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Different approaches to the self-avoiding walk problem are reviewed. The problem first arose in
the statistical physics of linear polymers in connection with the evaluation of the average size of a
polymer. The probability distribution density WN(R) for the vector R connecting the end-points
of an N-step self-avoiding walk is the main quantity in this problem. The equation for WN (R)
seems to be invariant under the scaling transformation group. This means that the
renormalization group method can be used to determine the asymptotic form of WN (R) as

1. INTRODUCTION

The self-avoiding walk (SAW) problem first arose in
the statistical physics of linear polymers in connection with
the evaluation of the average spatial dimensions of a poly-
mer. Linear polymers are, of course, exceedingly long chain
molecules (macromolecules) in which the number of links
can reach values of the order of 104-105. They include syn-
thetic polymers and biopolymers. Each link of a linear poly-
mer has a degree of orientational freedom relative to the
positions of neighboring links, which is responsible for the
flexibility of the polymer chain. The number of degrees of
freedom in such macromolecules is very large, i.e., of the
order of the number of monomers in the chain. This enables
us to look upon a macromolecule as a macroscopic system,
and to use statistical methods to determine the average val-
ues of variables such as, for example, the spatial dimensions
of a macromolecule. There is abundant experimental evi-
dence showing that the spatial distribution of monomers in a
macromolecule relative to its center of mass has a significant
influence on the macroscopic properties of polymer solu-
tions such as viscosity, diffusion, light scattering, and so on.
The most important measurable quantities that characterize
the dimensions of a macromolecule are the mean square end-
to-end distance and the mean square of its radius of inertia.

The so-called excluded volume effect has a major influ-
ence on the monomer distribution mentioned above. Its es-
sence is that a given volume element cannot contain more
than one monomer at any given time. The excluded volume
problem for a polymer chain is concerned with the effect of
this volume phenomenon on the monomer density distribu-
tion in a macromolecule and, ultimately, on its dimensions.
The excluded volume effect is a long-range order phenome-
non because it is due to the interaction between monomers
with very different position numbers on the polymer chain.
There is, however, a short-range order effect due to the inter-
action between monomers that are neighbors on the chain
sequence. The spatial configuration of a macromolecule is
nevertheless largely determined by the long-range order ef-
fect.

The interaction between monomers in a macromolecule
can be taken into account by methods that are essentially
similar to those used in the theory of real gases. The behavior
of the gas molecules is, however, very different from the be-
havior of monomers in a macromolecule because of the
chain structure of the latter. Actually, the probability of a

collision between two monomers depends not only on the
separation between them along the chain, but also on their
joint position on the chain. In other words, this probability
depends on the monomer position numbers on the chain se-
quence. Thus, gas molecules are indistinguishable, but the
monomers in a macromolecule are not. In addition, the
structure of a linear polymer chain enables us to exploit the
ideas and methods of the theory of random walks of Brow-
nian particles. It is precisely the chain character of the path
of a random particle and of the linear polymer that points to
the analogy between these systems. The excluded volume
effect must, however, be taken into account in the theory of
polymers. In terms of random-walk theory, this effect signi-
fies that the particle must not cross its own trajectory during
a random walk. The excluded volume effect in linear poly-
mers is therefore sometimes referred to as the problem of the
self-avoiding walk (SAW). Under these circumstances, we
have a non-Markov process because the particle must avoid
portions of space that it has already visited, i.e., it must re-
member its entire past. This memory phenomenon attaches
exclusive properties to the problem that have no analogs
among physical problems. The main quantity in the SAW
problem is usually taken to be the probability density
WN (R) of the vector R joining the end-points of the .TV-step
random walk (N$> 1). Once the function WN(R) has been
defined, we can immediately deduce the mean square end-to-
end distance (R2)N, which is an important quantity in the
theory. The classical result for (R 2)N was deduced by
Flory1 from the thermodynamic theory of polymer solu-
tions and takes the form

<Л\ ~ const •(v0//3)2/Vi/5/2, (1.1)

where VQ is the excluded volume of a monomer and / is the
length of the link joining two neighboring monomers. The
generalization of the Flory formula (1.1) to arbitrary di-
mensionality d was first made by Fisher2 in the form

(1.2)

(1.3)

(R2)N ~ const-(u0

where the critical index v is given by

d<4,
d + 2
1
2 '

if

if d > 4.

It is clear from (1.3) that the dimensionality d = 4 is special
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in the sense that, when c?>4, the mean square (R2)N de-
pends asymptotically on TV in the same way as in the absence
of the excluded volume, i.e.,

>„ ~ 0(M2). (1.4)

Both numerous experimental facts and the results of numeri-
cal computer experiments are in agreement with (1.2). A
simple derivation of this formula is presented below.

2. PHENOMENOLOGICAL APPROACH

Consider a linear polymer chain in «/-dimensional Eu-
clidean space Rd. The chain consists of N + 1 monomers
that are freely joined together by N links of length / each. We
shall number these monomers and links in the order in which
they appear in the chain, taking the zeroth monomer at the
origin of the coordinate system in НЛ It is convenient to take
the links to be the vectors 1, ( |1, | = /,/' = 1,2 ..... TV), assuming
that 1, is drawn from the /-1th monomer to the /th monomer.
The interaction between any two monomers joined by more
than one link will be described with the help of the short-
range repulsion potential £/(R) of range r0, where r0 </.
The quantity

is then the excluded volume of the monomer. In the simplest
case, the monomer can be looked upon as a perfectly hard
sphere of diameter r0 .

Next, we take

\si<jsN

to be the potential energy of the polymer chain, where the
vector

4= 2 '*
ismsj

joins the geometric centers of the г- 1th andy'th monomers.
The mean square distance between the /-1th andy'th mon-
omers is then given by

<L2> = (/-*+ I)'2 <cos0mn>,

where вт„ is the angle between lm and \n , denned by

(2.1)

(2.2)

in which QN is the normalizing factor given by

em -en is the scalar product of the vectors em = lm/l and
е„ =!„//, dCl = со ~ ldu>, dot is the area element on a unit
sphere in Rd, a = 2 i r d / 2 / Г ( d / 2 ) is the total surface area of
the sphere, and Г ( х ) is the Euler gamma function. The
quantity (cos втп ) can be looked upon as a measure of the
correlation between the directions of the vectors lm and !„
due to the excluded volume effect. It is clear that, when
f/(R) =0, so that v0 = 0, we have (cos вт„) = 0. It is natu-
ral to expect that (cos Qmn) > 0, so that v0 > 0, i.e., volume
effects produce an increase in the mean square distance be-

tween monomers in a polymer chain. For example, it is clear
that, when d = 1, we have (cos вт„ } = 1 and, according to
( 2. 1 ) , (L }j ,) = (j — i + I ) 2 ! 2 , i.e., the polymer chain is ful-
ly extended. When c?>2, the polymer chain may be looked
upon, on average, as a ball whose spatial dimensions are
characterized by a single quantity, namely, the mean square
end-to-end distance (L\N).

We shall now use (2.1 ) to construct the difference rela-
tion

(Lf!) - <L2

+ly) - 2/2<cos 0,y) (2.3)

and examine it for values of / and у (1</<^'<TV) for which
t=j — i + 1 is much greater than unity. However, the values
of (cos 9i} ) should then be much less than unity, and should
decrease with increasing t, since otherwise (2.1) would re-
quire that (L \N) ~N2l2, i.e., the polymer chain is fully ex-
tended. Hence, we conclude that the dimensionless quantity
(cos ву) should depend on some dimensionless small pa-
rameter that depends, at most, on v0/l d and t. When t = N,
the small parameter can be naturally taken to be the sum of
the excluded volumes of all the N monomers, divided by the
mean volume occupied by the polymer chain, i.e.,

\dl1 (2.4)

where и, = cdv0 and the coefficient cd = ( d / 2 i r ) c l / 2 that
characterizes the spatial shape of the ball can be found from
perturbation theory for (R 2}N = (L \N):

When t < TV, the correlation between the directions of the
vectors /, and lj is due to not only 'internal' monomers (with
numbers between / — 1 andy) but also 'external' monomers
(with numbers between 0 and / — 2 and between у + 1 and
TV). The influence of'external' monomers on the correlation
between vectors /, and lj is due to both the interaction with
the 'internal' monomers and their interaction with one an-
other. However, as t -> TV, the number of 'external' monomers
decreases and their effect on the correlation between /, and /_,•
can be neglected altogether for values of t close enough to TV.
We therefore conclude that, when Г—TV, we may assume
that, to the first order in the small parameter

V

we have

{cos 0..} = ef.

(2.5),

(2.6)

If we now approximately replace the difference relation
(2.3) with the corresponding differential equation, we ob-
tain the following equation for y ( t ) ~ (L I}//2:

d2y "i t
d,2 - ft fir (2.7)

The asymptotic solution of this for t-> oo is unique. When
d <4, this solution has the following form:3

xo ~ 6(4 -
2

<2v.
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(2.9)

Finally when d > 4, the asymptotic solution of (2.7) for
O ( t ) , so that

<cos0,7) ~ О(Г<(

The excluded volume effect is thus seen to lead to a
power-type expression for the reduction in the correlation
between the directions of two links /, and /, with increasing
/ =j — i + 1, namely, (cos eo)~O(t ~a) where a< 1 for
d < 4 and a > 1 for d > 4.

3. CONNECTION WITH THE THEORY OF CRITICAL
PHENOMENA

The important advances in the theory of phase transi-
tions achieved in the early 1970s led to significant advances
in our understanding of the nature of critical phenomena,
which in turn had an appreciable influence on the develop-
ment of the statistical physics of polymers.4'9 Wilson6'7 de-
veloped the renormalization group method as a means of
calculating the critical exponents that determine the degree
of singularity of different thermodynamic variables at the
phase transition point. The conceptual basis for the Wilson
method was provided by the so-called universality hypothe-
sis put forward by Kadanoff.8 According to this, critical
exponents should be insensitive to the detailed behavior of
the interaction potential, and should be determined mainly
by large-scale properties such as the dimensionality of the
system and the symmetry of its Hamiltonian (see also Ref.
9). The central point of Wilson's theory is the assumption of
a gradual reduction in the correlation function of the system,
e.g., of a magnet, with increasing separation between its ele-
mentary magnetic moments at the phase transition point
(this is the similarity or scaling hypothesis). Wilson and
Fisher10 put forward the so-called ^-expansion as a means of
evaluating the critical exponents, where £ = 4 — d is the de-
viation of the dimensionality d of space from d = 4. The di-
mensionality of = 4 occupies a special position in this theory
in the sense that perturbation theory can be used for the
evaluation of the critical exponents when d > 4. The £-expan-
sion procedure can be used to determine the critical expo-
nents in the form of power series in e. Calculations show that
the coefficients in these series initially decrease, but then
begin to increase rapidly, which seems to suggest that the e-
series are asymptotic in character. Thus, the renormaliza-
tion group method is, so far, effective only for dimensionali-
ties near d = 4, although only values of d that are integers
are physically meaningful.

The Wilson method was first used by de Gennes1} in the
SAW problem. Essentially, the de Gennes approach consists
of establishing an analogy between the behavior of an «-com-
ponent magnet near the phase transition point and an TV-step
SAW of a particle where TV tends to infinity. The main char-
acteristic of the magnet, i.e., its correlation function, is then
determined by the standard diagram technique based on the
expansion of the Gibbs exponential into an infinite series in
powers of the interaction Hamiltonian (usually in the form
used in the Ginzburg-Landau model), followed by averag-
ing of each term in the series over the Gibbs exponential with
the unperturbed Hamiltonian.12 The analog of the correla-

tion function of a magnet in the SAW problem is the quantity
obtained by applying the Laplace transformation in N to the
probability density ^(R). However, the diagrams repre-
senting the correlation function of the magnet include dia-
grams that contain closed loops coupled to the remaining
portions of the diagram by interaction lines alone. More-
over, all the diagrams that appear in the SAW problem
should be simply-connected along the main line simply be-
cause the path of the particle undergoing the random walk is
simply-connected. To exclude closed loops from the dia-
grams for the n-component magnet, and thus achieve a for-
mal analogy between the two problems, we have to put
и = 0, which is one of the important results obtained by de
Gennes. Hence it follows that, for example, to determine the
exponent in the asymptotic formula (R2)N~N2vl2 as
TV-> oo and e <^ 1, we can use the expression for v obtained by
the Wilson method12 and then allow n to tend to zero. The
result is

2v (3.1)

where c, = 1/8, c2 = 15/256, c3 = -0.0445........
The SAW problem can be treated by Wilson's renor-

malization group method by applying the renormalization
transformation directly in the form of the so-called decima-
tion procedure13 (see also Refs. 4 and 14) in which a poly-
mer chain consisting of N links is divided into TV, = N /g
identical subunits containing g links joined consecutively.
Each such subunit is looked upon as a new link with new
length /, and new excluded volume parameter u, . To deter-
mine /,, we must take into account the interaction between
all the monomers belonging to a given subunit, and to find
y,, we must include both the interaction between two sub-
units that are far enough from one another and all the inter-
actions within each of them. The result is a polymer chain
with the new parameters TV,,/, ,y, that depend on the origi-
nal values of TV, /, and v. This procedure of arranging the
units into subunits is then repeated several times and the
renormalized quantities lk and vk are determined for each
k th stage. The relationship between successive steps in this
process is described by recurrence relations for lk and vk or
for the dimensionless quantity uk=vk/ld

k where
uk =f(uk_ ,). As Л-» oo, the sequence of numbers uk con-
verges to a limit u*, which is a root of the equation
u* =f(u*). This approach is a reflection of the universality
hypothesis. It has been implemented quantitatively only for
e < 1, and the result for v in the first order in e agrees with the
expression given by (3.1). The subject discussed in this Sec-
tion is examined in greater detail in Refs. 4 and 14.

The above iteration process is usually related to Wil-
son's renormalization group that is actually a semigroup be-
cause the reverse operations cannot be defined for the above
iterations. Polymer statistics can also be investigated direct-
ly by means of renormalizing transformations associated
with a true group that is also called renormalization group.
The latter was first discovered in quantum field theory by
Stueckelberg and Peterman15 and later by Gell-Mann and
Low.16 The renormalization group method was subsequent-
ly developed by Bogolyubov and Shirkov.17'18 To distin-
guish this (true) group of renormalizing transformations
from the Wilson renormalization group, the former is usual-
ly referred to as the field renormalization group. It is impor-
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tant to note that the field renormalization group is a contin-
uous group and can therefore be described by the Lie
differential equations that are exceedingly useful in practice.
It was found subsequently that the field renormalization
group method can also be incorporated in different schemes
for the investigation of the SAW problem. The next Section
presents a brief account of the continuum approach to the
SAW problem.

4. CONTINUUM MODEL AND THE RENORMALIZATION
GROUP

The excluded volume problem was first formulated in
terms of the functional integration method in the well-
known paper by Edwards,19 which led to the intensive devel-
opment of this approach to the problem, and gave rise to an
extensive literature (see, for example, Refs. 20-35).

In the continuum model of a polymer chain, the number
of links is allowed to tend to infinity and the effective length
of each link As, (;' = \,2,...,N) is allowed to tend to zero in
such a way that the total length L of the chain remains finite,
i.e.,

N

L = lim ̂  As(.
1=1

max As, -» 0, N -» ».

The distribution density for the vector R, = r, — r,• _ , join-
ing two neighboring monomers along the chain at points
r, _ , and r, is then given by the Gaussian function

r(R.) = (4.1)

where / is the so-called Kuhn length defined so that the mean
square end-to-end distance of the ideal polymer chain (i.e.,
in the absence of the excluded volume) is equal to IL. If we
now use Utj (r, — Гу ) to represent the volume interaction po-
tential between the /th andy'th monomers, the distribution of
the vector R joining the ends of the chain can be written in
the form

(4.2)

<•*/

x«5(R - TN 4- r0)d3r0 П t(R(.)d
3r. ,

where

"JV '
- 22 Vfa - «>)d3r0 r[T(R,.)d3r,. . (4.3)

The next step is to proceed to the continuum model of the
linear polymer by the method indicated above. As a result,
any admissible spatial configuration of the polymer can be
represented by the equation of a continuous curve r = r(s)
in which s is the coordinate of a point on the curve that
ranges from zero to L. The finite sums in (4.2) and (4.3)
then become integrals

As, -» ^7 Hds'

where U t j / l 2 can be interpreted as the interaction energy per
unit link length between the /th andy'th monomers. The next
step is to replace the potential U by the pseudopotential in
accordance with the scheme

(kT)~lU(T(s) - r(s')) -* v0<5(r(s) - its')),

in which v0 is again the excluded volume parameter of the
monomer. The condition \s — s'\ >A, where Л is of the order
of the link length /, is then imposed in order to avoid the
singularity when the integrals with respect to s and s' are
evaluated.

Finally, if we consider the continuum model of a poly-
mer in c?-dimensional space, and assume for simplicity that
/ = 1, the distribution density for the vector R assumes the
form

(4.4)

(4.5)

= Z~\L)G(R, L),

where

Z(L) =

C(R, L)

, L)ddR,

r
r(0)=0

4-м

J Д[г(5)]ехР(-Я0(г))

V >

x J £>[г(5)]ехр(-Я(г)),
r(0)=0

(4.6)

L L-i -i

Я0(г) + -̂  J dsj ds'<5(r(s) -

and D [ r ( s ) ] represents the measure on the configuration
manifold of a continuous curve whose end-points lie at
R(0) = 0 and r(L) = R, respectively.

It is readily seen from the definition of the above model
that it ceases to be meaningful for distances of the order of A.
This forces us to proceed to the macroscopic description,
i.e., to distances much greater than A. A further scaling
length parameter Л is therefore introduced and is such that
А /Л < 1 . This new length scale, which is not in general equal
to the chain length L, is not equal to the macroscopic chain
length L and enables us to employ the universality hypothe-
sis in this model when L -» oo .

For example, if we doubled, the result will of course be
a doubling of L, which means that there is a linear relation-
ship between L and L

L-XL, (4.7)

о о

where the factor X depends on the excluded volume param-
eter v0 and the ratio А /Л. On the new length scale, the quan-
tity describing the excluded volume effect must reflect the
collective character of the volume interactions over dis-
tances of the order of Л. It follows that the macroscopic
excluded volume parameter is now the renormalized quanti-
ty v that is, of course, a function of v0 and А /Л. However,
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when the critical exponents are calculated, it is more conve-
nient to use the quantities

и = vA</2,

so that, in view of the foregoing, we can write

и = ы(и0,А/Л). (4.8)

Finally, let G0 (R,L,u0 й-) andG(R,Z,w;A) represent the un-
renormalized distribution densities in the microscopic and
macroscopic approaches to the SAW problem, respectively.
However, after normalization, each of the functions G0 and
G must yield the same distribution density for the vector R,
so that it is obvious that these two functions must be propor-
tional to one another:

(4.9)G(R, L, и; Л) = Y~l(u, A/A)GQ(R, L, u0; A).

The relations given by (4.7)-(4.9) provide us with the basis
for the application of the renormalization group method in
the continuum model of a linear polymer chain.

Actually, if we rewrite (4.9) in the form

G0(R, L, v0; A) = Y(u, A/A)

xG(R, LX(u, A/A), u(u0, A/A); A) (4.10)

and recall that the left-hand side of this equation is indepen-
dent of the parameter A, we immediately obtain the differen-
tial equation for the function G(R,Z,,w;A):

лЛ- + р-(МУгоЛ rv 'ди

. д In X ~
+ Л —^т-зл

In У

in which

I L,v^

L, м;Л) = 0, (4.11) where

(4.12)

represents the Gell-Mann-Low function. Equation (4.11)
is the so-called renormalization group equation that con-
tains information on the dependence of the required function
Gon the macroscopic parameters of the model. If и ceases to
depend on Л as Л increases, i.e., the system exhibits asymp-
totic scale invariance, then we have a basis for the implemen-
tation of the scaling idea. The limiting value м* of u, which is
called the 'fixed point', is found from the condition

B(u) I . = 0."v '\u=u (4.13)

The calculation of critical exponents becomes significantly
simpler if we use the last equation in conjunction with
(4.11). Actually, dimensional analysis of the solution of the
renormalization group equation under the scaling regime
leads to the following asymptotic behavior:

G(R, L, u*; A) - U-vd-lg(R/Lv), (4.14)

in which the critical exponents v and 7 are found from the
formulas

2v- 1
2v

îJT"

_ .

Э 1 П У ,

(4.15)

(4.16)

function g(R/L v) in (4,14) requires, in turn, a determina-
tion of A', Y, and и that, so far, has been possible within the
framework of the f-expansion only for £<g I . The result ob-
tained by this method for 2v agrees to within e2 with the
expression given by (3.1) from which it follows that y~ 2v.
If we formally substitute e = 1 in (3.1), the sum of the first
three terms of the series in (3.1) gives 2v^ 1.184, but the
inclusion of the fourth term produces a much poorer result,
i.e., 2v;s 1.139. The £-expansion method used in the above
approaches to the problem does not therefore enable us to
extend our results beyond the small neighborhood of dimen-
sionality d = 4. A more detailed description of the func-
tional integration met.iod as applied to the SAW problem
can be found in Freed's monograph.36

5. BASIC EQUATION

We shall now describe the approach based on the renor-
malization group method for the solution of the exact equa-
tion for the probability density WN (R).

Consider a spherical particle of diameter r0, which be-
gins a random walk at the origin of coordiates in R din such a
way that each individual step /, of its geometric center has a
constant length | /, | =/(/>!) and a random direction. In ad-
dition, after each step, the particle avoids all regions of space
it had visited after all previous steps. It follows that r0 < 1.
We now use the Markov method39 to express the required
probability density for the end-to-end vector R of the ./V-step
path in the form

(5.1)

(5.2)

and the normalization factor QN is given by

(5.3)

Next, we define the function a(z,/5) by the expression

for which we have the equation38

in which

\s(x)

(5.6)

( 5.7 )

s = (d — 2)/2, Js (x) is the Bessel function, and b(z,p) is an
infinite series whose first few terms are given by

The determination of the values of v and 7 and of the scaling

808 Sov. Phys. Usp. 34 (9), September 1991 V. I. Alkhimov 808



- J ' vfflv(xl)v(Hf")(a(?'- Z, R) = 2 *%<«),

in which

and the excluded volume parameter is given by

(5.8)

(5.9)

s). (5.10)

The z dependence of the function a (p — %) is not shown in
(5.8) for the sake of simplicity. Equation (5.5) is closed in
the required quantity a(z,p) and its form is analogous to the
well-known Dyson equation. It plays an important part in
our problem and is therefore referred to as the basic equa-
tion. The series in (5.8) is conveniently represented graphi-
cally. This is done by associating each term of this series with
a diagram consisting of a certain number of vertices and a set
of solid and wavy lines joining these vertices. In addition,
each diagram contains two further external solid lines, one
of which is ingoing and the other outgoing. Each line is as-
signed a particular vector, i.e., 'momentum', which must be
conserved at each vertex on which two solid and one wavy
line converge. Finally, the quantity a (z,p — x ) is assigned to
each internal solid line and — v(u)/(2Tr)d is assigned to
each wavy line. The integration is then carried out over all
the wavy-line vectors. When these rules are applied to (5.8),
the result is as shown in Fig. 1.

Analysis of the individual terms in the series given by
(5.8) shows that the problem associated with the divergence
of the integrals does not arise here. Actually, if in all the
integrals we transform to the configurational variables {r},
we readily see that integration with respect to {r} has the
lower limit r = r0, which is of course a reflection of the
excluded volume effect, whereas at the upper limit /•-» oo and
the integrands tend exponentially to zero because of the fi-
nite number of steps executed by the particle in its random
walk. However, we still have the problem of the convergence
of the series as a whole. It can be shown that the series given
by (5.8) converges absolutely, at least for \z\ < 1, for all real
values of p.

Let us suppose now that we know the solution of (5.5).
We can then use the Fourier transformation

w(z, R) =

to find the generating function

(5.11)

and then use the inversion formula

(5.12)

(5ЛЗ)

(5Л4)

then the definition given by (5.1) gives the required proba-
bility density WN(R). We now apply (5.13) and (5.11) in
succession to (5.14), and evaluate the integral over R. The
result is

to determine WN (R). If we also recall that

from which it follows that

a(z, 0) = Q(z) (5.16)

Combining the last equation with (5.5), we obtain

Q~l(z) = 1 - г - b(z, 0). (5.17)

If z0 represents the singular point of Q(z) closest to the ori-
gin, we have by definition

1 - z0 - b(z0, 0) s 0. (5.18)

Hence we readily see that z0 =z0(v0/ld) and z0(0) = 1.
The inclusion of the excluded volume effect thus leads to a
shift of the singular point z0 from its 'undisturbed' position
z0 (0) = 1. We know from the theory of analytic functions
that the boundary of the circle of convergence of a power
series crosses its singular point closest to the origin.39 More-
over, the asymptotic behavior of a function represented by a
power series as the variable z approaches the boundary of its
circle of convergence can be related to the asymptotic behav-
ior of the coefficients of this series when their order numbers
tend to infinity.40 The importance of the latter statement lies
in the fact that the next problem that we have to face is the
determination of the asymptotic form of the probability den-
sity WNCR) for N-> oo and /?>/. It will be convenient to
transform from z to the new variable f = z0/z and introduce
the following notation:

In view of (5.18), we can now write (5.5) in the form

-o-
FIG. I.
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• B(l, 0, v, А) - Я(?,р/, v, А).

(5.19)

We now put pi =/|" (Re £> 0) to represent the root of the
equation A ~ ' (£">/") =0 that is closest to the origin p = 0.
Hence, putting p = p, in (5.19), we obtain the identity

£ - 1 + г„(1 - As(if/)) + B(l, 0, v, A) - B(£, $1, v; A) s 0,

(5.20)

which relates the variables £ and £. Finally, using the identi-
ty (5.20) in (5.19), we obtain the basic equation in the form

A'' = A'l(|, p) + B(£, i£/, v; A) - £(?, pi, v. A), (5.21)

where

^O '(£' P) = 2о(Л/*£0 ~ \(pty- (5.22)

Equation (5.21) and the identity given by (5.20) together
constitute the basis for the above method of investigating
SAWs. The method can be generalized to the case where the
direction of each individual step in the random walk depends
on the direction of the preceeding step and, moreover, the
length of an individual step is not fixed, but is described by
some generally speaking arbitrary distribution.38

We note one further important property of (5.21), i.e.,
the invariance of this equation under multiplicative transfor-
mations:

A -» A' = CCA, AQ -» A'Q = Cl

(5.23)
v ' =

where a is a smoothly-varying nonzero parameter.41 It is
readily seen that the transformations given by (5.23) form a
continuous group that is usually referred to as the renormal-
ization group (RG). To elucidate the physical significance
of RG in this approach, we write the expression for the prob-
ability density in the form

£, 0) (5.24)

in accordance with (5.1 ), (5.13), and (5.14), where

Sft, R) = V'^G, p)ddp/(bt)d, (5.25)

and the closed contour of integration Г is chosen so that the
origin is £ = 0 and all the singular points of the integrand lie
inside this contour. It follows from (5.24) and (5.25) that,
to determine the asymptotic behavior of WN(R) for N-> oo
and R > /, we must know the behavior of the function A(g,p)
in a small neighborhood of the points f = 1 and p = 0. We
shall assume henceforth that the values of f and/э belong to
the neighborhoods of these points. However, we then find
that

Л (x) = 1 - x2/2d + O(x4), x ~ 0, (5.26)

and (5.20) show that the values of £ belong to the neighbor-
hood of the point J" = 0. Next, we can readily show with the
help of (5.24), (5.25) and (5.19) that a change in the num-
ber of steps by a factor of a, i.e., N-+N' = aN, is equivalent
to a change in the step length / in accordance with the equa-

tion / ' = / /Va and to a change in the excluded volume pa-
rameter u0 in accordance with the rule v' = as ~ ' v. However,
we must emphasize that this statement refers only to the
asymptotic case (JV-> oo, /•>/) and can be written symboli-
cally in the form

WJRfl, v0/f) = WaN(al/2R/l, а*-\/?).

Hence, we have the following asymptotic expression for the
mean square end-to-end distance of the random walk:

where the universal function %(x) is to be determined. It is
clear from the last formula that the dimensionality
cf = 4(s = 1) is special insofar as the excluded volume effect
is weak for d > 4(s > 1 ) and we can use perturbation theory
when we evaluate (R2)N. It is shown in Ref. 42 that, when
c?>5, the asymptotic form of the probability density WN (R)
is Gaussian for 7V-» oo .

5.1. Renormalization group equations

We now turn to (5.20) and (5.21), the first of which
establishes the relationship between f and £ and the second
defines the type of the singular point p, =i£ of the function
A(£,p). It is clear that the solution of this problem must
begin with the determination of the character of the singu-
larity of A(g,p) at p =p,. With this in view, we write the
required function A(g,p) in (5.21) in the form

A=AUG. (5.27)

For the new unknown quantity G we have the equation

G~l = l+F(G), (5.28)

in which

F(G) v, A0G) - v, A0G)), (5.29)

and the function A0 (£,p) displays the following behavior for
the small values of £ and p that we are considering:

-i40(£,p) = 2rf/r0(|-2+p2)/2. (5.30)

If we substitute p = 0 in (5.28) and introduce the notation
GO = G \p = 0, we can use the resulting equation for G0 to
rewrite (5.20) in the form

, 0, v; A0G) - B(l, 0, v; AQG)),

(5.31)
where

-l (5 - 1M0(|, 0) (5.32)

is proportional to the ratio (f — 1 )/£2/2 for small values of
£. It is readily seen that (5.31) can be used for the direct
evaluation of the critical exponent v once the function G has
been determined.

Since G is a dimensionless quantity, it may be looked
upon as a function of dimensionless variables

where the magnitude of A, i.e., the normalization point, will
be chosen so that the following normalization condition is
satisfied for p2 =A :
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The renormalization group property of (5.28), which is
equivalent to the basic equation (5.21), is con veniently writ-
ten as

(5.33)

where A ' is a new normalization point for which we now have

, l , w ' = l , (5.34)

and v' = a~2u. Equation (5.33) shows that multiplication
of G by a nonzero number a is equivalent to a change of the
normalization point and a renormalization of the excluded
volume. Substituting p2=A' in (5.33), and recalling
(5.34), we obtain

and, in terms of the new variables

we obtain (5.33) in the form

G(x, y, v) = G(x, t, v)G(x/t, y/t, vG2(x, t, v)). (5.35)

Squaring both sides of this equation and then multiply-
ing the result by v, we finally obtain for the RG-invariant
quantity

V(x, y, v) = vG\x, y, v)

the functional equation

V(x, y, v) = V(x/t, y/t, V(x, t, v))

with the normalization condition

V(x, 1, v)- v.

(5.36)

(5.37)

(5.38)

Since RG is a continuous group, it can be described by
the corresponding Lie differential equations that are exceed-
ingly useful for practical purposes. For example, to obtain
the Lie equation for V(x,y,v), we differentiate both sides of
(5.37) with respect to у and then put t =y. The result is

(5.39)

where

P(x, v) = (5.40)

and the normalization condition ( 5.38 ) serves as the bound-
ary condition for (5.39). On the other hand, if we differen-
tiate (5.37) with respect to t and then put t = 1, we obtain
another form of the Lie equation

dx УГ-dy hr)'dv/ , У, v) = 0.' •" '

The above RG-equations are particularly useful in investi-
gating the asymptotic properties of the function G(x,y,v).
Hence, to find the asymptotic form of G(x,y,v) when, for

example, лг->0, ^->0, but | jc/y|<l, we pass to the limit as
x-»0 in (5.39). Substituting

V(y, v) = Urn V(x, y, t>), p(v) =

we then obtain the following equation:

subject to the boundary condition

(5.41)

(5.42)

(5.43)

Equation (5.42) and the boundary condition (5.43) can also
be written in the Gell-Mann-Low form

.

J /3-l (5.44)

Thus, according to the above RG-equations, the invar-
iant excluded volume is the effective parameter characteriz-
ing the strength of the volume interaction in a small neigh-
borhood of the points g = 0 andp = 0. Hence, to determine
the asymptotic behavior of, for example, the function G(y,v)
as y^O, we must know the attendant behavior of V(y,v).
However, this behavior is determined by the properties of
the function f l ( v } . Since perturbation theory is usually used
to calculate /3(v), we can judge its behavior only in a small
neighborhood of the point v = 0 at which /?(0) = 0. Actual-
ly, if /3(i>) is positive in this neighborhood, then according to
(5.42) the invariant excluded volume V(y,v) tends to zero as
y->0. If on the other hand the function /? (v) is negative near
the origin, then V(y,v} increases asy->0, and this takes us
outside the range of validity of perturbation theory.

As already noted, before we can determine the asymp-
totic behavior of the probability density WNCR) as jV-> oo
for /?>/, we must know the behavior of A(£,p) in a small
neighborhood of the points £ = 1 andp = 0 or, equivalently,
the behavior of the function G(x,y,u) near л: = 0 and у = 0.
The most significant ranges of integration in the terms of the
series (5.8) will then be regions in which the arguments of all
the integrands are numerically small, i.e., when xl<^\ for
each integration variable x. For such values of к, we also
have«r0<^l, since r0 </. According to (5.9) and (5.26) we
then find for sufficiently small values of к that the equation
v ( x ) = v0 is approximately valid, and this corresponds to
the well-known equation /(/•) = — v08(r) of the theory of
polymers.

On the other hand, as the quantity x increases and as-
sumes values such that к > ~ / ~ ' (and the associated R de-
creases to R < ~/), the volume accessible to the particle ex-
ecuting the SAW decreases because of the increasing role of
the excluded volume effect. Hence, the probability density
WN(R) for/? < ~/and, consequently, the function A (g, x)
for к > ~ / ~ ', should assume their limiting low values. The
range of integration x~l ~ ' in all terms of the series (5.8)
will therefore provide a negligible contribution, and we are
entitled to use the approximation v ( x ) = v0 in (5.8) for all
x. The series (5.8) can then be written in the form

B(l;,pl, UQ; A) = -v0
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(a)

FIG. 2.

- 2ug J A£, p-

where i>0 = f 2yo

, x) = J ХГ . * ~

, x)ddx/(2n)d + ..., ( 5.45 )

0), (5.46)

, x')ddx'/(2jt)d

(5.47)

in accordance with (5.25). As a result of the above approxi-
mation, some of the terms of the series (5.8) are now de-
scribed in the same way. This means that the expression in
(5.45) that corresponds to such terms must be multiplied by
a factor that represents their symmetry; this is done in the
third term in (5.45). The diagram representation of (5.45)
can be deduced from the corresponding diagram representa-
tion of (5.8) in Fig. 1 by shrinking the wavy line to a point, so
that the latter can be assigned the factor — v0/(2ir) dand the
conservation of momentum is sai'r-fied at this point as be-
fore. The final result is the series shown in Fig. 2 where the
square in diagram (2) represents the set of diagrams of Fig.
3, usually called the vertex part. It is very important to re-
member in this procedure that a closed equation9 can be
established for the vortex part which, together with the basic
equation, forms a closed system.

We note in conclusion that by following the above
scheme for the derivation of the RG-equations and inter-
changing the roles of |2 and p2, i.e., by assuming that £2 is
the leading variable, we finally obtain the RG-equations in a
similar form.

5.2. Self-avoiding walks in a space of dimensionality d<4

Finally, we turn to the determination of the proability
density WN (R). We must first find the explicit form of the

-И- +

FIG. 3.
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function B(g,pl,v0-^4) in accordance with the definition giv-
en in (5.45). However, when this function is calculated,
some approximation has to be used for the unknown quanti-
ty A, the form of which will be given below. We now recall
that (5.45) was obtained for v ( x ) = v0 for all values of x.
This means that a cut-off parameter is naturally introduced
in order to avoid a possible divergence for high values of x.
Because of this, it is convenient to use the McDonald func-
tion K^ (t) as the initial approximation for A, since this func-
tion has for us the following useful properties:

(5.48)

- (*/20I/2e~', t » 1.

For example, instead of A0

for A can also be the function
, the unperturbed function

where £—0 and L > ~l. Actually, for small values ofx, the
quantity А\(£,х) behaves as A0(g,x), and the function
At(g,x)tends exponentially to zero for large x (x^-L ~ ' ) .

To keep the formulas as simple as possible, we shall use
С to represent positive constants that may possibly depend
on the dimensionality of space, i.e., С will in general assume
different values in different formulas, but can, if necessary,
be written out explicitly.

5.2.7. The case d=4 (s=l). The initial approximation
for the required A can be taken to be the function

(5.50)

This means that, according to (5.27), the initial approxima-
tion for G can be taken to be equal to unity. Substituting
(5.50) in (5.25), we then obtain the following function m-

г 2ч 1/2ч

If we now replace A (g,x) andw(g,R) in (5.45)-(5.47) with
the approximate expressions given by (5.50) and (5.51),
and then put g = 1 (£ = 0), we finally obtain

С-ЧО, y, v) = 1 - ^ln у - 2^Qn2y -C\ny) + ..., (5.52)

where v, =4y0/V2Zo/4. If we now use (5.52) f o r y f f ( u ) , we
find from (5.41) that
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/3(и) - и3, v ~ 0.

Finally, substituting this expression for/?(y) in (5.44), and
solving it, we obtain the following expression for the invar-
iant excluded volume:

V(y,v) = v(l -2tAn>>)-1/2,

Hence, we readily find that

-1)1/4. (5.53)

In the present case, the equation given by (5.99) can be re-
placed by the following approximate equation when £~ 1:

A-l£,p)=S-l+A-l(l,p). (5.54)

Using (5.53) on the right hand side of (5.54), and then sub-
stituting the result for A(g,p) in (5.25), we can readily de-
termine the form of the function w ( g ,R ) for large R(R^>1).
We now substitute the expression obtained for w(g,R) into
the inversion formula (5.24) and use the method of steepest
descents to obtain an asymptotic estimate for the integral as
N-* oo . This gives us the following expression for the leading
term in the asymptotic expansion of the probability density
WN(R) (Ref. 43):

(5.55)

where N} = (2v0/-ir
2)l/2N. Hence, we can readily find the

corresponding asymptotic form of the mean square end-to-
end distance for the random walk:

This result is in good agreement with numerical calculations
of (R 2)N when d = 4 (Ref. 44).

5.2.2. The case d<4 (s<l). We must first briefly sum-
marize the traditional approach to the problem. The initial
approximation to A (g,p) in (5.45)-(5.47) can be taken to
be (5.49). If we proceed to the limit as f-> l(f->0), and then
evaluate the integral in (5.45), we obtain the following re-
sults:

where D, = v0d /ifzol'1. Hence, we readily find/?(y) in ac-
cordance with its definition in (5.41 ). In the above approxi-
mation,

-!*>. (5.57)

When /3(v) can assume negative values, it is convenient to
use the following form of the Gell-Mann-Low equation:

J 1,3(0 In 3,. (5.58)

It follows from (5.57) that £S(v) vanishes linearly at the
point

w-v . - f ,
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so that the numerical value of the integral in (5.58) increases
without limit as V(y,v) — v+. Hence v^ is the limiting value
of the invariant excluded volume V:

V(0, v) = vt.

To analyze the behavior of V(y,v) asj>-»0 in (5.58), we use
the approximation

This gives

V(y, v) '• C(v - i>,) /64 (5.59)

and it follows that the critical exponent 77 characterizing the
asymptotic function G~(pl)r' (or A~(pl)1>~2) for/j~0is
rj = £2/64, and is small in comparison with unity.

We now turn to the evaluation of the other critical expo-
nent v that determines the asymptotic form JY~ (£ — 1)v

when g~ 1. For this we turn to (5.31) and evaluate its right
hand side to within terms of the second order in t> , . The
result is

\-' - -2-„2|*Л-2* (5.60)

The role of the invariant excluded volume is now played by
the quantity

ifr, v) = vE-*/2,

where x = C(£ — 1 ) . If we raise both sides of ( 5.60) to the
power £/2, and then multiply the result by y, , we finally
obtain

v(x, v) =

Hence, using the definition

dv(x, v

~e/2v(x, v) - jx~ev , v)

and the behavior of this function near v = v^ is
2

Using the last approximation in the Gell-Mann-Low equa-
tion, we obtain

v(x, v) C(v - v

from which it follows that E~xcn or (£/)2~ (f - 1)'+ £/8

when f~ l . We thus obtain the well-known result
2v~l + (£/8).

We have already noted that, when the SAW problem is
tackled by methods based on the ̂ -expansion, the results are
not in general valid in real space. This may be due to the fact
that the initial approximation forA(g,p) is usually taken to
be the 'unperturbed' function A0 (g,p). Moreover, the fact
that the critical exponent is not equal to zero shows that the
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singular points of the function A(g,p) are not simple poles.
To extend the range of validity of our results, we must there-
fore start by choosing for A(g,p) an approximation that is
free from these nonpole singularities. A method that can be
used to determine the critical exponents for d < 4 is present-
ed below.

We now turn to (5.21) and note that, when £~0 and
p~0, the variables ^ and p appear in (5.21) only in form
£2 +p2, in accordance with (5.30). Since A(g,p) is even in
p, and the singular points closest to the origin p = 0 are
Я 1,2 = ± '?• it is natural to take the initial approximation for
G to be

in which p < L ~ ' and the parameters u = u(v0),
p. =//(cO(0<ju< 1), andL> ~/are to be determined. The
function G(g,p) can be regarded as negligible in this case for
p^L ~'. In accordance with the approximation adopted for
G, and the equation given by (5.27), we take the function

(5.62)

as the initial approximation for A(g,p). It is important to
emphasize that the choice of an explicit form for this approx-
imation is not unique, but at any rate its behavior for
p < L ~ ' and p %> L ~' must satisfy the above conditions. Ac-
tually, since f ~ 1(£~0), the quantity A (g,p) in (5.62) be-
haves as

for pL-^l, and tends exponentially to zero for pL^>\. We
therefore conclude that the problem is now reduced to the
evaluation of the parameters u, /u, L for which the trial func-
tion A (g,p) is in a certain definite sense a solution of (5.21).

Let us now suppose that u, f t , L have been determined.
Substituting (5.62) in (5.25), we obtain instead o f A ( g , p )
the expression

which we shall use later in the inversion formula

(5.63)

(5.64)

To find the asymptotic estimate for the integral in (5.64)
when N and R tend to infinity, but their ratio R /# remains
fixed and R /N4* 1, we use (5.20) to transform to the new
integration variable g. If we take the asymptotic properties
of Kv + s ( t ) as ?-» oo into account in ( 5.63 ) and introduce the
notation

Z>(|, 0 - S(£, */, «0: A) - B(\, 0, u0; Л) -

we can reduce (5.64) to the form

, Л/ЛО).

Finally, using the method of steepest descents for the asymp-
totic evaluation of the integral in (5.65) as N-> oo, we obtain
the required asymptotic form of the function wN(R).

To determine u, p., L, we use the fact that they are inde-
pendent of § and p. We therefore set £ = 0 in (5.28) and, to
keep the formulas as simple as possible, we do not explicitly
indicate _ the dependence on £ = 0. The function
G(p) = A (p)/A0 (p) then has the following form forp = 0:

G(p) ~ («2/>2y, (5.66)

and this can be taken as the asymptotic behavior of the solu-
tion of (5.28) for | = 0 andp~0 if

A0(p)(B(l, 0, v0; A) - B(l,pl, v0; A))

2 (-/< In «V)m/m!. (5.67)

However, according to the RG-method, to determine the
asymptotic form ofG(p) forp~Q we need only know the
coefficient of the linear logarithmic term in the expansion for
F(G)

F(G)

J
(5.68)

in powers of lnp2L 2. The first term in (5.68), which deter-
mines the contribution of diagram ( b ) to F( G) , will be writ-
ten in the form

Fbl(p) =

where

- Вь(р)), ( 5 69)

(5.70)

represents the contribution of this diagram to B( \,pl,v0;A).
If we now substitute (5.70) into the right-hand side of
(5. 69), and recall that

n t + O(t2), t ~ 0,

we can readily see that the logarithmic behavior of the func-
tion Fa(p) for p~0 can be assured by putting
3(i + 2s - 2 = 0, i.e.,

fi = (4-d)/3. (5.71)

Actually, it follows from (5.69)-(5.71) that

F6(P) ~ -C(u0/z2)2M^lnp2L2. (5.72)

Comparison of this with the first term in the series in (5.67)
(5.65) suggests that the quantities и and L can be defined by
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(У z2,)2^ = Qt, L

so that

Fb(p) -- Cfilnu2p2.

Cu, (5.73)

(5.74)

P =
_ (4 - </)(</ + 2)

6(d - 1) d- Г
(5.80)

We now turn to the second term in(5.68)which defines
the contribution of diagram ( с ) in Fig. 2 to F( G). The differ-
ence between this diagram and (b) is that it contains a
further vertex and two lines that form a loop subdiagram. As
a result of the addition of this loop to the above term in
(5.68), we have the additional factor

— C f t (*£)" • 4̂/2(х-̂ )' (5.75)

under the integral sign. For sufficiently small values of x,
this factor is independent of x, and is negligible for x > L ~ '.
The expression given by (5.75) can also serve as an estimate
for the contribution to F(G) due to a transition from an
arbitrarily chosen diagram to the diagram containing the
next number of vertices, since any such transition is always
accompanied by the addition of one vertex and two lines.

We now turn to the diagram series of Fig. 3 which repre-
sents the set of all possible diagrams with four outgoing lines.
This set of quadrilateral diagrams, sometimes called a com-
plete four-pole, constitutes the vertex part Yin diagram (2)
of Fig. 2. As already noted, a closed equation can be estab-
lished for the complete four-pole, which can be solved in the
so-called parquet approximation for//< 1. The solution ob-
tained in this way for У can be used to estimate F(G). The
final result takes the form of a series in powers of

Next, the constants in (5.73) can be chosen so as to
ensure that the terms in (5.67) and (5.68) that are linear in
In u2p2 are identical. The resulting expansion for F(G) can
now be used in the RG-equation to show that
G(p) ~ (и2р2Г, i.e., G(p) = G(p) \упеп/э~0. It is precisely
this result that justifies the choice G = A /A0 as the asymp-
totic solution of (5.28).

Since the values of the parameters и, ц and L have been
determined, i.e., we have determined the functions in (5.62)
and (5.63), we are able to determine the function D(£,R /N)
in (5.65). The final result is

£>(£, R/N) = Cvj/3|l/vF - |Я/ЛГ + O(f2), (5.76)

where

(5.77)

(5.78)

Since the integrand in (5.65) has been determined, we can
use the method of steepest descent to estimate the asympto-
tic form of the integral in (5.65) as N-> oo and R%>L, and
hence obtain the required asymptotic form of the probability
density :4S

WN(R) ~Rpld(l- 1),

~ CR~F

df

where

< / = 1, (5.79)

*F='

The mean square end-to-end distance for the random walk is
therefore given by

which is the well-known generalization of the Flory formula
to the ^-dimensional case (d < 4) . When e = 4 — d is small
enough, we find from (5.78) that the critical exponent VF is
given by

To the first order in e, this is identical with the correspond-
ing result obtained by Wilson for the standard model of sca-
lar field theory. The above method is thus fundamentally
different from the de Gennes theory and leads to a new e-
expansion near the critical dimensionality d = 4, which is
now found to be convergent.

Next, according to (5.79) the asymptotic form of
WN (R) has a valley for R<RF due to the excluded volume
effect. The valley is convex downward (p = 4/c) and convex
upward (p = 5/12) for d = 2 and 3, respectively. When the
density WN (R) is evaluated for R <RF it is common to re-
place p with a different critical exponent у in calculations of
the probability that the particle undergoing the random
walk will return to the initial point. The relationship be-
tween у an(i P is given by the Cloizeaux formula46

у = 1 + pv. If we replace v in this formula with the expres-
sion for VF given by (5.78), and use the value of p given by
(5.80), we obtain 7 = 2 ford = 2 and у = 5/4 for d = 3. We
note, for comparison, that the values of у reported in the
literature (see, for example, Refs. 47-51, where they are ob-
tained by both analytic and computational methods) are
found to be be somewhat lower than the above results. How-
ever, we must remember that ( 5 . 79 ) is an asymptotic formu-
la obtained for R > /. In terms of the notation commonly
employed in the theory of critical phenomena, we may write
A(l,p)~O(pr/~2) when p~0 and Л(£0)~0(£- 1) ~Y

when f~ 1. If we now adopt (5.62) as the asymptotic solu-
tion of the basic equation with £~ 1 and/a~0, we find that
77 = 2fj, and the critical exponents y,r),vF are related by the
well-known formula 7 = (2 — TJ)VF. The other critical ex-
ponent, q, is given by the generally accepted formula in
(5.80).

6. CONCLUSION

We have presented an outline of the different schemes
for investigating the SAW problem. This problem differs
from other well-known physical problems by the presence of
a 'memory' in the system, which is indicated by the integral
form of the basic equation. The important property of this
equation is its in variance under the continuous group of scal-
ing transformations, and this has enabled us to use the renor-
malization group method to determine the asymptotic form
of the probability density WN(R). Despite the fact that, to
some extent, the asymptotic character of these results makes
it difficult to compare them with experimental data, the
agreement between theoretical and experimental results es-

815 Sov. Phys. Usp. 34 (9), September 1991 V. I. Alkhimov 815



tablished, for example, for critical exponents may be regard-
ed as completely satisfactory.

The author is greatly indebted to M. F. Golovko, V. I.
Klyatskin, M. P. Kozlovskii, V. B. Priezzhev, S. M. Rytov,
V. I. Tatarskii, M. D. Frank-Kamenetskn, S. Ya. Frenkel',
A. R. Khokhlov, D. V. Shirkov, and I. R. Yukhnovskii for
their interest in this problem and for useful discussions.
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