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The dispersion properties of the elastic vibrations of a one-dimensional periodically-
inhomogeneous chain are examined. It is shown that in both the acoustic and optical passbands
both normal and anomalous dispersion branches are always generated in pairs. The amplitudes of
the waves corresponding to these branches are mutually linked. Results are presented of
experimental simulation in electric transmission lines with periodically varying parameters.

Both surveys and special articles in the literature have
been devoted to the propagation of waves in media with peri-
odic structure (see, for example, Refs. 1-7). Textbooks have
also been written on this subject.8'10 The specialized litera-
ture deals mainly with three areas of knowledge: solid state
physics, where models of crystal lattices are examined,1'3'6

electronics, where different types of delay systems are exam-
ined4'5'7, and optics, which examines multi-layer coatings.5

We note that, as a rule, publications on electronics present
true dispersion relations for linear waves propagating in de-
lay systems. Solid state physics publications that examine
one-dimensional discrete models of crystal lattices and sec-
tions of textbooks, even new textbooks,8'9 on the theory of
vibrations and waves do not provide a complete picture of
these dispersion relations. As in earlier publications,1'2'11

the range of wave numbers in the above publications is limit-
ed to the interval + тг/2, which may lead to the erroneous
conclusion that the so-called "acoustic" branches of the
spectrum of elastic vibrations have only the normal disper-
sion, that is, the frequency of vibrations increases as the
modulus of the wave number increases. Conversely, the "op-
tical" branches have only an anomalous dispersion, that is,
the frequency of vibrations falls as the modulus of the wave
number increases. In fact, as will be shown below, in both the
acoustic and optical ranges there should be branches with
both a normal and an anomalous dispersion, and their am-
plitudes are unambiguously mutually linked.

The purpose of this article is to draw the attention of a
wide range of physicists and instructors at institutes of high-
er learning to the fact presented above, which is important
both from the point of view of fundamental research and also
for the solution of practical problems. In fact, thousands of
university students learn from the aforementioned text-
books.

First of all, let us examine the well-known1"3'5'6 one-
dimensional model of a diatomic crystal lattice (for exam-
ple, NaCl) which is an alternating sequence of heavy (with
mass M) and light (with mass m) balls joined by springs
with a force constant k (Fig. la). Let us number the balls in
order, and to be definite we will assume that the heavier balls
correspond to even numbers, and the lighter balls corre-
spond to odd numbers. Then the equations for the vibrations
of the balls can be written in the form

mxs + k(2xs - xs+i - jcs_,) = 0 for s = ± 1, ± 3, ± 5,

Mxs + k(2xs - xs+l - xs_J = 0 for s = ± 2, ± 4, ± 6,

(1)

where xs is the displacement of the s-th ball from the equilib-
rium position.

The masses of the balls differ, and so the amplitudes of
their vibrations will differ from one another. Thus, the solu-
tion of Eq. (1) will be sought in the form

for S=± 1,±3, ...

for s = ± 2, ± 4,.... (2)

where /? is an unknown quantity which plays the role of the
wave number. As follows from Eq. (2), P is the phase
change in one cell.

Substituting Eq. (2) into Eq. (1), we obtain equations
to determine the amplitudes of A and B, from which we find
the dispersion equation

o4 - 0, (3)

where u>, = ( k / M ) l / 2 , сог — (k/m)l/2 are the eigenfre-
quencies of the uncoupled vibrations of the balls, as well as
the ratio of amplitudes

Then it is clear that at ta<!V2tal the amplitude of vibrations of
the heavy balls В exceeds the amplitude of vibrations of the
light balls A, so A goes to zero as frequency ы approaches the
boundary value V2w, . At со = Vbo2, the heavy balls are im-
mobile (5 = 0), and in the second region of frequencies со,
when V2u>2<<y<[2(u>* +W2.)]1'2, it is always true that
B<A.

Up to this point the results have completely coincided
with known results.1"9 The divergence begins with the fol-
lowing question: in which range should one examine values
of pi In a chain with identical balls the range of variation in
P corresponds to the interval from — тт to IT, since all other
values of /3 are indistinguishable from the indicated values.
In the transition to a chain with periodically alternating

-ЛЛг-^ЛЛОЛЛ^л/ч5—-

FIG. 1. One-dimensional mechanical model of a diatomic crystal lattice.
a) infinite; b) bounded.
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balls the following argument is adduced: since the period of
the structure is doubled, the range of variation in /? should be
halved. This would be correct if the chain remained homoge-
neous as before. For an inhomogeneous lattice this state-
ment, generally speaking, is untrue.

Let us show that for the case of a chain with alternating
elements the wave number 13 should still be examined in the
interval — -IT to тт. Let us examine a finite chain consisting of
n balls which are fastened at the ends (Fig. Ib). The bound-
ary conditions for such a chain have the form

= xn+i = (5)

It is easy to obtain a particular solution of Eq. ( 1 ) with
the boundary conditions in Eq. ( 5 ) in the form
x,g = sin sft4(Aglcos <oqlt + Aq2cos

- sin * Bg2cos
s = ± 1, ± 3, ...,

s = ± 2, ± 4, ....
(6)

where the ratios Bq\/Aql andBg2/Aq2 are defined by Eq. (4)
for ы = <a?1 and ш = coq2 respectively, and coql and coq2 are
two roots of Eq. ( 3 ) for /3 = Pq . It follows from the boundary
conditions in Eq. (5) that /Зя = ±q-rr/(n+\), where
q = 1,2,. ..,n. Then it is clear that the range of changes in /?? is
enclosed within the interval — тг, тт. For each value of Д,
there are two fundamental frequencies coql and u>q2 . All n
fundamental frequencies of the lattice can be obtained by
changing q from 1 to и/2, that is, in the range of variation in
/? from — 7Г/2 to 7Г/2. Expansion of the range of variation in
0 to the interval [ — тг, тг] , that is, for q = я/2 + l,...,«does
not lead to the appearance of new fundamental frequencies.
Thus, in theories where only the number of degrees of free-
dom is significant, for example, Bern's theory of specific
heat,1 restricting the range of variation of/? to the interval
[ — 77/2, 77/2 ] does not lead to errors.

If we are interested in the character of wave processes
occurring in the chain, in particular, the phase and group
velocity of waves, as well as nonlinear processes, then the
limitation on the range of variation of /? to the interval
[ — ТГ/2, 7Г/2] is not correct. In this interval we obtain from

iff

FIG. 2. Dependence of frequency ш on wave number /3. a) granges from
— iT/2 to -IT/I, b) [3 ranges from — тг to тг.

Eq. ( 3 ) the known dispersion equations presented in Fig. 2a.
Branches / and /' have been named by Born acoustic
branches, and branches 2 and 2' optical branches of the spec-
trum of elastic vibrations in a diatomic lattice. It is clear
from Fig. 2a that the acoustic branches correspond to a nor-
mal dispersion law in which the frequency of vibrations in-
creases as the modulus of the wave number increases, that is,
the phase velocity (co/fS) and group velocity (dca/d/3) are in
one direction. In the optical branches the dispersion law is
anomalous, that is, the frequency decreases as the modulus
of the wave number increases, which leads to the fact that the
phase and group velocities of the waves are in opposite direc-
tions. It is this very case which Mandelshtam10 used as an
example of a medium with these interesting properties.

In the range of variation of /3 from — тг to тг the shape of
the dispersion relations is shown in Fig. 2b. It follows from
this figure that the optical (со > V2«2 ) and the acoustic
(со < V2coi ) branches of the spectrum have segments with
normal (/,/ ',/,/') and anomalous (2,2 ',11,11') dispersion
laws. But what does actually occur? For an answer to this
question we present the solution of Eq. ( 2 ) in a form which is
universal for the description of vibrations both of heavy and
light balls:

cos cot, ( 6')

where

1/2

— /1 — ш2 \ I/2"! Г/1 _ ш2 \ I/2 , /1 _ Д)2 \ l/2-i -1 |
\ 2о»?' J L \ 2со?' \ 2о)2/ J Г

Taking into account that ехр[й(/3 + тг)]
= exp[w(/? — тг)], Eq. 6 can be written in a more conve-

nient form

A + B
cos ш{ (7)

Then it follows that at a given frequency со two waves are
always generated with wave numbers /3 and & — ir. These
waves correspond to the two branches in Fig. 2b (/and II',11
and /', 1 and 2', or 2 and 1'). Both waves have the same group
velocities and differ in the value and the direction of the
phase velocities. The amplitudes of the generated waves are
not independent. The ratio of the amplitudes of the waves in
branches //, 7/', 2 and 2' to the amplitudes of waves in
branches /', /, / ', and 7, respectively, is^<l. The depend-
ence offj. on/9 for frequency intervals co^VIco\ and <a>VZ«2

is shown in Fig. 3. It is clear from the figure that waves with a
normal dispersion law in the examined lattice always (with
the exception of critical points со = V2u), and со = V2co2)
have a larger amplitude than waves with an anomalous dis-
persion law.

As m->M the amplitudes of waves with an anomalous
dispersion law go to zero, and col goes to co2. The derivative
dco/d(}, that is, the group velocity, as follows from Eq. (3), is
equal to

-[ (со2 -1/2
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т/г

Я/2

FIG. 3. Dependence of coefficient /j. on wave number/?, a) for <u<v2u),;
b)

<yt -»u>2 depends on the order of transition to the limit. If w,
goes to co2 first, and then we set /3 = + -ir/2, then d«/d/7
acquires a finite value as for a chain with identical balls. If,
conversely, /7 goes to ± IT/2 first, and then &>, goes to co2,
then d<y/d/? will go to zero. However, the second derivative
dWd/?2 will go to infinity. Thus, the character of the transi-
tion to the limit as т -»М becomes clear, and the difficulties
which occur when one limits the range of variation of/? to
the range of values + тт/2 do not arise (see, for example,
Refs. 2 and 8).

The results we have obtained can be confirmed with a
simple experiment. It is known2'12 that the equations for
charges (and consequently, for currents) in an LC line, such
as a low-frequency filter in which alternating inductances Z,,
and L2 are used (the capacitances С of the cells are the
same), are identical to Eq. (1), that describe the vibrations
of balls in the mechanical chain shown in Fig. 1. Thus, Eqs.
(3) and (4) obtained above can be applied to the calculation
of the dispersion relations /?(<y) and the parameter of the
electric filter /n(ca) = |1 - \B /A | |/(1 + \B/A |), if one sets
<u, = l/(Ll С)1/2, ш2 = \/(L2C)1/2. We note that the ana-
log of a mechanical chain with identical ball masses, but with
alternating spring force constants kl and k2, is a low-fre-
quency filter in which capacitors with different capacitances
C, andC2 are used and the inductances of the £ cells are the
same.

Experiments were conducted in the radio frequency
range, and in addition to a low-frequency filter, more com-
plex lines were studied with a periodic change in parameters.
A high-ohm probe, selective voltmeter and phase meter were
used to measure the amplitudes of the voltages in the cells of
the line and the dependences of the phase change per cell on
the frequency. The amplitudes of the currents were deter-
mined by calculation. The degree of agreement of theoretical
and experimental results is determined by the care taken in
manufacturing the cells in the line (in our case, the require-
ment of exact agreement was of no fundamental impor-
tance).

Figure 4 shows the theoretical values (solid curves)
and experimental data for the relations/?(«) and / n ( co ) as
functions of the normalized frequencies co/(oa where
<OB= [2(L, + L2)/CL1L2]

}/2(L1/L2 = 2). When a har-
monic voltage was fed to the input of the line, which consist-

Т Т Т Т Т

FIG. 4. Dependence of the phase change & per line cell and of the coeffi-
cient ц on frequency in a low-frequency filter with parameters L, = 40
/Щ, L2 = 20 /J.H, C= 330 pF. The solid curves for /3 and the dashed
curves for /i correspond to theoretical data, and the symbols indicate ex-
perimental data.

ed of 24 cells, predominantly waves with a normal dispersion
law were generated in both the first and the second pass-
bands. In a real system anomalous branches are always gen-
erated with a "weight" less than unity. This is due to the fact
the parameter fj, does not reach unity even at points corre-
sponding to the boundary frequencies V2~ft), and V2~u>2 due to
losses not considered in the theory presented above.

For comparison we also studied a high frequency filter
(with L}/L2 = 2, Сi = C2 = С ) for which an anomalous
dispersion of the generated waves is characteristic. Figure 5
presents the relations 0(co) and /z(ta) for normalized fre-
quencies u>/<aH, where <ан = [ (L{ + L2 )/2CLlL2 ]1/2. In
this case predominantly waves with an anomalous disper-
sion are generated both in the first and second passbands,
and the pattern of the dispersion relations in this case is, to a
certain degree, inverted in frequency with respect to the cor-
responding relations for a low-frequency filter. Thus, one
can conclude that the appearance of a cut-off band due to the
difference in the parameters of neighboring cells in the line
(or in a mechanical chain) does not lead to a change in the
type of dispersion if the character of the dispersion (conven-
tionally, "inductive" or "capacitative") of the cells them-

-1,0

0,5

1 2 3 о>/ын

FIG. 5. Dependence of f) and fi on frequency in a high-frequency filter
with parameters L, = 20/Ш, L2 = 40/Ш, С = 330 pF.
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selves is preserved over the entire frequency interval.
A question arises: in what kind of line (or chain) will

waves with a normal dispersion predominate in an "acous-
tic" band of frequencies, and in what kind of line or chain
will waves with an anomalous dispersion predominate in an
"optical" band of frequencies. To answer this question we
studied a line consisting of two types of alternating resona-
tors whose resonance frequencies &>, and o)2 differ apprecia-
bly from each other. Such a separation of resonance frequen-
cies is necessary to change the character of dispersion in the
resonators with lower values of u>,. The schematic of this
line is shown in Fig. 6. By a choice of suitable circuit param-
eters it is possible to arrange both a case of normal dispersion
in both passbands (Fig. 6a) as well as a case where in the
high-frequency band ("optical" band) waves with an anom-
alous dispersion will dominate (Fig. 6b). In the latter case
the pattern of the dependence ц (со) changes as well, because
this parameter reaches its maximum value at /3 = + -rr/2.

Analogous results are obtained also for bulk media with
a periodic structure, which also is not reflected in text-
books.8'9 In Ref. 8, for example, only branches with a nor-
mal dispersion are presented, and there is no indication of
the existence of branches with an anomalous dispersion.

Let us compare the results obtained above with results
known in the theory of delay systems in the microwave range
of electromagnetic waves.4 In the majority of cases the delay
system can be conveniently depicted as a continuous medi-
um (regions of interaction with an electron beam) with dis-
cretely actuated elements (for example, resonators). Let us
examine a two-stage system in which two types of resonators
are actuated along the z axis at a distance / from each other.
According to Ref. 4, the field in the system can be written in
the form of sums of spatial harmonics

E(x, y,z)= ]cos cat, ( 8 )

/=-00

The difference in the resonators in one period makes it possi-
ble to separate out two sets of spatial harmonics. To do this,
let us split the series in Eq. ( 8 ) into two series with even and
odd numbers j. Writing jl =j/2 for even j, and
j2 = (j + l)/2 for odd j, and setting z = zs = si, where
s = ± 1, + 2,..., we get

E(x, v, zs) = (a

where

cos wt, (9)

FIG. 6. Dependence of /3 and fj. on frequency in lines with resonance cells
having the following parameters: a) L, = 12/Ш, L2 = 24/лН, С, = 330
pF, C2 = 540 pF, C0 = 1000 pF; b) L, = 12 f i H , L2 = 24 /Ш, C, = 33
pF, C2 = 160 pF, C0 = 410 pF.

This expression coincides in form with Eq. ( 7 ) , which de-
scribes waves in a diatomic chain. The ratio of the ampli-
tudes of the minus first component to that of the zero compo-
nent, R = a _ , /a0 , is defined now as the sums of spatial
harmonics, which is a consequence of the transition from a
discrete model to a discretely-distributed model. In contrast
to the parameter ц, presented above, which has the physical
sense of the ratio of the amplitude of a wave with a normal
dispersion to the amplitude of a wave with an anomalous
dispersion, the parameter R does not have this clear physical
sense. When the interval of variation of 13 is limited to the
values + 1Г/2, the amplitude, for example, of the minus first
component characterizes in the first passband a wave with
an anomalous dispersion, and in the second passband, a
wave with a normal dispersion. In these bands the values of
R are respectively [i and l//z. As noted above, in the case of
resonance dependences of «0 and a _ , on frequency, the
branch with an anomalous dispersion may predominate.

In conclusion, we note that the correct interpretation of
dispersion relations is especially important in the examina-
tion of nonlinear processes in the described chains: the gen-
eration of a second harmonic, decay instability, the forma-
tion of solitons, etc. It can be shown for example, that in a
certain range of mass ratios, namely

for branches with normal dispersion, at some frequency
со — со* exact synchronism is possible, that is,
р(2й)*) = 2/?(ы*), where со* is denned by the expression

coQ = (co2i + <o\)1/2. Here й>*<У2~ы,, V2co2<2(a*<v2u)0,
that is, the frequency со* is located on the acoustic branch,

833 Sov. Phys. Usp. 34 (9), September 1991 P. S. Landa and V. F. Marchenko 833



and 2o>* is located on the optical branch. Due to the presence
of the condition of synchronism one should expect, due to
the quadratic nonlinearity of the effective transformation of
vibration energy in the acoustic range of frequencies into
vibrations in the optical range of frequencies. However, ine-
vitable losses existing in real chains, can substantially de-
crease the efficiency of this transformation.
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