population corresponds to clusters with a partial
filling of a closed shell for which the binding energy of the
molecule being attached is equal to Д// or is close to this
value. Thus at low temperatures clusters are picked out with
a closed shell being filled, and an increase in the temperature
smooths out this effect but preserves it. The distribution
function of the clusters with respect to the number of mole-
cules contained in them has sharp dips coresponding to the
filling of shells that are not closed. This has a significant
effect on the nature of condensation which is sharply slowed
down in the case of filling of shells of the cluster that are not
closed.

To demonstrate this fact Fig. 8 presents the dependence
of the binding energy of the molecule being added to the
cluster b.e„ on the number of particles in it in the region of
filling of the closed shell with n = 791. We see that these
dependences do not correspond to the averaging of binding
energy inherent in the classical theory of condensation. For
values of the parameter x = Де„/ Т = 0.02 — 0.05 which
are of interest for condensation, the change in the factor
ДЕ„ /Тas the shell is being filled amounts to a few units, and
this corresponds to a change in the population of the clusters
by orders of magnitude. By this token the distribution func-
tion of the clusters with respect to the number of molecules
in them is essentially nonmonotonic. We note that these con-
clusions follow from an analysis of relatively large clusters,
i.e., they are valid for different regimes of condensation.

As a result of the nonmonotonic dependence of the
binding energy of the molecule being added to the cluster on
the number of molecules in it the picture of condensation
becomes more complicated than in the classical case. In this
case the cluster theory may be constructed based on the
Fokker-Planck equation (15), but taking into account real

values of Д^„. We see that in this case the condensation time
will be determined by the passage through the shells with the
lowest values of the binding energy of the molecules As„.
There can be many such shells, with the temperature effects
being able to smooth out only partially the stepwise nature of
the dependence of Д£„ on n, but not to change it. By the same
token the classical theory of condensation turns out to be
unsuitable, and the validity of the simplified variants of the
cluster theory of condensation can be checked by means of
numerical calculations taking into account the Fokker-
Planck equation (15) and the real dependences of the energy
of attachment of a molecule to the cluster on the number of
molecules in it and on the temperature.

9. CONCLUSION

An analysis of clusters cut out from the face-centered,
body-centered and hexagonal crystalline lattices around a
certain center enables one to formulate a number of asser-
tions concerning the physics of clusters. At low tempera-
tures a cluster containing tens and hundreds of molecules
cannot be regarded as a macroscopic system because a num-
ber of the parameters of the cluster cannot be defined as a
monotonic function of the number of particles in it. This
refers, in particular, to the binding energy of a molecule be-
ing attached to the cluster, which depends on the structure of
the cluster—shell in which it is situated, and the shells that
have been filled. The binding energy of a molecule in a clus-
ter experiences jumps as the cluster grows—as one shell is
filled and the next shell starts growing. A similar stepwise
behavior should be expected for other parameters of the
cluster associated with the behavior of a single molecule—
the ionization potential, the affinity energy, the energy of
electron excitation, etc.

The surface energy of the cluster is produced by a con-
siderable or a greater part of the molecules of the cluster.
This quantity is insensitive to the topography of the surface
of the cluster—to the structure of its shells. Therefore for the
surface energy a cluster containing tens and more molecules
is a macroscopic particle. For it one can utilize such a con-
cept as surface tension.

In conclusion we note that the method that has been
used for constructing a cluster by cutting it out from a crys-
talline lattice can be applied to lattices of different symmetry
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and is convenient in analyzing different properties of clus-
ters and processes in which they participate.

1' We see the terms cluster, drop, macroscopic particle for systems con-
taining tens and more molecules have the same meaning in examining
surface energy.
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