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This review pictures the current state of the problem of propagation of random light fields in
optically transparent media having Kerr and thermal nonlinearity. Models are presented of
random laser beams and pulses; the correlation properties of the fluctuating light fields and the
fundamental theoretical methods of solving the stochastic nonlinear wave equations of
quasioptics are described. Spatial instability, self-focusing, and defocusing, the transformation of
the spatial statistics of incoherent beams, and the wind refraction of random fields are examined.
Quadratic and cubic dispersion, lag of the nonlinear response, non-steady-state nature of the
nonlinear polarization, and compression of random pulses are analyzed. Attention is paid to
problems of the mutual influence of spatial and temporal fluctuations of the light field in a
nonlinear medium.

INTRODUCTION

The creation and practical application of high-power
lasers has over the past two decades stimulated theoretical
and experimental studies in the field of statistical nonlinear
optics, since the radiation field of such lasers fluctuates both
in space and in time.

Statistical problems in optics were formulated in the
first half of our century. They have facilitated the develop-
ment of the theory of coherence of light fields of ordinary
sources, which are generators of random waves.

We are indebted for the understanding of the funda-
mental statistical phenomena oflinear optics mainly to Ray-
leigh, Zernike, Brown, Twiss, etc.117'118'120

The range of physical phenomena and processes accom-
panying the interaction of partly coherent light fields with
nonlinear media is considerably more varied and extensive,
while being incomparably more complex from the math-
ematical standpoint. This has enabled the singling out from
nonlinear optics of an independent field of studies-statistical
nonlinear optics.6'121

We should include as one of the most important ap-
proaches in this field, above all, the analysis of the propaga-
tion of partly coherent laser radiation under conditions of
self-action in nonlinear media. The fundamental physical es-
sence of this nonlinear phenomenon is that the fluctuating
light field induces fluctuating optical inhomogeneities, yet
correlated with the field. These inhomogeneities, along with
the existing natural random inhomogeneities of the medium
itself (not correlated with the field), can substantially trans-
form the most important statistical characteristics of the la-
ser radiation, among which primarily the spatial (angular)
and frequency spectra are considerably modified, while the
energy is redistributed over the spectrum. In combination
with diffraction of light beams and dispersion of light pulses,
such a nonlinear-diffraction-dispersion propagation of par-
tially coherent radiation is accompanied by a set of laws,
which are generally statistical, and which are more complex
and varied than in the propagation of single-mode and sin-
gle-frequency wave beams and pulses.

Fluctuations of the width of a beam and the duration of

a pulse, distortion of the transverse profile of a beam down to
the appearance of a speckle structure, transformation of the
envelope of a pulse, fluctuation of the intensity of radiation,
restriction of the limiting possibilities of compression of
pulses in nonlinear dispersive elements, and nonlinear focus-
ing of beams-this is far from a complete list of the fundamen-
tal physical phenomena the taking into account of which
proves decisive, in a number of cases, in creating high-power
laser systems, energy-transport systems, information sys-
tems, environmental probing, etc.

The complexity of the problem being studied arises, on
the one hand, from the optimal choice of models of fluctuat-
ing light fields adequate to the emission of high-power lasers,
and on the other hand, from the rather great laboriousness of
solving stochastic nonlinear wave problems.

While the model representation of light fields is rather
generally accepted, the methods and approaches applied for
solving a problem under study are varied and approximate.
For this reason difficulties arise in a number of cases in the
quantitative comparison of the results obtained by them, al-
though, without question, the fundamental physical laws es-
tablished by using them offer a correct picture of the phys-
ical phenomena and processes.

This review presents a picture of the current state of the
problem of propagation of light waves bounded in space and
fluctuating in time in physically transparent media having a
cubic nonlinearity of Kerr type and a thermal nonlinearity
caused by the heating of the medium owing to dissipation of
the energy of the laser radiation. Naturally the selection of,
and the concept used in the presentation of the material in
the five sections are not free from the influence of our own
scientific interests.

Section 1 discusses the generally adopted models of ran-
dom laser beams and pulses, and describes the correlation
properties of light fields.

Section 2 formulates the mathematical posing of the
problem under study, which is based on the quasioptical de-
scription of propagation of diffracted beams and dispersed
wave packets. The fundamental theoretical methods are dis-
cussed that are applicable for solving the stochastic nonlin-
ear wave equations of quasioptics. Their merits and defects
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are pointed out, and the regions of applicability are deter-
mined.

Section 3 is devoted to problems of nonlinear diffractive
propagation of randomly modulated laser beams and pulses.
Spatial instability, self-focusing and defocusing, and the
transformation of the spatial statistics of beams incoherent
in space in media having a Kerr nonlinearity are discussed.
Steady-state and non-steady-state thermal self-action and
the wind refraction of random fields resulting from self-ac-
tion are discussed.

The great variety of physical phenomena that deter-
mine the character of the propagation of partly coherent
wave packets in media having a Kerr-type nonlinearity is
discussed in Sec. 4. Here the broad set of problems of nonlin-
ear transformation of picosecond random pulses in fiber
light guides is analyzed, with account taken of the lag of the
nonlinear response, the non-steady-state nature of the non-
linear polarization, quadratic and cubic dispersion, etc. Re-
sults are also given of the theoretical study of the limiting
possibilities of compression of random pulses, which un-
questionably is of great practical significance.

Finally, the closing Sec. 5 gives the results of studies of
the past three years on the mutual influence of spatial and
temporal fluctuations of a light wave in nonlinear media.
Much attention is paid to elucidating the factors that convert
certain forms of fluctuations into others, and vice versa.

To keep within a reasonable size of the article, the pre-
sentation of all five sections, at times concise, is conducted
according to the following general scheme: physical formu-
lation of the problem, substantiation of the applied method
of study, and omitting intermediate calculations, discussion
of the final result and treatment of it on the basis of a unified
approach to analyzing the problem of self-action (SA) of
high-power laser radiation.

Anticipating the presentation of the main material, we
shall give a brief bibliographic presentation of the funda-
mental studies whose authors have made a substantial con-
tribution to the study of the problem under consideration.

The first studies of the self-action of partly coherent
radiation in regular media were performed analytically,
mainly by the method of perturbation theory.

Bespalov and Talanov16 first studied the instability of
perturbations of the variation in media having a cubic non-
linearity. Application of the perturbation method enabled
them to trace the initial stage of the transformation of the
spatial structure of a plane wave modulated in the entrance
cross section16 and distributed in the medium.6 They
showed that such radiation in a nonlinear medium is unsta-
ble with respect to small amplitude-phase perturbations.
The experiments of Refs. 19,20, and 41, in which small-scale
self-focusing, or decomposition of the beam into filaments
was observed, were subjected to such an interpretation.

Somewhat later Akhmanov and Chirkin,6 and also
Lyakhov18 conducted an analysis of the stability of a laser
beam in a nonlinear medium. It was established that the
critical power for self-focusing of partly coherent beams is
larger than for single-mode beams.

At this same time Vlasov et a/.24 established the qua-
dratic dependence of the critical power on the initial diver-
gence of the beam.

The aberration-free description of the behavior of the
width and transverse correlation radius of a beam having a

broad space-time spectrum performed by Pasmannik21 and
by Akhmanov and Lyakhov22 was the next step in under-
standing the laws of nonlinear propagation of partly coher-
ent beams.

The moments of the light field provide a considerable
amount of information on the statistics of light beams.23

Vlasov, Petrishchev, and Talanov24 developed a method of
moments to study the self-action of spatially incoherent
beams. However, the fundamental difficulty that arises here
is the need to solve an infinite system of coupled equations
for the moments of the field. It takes the introduction of
extra restrictions to uncouple them.

Numerical methods have enabled giving a more com-
plete description of the evolution of a multimode beam, and
began to be developed effectively at the beginning of the
eighties.32"36 The use of the method of random trials (Monte
Carlo) made it possible to study the transformation of the
statistics of the distribution of the intensity and phase of the
radiation, the dispersion of its fluctuations, and to reveal the
conditions under which the distribution laws of the wave
field are transformed.

At the same time, numerical methods, being highly la-
borious, have by no means displaced analytical studies.

Chirkin and his associates proposed a method of inte-
grating along trajectories,26"28 and on this basis studied the
influence of weak noise26 and random phase modulation27

on the nonlinear propagation of ultrashort pulses. They pre-
dicted and found experimentally28 an initial decrease in the
range of spatial coherence in the thermal defocusing of a
beam. An analogous result was also obtained using the meth-
od of successive approximations.31

In the mid-eighties emphasis was placed on elucidating
the role of induced fluctuations of the refractive index in the
process of nonlinear transformation of random fields.31'49'50

It was shown that, in the nonlinear-diffraction and nonlin-
ear-dispersion transformation of fields, fluctuations of the
refractive index in the channel of propagation lead to a
broadening of the beam and spreading of the pulse, indepen-
dently of the sign of the nonlinearity. The study of the non-
linear mutual influence of the signal and noise components
in the "signal + noise" field model has lent clarity to the
understanding of the course of such incoherent nonlinear
effects.30-57

The invention and widespread practical application of
quartz fiber light guides has stimulated both experimental
and theoretical studies in the field of statistical nonlinear
fiber optics.

Progress in experimentation in the creation of optimal
fiber-optic systems for information transfer and the obtain-
ing of ultrashort light pulses, etc., were made possible by the
widespread application of the methods of nonlinear optics,
especially in the branch involving the self-action of light. At
the same time, it presented a set of problems to the theory
involving the choice of the optimal parameters of the optical
waveguides as a function of the initial characteristics of the
light pulse to be transmitted.

The existence of a space-time analogy made it possible
to a certain degree to transfer a number of the results on the
self-action of diffracted light beams to the propagation of
dispersed wave packets. However, the analogy disappears if
the light pulse propagates in a fiber in a region of anomalous
dispersion of the material of the latter.70
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Already in the early studies,73'74 without taking ac-
count of the fluctuations of the nonlinear increment to the
refractive index, the nonlinear-dispersion propagation of
random pulses was studied in the second approximation of
dispersion theory. These fluctuations were taken into ac-
count in Refs. 26, 27, and 75 by using the method of integra-
tion over trajectories. The complex character of the transfor-
mation of a "signal + noise"-type pulse was studied by the
authors of Refs. 26 and 29.

For reducing optical losses, it is promising to use radi-
ation with a wavelength of the order of the critical value. In
this case, in which the cubic dispersion becomes dominant,
the space-time analogy disappears, and we are dealing with a
new class of physical phenomena that accompany the propa-
gation of the light pulse.30'82

Analytical and numerical studies have shown that the
peak of the pulse becomes asymmetrized and retarded, with
redistribution of energy over the frequency spectrum, and
complex transformation of the time coherence over the du-
ration of the pulse, etc.

The random fluctuations of the fields of light pulses
have compelled reexamination of the limiting possibilities of
fiber systems for pulse compression.77'94'112Л |3 For example,
a slight impairment of the time coherence of the initial pulse
substantially decreases its coefficient of self-compres-
sion.112'113

The authors of the studies cited above have examined
separately the transformation of either the space or the time
structure of the laser radiation.

For light fields with space-time modulation (both regu-
lar and random) under conditions of competition of nonlin-
ear, diffraction, and dispersion effects, the nonlinear trans-
formations of the space and time characteristics are
interrelated. Therefore a number of studies29'57'109 has ap-
peared in recent years in which the effects of this reciprocal
influence has been studied.

However, the solution of this type of space-time nonlin-
ear wave problems is still far from completion.

I. STATISTICAL DESCRIPTION OF RANDOM LIGHT FIELDS

The need for a statistical description of the radiation of
high-power lasers, which generally are multimode optical
generators, arises from the existence of quantum fluctu-
ations of the field and the polarization. The spectral proper-
ties of the radiation of lasers depend on the probability of
excitation of the intrinsic oscillations and the magnitude of
the interaction between them. The superposition of the latter
at the output of the laser amounts to laser radiation modula-
ted in time and space with a limited time and space coher-
ence.

The view that has evolved up to now on the space and
time statistics of laser multimode radiation, which is widely
used in this and in many other studies, stems from an entire
series of experimental and theoretical studies, e.g., Refs. 1-
I I . We note only that the problems of formation of the time
statistics of multimode radiation have been reflected in Refs.
1-3 and the review, Ref. 4, its transformation in nonlinear
media in Refs. 5-7; a study of the spatial statistics was con-
ducted in Refs. 8-11.

1.1. The field of multimode lasers

The field intensity of the light wave at the output of a
laser amounts to a superposition of the intrinsic oscillations
of the resonator

о =
m,n,l

(1.1)

having random amplitudes E0 and phases that are functions
of the coordinate r and the time t. Therefore, in the general
case the complex amplitude A of the light field E = A (r,
t)e""' (со is the mean frequency) is a random function. Most
often one uses its general representation as a superposition of
signal and noise

A(r, t) = Il

0

/2F(r, 0(1 + |(r, 0), (1.2)

Here /o is the characteristic value of the mean intensity, the
complex function F(r, t) determines the mean space-time
modulation of the light wave, and £(г, г) is a random com-
plex field having a zero mean value [over the ensemble
(1.2)].

1.2. Fluctuations of the fight field

The transformation of the space-time statistics and the
mean scales of the field in the nonlinear medium depend in a
certain way on the character of the fluctuations of the field
§ = peilf, which are determined both by the fluctuations of p
(amplitude fluctuations), and by the fluctuations of cp
(phase fluctuations).

Two situations can occur here:
a) As is generally known, with a large number of weak-

ly coupled modes, the statistics of the complex field £ ap-
proaches a normal distribution. This implies the presence of
amplitude-phase fluctuations, with the probability densities
of the envelope and the phase

2 1

corresponding to a Rayleigh and a uniform distribution.
b) Models are widely used of light fields with non-

Gaussian statistics. In this situation one considers either am-
plitude or phase fluctuations with normal distribution laws.
The difference in the course of the physical phenomena in
the nonlinear medium here is highly significant, since only
the amplitude fluctuations (in contrast to the phase fluctu-
ations) induce random optical inhomogeneities in the prop-
agation channel.

The fundamental laws of transformation of the space
and time statistics in the nonlinear medium are character-
ized by the lowest moments of the amplitude of the field-the
space-time correlation function (STCF) of the field and the
intensity. To do this, one must define the corresponding low-
est moments of the field £(r, t). If the statistics of the latter
is Gaussian, then all the moments are defined in terms of the
second moment of the STCF of the field. Under the assump-
tion of statistical homogeneity, and an isotropic, and steady-
state nature of the field, the second moment is

. A0> (1.4)

where Дг = r, — г2, Д? = tt — t2, and a 2 is the variance of
the fluctuations.
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1.3. Numerical simulation of light fields

The computer simulation of light fields having a given
space-time statistics is based on various algorithms,12

among which the most effective and frequently used are:
a) The method of sliding summation,13 which enables

one to construct the fields g(r, t) in the process of obtaining
realizations of the light field with a given spectrum, which
makes it possible to solve stochastic applied problems of
nonlinear and atmospheric optics. The systematic error of
the method declines rapidly with increasing overlap 8 of the
correlated random fields used in the formation of the ran-
dom realizations of g(r, t).

b) The algorithm of linear transformation, in which the
model field is given by a set of random realizations having a
given covariation matrix (|"(r,, f,-)£*(r,-, t } ) ) , which cor-
responds to the correlation function of the field (1.4) at a
discrete set of points.14 Figure 1 shows the histograms of the
intensity distribution / = p2 and the phase at the axis of the
beam as obtained by averaging over 200 realizations. Their
small deviation from exponential and uniform distributions
indicates that the field being simulated £ = ei<p has a normal
distribution law.

c) The method of canonical expansions,15 which em-
ploys a representation of the form

A \

/

1/2

(1.5)

Here а„ and Ь„ are statistically independent series of pseu-
dorandom numbers having a normal distribution of proba-
bility density, and Л„ and фп are the eigenvalues and the
eigenfunctions of the homogeneous Fredholm equation

г, Д/) , (1.6)

whose kernel is the STCF of the random field |". This method
is more economical than the previous ones, but can be used
only for simulating fields having a normal distribution law.

1 .4. Mean statistical space-time characteristics

The complex amplitude in (1.2) is modulated both in
space and in time, while the characteristic scales of this mod-
ulation are the mean-square values of the width of the beam
and the pulse duration

(1-8)

These relationships are used if the beams and pulses have
substructures. For the smooth mean envelope F(r, t) e.g.,
the reference Gaussian

/Xr.O-exp --Г- '
Ч 2т2 (1.9)

a0 and TO are determined at the intensity level e~l.
The mean fine-scale structure of beams and pulses is

characterized by the correlation radius гл and the coher-
ence time rc0. Here the number of spatial inhomogeneities
over the cross section of the beam Nr = (a0/rc0 )2 is related
to the number of excitable transverse laser modes,10 while
the number of temporal inhomogeneities over the pulse du-
ration NT = т0/тс0 is related to the number of excitable lon-
gitudinal modes of the resonator.

In many studies the degree of coherence yg in (1.4) is
written in factored Gaussian form

(1.10)

Here rc0 and rc0 are determined at the e } level. Although
the factored form of y^ is not conserved in a nonlinear medi-
um, the criterion for determining rc and rc of statistically
inhomogeneous and nonstationary fields remain as before.

2. THE PHYSICS OF SELF-ACTION OF PARTLY COHERENT
LASER RADIATION IN MEDIA WITH CUBIC NONLINEARITY

The physical causes of the perturbation of the refractive
index of the medium caused by the action of a high-intensity
light field are varied. Among the fundamental mechanisms
of nonlinearity we should distinguish anharmonicity of the
electronic and vibrational responses, electrostriction, orien-
tation of the molecules in the external field (Kerr effect),
thermal heating of the medium, etc. At present the values of
the nonlinear perturbations of the refractive index nn l

(n = n0 + nn[) that give rise to self-action effects are well
known for various types of nonlinearity.15

Naturally the induced optical inhomogeneities in our
case are random and fluctuating in space and in time, and the
problem of self-action becomes essentially stochastic. One
can conduct its analysis both analytically and numerically
without departing from the framework of the widely used
quasioptical description.

1,0

0,5

S.

-

u'</>;</>

ч ч

Tt̂ T-

a <i ;̂

и 1 2 3 4 //</> - r c 0 rt <p
a b

FIG. I. Histograms of the probability distribution of the intensity
(a) and the phase (b) of the random field £ (r). The theoretical
distributions are shown by the solid curves.
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2.1. The quasioptical description

The quasioptical description widely used in optics is
based on the assumption that the field of a quasiplane and
quasimonochromatic wave (in other words, the field of a
light beam and a wave packet)

E = (2.1)

is propagating along the z axis and is characterized by the
complex amplitude A, which not only varies slowly on the
scale of the wavelength and the period of the optical oscilla-
tions, but also varies along z more slowly than in the perpen-
dicular^ plane. The propagation of intense electromagnet-
ic waves in nonmagnetic media within the framework of
classical electrodynamics is described by the wave equation

curl curl E + —=
с2 dt2

4л

с2

(2.2)

together with the material equations for the vectors of the
linear and nonlinear polarization.

The linear polarization of an isotropic medium is relat-
ed to the field intensity E by the functional

D = J <U'e0(OE(t - O.
(2.3)

which reflects the existence of dispersion in the medium due
to the time-dependence of the linear permittivity £0(t'),
while the nonlinear polarization is usually represented in the
form of an expansion in powers of E. For media having cubic
nonlinearity this is written in the form

00

p°> = JJJ <Н'<Н"6{'"ХЩ', t", t'")
о

хЕ(г - t' - t")E(t - t' - t" - t'").

(2.4)

The slowness of variation of the amplitude in space and
time as compared with the fast variations of the eikonal [the
argument of the exponential in (2.1) ] of the plane wave al-
lows one to transform (2.2) into a nonlinear parabolic equa-
tion as follows: the first term in (2.2) is transformed into the
form

curl curl E = grad div E — AE

Z& / —
+ C.C. (2.5)

Here we have div E = 0, and д 2A /dr2 is the Laplace opera-
tor in the xy plane. The slowness of the variation of the am-
plitude in time allows one to transform (2.3) by expanding
A(t — ? ') in a series in t' to yield the expression

(2.6)

The terms with т — 1, 2, 3,... correspond successively to the
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first, second, third, etc. approximations of dispersion theory.
Finally, the wave of the nonlinear polarization (2.4) at

a frequency far from the resonance frequencies, at which the
dispersion of the nonlinearity is small, is

P'" =|«X( 3 )MI2yexp [i(w0t-kQz)] + c.c. (2.7)

Substitution of(2.5)-(2.7) into (2.2) makes it possible to
write the equation for the complex amplitude

dz и dt 2k0

- J- У
2i- ^2*o m=3

атл
acom | ( ef"

}0

с2 2г'А0

(2.8)

Let us transform to the running system of coordinates r = r,
z = z, and r = t— ( z / u ) , adopt the representation
k0 = n0co0/c, and write the nonlinear increment to the re-

fractive index и' = «о + и„1 ш tne f°rm

This enables us to derive the fundamental equation of qua-
sioptics that describes simultaneously the nonlinear self-
modulation and refraction, diffraction, and dispersion:

д
dz

i Y (-t)"^'
2*о m 3̂

 м!

и
= -t-^-v-п0 0-

"̂•/fc2

1 awm
дтЛ

дтт

(2.9)

We note that, in the propagation of ultrashort pulses of light
in fiber light guides, one must take account of the depend-
ence of xm on the time in (2.4); in the last equation terms
appear that are associated with the lag of the nonlinear re-
sponse. This situation is studied in the analysis of the propa-
gation of ultrashort pulses in fiber light guides.

2.2. Theoretical methods of study

Since Eq. (2.9) has no exact solution, while the problem
is aggravated also by the need in a broad set of phenomena
that it should describe to employ a statistical approach, it is
urgent to design approximate analytical and numerical
methods to solve it. However, in a number of cases the fluc-
tuations of the field of the light wave make it possible to
describe the behavior of several of its mean characteristics
more simply than the analogous characteristics of a regular
wave.

We present below a brief description of the various
theoretical approaches. For convenience of presentation we
shall write Eq. (2.9) in the operator form
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(2.10)

xv xv xv

Неге J^,in = J?di{ 4- J?dis is the linear operator, which rep-
resents a superposition of the diffraction and dispersion op-
erators, and J?nl is the nonlinear operator, whose form is
determined by the type of nonlinearity and the regime of self-
action.

2.2.1. Perturbation method

Random radiation amounts to a superposition of a
plane, quasistationary regular light wave and a weak noise
that is homogeneous in space and stationary in time:
A = A0 + £. The equation for the deterministic wave, which
does not undergo diffraction and dispersion, has the form

^=>„,Л0. (2.11)
s*.

The action of the nonlinear operator J?nl leads to a phase
self-modulation of the wave without change in its intensity.
For weak noise, the variance of the fluctuation cr2 = (I'2} is
weak in comparison with the intensity of the deterministic
wave, а 2< \AQ \

2. Hence the optical inhomogeneities are in-
duced practically solely by the regular wave
и„, =nnl(\A0\

2). Consequently the transformation of the
noise component in the nonlinear medium is described by
the equation

(2.12)

where the nonlinear operator

L = -ч,(м012

is determined by the intensity of the regular wave.
The solution of Eq. (2. 12) is sought in the form of the

integral

£(r, r, z) = J dk J cto£(co, k) exp (-*xr - ik\f), (2. 13)

where £(&>, k) is the Fourier amplitude of the noise. Substi-
tuting (2.13) into Eq. (2.12) and integrating it leads to the
solution for the Fourier amplitude for the noise field.

We note that the perturbation method is applicable only
for weak noise and short tracks of propagation. In a nonlin-
ear medium the variance of the fluctuation of the noise com-
ponent can increase as it propagates, and then the induced
fluctuations of the refractive index will be substantial. How-
ever, the perturbation method imposes no restrictions in-
volving the assumption of conservation of the statistics of
the light field in the nonlinear medium.

2.2.2. The method of moments

This method is intended for analyzing the correlation
functions of second and higher orders. The equation for

Г(г,, г2, т,, т2, г) = <Л(г,, т,, г)Л*(г2> т2, z)> (2.14)

is derived by transforming from the equation (2.10) for the
complex amplitude to the equation for the second-order
STCF of the field. To do this, the equations of quasioptics for
Аг =A(rl, т,, z) andA*=A*(r2, т2, z) are multiplied
respectively by A t and^42:

(2.15)

a/4?

xv xv

Here J^lini?2 and -^„цд are the linear and nonlinear opera-
tors of the arguments (F! , r, ) and (r2, т2 ). After summing
the two equations of (2.15) and averaging over the ensem-
ble, we obtain the equation

(to
V (2.16)

We easily note that the right-hand side of Eq. (2.16)
contains the fourth-order moments of the field. One can easi-
ly show that the equation for the correlation function of the
intensity will, in turn, "engage" the sixth-order moments,
etc. Therefore the fundamental difficulty of the method of
moments is the disengagement of the correlator on the right-
hand side of (2. 16) and the subsequent equations. In partic-
ular, when the space-time scales of the correlation of the

* x\ хЧ

random functions AlAf and -£*пц + -̂ „12 differ strongly,
then we have

and Eq. (2.16) is closed. Along with this condition, closure
of the equation is attainable upon applying a strong restric-
tion that assumes the in variance of the statistics of the field
existing at the entrance into a medium having a normal dis-
tribution law.

2.2.3. The aberration-free description

This method employs a self-similar representation of
the STCF of Gaussian-type in a model of radiation of the
"noise burst" type A =

, т,,т2,

Дг2 Ar2

(2.18)

Here the mean-square width and duration of the noise are
given as <z(z) = flo/r(z) and TU(Z) = T u f T ( z ) and corre-
spond to the form of Fin (1.9), while the correlation radius
and the coherence time are rc (z) = rc0gr (z) and
TcU) = Tc0gT(z).

Upon substituting (2.18) into (2.16), we obtain an
equation for the four mean-statistical parameters/,.,,, and gr>T

that are functions of the time and the coordinates of propa-
gation.

2.2.4. Integration over trajectories

The solution of the nonlinear equation of quasioptics
(2.9) is represented in the form

A(r, т, z) = J dr'J йт'А0(т', т')С(г, г', т, т', z), (2.19)

where the Green's function in the nonlinear medium with
allowance for diffraction and quadratic dispersion is given
by the integral over trajectories26"28
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С(г, г', т, г', z) = /D2(r(*'))/D(T(z'))exp /

(2.20)

Here D2(r(z')) and D(r(z')) are differentials that denote
integration over a set of trajectories that pass through the
space point r(z') and the time point r(z'). Here we have
r(z' = 0) = r', and T(Z' = 0) = т'.

The fundamental difficulty of the method is the choice
of the trajectories of integration. However, if we take ac-
count of the fact that the main contribution comes from the
trajectories for which

then, by using the iteration method, we can obtain a solution
for the correlation function of the field.

The method of integrating over trajectories under these
restrictions is essentially a fixed-channel method, since the
nonlinear perturbation of the refractive index arises from the
input distribution of the field intensity.

2.2.5. Nonlinear phase channel

In the case of strong nonlinearity, when the characteris-
tic length Lph of nonlinear phase modulation is much
smaller than the diffraction length LM amd the dispersion
length Ldis, one can solve the nonlinear equation of quasiop-
tics (2.9) in two stages. In the first stage one treats only the
nonlinear self-modulation

dz
and in the second stage solves the linear equation

~

(2.22)

(2.23)

which describes the diffraction and dispersion of the phase-
modulated field A i distributed in the medium.

The nonlinear phase-channel method is applicable for
light fields having an arbitrary law of space-time modula-
tion. It is suitable for analyzing the behavior of a light wave
that amounts to a superposition of signal and noise.

2.2.6. The method of successive approximations

For a weak nonlinearity, when Lph > Ldif, Ldis , one can
treat as the first approximation the solution of the linear
equation

(2.24)

In the second approximation one solves the equation

A2 + J?nlA2, (2.25)
y*4

in which the operator J^n, is determined by the intensity of
the diffracted and dispersed waves A , . In each of the subse-
quent stages of approximation one can correct the induced
optical inhomogeneities for the nonlinear operator ^nl by
using the wave intensity of the previous approximation.

However, the procedure of finding the solution in the third
and subsequent approximations is difficult owing to the
complexity of determining the Green's function of the corre-
sponding equation.

2.2.7. Numerical simulation

In a numerical experiment a direct integration of the
nonlinear equation of quasioptics is performed by the meth-
od of separation with respect to the physical factors.33'35'36

Here one applies a stepwise linearization of the nonlinear
equation (2.9) while using the fast Fourier transform algo-
rithm in the dispersion step. The numerical simulation of the
initial conditions of the input equation is based on the or-
thogonality of the expansion of the mutual-coherence func-
tion of the field, and is described in Sec. 1. The statistical
characteristics at the distance z are determined by the
Monte-Carlo method by averaging over the ensemble of real-
izations of the obtained solutions together with the pseudo-
random ones with respect to conservation of the three first
integrals of the equation: energy, momentum, and the Ham-
iltonian.34

Numerical calculation of the mutual coherence func-
tion Г in (2.14) is performed by using the method of finite
differences. The function is a complex quantity, and the
equation for the mutual coherence function breaks down
into a system of two equations, which are solved numerically
together with the material equation of the medium. To con-
struct the finite-differences scheme, the region of the solu-
tion is divided by a three-dimensional grid, and equidistant
surfaces in cylindrical coordinates are constructed. At the
points of intersection of the planes the nodes of the grid—
one calculates the sought function.

3. NONLINEAR-DIFFRACTION PROPAGATION OF
RANDOMLY MODULATED LIGHT BEAMS AND PACKETS

The initial equation (2.9) describes the nonlinear prop-
agation of light waves in the presence of diffraction and dis-
persion. The scales of development of these phenomena
along the line of propagation (the z axis) depend on the
transverse dimensions of the beam a0 and the correlation
radius rc0 and also the pulse duration rQ and its time coher-
ence rc0, and are characterized by the diffraction and disper-
sion lengths:

The theme of this section will be the analysis of the nonlinear
propagation of diffracted waves in the absence of dispersion
of the group velocity, which is equivalent to the condition
z4L d1s. Indeed, this inequality holds both for quasicontin-
uous radiation and for pulses of picosecond duration in the
atmosphere, where &^~10~2 8 cm2 m~' , Lj^-lO km,
which substantially exceeds the extent of real propagation
tracks. In liquids and solids, where k £ is larger by 3-5 or-
ders of magnitude, the dispersion effects are insignificant for
pulses up to nanosecond duration.

In optical transparent, weakly absorbing media with an
attenuation coefficient a, the nonlinear-diffraction propaga-
tion is described by the equation

dA i д A ccA _ . 0
17 Îr2" T~~'v"nl ' (3-D
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In a linear medium (лп, =0) this converts into the parabolic
equation introduced in Ref. 37, which describes the trans-
verse diffusion of the amplitude of the wave beams.

The nonlinear increment to the refractive index ип, is
determined by the mechanisms of nonlinearity, the principal
ones of which-Kerr and thermal-will be discussed in succes-
sion in this article. Thus, the first part of this section presents
the laws of propagation of partly coherent waves in a medi-
um having a Kerr-type local nonlinearity, while the prob-
lems of thermal self-action (TSA) are discussed in the sec-
ond part.

Kerr nonlinearity

In media with Kerr nonlinearity the perturbation of the
refractive index is described by the relaxation equation

, = п2|Л|2. (3.2)

For pulses of picosecond or greater duration, one can consid-
er the self-action regime to be lag-free, and we have
ип| = n2 \A [2. It is necessary to take account of the lag in the
nonlinear response for quasicontinuous radiation with a co-
herence time тс < Tre,.

3.1. Spatial instability

The nonlinear refraction of radiation having a regular
transverse field distribution in combination with diffraction
leads to nonlinear aberrational distortions of light beams,38

while amplitude-phase fluctuations are the cause of onset of
instability-separation of the beam into filaments. The first
observations of filamentous structure of light in liquids
owing to self-focusing17'39^1 are described by the authors of
Ref. 41.

A theory of the formation of filaments is given in Ref.
16. It was shown by the perturbation method described in
Sec. 2 that, in a nonlinear dielectric, the amplitude-phase
perturbations of a plane electromagnetic wave lead to its
breakdown into individual beams having different self-fo-
cusing lengths, depending on the scale of the initial perturba-
tion.

Representation of the dimensionless amplitude of the
perturbed plane wave in the form

mation of a fine-scale structure-filaments-having the trans-
verse dimension

(3.6)

An estimate of the filament dimensions for a beam of diame-
ter 2 mm and power 1 MW yields /•„, ~ 180 //m, which ex-
ceeds by severalfold the experimentally observed dimen-
sions,42 since the theory that was developed took no account
of the self-focusing of the main wave.

The power of an individual filament
Pm = trr \\A 0/4~Pcr coincides apart from a coefficient
with the critical power for self-focusing of a coherent light
beam.40 An increase in the mean power of a partly coherent
light beam leads to an increase in the number of filaments,
but not in their intensity.

3.2. Self-focusing of beams of incoherent light

Taking account of the finiteness of the cross section of
beams complicates the pattern of the self-action of light. An
analysis of the self-focusing of such beams was performed
first in Ref. 21, which studied the nonlinear transformation
of the spatial correlation function. The closed equation for
the second moment Г12 = (Л(г,, z)A *(r2, z)) upon
transforming to the variables R = ( r , + r 2 ) / 2 and
/3 = TJ — r2 obtained from (2.16) is

(3.7)

The procedure for uncoupling the correlator on the right-
hand side of (2.16) is based on the assumption that the
Gaussian statistics of the field is conserved in the nonlinear
medium. This is justified for a weak additional correlation
between the random fields introduced by the nonlinear inter-
action when the power of the input radiation on the scale of
the transverse correlation of the beam (in essence the power
of an individual inhomogeneity) is

Pfii <Pc r(rr e l/rc 0)'/ 2 (3.8)

(E = (n2/n0)
1/2X, ?i = k,/*,,, r' = k0r; E0 = const)

(3.3)

and solution of Eq. (2.12) with the initial condition (3.3)
shows that the perturbation in the medium varies as

-*S-^f

where we have
»2

»2

K i r

(3.4)

(3.5)

1,5

0,9

0,6

0,3

0

0,51 °2^. — -
0,57

0,70

0,89 __,

0,76

0,82 0,65~~~^-

0,91 7^ ~~

0,98 o;09 ~"~~~
• —

0,1 0,2 0,3 0,4 zlLM

Perturbations having transverse wave numbers 0 < XL < x%r

are unstable and grow according to an exponential law with
the increment (2E% — xl)l/2x±/2, which has its maximum
value /Г2,/2 when x± = хы = Е0. This corresponds to for-

FIG. 2. Modification of the tubes of equal coherence (solid lines) and
equal power (dashed lines) along the track of propagation of the beam for
/>„//>„ = 2andN, = 1. Column of numbers at left-values of the modulus
of the degree of coherence; at right-values of the power (the total power of
the beam is taken to be unity).
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(Pcr = cA l/l6ir2n2 is the critical power for self-focusing of
a coherent beam, and rc0 > rrel).

The solution of Eq. (3.7) with the initial condition

_£:_r.

is sought in the self-similar form

^ R2

(3.9)

(3.10)

In the paraxial approximation the width a(z) of the beam
and the correlation radius rc (z) vary according to

(3.11)

Equation (3.11) directly implies that the number of
spatial inhomogeneities in the linear medium remains invar-
iant:

where we have

L, !Лг = —T=J

»•<•>- (3.12)

Self-focusing of a beam of incoherent light is possible when
PSH > PCI > while the input power is

P0 = N,Pm>Patir. (3.13)

This means that the critical power for self-focusing of an
incoherent beam increases proportionally to the number of
inhomogeneities in the original cross section of the beam.

The paraxial (aberration-free) description gives a phy-
sically correct quantitative picture of the self-focusing of an
incoherent beam. The numerical solution of Eq. (3.7) per-
formed in Ref. 43 enabled calculating more accurately the
critical power for self-focusing, which increases with in-
creasing Nr:

0,3

0,2

0,1

0 0,1 0,2 0,3 z/La

FIG. 4. Variation of the correlation radius near the axis of the beam along
the track of propagation (Nr = 3, <5 = 0) for Р„/Р„ = 10 ( 1 ) , 20 ( 2 ) , and
40(5).

and analyzing the aberrational character of the self-focusing
(Fig. 2). As we see from the diagram, the tubular surfaces of
equal coherence and equal power with an initial radius
/•< 1.2а„ are narrowed by self-focusing, while they expand in
the region r> 1.2o0, where diffraction predominates. The
lines of the tubes of the two types coincide only for the peri-
pheral region of the beam (r> \.5a0), where the nonlinear
effects are not significant. Characteristically, the paraxial
region of the beam (r<0.8a0) self-focuses more rapidly than
the dimension of the transverse inhomogeneities decreases.
Therefore, at the focus of the nonlinear lens the spatial struc-
ture of the focused beam is better than the original-this con-
clusion has also been confirmed experimentally.

We should note that the procedure of deriving the
closed equation (3.7) in Ref. 43 is justified for any statistics
of the field by the smallness of the fluctuations of the nonlin-
ear increment of the refractive index as compared with its
mean value: a ̂  4, (nal }

2 = n\ (I )2. This permits one to re-

move the quantity ип( that enters into the operator J$fal out-
side the angle brackets when averaging the right-hand side of
(2.16).

Thus the correctness of this approach requires the ful-
fillment of the conditions

r,<r^, ^^>1, (3.15)

+о,блд (3.14)

where (?/(«) is the spectral density of the intensity. From
the physical standpoint the condition (3.15) means that, for
broadband radiation (with a small coherence time rc com-
pared with rrel and a small spectral density of fluctuation at
low frequencies), the lag in the nonlinear response restrains

У
I
I

-p
1

-2!
I

1 \

-2 -1 - 2 - 1 0 1 2
r/an

FIG. 3. Mean (solid lines) and instantaneous (dashed
lines) profiles of the intensity of a beam with Р0/Р„ = 20
and Nr = 3 at the entrance to the medium (a) and in the
cross section z/Z, h =0.15 for .5 = 0 (b) and 100 (c).
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the growth of the fluctuation a ^, and the nonlinear lens is
formed by the mean intensity of the field.

If the fluctuations of the initial field are Gaussian, then,
when (3.15) is satisfied, they remain so also in the nonlinear
medium. This conclusion is confirmed also by calculations
based on the method of random trials.

3.3. Transformation of the spatial statistics (Monte-Carlo
method)

The total amount of the information on self-focusing of
light beams having a limited space and time coherence can be
obtained only by the method of random trials (the Monte-
Carlo method).35

The fact is highly important that a broad-band beam
(S = rre] /rc0 > 1) focuses as a whole, whereas for a narrow-
band beam (<541) an additional spatial modulation appears,
which leads to separation of the latter into filaments (Fig.
3). Since a filament is a nondeterministic inhomogeneity of
the radiation, with its maximum of intensity appreciably ex-
ceeding the mean value, while the intensity at its boundaries
is close to zero, its transformation is characterized in full
measure also by the corresponding transformation of the ini-
tial exponential law of intensity distribution, especially in
the region of small intensities and those considerably exceed-
ing the mean. The phase distribution always remains invar-
iant in a nonlinear medium.

The decomposition into filaments of a narrow-band
multimode beam, while initially progressing rapidly, contin-
ues until each filament contains the power PCI. The charac-
teristic transverse dimension of a filament is determined es-
sentially by the radius of spatial coherence, the variation of
which (near the axis of the beam) is shown in Fig. 4. The
rapid breakdown into filaments then ceases independently of
the initial spatial structure of the beam.

Fine-scale self-focusing is accompanied by rapid
growth of the relative fluctuations of intensity with subse-
quent saturation. With increasing beam power, the afore-
mentioned fluctuations decline owing to the increase in the
mean intensity upon self-focusing.

For broad-band radiation (5> 1), the nonlinear refrac-
tion will be determined by the mean intensity profile, and
spatial modulation completely disappears (Fig. 5). We see
that an increase in 8 entails a decrease in the mean intensity
at the axis of the beam. At the same time, the variation of the
spatial coherence radius and of the relative variance of the
intensity fluctuations in going to broad-band beams are
smooth in character. This indicates the absence of fine-scale
self-focusing. The statistics of the radiation in the medium
approaches Gaussian as S increases.

A comparison of the character of the decline in the ef-
fective width of the beam a cc {/) ~ 1/2 and the coherence
radius (curves 3 in Fig. 5) shows that the ratio Nr = (a/rc )г

declines owing to aberration noises, while the structure of
the beam improves.

3.4. Nonlinear refraction of beams by induced random optical
inhomogeneities

The correlation of the field and the optical inhomogene-
ities that it induced leads to a number of new, interesting
laws of propagation of partly coherent waves. Their manifes-
tation is most easily observed by using the nonlinear phase-
channel method to analyze the self-action of a partly coher-
ent beam of the form

A(r, z = 0) = /'/2|(r)exp - ̂ \ (3.16)

The modulus of the correlation function of the field in
the paraxial approximation29

together with the expressions for the beam width and the
correlation radius

(3.18)

2 L „

(3.19)

enables one to draw a number of important conclusions
(here Ldi( = k^al LnL = a0 (и0/и2а

 2/0 )
 1/2 are the charac-

teristic diffraction length and nonlinear self-action length of
a coherent beam, while the sign ( — ) corresponds to n2 > 0,
and ( + ) ton 2 <0).

In a linear medium (£nl -» oo ) the beam width a (z) and
its correlation radius rc (z) increase in the same way owing
to coherent and incoherent diffraction at the corresponding

and = ldie/(2Nr)
l/2, so thatdistances LM

Nr (z) = const.
In a nonlinear medium two nonlinear effects arise in

addition that are caused by the existence of a regular and a

1,0

0,5

0 0,1 0,2 0,3 z/LM,
a

0,3

0,2

0,1

О

'cA

0,1 0,2 0,3 z/Lm

b

FIG. 5. Variation of the intensity (a) and correlation radius (b) on
the axis of the beam for N, = 3, Р0/Р„ = 20 and various widths of
the frequency spectrum S = 0 (J), 10 (2), and 100 ( 3 ) .
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1,0

0,5

a(z)/a0,rc(z)/rc<J --— Ml2-
'V

(3.20)

0,2

FIG. 6. Variation of the radius of the beam (dashed lines) and the correla-
tion radius for Ра/Р'„ = 5 ( 7 ) and 50 (2) for az = 1.6 (for the beam
radius the scale along the axis of ordinates has been decreased tenfold).

random profile of the induced lens, with the latter correlated
with the fluctuations of the field. The coherent nonlinear
refraction that develops over the length Ln, gives rise to the
same increase (n2 <0) or decrease (и2 >0) in a and rc,
while as before, as in Ref. 21, we have ^(z) = const. The
existence of fluctuations of the nonlinear lens, independently
of the sign of the nonlinearity, favors broadening of the beam
[the last term in (3.18)] and decrease in the correlation
radius [denominator of the first term in (3.19) ].

The decrease in the correlation radius, which can occur
in the initial stage in a defocusing medium, is a somewhat
unexpected result. However, it has been predicted and con-
firmed experimentally in the thermal defocusing of a partly
coherent beam by the authors of Ref. 28.

Thermal nonlinearity. The dissipation of the energy of
laser radiation as it propagates in the atmosphere, in liquids,
and in solids leads to the appearance of thermal self-action
(TSA) of light-a number of nonlinear phenomena involving
self-modulation in space and in time of a wave with induced
optical inhomogeneities, whose origin is a consequence of
the inhomogeneous heating of the medium.44 The tempera-
ture variations, which entail the appearance of a nonlinear
increment to the refractive index, are determined by the mul-
titude of regimes of heating of the medium. In the general
case they can be calculated on the basis of joint solution of
the equation of heat conduction.45 The first of them is writ-
ten most often in the form

This reflects the fact that the isobaric change in the energy
per unit volume having the heat capacity pcp is determined
by the dissipation of energy per unit time a \A \ 2 (the intensi-
ty is /= A | 2) and by the heat transport, the fundamental
mechanisms of which are heat conduction (j is the heat-
conductivity coefficient) and convection (v is the rate of flux
across the beam).

In the general case the temperature fluctuations arise
both from random variations of the beam intensity and of the
velocity of motion of the medium.

On the mathematical level the TSA of randomly modu-
lated waves is described by Eqs. (3.1) and (3.20)
(nnl = (дп/дТ)&Т= «ГДГ). Here the velocity of motion
of the medium is either modeled by a homogeneous flux or
undergoes turbulent pulsations (coarse- and fine-scale).

Since, as we mentioned in the Introduction, the treat-
ment of the behavior of multimode radiation in a randomly
inhomogeneous medium lies outside the scope of our article,
we have restricted the treatment to the case v = const. How-
ever, even under this assumption the study of TSA remains
an extremely complex problem. Therefore it is usually car-
ried out for a concrete regime of propagation of light. The
latter is defined by the relationship between the duration TO

of the radiation, the coherence time rc, and the characteris-
tic times of heat transport ти = a0 /v and of heat diffusion

TX = al/X-

3.5. Thermal defocusing of random beams

For light beams of quasicontinuous radiation with a co-
herence time TC>TX,TV,& regime of stationary self-action is
realized. Its features have been studied both theoretically
and experimentally.28 Using the method of integrating over
trajectories has enabled calculation of the spatial correlation
function (SCF) of the field for coherent
(z</u = (1/2 )&(,/• ;:0) and incoherent (z>/( |) regimes of
TSA in a motionless medium for z < L j", = k0 a0 rc0 /V2.

For z < /|| in the paraxial approximation in the variables
R = (r, + r2 )/2 and/3 = r, — r2, we have

JVФ) exp -

1,0

0,5

0

c (z)/rc,0

20 40

(3.21)

where

(3.22)

rc (z) = .

FIG. 7. Dependence of the correlation radius on the power of the beam for
5 = 0.1 (7), 0.2 (2),4 (3),and 10(4) (for curves 3 and 4 the scale along
the axis of ordinates has been decreased tenfold).

(3.23)

Here
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/,,-д (3.24)

are the characteristic lengths associated with the mean pro-
file and the temperature fluctuations AT1, and

According to (3.22) and (3.23), the radius of a random
beam in a self-focusing medium increases more rapidly than
that of a regular beam, owing to the smaller diffraction
length Ldif for the random beam and the existence of the
additional random phase modulation caused by the finite-
ness of the length /ph .

The critical power P°r for self-focusing of the beam is
determined from the condition 2Lnl = Ldif, and equals

(3.25)

(Pcr is the critical power for a regular beam). The critical
power increases as the initial structure of the beam deterio-
rates. The behavior of the correlation radius rc differs from
the behavior of the radius a (Fig. 6): rc can be either larger
or smaller than the initial value rc0. This is determined by the
relationship of the lengths Lnl and /ph.

The critical power for decrease of the radius is found
from the condition Lnl = /ph:

PC, =
(3.26 )

For a beam power P0>Pr

cr its radius increases owing to de-
focusing, whereas the correlation radius decreases. Increase
in the power P0 leads to a substantial decrease in its correla-
tion radius in the coherent regime of self-action (Fig. 7).

In the incoherent regime of TSA the role of temperature
fluctuations is changed. It has been shown that in a medium
the correlation radius rc>rc0 if z>8L2,/p^2/| |. Here we
must have /,„, >/ph, which is equivalent to P0 > Pr

cr. In this
case the radius of the beam and the correlation radius in-
crease with increasing z (see curves 3 and 4 in Fig. 7).

The self-defocusing of the radiation of a multimode la-
ser based on yttrium aluminum garnet in water mixed with
acetone and in castor oil has been studied in an apparatus
whose block diagram is shown in Fig. 8. The measurements
of the radii of the beam a and of coherence r. at the exit from

r̂ -iM 'aT
-H

7^

\ ....

1—

7
8

и

6

1
Т

>

5

FIG. 8. Diagram of the apparatus: 7-YAG laser, P-semitransparent
plate, /'-cassette with filters, ^-cuvette containing liquid, J-polarization
interferometer, 4, 7-photoreceivers, 5, S-recording apparatus, 6-chart
recorder.

2,0

1,0

0,5

2 4 В В Р, W

FIG. 9. Dependence of the beam radius and the correlation radius on the
power at the exit from a cuvette 4-cm long.

the cuvette for various powers of the radiation showed that
the radius a of the beam increases with increasing P0, where-
as rc can initially decline (Fig. 9). The ratio of the correla-
tion radius to the radius of the beam for P0 < 2 W declines,
for 2 W < P0 < 6 W is constant, while when 6 W < P0 < 10 W,
it increases rapidly.

The results presented above describe the behavior of the
paraxial part of the beam and are valid for weak TSA. The
distribution of the field and the coherence over the cross
section of the defocused beam and its spatial coherence are
actually determined by the nonlinear spherical and noise ab-
errations.36'46 A numerical experiment shows that, when
Ро>РГст, the beam decomposes into filaments at distances
z~£nl (Fig. lOa). The appearance of a fine-scale structure
coincides with the appearance of an aberration ring in the
profile of the mean intensity (Fig. lOb), as occurs in the
internal defocusing of a Gaussian beam.47

The separation of the beam at z > Lnl is accompanied by
transformation of the distribution laws of the field, which
obeys Gaussian statistics: The phase distribution remains
uniform, while excursions occur in the intensity distribution
when I<(!),!> (I).

The relative dispersion of the intensity fluctuation de-
clines at first. However, after formation of a speckle struc-
ture it begins to increase sharply (Fig. 11).

The correlations of the field fluctuations and the optical
inhomogeneities that they induce in the defocusing medium
are manifested distinctively in the TSA of the beam, which
represents a superposition of the "signal + noise" type.29'48

Here the coherence can be impaired, not only of the noise,
but also initially of the coherent signal, although on the aver-
age both beams are defocused. Characteristically, the expan-
sion of such a beam prevails over the expansion of a noise
beam having the same mean power, which in turn is defo-
cused more strongly than the coherent beam (Fig. 12). This
somewhat unexpected result arises from the nonlinear inter-
action of the signal and noise components via the fluctuating
induced optical channel. For the same reason, the correla-
tion radius of a "signal + noise"-type beam decreases in the
initial stage more rapidly than that of a noise beam (Fig. 13).

Along with the transformation of the transverse scales
(a and /-,.), TSA leads to transformation of the time scales of
the field fluctuations of the quasicontinuous radiation.49'50

For a beam with rc -> oo and an arbitrary envelope over the
cross section F (r), an initial decline in the coherence time
occurs, in the absence of dispersion of the medium,
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FIG. 10. Instantaneous (a) and average (b) profiles of the
intensity with P0/Pcr = 120 for z/Z.djf = 0 ( 1 ) , 0.1 (2),and
0.3 (3).

(3.26')

caused by the fluctuations (in time) of the optical inhomo-
geneities (Fig. 14). The decrease in тс calculated by the non-
linear phase-channel method for z< (LnlLdif )

1/2 occurs in
different ways over the cross section of the beam, since

(3.27)

The nonlinear self-action length in this case

As a result of self-action, a beam originally coherent in space
with a time-fluctuating intensity loses this property—rc

over the cross section described by (3.26) ultimately gives
rise to spatial fluctuations of the field in the cross section of
the beam.

Such nonlinear interrelation will be discussed in detail
in the next section of this paper.

3.6. Wind refraction

Motion of the medium arising because of wind currents,
autoconvection, and displacement of the laser beam upon
scanning can lead to self-deflection and distortion of the pro-
file of a coherent beam.51'53 The self-deflection of coherent
beams has been well studied, and one can make a correction
for it.13'54"56 The propagation of partly coherent beams in
moving media occurs in more complex fashion.

A quasicontinuous beam induces in a transversely mov-
ing medium a temperature field described by the equation

(3.28)

which is written under the assumption that та < тх (a situa-
tion typical of the atmosphere).

£"' = ГКК J
(3.29)

is obtained from (3.24) by the substitution x — «o v (which is
equivalent to the substitution rx = a0/y —т„ = a0/u).

The joint solution of Eqs. (3.1) and (3.28) for a beam
having a random distribution of the field over the cross sec-
tion of the form

A(r, г = 0) = v70f(r)<r'2/4

and a medium moving with constant velocity has been per-
formed analytically31'57 and numerically.14

In the typical situation of propagation of a high-power
beam with P0 = 3 kW, width a0 — 5 cm and wavelength
Я = 1 fj.m in the atmosphere, which is moving with velocity
v = 4 m/s, an estimate by the formula (3.29) gives Lnl ~ 1
km, whereas Ldif ~3 km. The condition Ln, <£,dif enabled
applying the nonlinear phase-channel method for
z < (Z,n,Ldif)

1/2. Formulas were obtained by this method for
the mean values of the beam width and the correlation radii
along the x and у axes; it was shown that the induced tem-
perature fluctuations lead to an additional (as compared
with a coherent beam) defocusing of the beam and a de-
crease in the correlation radius. On the whole, owing to the
motion of the medium, the defocusing and decrease in the
transverse correlation scale in the.yz plane occur more rapid-
ly than in the plane of the wind xz.

A most interesting result is the independence of the dis-
placement of the energy axis from the initial correlation ra-
dius

FIG. 11. Variation of «7, on the axis of the beam for LM/Lnl = 3 ( 1 ) , 6
(2), and 9 (3) (Nr =9).

o(z)/ae

0,05 0,10

FIG. 12. Broadening of beams of the signal (S) and noise (TV) of "signal
+ noise" type for az<l when Z,,,,/Ldlf =0.1, Nr = 5.
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0,10 z/La,,

FIG. 13. Variation of the correlation radius of the noise beam and the
"signal + noise" type beam for the same parameters as in Fig. 12.

(3.30)

This conclusion coincides with the results of the numerical
experiment performed in Ref. 14 on the basis of the Monte-
Carlo method, and enables one to identify the track of propa-
gation of a partly coherent beam with the track of a coherent
beam, which is simpler to calculate.

Fluctuations of the wind velocity caused by atmospher-
ic turbulence substantially alter the pattern of thermal dis-
tortion. 13-58-64 Since their discussion lies outside the scope of
this review, we shall restrict the treatment to the most gen-
eral remarks.

The numerical simulation59'63 studied the change in the
spatial statistics of a laser beam on a track having a variable
velocity of side wind. It was shown that an increase in av

leads to weakening of the nonlinear wind refraction, while
here the sickle-shaped energy profile44 characteristic of reg-
ular wind refraction breaks down, and local maxima arise in
the envelope (speckle structure)13'14 lying along the wind
direction (Fig. 15).

For beams with an initial spatial modulation, these ef-
fects are manifested on shorter tracks. The presence of fluc-
tuations leads to breakdown of the statistical homogeneity of
the field in the cross section of the beam. The correlation
radius in a direction perpendicular to the wind decreases in
comparison with the initial value on the windward side and
increases on the leeward side; the coherence of the radiation
along the wind direction improves.14

3.7. Nonstationary thermal self-action

A distinguishing feature of the self-action of light pulses
in the absence of relaxation of the thermal nonlinearity

0,05 0,10

(TO < тх, т„) is the variation of the nonlinear perturbations
of the refractive index, not only along the track of propaga-
tion, but also over the duration of the pulse:

(3.31)
f —

The nonlinear refraction accumulating over time leads to a
distinctive dynamics of variation of the space and time statis-
tics of laser radiation.

One of the first studies65 examined theoretically and
experimentally the spatial spectra of the intensity fluctu-
ations of pulsed coherent and partly coherent laser radiation
that had passed through an absorbing turbulent medium,
and gave a very physical interpretation of the influence of
self-action on the transformation of the spatial spectra and
the variation of the dispersion of the fluctuations.

It was shown that, when z<Z.nl (Z,nl is the self-action
length) in a regular medium, the amplitude and phase initial
perturbations of the incident wave will be suppressed by the
thermal nonlinearity, while at distances z^>Z,n, the initial
perturbations are amplified. This arises from the fact that
the spatial modulation of the intensity at the entrance to the
nonlinear medium leads to time modulation in the interior of
the medium.

Since the nonlinear length of nonstationary TSA is a
function of the time

1/2 (3.32)

[Lnl is given by Eq. (3.24), and F(T) is the envelope of the
pulse], the characteristic period of modulation тт and its
frequency fl ~ т ~' can be estimated from the condition
-^ni (Tm) = z> whence we have О ~x2/L „, TX . In the presence
of space-time modulation of the intensity
\A \2 = /o (r) cos fir, the sign of the perturbations of the
temperature of the medium

ДГ - J \A\2dr' = /0(r)sin Qi/Q

can be opposite to the sign of the perturbations of the intensi-
ty. Therefore self-focusing and amplification of the pertur-
bations can occur.

The nonmonotonic variation of the dispersion of the
fluctuations of intensity of the radiation in a turbulent medi-
um having a spectrum of fluctuations of the permittivity of
the form

Фж(х) = о

{ *mj
is reflected in Fig. 16; here we have

FIG. 14. Decrease in rc of a laser beam in its paraxial region
(dashed) and az> 1 (solid lines) for Lal/LM = 0.2 (7) and 0.1 (2)

The general tendency is for the thermal nonlinearity to sup-
press the high-frequency part of the spectrum Фр (к) and to
diminish the variance (02). However, further on as the pa-
rameter I'Q increases, the fluctuations increase. This con-
firms the calculations in Ref. 32, which were performed by
the method of random trials.

The experiment studied the spatial structure of pulsed
(TO ~8 ms) multimode radiation of a GOR-300 laser after
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FIG. 15. Lines of equal intensity in the cross section of the beam
at a distance z = Z,dif for тх/т„ = 10, Ldjf/Z,ni = 7 when
0-,,/Uo =0.1 (a) and 0.8 (b).

passing through a cuvette containing tinted ethyl alcohol
with convective turbulence created in it. The two-dimen-
sional spectra of the fluctuations of intensity — calculated
and measured — agreed well in the region of wave numbers

The variation of the spatial coherence along the track of
propagation and over the duration of the pulse in non-
steady-state TSA is distinguished by its variety.

Studies of the correlation radius, the variance of the
fluctuations, and the correlation functions of the amplitude
and the phase of small perturbations of the field of the plane
wave

A(r, z, т) = Л0ехр(/«?(т)г)(1 + |(r, z, т))

in pulsed radiation with r0, rc0 £ г г

с0/^х were conducted in
Ref. 66.

The linearized system of equations with respect to the
first and second correlation functions Г, = (£(r , , z, r)
£*(r2 , z, r)) and Г2 = < £ ( r , , z, r )£( r 2 , z, т)) and
the correlators associated with them of the field £ and the
temperature T, tptm = {T,gm), of the field and the fluctu-
ations of the permittivity ij)lm = (e,£,m > was solved numeri-
cally.

Use of the perturbation method to analyze the correla-
tion functions enabled a substantially shortened expense of
machine time, which is usually large in the method of ran-
dom trials. We should include among its defects the lack of
account taken of diffraction of the light beam as a whole and
of pumping of energy from the main part of the wave into the
fluctuating part.

It was possible by this method to establish the funda-
mental laws of dynamics of the fluctuations and the spatial
coherence of the wave for its various statistical properties.

Figures 17 and 18 show the variation of the variance
a\ = a2

p +(7y, normalized to its initial value along the co-
ordinate of propagation z/k0rl;
r0 = (2xpcp/klaI0\eT\)l/* characterizes the plane-wave
region that contains a power equal to the critical value, while
t0 = r l/x is the time for establishment of the temperature
on the scale of r0.

For initial amplitude modulation (AM), effective
transformation of the amplitude fluctuations into phase
fluctuations occurs owing to both diffraction effects and
nonlinearity. The swift increase in a * and the decline in а г

р

(see Fig. 17) lead to a monotonic increase in the variance of
the field fluctuations a | (see Fig. 18). In the course of time
these variations of z become ever stronger.

For initial phase modulation (PM), the transformation
of the phase fluctuations into amplitude fluctuations is re-
strained for z < k0 r % by the competition of nonlinearity and
diffraction effects. This explains the initial decline in ст|,
which for z > 1.25k0 r % is then replaced by an increase in a |,
just as in the case of initial AM. The dynamics of the vari-
ation of the radius of spatial coherence of a partly coherent
wave with phase modulation is shown in Fig. 19.

With increasing distance z a characteristic minimum
appears in the dynamics of rc (т), whose time for attainment
declines with increasing z.

The retardation of the PM -»AM transformation owing
to nonlinearity is equivalent to the increase in rc for small
times, although subsequently the phase change induced by
the random lenses increases, and rc decreases. With increas-

0 1 2 3 4 5 6 7

FIG. 16. Variation of the variance of the intensity fluctuation.
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FIG. 17. Variance of the fluctuations of the amplitude a2

p (solid curves)
and the phase a J, (dashed) for r/f0 = 2.
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FIG. 18. Variance of the fluctuations of the field <r j for phase ( /) and
amplitude (2) fluctuations for r/ta = 1.

ing length z of propagation, the nonlinear effects accumu-
late, and the initial increase inrc is practically absent-it im-
mediately declines. However, toward the end of the pulse, rc

begins to increase owing to the onset of correlation between
the phase and amplitude fluctuations. An analogous result
was obtained by the method of random trials.69

In analyzing strong fluctuations the method of random
trials was used in Ref. 67. The random two-dimensional
fields were simulated:

where F(r) = 1 when Q<T<TO is the envelope of a square
pulse, while the correlation function of the phase <p was as-
sumed to be Gaussian:

The parameters of the radiation and the medium in the
numerical experiment were chosen to be close to the condi-
tions of a laboratory experiment68 with a variance a £ = 4
and a correlation radius rf = 0.25 mm of the phase fluctu-
ations on the screen.

In the experiment, whose diagram is shown in Fig. 20,
the variation was studied of the spatial coherence of the
pulsed radiation of the ruby laser 1 upon passing through the
phase screen 5 and the cuvette б containing an absorbing
liquid.

The experimental dependences of rc on the emitted en-
ergy are shown in Fig. 21 along with the theoretical depen-
dences obtained for the experimental conditions by the ran-
dom-trial and perturbation methods.

1,6

The increase and decline of rc in the initial instants of
time for z, = 5 cm are replaced by a monotonic decline for
zlg = 10 cm.

The results of the laboratory and the numerical experi-
ments agree well with the conclusions of perturbation theory
on the influence of the character of the initial fluctuations
(amplitude and phase) on the dynamics of the correlation
radius over the duration of the pulse.

4. NONLINEAR-DISPERSION SELF-MODULATION OF
RANDOM LIGHT PULSES

The theme of this section is the description of the funda-
mental laws of propagation of brief light pulses in nonlinear
dispersing media, among which a special place is occupied
by quartz glasses-the basic material of fiber light guides.

In the region of maximum transparency of quartz glass
(A~l-1.7 /лп) the dispersional spreading length
(Ldis = TO/ |&£[) for pulses of subpicosecond duration is
(r0 ~ 10 ~ 13 с) £dis ~ 10 cm.70'71 At the same time, the dif-
fraction effects in optically homogeneous media for beams of
radius a0 ~ 1 cm develop at lengths Ldi[ ~ 104 cm. In optical
fibers with a transverse dimension of the order of several
micrometers, diffraction is compensated by the considerable
transverse decline in the refractive index between the core
and the cladding.

Great lengths and low optical losses diminish the
threshold of the nonlinear effects in optical fibers, despite
the fact that quartz glass is a material having a weak Kerr-
type cubic nonlinearity. The situation has offered a wide pos-
sibility for studying a multitude of nonlinear phenomena
that accompany the waveguide propagation of light pulses.
The features of the broadening, compression, and generation
of ultrashort pulses have been studied in detail in the papers
cited above.70'71 However, unavoidably the existing fluctu-
ations of the field of laser radiation can appreciably affect the
character of the transformation of pulses in a fiber light
guide, and in the practical realization of systems for com-
pression, frequency conversion, information transfer, etc., a
substantial correction of the potentialities of such systems is
needed.

As was shown in Ref. 72, the applicability of the qua-
sioptical description is justified down to the femtosecond
range of pulse durations.

Below we shall present a description of the features of
diffraction-free propagation of partly coherent light pulses
in optical quartz single-mode fibers.

4.1. Light pulses In media having quadratic dispersion

In the second approximation of dispersion theory the
nonlinear propagation of laser pulses is described by the
equation

dz 2 dr
ik0

A V,A (4.1)

FIG. 19. Variation of the correlation radius over the duration of the pulse
k0r

2
0 = l (1), 2(2),3(3

In form this coincides with (3.1), which reflects the exis-
tence of a space-time analogy between diffractive propaga-
tion of light beams and dispersive propagation of light
pulses. The substitutions & £ -»& 0~' and r-»r enable one to
obtain much a priori information on the features of propaga-
tion of wave packets on the basis of the results presented in
the previous section.
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FIG. 20. 1—beam, 2—collimator, 3—diaphragm, 4—photodiode,
5—phase screen, 6—cuvette, 7—amplifier, 8—interferometer, 9—
objective, 10—motion-picture camera, 11—oscillograph.

However, there is also a difference between the behav-
ior of wave beams and packets. First, in real situations one is
dealing with three-dimensional beams (a wave packet is a
two-dimensional field in the coordinates z and т). Second, in
contrast to k 0~', the dispersion parameter k "ш can be either
positive or negative. In the region of normal dispersion
Л </icr (Ясг is the critical wavelength at which the condition
k'^ =0 is realized) in media with л2 >0, the pulses can
spread (become defocused in time). In the region of anoma-
lous dispersion Я >ЯСГ self-compression (focusing in time)
of pulses can occur. In the latter situation, with a certain
choice of parameters of the light pulse, a soliton regime of
propagation can occur. Here the soliton is stable toward
small perturbations (in contrast to the self-channeling of
light beams).

The propagation of a noise burst27'75 and the influence
of weak noise on the propagation of a signal26 have been
studied by the method of integration over trajectories.

For a pulse

А(г, z = 0) = |v70e
 r / (4.2)

having an initial random phase modulation £ = pe><e

(p = const)

in the paraxial approximation r\ < TQ an expression was de-
rived27 for the STDF

|Г(т,,т2,г)|

(4.4)

(4.5)

This describes both the evolution of the mean duration of a
Gaussian pulse and its coherence time.

The relationship between the nonlinear phase modula-
tion

L- = ̂ o (4'6)
and the dispersion length Ldis = т 0/|k £ is determined by
the nonlinearity parameter R = Ldis /Z.ph.

The most essential result is that, when

2 1-cO/

(4.7)

a mean statistical pulse can propagate in a steady-state situa-
tion-the pulse duration and the correlation time remain con-
stant. This is a consequence of the fact that, in individual
pulses (realizations), phase modulation causes both expan-
sion and narrowing of the pulse, which under certain condi-
tions compensate one another on the average.

When R ^£RCT the pulse duration and the correlation
time vary in the same way. Hence their ratio remains con-
stant.

The presence of random amplitude-phase modulation
in a "noise burst" pulse leads to the appearance of time fluc-
tuations of the induced nonlinear optical lens that facilitates
spreading of the pulse. The variation of the duration of such
a noise pulse and its coherence time are shown in Fig. 22.75

The monotonic increase in rinc and rc occur both in the co-
herent (z<Lcoh =тlo/\k'a\), and in the incoherent
(z > Lcoh ) regimes of propagation in a medium with normal
dispersion.

The transformation of pulses of the "signal + noise"
type occurs in a rather complicated way, which arises from
the nonidentical behavior of the regular and noise compo-
nents of the light field in the nonlinear medium. In the fixed-
channel approximation, the authors of Ref. 26 studied the
influence of a weak noise perturbation (аг «^ 1) on the non-
linear regime of propagation of a regular pulse. Without re-

0,25 0,50 0,75
a W,J

1,25

1,00

0,75

0,5 Ob

0,25 050 0,75

FIG. 21. Variation of the radius of spatial coherence at the exit
from the cuvette for a distance between the phase screen and the
cuvette of 5 cm (a) and 10 cm (b) as obtained experimentally
(1), by the method of random trials (2), and by the perturbation
method ( 3 ) .
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FIG. 22. Variation of the normalized pulse duration (solid curves) and
of its coherence time rc (dashed) in coherent (a) and in incoherent
(b) regimes of propagation for* = 2 (!) and 4 (2) (N,a = 10).

striction on the dispersion of the noise component, Ref. 29
used the nonlinear-phase-channel method to study in detail
the transformation of light fields of the "signal + noise"
type for lag-free and lagging regimes of self-action. For lag-
free nonlinearity, the mean-square duration of the pulse

тр (z)

ph

(4.8)

varies in a complicated way. However, Eq. (4.8 ) implies that
four fundamental effects influence the variation of the pulse
duration: they are the coherent and incoherent linear-disper-
sion spreading at lengths Ldis andLdis/Vl(7NT (NT =TO/TCO

is the number of longitudinal inhomogeneities over the dura-
tion of the pulse) independently of the form of the disper-
sion; coherent nonlinear-dispersion spreading or compres-
sion at the length L I = [2LphLdis/(l+ a2)]1'2 depending
on the sign of the nonlinearity and the form of dispersion;
incoherent nonlinear-dispersion spreading at the length
L^C = L ^h/2VI(7NT independently of the sign of the non-
linearity and the form of dispersion.

The transformation of the variance of the intensity fluc-
tuations a } occurs so that, at the characteristic distances
z~L]g the intensity fluctuations occur preferentially at the
fronts of the time envelope, while in the central part of the

pulse the envelope of the intensity /(т) has a practically reg-
ular structure.76'77 This situation enables one to stabilize the
parameters of compressed pulses by spatial filtration of their
spectral components in a grating compressor (????). This
important result is illustrated in Fig. 23, taken from Ref. 77,
where, along with the increase in the coherence time of the
central part of the pulse, the variance of the fluctuation a }
decreases.

4.2. The role of higher-order dispersion

The broadening of pulses in fiber light guides lowers
their transmission power and restricts the information band
of transmission. In multimode fibers this broadening is
caused by the difference between the group velocities of
propagation in the individual modes. In a single-mode light
guide the fundamental mechanism of broadening is disper-
sion. Weakening of the quadratic dispersion in quartz
glasses can be attained by a suitable choice of the wavelength
of the radiation in the range Л ~ 1.3-1.6 /ип. This region of
wavelengths is the most promising for realizing long-range
fiber-optic communications.78

At a wavelength close to critical (Л ~Acr), k £ = 0, one
must take account of higher-order dispersion. Under such
conditions the fundamental equation of quasioptics, which
describes the propagation of picosecond pulses in a single-
mode quartz light guide with account taken of dispersion up
to the third order, inclusive, has the form

дА **<„ д2А %> д3А «л , 9
"37 о Т + "л Г = л, ММ.dz 2 £г2 6 аг3 «о (4.9)

FIG. 23. Distribution / (r) in the region
R = 300, N ~ ' = 0.64, a= 0.2.

for

-2 -/ 0 1 2
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The contribution of the effects of cubic dispersion is deter-
mined by the characteristic length

Г ' —
^dis ~ t w i - (4.10)

Ill quartz glass for A~Ac r and pulse duration 1 ps, we have
L dis ~ 13 km, while for pulses with r0 ~0.1 ps we already
have L dis ~ 13 m. If |A — Acr | > 5 nm, the second-order dis-
persion becomes dominant, and Ldis <L dis .

79

The nonlinear propagation of regular phase-modulated
pulses with account taken of the effects of quadratic and
cubic dispersion was studied in Refs. 80 and 81. For a fixed
wavelength A the relationship between the effects of qua-
dratic and cubic dispersion depends on the duration of the
pulse: for long pulses TO >k"/\k'^\ quadratic dispersion
dominates (Ldis <Ld i s), while for short pulses
TO < k ш'/| k "ш | the cubic dispersion becomes decisive.

On the other hand, the contribution of self-action can be
characterized by the relationship between the length of non-
linear phase self-modulation Lph and the dispersion lengths
Ld[s and L dis. Here, from the conditions Lph = Ldis and
Lph = L dis, one can respectively introduce the critical pow-
ers

Pcr,2 = -—7—' Лг .з=— тт~- (4.11)
/C()/I').ij(jjs Kf^fl-^Lj fas *• '

The nonlinear propagation of long and short pulses of
the "noise burst" type in the region of normal dispersion has
been studied analytically and numerically (by the Monte-
Carlo method) in Refs. 30 and 82.

For short pulses with power P0 < Pcr2, Pci3 (regime of
weak self-action), when the effect of cubic dispersion domi-
nates (L dis < Ldis, Lpb) ,the analytic expression for the mod-
ulus of the temporal correlation function of the field ob-
tained by the nonlinear phase-channel method
(z< (LdisLdisLph )

1/3) for a distance z5Ld i s acquires the
form

2 T -

where we have

(4.12)

(4.13)

These expressions imply that, along with the strong asym-
metric spread of the pulse (Fig. 24), its peak intensity is
retarded by the time interval

2LL
(4.14)

its energy center is displaced, and the trailing front becomes
steeper. This conclusion is confirmed also by a numerical
experiment, the data of which agree well with the analytic
results. The maximum intensity of the pulse

,2/3 ,
/0(z) = 0,3

1L'

•flN,
(4.15)

upon propagation decreases mainly because of third-order
dispersion and random time modulation, which is character-
ized by the parameter NT = r0/rc0.

Analysis of (4.12) and a numerical experiment show
that nonlinear self-action favors impairment, while cubic
dispersion favors improvement of the time coherence of the
pulse. Fragmentation occurs in the function Г on the trailing
front, where the temporal coherence function is periodically
modulated with the period of the Airy function Ai, which is
determined by the characteristic length L dis of the cubic
dispersion. In a regime of weak self-action, the coherence
time increases within the limits of the initial duration of the
pulse (Fig. 25).

At distances z > L dis the weakening of the intensity
peak along z is still accelerated, while the time of retardation
rret gradually decreases and disappears. This results from
the manifestation of quadratic dispersion, which favors res-
toration of the symmetry of the pulse.

In a regime of strong self-action numerical experiment
shows that a substantial spreading of short pulses occurs at
distances Z,ph < z < L dis < Ldis, and the time envelope of the
profile of the mean intensity acquires a fragmented form.
However, division into subpulses does not occur.83 As the
ratio Ldis /L djs increases, the spreading becomes more asym-
metric, and the energy center of the pulse is further retarded.

The rate of spread of the individual inhomogeneities
lags behind the rate of spread of the pulse as a whole. There-
fore, even on tracks z~0.1Ldis, the number of time inhomo-
geneities NT increases. Here the fluctuations in the energy-
bearing part of the pulse decrease, and they are expelled to
the periphery (Fig. 26).

-3 -2 -t 0 1 2 3 t/r0

FIG. 24. Mean envelope of the intensity for z/£dis =0(1) and 0.2, calcu-
lated analytically (2) and numerically (J).

6-4-2024- В в Т/Т,

FIG. 25. Modulus of the exponent of the temporal correlation function of
the field for z/Zdis = 0 (dotted line) and 0.12 calculated analytically ( / )
and numerically (2).
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The existence of this term on the right-hand side of (4.16)
involves the large gradient of the field intensity over the du-
ration of the pulse. The length

FIG. 26. Time distribution of the relative fluctuations of intensity at dis-
tances z/Ldis = 0.1 (7) and 0.2 (2) when Ldis = L di. = 50Lph, Nr = 2.

The existence of strong nonlinearity radically alters the
character of the transformation of the frequency spectrum.
When third-order dispersion plays the dominant role, the
fluctuations of the input field cause the spectral density of
the pulse to be enriched with frequencies in the anti-Stokes
region (Fig. 27). Such an upward waveguide frequency dis-
placement can be effected smoothly by a suitable choice of
both the power and duration of the pulse and of the material
of the light guide and its length.

To sum up the results so far, we can conclude that, for
randomly modulated pulses, removal of quadratic disper-
sion does not slow the tempo of spreading of the pulse as a
whole, while asymmetric deformation of the envelope and
group retardation of the pulse occur. However, the region
A~/lcr is promising for transformation of the carrier fre-
quency of the pulse into the anti-Stokes region and retarda-
tion of the tempo of impairment of time coherence, which
occurs with strong nonlinearity in a medium with normal
dispersion.

4.3. Non-steady-state nature of nonlinear polarization

For intense pulses (/~10'°-1012 W/cm2), when the
rate of variation of the mean envelope of the intensity of the
laser field and the Kerr nonlinearity are rather high, the
fundamental equation of quasioptics is supplemented on the
right-hand side by another nonlinear term70

(4.16)

«/o
(4.17)

characterizes the effect of non-steady-state behavior of the
nonlinear polarization for deterministic pulses. For an in-
tensity I~ 1010 W/cm2 and a wavelength of the radiation
A ~ 1 /urn, the nonlinear phase-modulation length is of the
order of Lph ~0.1 m, while for picosecond pulses Lns, ~ 100
m. Thus, although Z,nst is three orders of magnitude greater
than Lph, yet, it is an order of magnitude smaller than Ldis,
and the non-steady-state nature the nonlinear polarization
must be taken into account. The characteristic lengths Lph

and Lnst become comparable only for a duration TO ~ 10 fs.
In single-mode fibers, even with high-power pulses (I~ 1012

W/cm2), the nonlinear perturbation of the refractive index
nni ~ 3 X 10 ~ 4 is far smaller than the decline in the refractive
index Ди between the core and the cladding. In this regard
we can consider the transverse structure of the laser field
along the track of propagation to be constant.

While the effect of nonlinear self-modulation is asso-
ciated with the intensity of the laser field, the action of the
non-steady state nature of the nonlinear polarization de-
pends mainly on the decline in intensity on the scale of the
pulse duration. For randomly modulated pulses the non-
steady state nature of the nonlinear polarization can already
be substantial at lengths ~тсс/и2а/, which in a number of
cases are smaller than (4.17).

The formation of a shock wave under the action of the
non-steady state nature of the nonlinear polarization for de-
terministic pulses has been studied in detail, both in the lag-
free84'85 and the dispersive86 regimes of self-action. Refer-
ence 87 studied analytically and numerically the effects of
the non-steady state nature of the nonlinear polarization for
random pulses, when NT > 1 in single-mode light guides in
the region of normal dispersion.

The non-steady-state nature of the nonlinear polariza-
tion, which is enhanced with increasing NT, leads to group
retardation of the peak of the pulse and steepening of its
trailing front (Fig. 28). The retardation of the peak of the
pulse increases with increasing power in it and with decreas-
ing initial duration r0.

On the initial track z < Lph, the time of retardation of

-2 -1

FIG. 27. Frequency spectrum of the pulse at distances z/idis = 0 (dot-
ted) and 0.26 for NT =4, Ldis/£dis = 1 (1) and 5 ( 2 ) .

-2 -/

FIG. 28. Mean profile of the intensity of a noise pulse for z/idi4 =0(1)
and 0.14 (2) calculated analytically (2) and numerically (3) for
idis/iph = 50, Ldis/inst = 2, Nr = 4.
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the peak of the pulse is found be proportional to the cube of
the traversed path

(4.18)

Subsequently, when z~Lnst, the increase in rret gradually

weakens:

1 (4.19)

At a distance z ~ Ldis it begins to decrease. This is caused by
the gradual spreading of the pulse, which in turn weakens
the decline in intensity in the time r, and hence also the effect
of non-steady-state self-action. The pulse becomes gradually
symmetrized as the role of the quadratic dispersion in-
creases. The result of numerical experiment agrees qualita-
tively with the analytic formulas (4.18) and (4.19) (Fig.

29).
For deterministic pulses (Nr = 0) the non-steady-state

self-action weakens the spreading of the pulse in the region
of normal dispersion of the group velocity and enhances it in
the region of anomalous dispersion.86 Random modulation
of the pulse always facilitates its additional spreading, inde-
pendently of the type of dispersion.

4.4. Compression of random pulses

The joint action of the effects of nonlinearity and anom-
alous dispersion of the group velocity can lead to a temporal
compression of pulses and to formation of optical solitons.
Reference 88 theoretically predicted the possibility of a soli-
ton regime of propagation in light guides, while such a re-
gime was realized in Ref. 89 in a light guide based on quartz
glass.

The nonlinear transformation of deterministic pulses of
various forms has been studied in a number of papers, in-
cluding Refs. 90 and 91. The actual quantitative laws of the
dispersion regime of compression of regular pulses were es-
tablished in Refs. 92 and 93 by mathematical modeling
methods. However, in real compression systems random
factors can play a significant role. In going over to picose-
cond pulses, along with the irregularity of the light guide
itself, the influence increases of temporal amplitude-phase
fluctuations of the light field on the process of self-compres-
sion of pulses. Some regularities of these processes were ana-
lyzed numerically in Refs. 77 and 94 by the Monte-Carlo

method.

10

FIG. 30. Dependence of the degree of compression of regular pulses in a
lag regime of self-action on the length of the light guide for rrd /r0 = 0
(1); 0.1 (2);andl (3).

The mean-square duration of a light pulse of "signal +
noise" type in a quartz light guide under the joint action of
the effects of nonlinear phase self-modulation and anoma-
lous dispersion is determined analytically by Eq.(4.8),
where a minus sign is set in front of the second term in/(z).
In situations characteristic of fiber-optic compression, the
nonlinearity parameter is R = Ldis/Lph ~102,95 while the
pulse duration on the initial track z < Lph practically always
decreases. At the distance

1-1 + „ Ч (4.20)
\ l

1 +

the pulse duration reaches its minimum value

1 -•
1 +

1/2

(4.21)

Consequently a fiber light guide of length Lopt makes possi-
ble the maximum compression of a light pulse at the exit.
Here the degree of compression is 5'max = r0/rpmin.

For deterministic pulses the maximum degree of com-
pression can be increased by increase in the parameter
R = т Ik0n2/о/Ч, | k 11. Consequently high-power pulses
are compressed more effectively than are low-power pulses.
However, at intensity values /~ 10ю W/cm2 and higher, the
process of transformation of the pulse duration is influenced
decisively by the effect of non-steady-state self-action, which
favors weakening of the process of self-compression. Also
the compression process occurs more effectively for long
than for short pulses. Moreover, for short enough pulses
TO < 10 ~ 13 s the manifestation of lag in the nonlinear re-

0,50 -

0,25

FIG. 29. Retardation of the peak of the pulse calculated numerically for
R = 50, N, = 5, and Ldis/£„„, = 1 (1) and 2 (2).

1,0

0,5

0 2 5

FIG. 31. Dependence of the optimal length of the light guide for random
pulses on 7Vr for<7 2 = 0.1 (1);0.2 (2); and 0.3 ( 3 ) .
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sponse reduces the efficiency of compression96 of regular
pulses (Fig. 30). On the other hand the parameter/? can be
increased also by an increase in the ratio k0/\k £ , which is
attained by decreasing the wavelength Л of the radiation.
However, near Acr effects of third-order dispersion, which
reduce the degree of compression, begin to be manifested.
Thus the most efficient self-compression of pulses is ob-
tained in the region A~Acr +5 nm, where at the minimal
wavelength of the radiation the anomalous quadratic disper-
sion still dominates over the cubic dispersion.

For pulses of the "signal + noise" type, the optimal
length for compression is smaller than for regular pulses.
HereLopt decreases substantially with increasing variance of
the time fluctuations (Fig. 31). The dependence of Lopt on
the number of temporal inhomogeneities is sharply marked
when NT < 3, while with further increase in NT the optimal
length practically does not vary. The decrease in Lopt with
increasing a2 and NT is explained by the enhancement of the
incoherent dispersion and nonlinear effects, which even on
the short track z~Lopt succeed in compensating the nonlin-
ear coherent compression of the pulse owing to phase self-
modulation. The degree of maximum compression of a ran-
dom pulse, on the one hand, depends weakly on the variance
of the fluctuations a2, and on the other hand, it declines
considerably with increasing NT when NT < 3, while further
for NT ~ 3-5 it practically does not vary (Fig. 32). Thus, the
sharply marked dependence on NT of the optimal length of
the light guide and the maximal degree of compression is
manifested when NT < I, i.e., when the coherence time of the
noise component тс is comparable with the duration of the
mean envelope. Here even small changes in тс lead to rather
strong jumps in the parameters Lopt and Smajl.

An appreciable increase in 5'max with increasing R is
possible only in the region R~ 10-50 (Fig. 33). For large
values R ~ \02, even when NT > 0.7, an increase in the inten-
sity of the pulse hardly facilitates an increase in 5max. Al-
ready a twofold compression of a random pulse is impossi-
ble, even with small values of the dispersion of the
fluctuation of the noise component (a2 —0.1) of intense
pulses (R > 102). In this situation Smax for NT no longer de-
pends on Л and equals ~[1 + (1/160- 2JV2)]1 / 2 .

For random pulses having a broad frequency spectrum,
when NT > 1, it is practically impossible to achieve temporal
self-compression. This arises from the fact that a process of
slight compression occurs on a short track z^Llg, while

2,0

1,5

1,0

SO 100 150 В

FIG. 33. Variation of Ŝ  as a function of Л for a2 = 0.1 and Nr = 0.3
(1); 0.4 (2); 0.5 (3); 1 (4); and 2 (J).

further on, owing to development of the incoherent nonlin-
ear and dispersion effects, the pulse begins to spread strong-
ly. Consequently, for effective compression of random
pulses, it is more expedient to increase the coherence than to
increase the input intensity.

Reference 97 presented the results of a numerical exper-
iment to study the statistical steady state of a wave packet
under the joint action of a positive cubic nonlinearity and
anomalous dispersion. A breakdown was shown of the
steady state of the random process g(r) in the case of a
"noise burst" with a large nonlinearity parameter R~ 102

under self-compression conditions. The possibility was dem-
onstrated of increasing the coherence time тс at the boun-
daries of the pulse, whereas a decrease in rc is observed in the
middle of the pulse (Fig. 34).

The evolution of the temporal correlation function of a
laser field in a fiber light guide in a region of anomalous
dispersion was studied98 by the method of moments under
the assumption of conservation of the statistics and form of
the mean envelope. It was also shown that an increase in the
number of temporal inhomogeneities NT reduces the effi-
ciency of compression of a noise pulse (Fig. 35). The maxi-
mum for Smiif is realized when NT = 0.

On the whole the mutual compensation of the effects of
coherent nonlinear self-compression and of anomalous dis-
persion makes it possible to stabilize light pulses in fiber light
guides; under conditions of small losses it increases the
transmission power and rate of transport up to 10 terabits
per second.99 Initial phase fluctuations, analogously to am-
plitude fluctuations, also weaken the efficiency of compres-
sion. However, the output parameters (тр and 5max) are less

2 z/La

FIG. 32. Variation of 5majl as a function of NT for R = 50 (solid lines) and
Л = 100 (dotted) for tr2 = 0.1 (1); 0.2 (2); and 0.3 (3).

FIG. 34. Variation of rc of a noise pulse NT = 6.5 in its central part
(т = 0) for R = 0.8 ( 1 ) , 3 (2), 6 (3), and 15 ( 4 ) .
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" 0,1 0,2 0,3 z/Lais

FIG. 35. Transformation of the pulse duration with propagation for
Д = 5for7V r = 10(1),2 (2), 1 (5),andO (4).

sensitive to such fluctuations of the input radiation, and the
variance of 5max in the region z~Z,opt is substantially weak-
ened.77'92

In experiments on compression of regular pulses con-
siderable advances have been made in recent years. For ex-
ample, in Ref. 100 a 27-fold compression was achieved in 7-
ps pulses for wavelength 1.55^m, and in Refs. 101 and 102,
more than 100-fold compression of 30-ps pulses. Today
pulses have already been obtained experimentally that cover
only several periods of optical oscillations.103 However, the
laws of self-compression of random pulses have not yet been
experimentally confirmed.

5. THE MUTUAL INFLUENCE OF TEMPORAL AND SPATIAL
COHERENCES OF LASER RADIATION IN A NONLINEAR
MEDIUM

In many real cases the space-time boundedness of light
fields, when the characteristic lengths of diffraction Ldif and
of dispersion Ldis are comparable, introduces new phenome-
na into the process of their propagation and transformation
by optical systems. The high-frequency components of a
pulse are diffracted more slowly than the low-frequency
components. Therefore, in the final value of the relative
width of the frequency spectrum Дй>/&>0, the nonidentical
diffraction of the different frequency components deforms
the time envelope of the pulse.104 The effect of inequality of
the diffraction lengths of the different spectral components
is enhanced for laser pulses of duration of several periods of
optical oscillations.105'106 We should also expect a reverse
influence of dispersion on the transformation of the width of
the beam. For example, in the final value of the relative
width of the wave spectrum ДА: /k0, even in a diffraction-
free regime of propagation, the beam will be deformed in the
cross section in the dispersion region z~Z,dis. For randomly
modulated fields the effects of the mutual influence of dif-
fraction and dispersion are manifested on relatively short
tracks, and also a transformation is observed of spatial into
temporal fluctuations, and vice versa.107

In a nonlinear medium, when Lnl < Ldif, Ldis, even on a
track z S Lnl the transverse deformation of the beam causes a
change in the induced optical inhomogeneities of the medi-
um. Hence it leads to transformation of the pulse duration.
In turn the transformation of the time envelope of the pulse
facilitates the nonlinear refraction of the beam. The simulta-
neous space-time self-modulation of partly coherent laser
radiation by the random inhomogeneities Яп1 in the propaga-
tion channel gives rise to a reciprocal influence of the time
and space fluctuations of the laser field.29'57'108'109

5.1 . Space-time self-modulation of regular fields

The generalized equation of diffraction and dispersion
in a linear medium that describes the propagation of short
light pulses with bounded transverse dimensions has the
form104

(d . i d2 *: a2

(Т, + 2*-^ - -T-£i

(5.1)

where the last term describes the reciprocal influence of the
space-time scales of the laser field.

The solution of Eq. (5.1) with account taken of all its
terms involves great mathematical difficulties. References
105 and 1 10 have analyzed the temporal distortion of the
laser field having an initial space-time envelope F(r, t) of
Gaussian type in a dispersion-free regime of propagation.
The numerical calculation105 that was performed of the tem-
poral envelope of the pulse at the distance z~Ldif showed an
appreciable increase in the duration of a femtosecond pulse
at the periphery of the beam ( r ~ aa ) . This tendency persists
also in the far zone z>Ldif , where the duration of a pulse
with coordinate z varies as follows:

(5.2)

Here v0 is the phase velocity of propagation.
Deformation of the temporal envelope can also arise

upon passage of laser fields bounded in space and time
through various optical elements. For example, in the pas-
sage of ultrashort pulses through a zone plate, the linear
transverse refraction facilitates a change in the form and
duration of the light pulse.[ l'

For pulses of duration rp ^ 1 ps, the last term in (5.1) is
vanishingly small and the transformation of the space-time
scales of the laser field occurs independently. However, the
reciprocal influence of the space and time parameters be-
comes substantial again for high-power laser radiation in a
nonlinear medium, when Lnl <LM, Ldls. For example, the
focusing of the beam enhances the nonlinear perturbation of
the refractive index nn, of the medium along the track of
propagation, and correspondingly the nonlinear-dispersion
distortion of the time envelope of the pulse. The total dura-
tion of a pulse having an initial Gaussian space-time enve-
lope obtained by the method of successive approximations
with account taken of the increase in the optical perturba-
tions with propagation owing to focusing is given by the fol-
lowing expression115 in the near zone z < Lnt:

where

L -J.f-Ho-1
"' *<4«2'0J

1/2

(5.3)

(5.4)

is the nonlinear length in a lag-free regime of self-action,
which does not contain the space-time parameters of the
light field.

In (5.3) the plus sign before the second term holds in a
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medium with normal dispersion, and the minus sign for
anomalous dispersion.

Of course, the nonlinear-dispersion compression or
spread of the pulse, in turn, will correspondingly enhance or
weaken the nonlinear refraction of the beam.

5.2. The reciprocal influence of time and space fluctuations

Within the framework of the non-steady-state diffrac-
tion equation (5.1), even in a linear medium the problem of
the reciprocal influence of the time and space fluctuations of
diffracted and dispersed fields is highly complex. In a disper-
sion-free regime (k'^ =0) of linear propagation, this prob-
lem has been studied thoroughly in Ref. 107. At the entrance
to the medium the STCF of the field is represented in the
factored form

Г(гр Г2, т,, TJ) = Г(г,, (5.5)

The space-time distribution of the mean intensity (I (r, t))
that one obtains shows an additional spread of the pulse due
to the initial spatial fluctuations. The coherence time is
transformed in varying ways in the cross section of the beam.
For example, at the axis of the beam (r = 0) the time coher-
ence does not vary (rc = const), while in its peripheral part
(r ~ a0) for rc0 < a0 and тс0 > TO , the coherence time declines
upon propagation. The situation differs when rc0 < r0: in this
situation an initial incomplete spatial correlation does not
lead to decrease in rc. We should expect also a reverse influ-
ence of incomplete time coherence on the decrease in the
correlation radius rc in a diffraction-free regime with
TCO<TO andrc0>a0.

Within the framework of the linear equation of quasiop-
tics without taking account of the last term in (5.1), the
transformation of the time and space coherence of the laser
field occurs independently. The effects of the reciprocal in-
fluence of the time and space fluctuations begin to be mani-
fested for high-power diffracted and dispersed light fields in
nonlinear media. Both the initial time and space coherence
influence the variation of the space-time parameters of the
laser field with account taken of diffraction and dispersion.
Therefore, to study the reciprocal influence of time and
space fluctuations, it is expedient to study at the entrance to
the medium a random light field with either a limited space
or limited time coherence.

References 29, 57, 108, and 109 analyzed in detail var-
ious aspects of the reciprocal influence of the time and space
coherence of diffracted and dispersed fields for various re-

-1,0 -0,5 0 0,5 1,0 T/TO

FIG. 36. Impairment of time coherence of the radiation at a wavelength
Л0 ~ I pm of an initially spatially incoherent structure for inl = I cm at
distances z= 10m (7),50m (2), and 100m (3).

gimes of self-action. Let us turn to some important results of
these studies.

We note first of all that, owing to the reciprocal influ-
ence of the scales of the time and space coherence, the fac-
tored form of the STCF of the field of (5.5) in a nonlinear
medium is not conserved. Of especial interest are the effects
of space-time self-modulation of diffracted and dispersed
fields in a regime of strong self-action Z,nl <LM, Zdis.

The expression for the mean intensity obtained by the
method of successive approximations shows a weakening of
the nonlinear-dispersive transformation of the pulse due to
the initial spatial fluctuations:

(5.6)

Here we have Nr > 1, while NT = 0 and Lnl is given by Eq.
(5.4) at the entrance to the medium. We should note that the
transverse incoherent structure of the field always leads to
weakening of the nonlinear-dispersion effects, independent-
ly of the sign of the nonlinearity.

Analysis of the STCF of the field showed an impair-
ment of the initial time coherence of the radiation.29 Here
the coherence time varies in different ways over the duration
of the pulse:

' ' r 2 J . (5.7)

In the central part of the pulse (r = 0) complete time coher-
ence does not break down (rc = oo), while it gradually de-
clines toward the periphery of the pulse with increasing т
(Fig. 36).

On the other hand, an initial incomplete time coherence
(NT > 1) also facilitates the breakdown of complete spatial
correlation (Nr = 0) of the field. The transformation of the
correlation radius occurs in different ways over the cross
section of the beam:

rc =*,jL2 aoCzMcosfl)"1, (5.8)

where в is the angle between the vectors R = (r, + r2 )/2
and/5 = r, — r2.

The reciprocal transformation of some types of fluctu-
ations into others has been traced also in media having ther-
mal nonlinearity. Initial spatial fluctuations in the station-
ary thermal self-action in the case az^l lead to a monotonic
decline of rc along the track z < Lnl .

57 For az> 1, when the
nonlinear effects are manifested in the thin layer
z < L3 = a ~~' , the coherence time declines in the initial stage
of self-action, while further on, with weakening of the non-
linear effects, тс hardly varies (Fig. 37).

The physical pattern of the nonlinear reciprocal influ-
ence of space and time fluctuations of a laser field is very
complex. However, we can distinguish certain common reg-
ularities of this reciprocal influence.

In the case of weak noise modulating a strong signal:
/s ^-/n —the nonlinear perturbation of the refractive index of
the medium in the propagation channel is determined by the
intensity of the dominant signal and is practically regular.
Therefore, in the propagation of a laser pulse in such a chan-
nel, an incoherent nonlinear effect is practically absent and
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FIG. 37. Transformation of rc for т= 0.5т„ for az4, \ (solid lines) and
az> 1 (dotted) of damping for LM/Ln} = 5 (/) and 10 (2).

the reciprocal coupling of space and time fluctuations is van-
ishingly small.

In media having a lag-free Kerr nonlinearity and in a
steady-state regime of thermal self-action, the reciprocal in-
fluences become appreciable only in those cases in which the
fluctuational component of the refractive index «n l, which is
comparable with the regular component (nn,}, has a distri-
bution inhomogeneous over the cross section of the beam
and a non-steady-state one over the duration of the pulse. In
a moving medium even steady-state fluctuations in time im-
pair the spatial coherence in a plane parallel to the velocity of
the moving medium. This decrease in rc involves the inho-
mogeneous distribution of nnl in the cross section of the
beam owing to the wind fluxes.

The effects of reciprocal influence are substantially
weakened in those cases in which the manifested lag in the
nonlinear response and the non-steady-state nature of the
thermal self-action favor a smoothing of the fluctuations of
the induced optical channel. However, such a lag and non-
steady-state nature due to the character of the induced fluc-
tuations that accumulates over the duration of the pulse can
impair the time coherence of the noise signal, which has at
the entrance into the nonlinear medium a modulation that is
in a steady state over its duration.

CONCLUSION

In this review we have tried to reveal the most general
regularities of the self-action of randomly modulated light
beams and pulses, primarily in regular nonlinear media.

In the motley palette of stochastic nonlinear wave phe-
nomena, the principal theme seemed to us to be to single out
those phenomena most important in solving practical prob-
lems of transport of energy and information by laser radi-
ation, of atmospheric optics, and of constructing high-power
laser systems, etc.

We call attention to the primacy of theoretical over ex-
perimental studies, although in an actual experiment fluctu-
ations of the field intensity of the light wave are always pres-
ent, and taking correct account of them is a laborious
problem. Lack of such an account impedes the comparison
of the experimental and theoretical results, not only in prob-
lems of propagation of high-power light waves, but also
practically in all other nonlinear-optical wave phenomena.

We note in passing that the solution of the problem of
the nonlinear interaction of partly coherent beams and

pulses is yet far from completion (harmonic generation, pa-
rametric interaction, Raman scattering, including the trans-
formation of the frequency spectrum of ultrashort light
pulses in optical fibers due to stimulated Raman scattering,
etc.)

Returning to the problem of self-action of partly coher-
ent light, we point out that taking account of the stratifica-
tion of nonlinear media and of the natural fluctuations in
their optical properties makes the pattern of self-action even
more varied. We have tried not to touch upon this aspect of
the problem at all, although in individual sections the results
are presented of the cited studies in which the fluctuations of
the field and of the medium are inseparable.

The influence of initial fluctuations of the medium, in-
cluding those induced during self-action, is apparently a sep-
arate topic for another review article, which must be based
on the studies of the past ten years carried out in the leading
laboratories of our country and abroad.
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