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The problem of the selection of forms and scales of convective flows in a horizontal layer of liquid
heated from below is studied. The basic types of two- and three-dimensional flows, defects of roll
structures, exchange of convective regimes, and different situations in which two-dimensional
rolls have a preferred wave number are described. It is shown that when considered in terms of an
optimal (preferred) wave number, to which a roll structure tends and which may or may not be
reached depending on the overall geometry of the flow, the different experimental and theoretical
results form a unified consistent picture. The basic methods used for investigation of convective
structures are described.

1. INTRODUCTION

Convection associated with nonuniform heating is,
without exaggeration, the most commonly occurring type of
flow of gas and liquid in the universe. Convection also plays
an important role in different technological setups. All this
already completely explains why investigators have shown
such steadfast and intent interest in convection. In the last
few years, however, this interest has also been powerfully
stimulated by another circumstance: convection problems
are a rich source of material for the development of new
ideas about the relation between order and chaos in hydro-
dynamics and between simplicity and complexity in the
structure and behavior of hydrodynamic objects.

Convection in a two-dimensional horizontal layer of
liquid heated from below—Rayleigh-Benard convection'' —
is, by and large, studied most often. This problem incorpo-
rates significant features characteristic of many phenomena
of hydrodynamic instability. At the same time, in convection
of this type the spatial effects are largely decoupled from the
temporal effects because there is no intense average flow,
and this makes it much easier to study such flows both theo-
retically and experimentally. Rayleigh-Benard convection
provides extensive possibilities for investigating the sponta-
neous appearance of ordered spatial structures and it thus
raises very subtle questions about the realizability of forms
and scales of flows—selection of flows which are in some
sense optimal.

The stability of some particular stationary flow allowed
by the equations has a direct bearing on the realizability of
the flow. What is more, stability is often considered to be the
main criterion of realizability: "The flows that occur in na-
ture must not only obey the equations of hydrodynamics, but
also be stable: small perturbations, if they arise, should de-
crease with time."1 However this necessary condition is not
sufficient. The class of stable stationary solutions of the
equations of hydrodynamics is, generally speaking, much
larger than the class of flows which arise spontaneously un-
der appropriate conditions. As more and more information
is accumulated it is becoming increasingly clearer that the
thesis "All stable flows are realized" can be countered by

"Not always and not all stable flows." Very special initial
conditions may be necessary in order for a stable state to be
reached, and such conditions may not exist at all. Rayleigh-
Benard convection is an excellent illustration of this.

In the theory of convection the problem of the realizabi-
lity of stable flows is the central problem for many other
problems, in particular, problems arising in practical appli-
cations. The average characteristics of convection (primar-
ily the heat flux transported by the convecting liquid),
which are so often needed, can in principle be derived from
the equations, once the form and scale of the flow have been
found and, therefore, the amplitude of the velocity can be
calculated.

This review is devoted to questions concerning the for-
mation of spatial structures in Rayleigh-Benard convective
flows, the problem of selection of the forms and scales of the
structures, and the exchange of convective regimes. In the
last ten years an avalanche of publications on convection has
appeared, and many authors touch upon, explicitly or im-
plicitly, the problem of structure formation. The abundance
of material has made it necessary to limit this review to only
those works that have a direct bearing on the subject at hand.
Questions about the effect of complicating factors, which
impart to the flow qualitatively new features as compared
with the classic case of Rayleigh-Benard convection, had to
be omitted. As a result, for example, very interesting effects
associated with large variations of the parameters over the
height of the flow and therefore many situations with a more
complicated vertical structure of the flow fall outside the
scope of this review. Regimes in which the temperature gra-
dients are so large that turbulence develops in the convecting
liquid are also not discussed.

Attention is focused on the physical picture of the flows
and the mathematics is kept to the necessary minimum.

Of the published reviews, Ref. 2 is probably closest to
the present review with regard to the subject matter. Refer-
ences to other reviews will also be encountered in the text.

The present review is organized as follows. After the
basic concepts and notation are introduced (Sec. 2), the dif-
ferent approaches used for studying the problem experimen-
tally and theoretically are described (Sec. 3). Next, after a
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classification of the basic types of structures and convection
regimes has been given (Sees. 4 and 5), the different charac-
teristic scenarios of the evolution and types of geometry of
flows—often referred to as "mechanisms of selection" of
scales—are studied (Sec. 6). In each case the results ob-
tained by the different methods described in Sec. 3 are com-
pared. In particular, the experimental data are presented in
parallel with the theory. Section 7 summarizes and general-
izes the material presented.

In an attempt to standardize the notation as much as
possible, in many cases the notation used in the original
works has been changed. These changes are mentioned only
where misunderstandings are possible.

2. BASIC CONCEPTS

It is convenient to tie, in one way or another, all results
concerning Rayleigh-Benard convection to the classic for-
mulation of the linear problem, first given by Rayleigh3 and
later in a more general form by Pellew and Southwell4 and
discussed in detail by Chandrasekhar in his monograph of
Ref. 5. In recalling this problem, it is helpful to introduce the
concepts and notation that will be needed below.

The problem includes the system of hydrodynamic
equations in the Boussinesq (or Oberbeck-Boussinesq) ap-
proximation. The original (narrow) meaning of this term is
as follows.5 The density p of the fluid is assumed to be a
function of only the temperature Т (i.e., the fluid is assumed
to be incompressible):

where/?0 is the value of the density at some suitably chosen
"average" (or, better to say, reference) temperature T0.
Then, if the volume thermal expansion coefficient a is small
and variations (in the region of interest) of the material pa-
rameters of the fluid (kinematic viscosity v, thermal diffu-
sivity •%, and the same coefficient a) are small, for processes
which are not too fast the density and these parameters can
be considered to be constant in all terms but one in the equa-
tions: The density remains variable in the term where it is
multiplied by the acceleration of gravity g (this term repre-
sents the buoyancy force that is responsible for convection).
Heating due to viscous dissipation is also negligible.

Under steady-state conditions the barotropic tempera-
ture distribution (such that [VT, g] =0, if the velocity
v = 0) should be a linear function of the vertical coordinate
z: T= Г, — PZ (in what follows it is called the unperturbed
distribution and /3 is the unperturbed temperature gradi-
ent). The quantity в = Т — 7", + J3z is termed the tempera-
ture perturbation for arbitrary Т and the deviation of the
pressure/? from the distribution corresponding to such a lin-
ear temperature profile is the pressure perturbation p'. In
this notation the Boussinesq equations have the following
form:

tions. They extended it7 to the case when compressibility (in
a thick layer) and viscous dissipation effects appear. A dis-
cussion of the conditions under which the Boussinesq ap-
proximation is applicable is contained in Ref. 8.

In what follows we shall be concerned exclusively, ex-
cept where explicitly stipulated, with situations when the
Boussinesq approximation is valid.

We shall study a flat horizontal layer of liquid (0<z<A;
the z axis of the Cartesian coordinate system x, y, z is orient-
ed upwards, so that g = {0, 0, — g}) and we shall assume
the temperatures at the undeformed top and bottom surfaces
of the layer to be fixed (i.e., the thermal conductivity of the
boundaries of the layer is infinite):

T=T, at z = 0,

Т = T2 = Г, - АГ at z = Л,

where ДГ = /?й. This determines the condition

0 = 0

(2.5)

(2.6)

on both boundaries. We confine our attention to the case
P > 0. We assume that each surface of the layer is either rigid
or free, and correspondingly we impose on the boundary
either the no-slip condition

v = 0, (2.7)

+ (vV)v = - - ga<9 (2.2)

or the condition that the vertical component of the velocity
and the tangential stresses vanish:

dv dv
uz = 0, ^ = -̂  = 0 (2.8)

(for the bottom boundary the last two conditions (2.8) are,
as a rule, very artificial, but under these conditions the equa-
tions are much easier to solve; the well-known cases when
the assumption of free boundaries strongly affects the prop-
erties of the solutions will be mentioned below).

Several methods of transforming to dimensionless vari-
ables in this problem are encountered in the literature. In
what follows we shall employ the following, most useful
method. We take the thickness h of the layer as the unit of
length, the time rv = h 2/% of vertical diffusion of heat as the
unit of time, and the temperature difference Д Т between the
surfaces of the layer as the unit of temperature. Then the
system (2.2)-(2.4) can be written in the following dimen-
sionless form:

(2.9)

(2.10)

(2.11)

(2.12)

£ H§7 + (W)v| =-V* + z/И? + ДУ,

dt *•

div v = 0;

here

R =

= Д0,

div v = 0.

(2.3)

(2.4)

Cordon and Velarde6 gave the most rigorous substanti-
ation of the Boussinesq equation under very broad assump-

are the basic parameters characterizing the convection re-
gime and are the Rayleigh and Prandtl numbers, respective-
ly; 7Г is the dimensionless form of the quantity p'/p0; and, z is
a unit vector in the direction of the z axis. In what follows,
the formulation of the problem in the form of Eqs. (2.9)-
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(2.11) and Eqs. (2.6)-(2.8) will be referred to as the stan-
dard formulation.

Assuming v and в to be infinitesimals we linearize Eq.
(2.9) and (2.10) with respect to these variables, after which
we operate on Eq. (2.9) with the operator z-curl curl and
employ Eq. (2.11). The system then reduces to two equa-
tions for vz and в. We eliminate в, fix the horizontal velocity
vector k = {kx, ky, 0}, and seek vz in the form of normal
modes exp(/4.f)w(.z)/(x), whereAis the growth rate.x = {x,
y, 0}, and f ( x ) = exp(/k-x) or some spatially periodic solu-
tion of the two-dimensional Helmholtz equation
Д/+ k 2f= 0, i.e., the linear combination

N

/(*) = (2.13)

FIG. 1. The neutral stability curve of a layer of motionless liquid. States
lying above the curve are unstable and states lying below the curve are
stable.

where the vectors k, differ only with respect to their orienta-
tion: \kj | = k. We obtain the following equation for w.

= -Rk2w, (2.14)

where D = d/dz.
The boundary conditions (2.6)-(2.8) give, using Eq.

(2.11),

dv.
U2 = -7— = О, в = 0 on a rigid boundary,dz

= 0, в = 0 on a free boundary.

(2.15)

(2.16)

The transformed equations (2.9) and (2.10) for the normal
modes permit reducing Eqs. (2.15) and (2.16) to a collec-
tion of conditions for the variable vz (or w):

w= Dw = (D2 -2k2 - ~ X)D2w = 0 on a rigid boundary,

w = D w =D w = 0 on a free boundary.
(2.17)
(2.18)

Thus Eq. (2.14) together with the conditions (2.17) or
(and) (2.18) form an eigenvalue problem for the growth
rates A and the eigenfunctions w ( z ) .

In the case of two free boundaries this problem can be
solved simply and leads to an explicit expression for the
eigenvalues Я„ corresponding to the eigenfunctions
wn =sin(«77-z) (n = 1,2,...). It is obvious directly from this
expression that for any R > 0 both existing values of Я„ (R, P,
k) are real, and in addition one value is always negative
while the other one is positive if

k2)3

—* (2.19)

and negative if R < Rn (k) (in what follows we shall take /in

to be the second value). Each function /?„ (k) has a mini-
mum. The line R = R} (k) in the plane (k, R) delimits the
region of damping of all possible infinitesimal perturbations
and the region of growth of the perturbations of the lowest
mode n = 1 (Fig. 1). Obviously, if

R = min = ̂  я4 = 657,511,

- - 2 , 2 2 1 (2.20)

the rest state of the liquid in the layer is stable with respect to
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infinitesimal perturbations. The quantities Rc and kc are,
respectively, the critical Rayleigh number and the critical
wave number. In the critical (neutral) regime R = Rc steady-
state motion with infinitesimal amplitude and a unique wave
number k = kc is possible. For R>RC (supercritical re-
gime) the layer is convectively unstable, and disturbances
whose wave numbers lie between the two roots of the equa-
tion/? = R} (k), in other words, between the abscissas of the
points of intersection of the straight line R — const and the
two branches of the neutral curve R = R , (k), can grow.
This is how the problem, to be discussed in Sec. 6, of selec-
tion of wave numbers in supercritical regimes arises.

In cases when both surfaces of the layer are rigid and
when one surface is rigid while the other one is free the calcu-
lations are more difficult, but the results are qualitatively the
same (the eigenfunctions are different). We note that for
two rigid boundaries

Rc= 1707,762, (2.21)

Near R = Rc and k = kc the growth rate Я, (R, P, A:)
can be represented by the expansion

A , -

where

R

(2.22)

(2.23)

is the supercritical reduced Rayleigh number, and the char-
acteristic time and length scales

(2.24)

are called, respectively, the relaxation time and the coher-
ence length. In some (specially stipulated) cases we shall
designate by e some different, but physically analogous
quantities. The scales r0 and |"0, calculated in a number of
articles, in particular Refs. 9 and 10, are equal to

_ 1 + 1.954Я
T0~ 38.44.P '

: 0,3847 for two rigid boundaries,

, 1 / 2
_ 2(1 + Я) t / 8 V / Z

T0 ~ _ 2P ' '0 ~ T~2 two ^ree boundaries.

(2.25)

(2.26)

An important feature of the normal modes of the linear
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problem is that the eigenvalues are degenerate with respect
to the different functions/(x)—the growth rates An depend
only on the wave number k = |k,-1. Different functions/(x)
correspond to solutions in the form of different systems of
convective cells—elements of the spatially periodic structure
of the flow which have the property that the normal compo-
nent of the velocity vanishes on their vertical boundaries.2'
The configuration of the cell in the plane (x, y) is called a
planform. Thus the linear problem is degenerate with respect
to planforms. Together with the question of wave-number
selection, the question of which planforms should actually
be observed are part of the general problem of the realizabi-
lity of convective flows.

Among the cells observed experimentally under differ-
ent conditions, three types of cells are most characteristic.
To a first approximation they can be described by the follow-
ing three planform functions.

1. Two-dimensional rolls (Fig. 2a) have a "prototype"
given by the function

/(x) = cos kx. (2.27)

Since the wave vector k is oriented in the x direction, such
rolls (parallel to the j> axis) are called x-rolls. In this case it
makes sense to call a pair of neighboring rolls, occupying an
entire spatial period, a cell. In two such rolls the liquid circu-
lates in the (x, z) plane in opposite directions.

2. Hexagonal cells (Fig. 2b) are described by the func-
tion

/(x) = 2 cos .

cos | (у + vG x) + cos

+ cos ky

| (y - /3 x) Icosky.

(2.28)

They consist of a superposition of three systems of rolls with
wave vectors having modulus k and making an angle of 2тг/3
with one another.

3. Square cells can be represented by the function

/(x) = cos x cos = |(cos kx1 + cos */) ( 2.29 )

(where the coordinate system x', y' is rotated by an angle
7Г/4 relative to the system x, y; an example of such a cell is the
region — TT/k<x' < тт/k, — тт/k<y' < тт/k).

Everything said in this section pertains to the idealized
case of an infinite layer. We shall see below that the presence
of sidewalls, bounding a finite region of the layer, can strong-
ly affect the development of convection in this region. The
important parameter then becomes the aspect ratio

r = f> (2-30)

where L is the characteristic horizontal size of the region
(for circular reservoirs L is traditionally the radius).3' In
what follows the role of this quantity will be discussed repea-
tedly. We shall be interested primarily in large values of Г.

The horizontal extent L determines the characteristic
time of horizontal diffusion of heat rh = L 2/% — T2rv, with
which the times of large-scale processes could be related.

3. EXPERIMENTAL APPARATUS

3.1. Experiment

We shall describe here, without going into technical de-
tails, the most important and general features of the setup of
experiments designed to study convection in a horizontal
layer.

The typical experimental arrangement is shown in Fig.
3. The layer of working liquid is bounded above and below by
the plates of heat exchangers. These plates maintain the pre-
scribed temperatures of the boundaries of the layer. The
higher the thermal conductivity of the plates the more accu-
rately the temperature can be maintained constant. For this
reason, in those cases when the boundaries need not be trans-
parent (most often for the bottom heat exchanger), a mas-
sive copper or aluminum plate is, as a rule, employed. One
surface of the plate is in contact with the working liquid and
the opposite surface of the plate is heated with a wire or film
electric heater, the heating being regulated with an automat-
ic electronic device, or a horizontal plane-parallel cavity,
through which thermostatted water is pumped, is made in
the body of the heat exchanger. If, however, the heat ex-

FIG. 2. Schematic diagram of convective cells, a) Two-dimensional rolls,
b) Hexagonal cells of / and g types.

FIG. 3. Typical layout of the experimental apparatus." 1) Working liq-
uid; 2 ,3) glass and plexiglass plates of the top heat exchanger; 4) thermos-
tatted water; 5) heater; 6) copper plates of the lower heat exchanger; 7)
glass plate (for reducing the sensitivity of the temperature of the bottom
surface of the convective layer to fluctuations of the heating); 8) calibra-
ted insert fixing the thickness of the layer (four such inserts are located in
the corners of the working region).

740 Sov. Phys. Usp. 34 (9), September 1991 A. V. Gelling 740



changer must be transparent, then it is usually made from a
plate of mirror glass (which is in contact with the working
liquid) and is positioned parallel to the other transparent
plate; the spacing between them forms a channel for the ther-
mostatted water. If the aim is to reproduce as closely as pos-
sible the ideal thermal boundary conditions (2.6), then the
thermal conductivity of glass may be inadequate. For this
reason, a sapphire single crystal is sometimes employed in-
stead of glass, but then the horizontal dimensions of the layer
must be limited to several centimeters: larger sapphire plates
cannot be made.

The top heat exchanger is often detachable and its hori-
zontal dimensions are smaller than those of the bottom heat
exchanger, so that the top exchanger is often surrounded by
a gap, where the working liquid has a free surface and the
thickness of the liquid layer cannot be controlled. The com-
plicated temperature distribution and the thermocapillary
effect (see Sec. 4.1) give rise to disordered three-dimension-
al convective flows in this layer. In order to prevent these
flows from affecting the convection in the working region
(beneath the top heat exchanger) many experimenters sur-
round this region with additional sidewalls by inserting a
special frame. Other experimenters11'12 intentionally do not
do this, because according to their observations the gap pre-
vents the sidewalls from strongly affecting the structure of
the flow in the working region.

Sometimes the geometry of the experimental apparatus
is qualitatively different: The cavity containing the working
liquid is a long narrow channel, whose width is equal to or
less than the height (see, for example, Ref. 13). When the
liquid is heated from below short segments of convective
rolls, whose ends "rest against" the long walls of the chan-
nel, are formed in the cavity (this effect will be discussed in
Sec. 4.2). As a result effects associated with three-dimen-
sional deformations of the rolls are eliminated, and it is espe-
cially convenient to study the dynamics of the wave numbers
of such a simple roll flow.. But, of course, the results of such
experiments can correspond to the case of a horizontal layer
only qualitatively and not quantitatively.

The choice of working liquids encompasses a wide
range of Prandtl numbers: diverse silicone oils (P~ 10-104),
glycerine (~103), ethyl alcohol (14-17), methanol (7),
water (from 7 at room temperature to 2.5 at 70 °C), and
liquid helium (0.5-4.5).4) Experiments are also performed
with air (0.71).

Convective flows are usually visualized by the shadow
method, based on the temperature dependence of the index
of refraction of light. Cold downward flows focus light and
appear light-colored when projected on a screen, while
warm upward flows scatter light and appear dark. Visualiza-
tion with the help of special additives is also employed. Laser
Doppler anemometry (for example, Ref. 14), optical inter-
ferometry,15 and other methods are also employed for
studying the structure of flows.

The stability of some particular prescribed type of flow
is studied in a special series of experimental investigations.
These are experiments with controlled initial conditions. The
first experiment in this series was apparently performed by
Chen and Whitehead,16 and the experimental arrangement
proposed by them has been used with only insignificant
modifications in a number of the latest investigations. The
procedure is as follows. A layer of subcritical working liquid

is illuminated, through the transparent top heat exchanger,
with light from a powerful lamp. First the light passes
through a periodic grating consisting of strips of opaque ma-
terial which are separated by transparent gaps. Due to this a
roll convective flow whose wavelength is fixed externally
and is equal to the period of the grating is formed. The tem-
perature difference between the top and bottom boundaries
of the layer is gradually increased up to the required super-
critical value, after which the lamp is switched off and spon-
taneous evolution of the flow starts. In some studies the be-
havior of flows whose structure is more complicated than a
uniform roll flow was investigated by this method. For ex-
ample, a so-called bimodal flow (Sec. 6.2) was studied in
Ref. 17, systems of rolls with a dislocation (Sees. 4.3 and
6.7) were studied in Ref. 18, and hexagonal and square cells
were studied in Ref. 19. Gratings of an appropriate form
were employed in order to produce such initial velocity
fields.

3.2. Theoretical approaches

3.2.1. Small-amplitude (reduced supercritical Rayleigh
number) expansion. In order to investigate supercritical re-
gimes it is necessary to solve nonlinear equations. The per-
turbation method, based on expansion of the Boussinesq
equations in a small parameter characterizing the amplitude
of the convective motion and the degree of supercriticality,
has been widely employed in the theory of Rayleigh-Benard
convection since the works of Gor'kov20 and Malkus and
Veronis.21 Usually expansions of the form

...)> (3.1)

(3.2)

and analogously for в and p' are studied (in the original
paper of Ref. 21 and in a number of other papers the quantity
£! /2 is denoted as e). This approach has been discussed many
times in monographs (see, for example, Gershuni and Zhuk-
hovitskii8) and reviews (for example, Busse22'23).

We shall be interested in using such expansions prima-
rily as a means for constructing the amplitude and phase
equations, which are now widely employed for studying the
dynamics of convection and which we shall discuss in Sec.
3.2.2 below.

In Ref. 24 an expansion is made not in E but rather in the
parameter -ij = [ (R — Rc )/R ]1/2- This makes it possible to
cover a wide range of values of R, since щ < 1 for any finite
value of R.

The perturbation method of Schluter, Lortz, and
Busse,25 based on the expansions (3.1) and (3.2), is most
widely employed. The conditions of solvability of the inho-
mogeneous equations obtained at successive steps of the ex-
pansion of the starting system give successive approxima-
tions of the steady-state solution, and in addition v< 0 ) has the
structure of the solution of the linearized problem; it turns
out that if the surface tension is neglected, then R ( l ' = 0
always and under symmetric boundary conditions at the top
and bottom surfaces (and in the case of two-dimensional
rolls, in the absence of such symmetry also) R u) = 0 for all
odd n.

3.2.2. Two-dimensional models of three-dimensional
convection. As soon as the problem of theoretical study of
convective structures more complicated than uniform spa-
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tially periodic structures arose, investigators started to
search for ways to simplify the description of such flows.
This question is especially acute when three-dimensional
flows must be described: To this day the most versatile ap-
proach—numerical modeling—requires such large amounts
of computer time in the three-dimensional case that an inves-
tigation with the least bit of detail is often precluded. This
pertains primarily to calculations for cavities which have
large aspect ratios and in which complicated nonuniform
structures—textures (see Sec. 4.3)—arise.

The first aim of constructing simplified models is to
reduce the number of spatial measurements by eliminating
from the analysis the vertical dependence of the variables.
This is possible because this dependence often has a "stan-
dard" form which varies little over a wide range of param-
eters. Calculations can be performed much more efficiently
when three-dimensional flows are described by functions of
two (horizontal) spatial coordinates and two-dimensional
flows are described by functions of one spatial coordinate.

But it is also possible to reduce the number of indepen-
dent variables. When the flow is close to being a steady-state
one and evolves slowly, it can be assumed that the velocity
components and the temperature are related by the same
expressions as in the steady-state regime.

All recently proposed descriptions of the dynamics of
convective structures by means of one (possibly, complex)
function of two coordinates are based either explicitly or
implicitly on the above two ideas.

1) Amplitude equations. It turned out that the Newell-
Whitehead-Segel (NWS) amplitude equation is an effective
tool for investigating the structures of weakly supercritical
flows and has stimulated the formulation of very diverse
problems.

Newell and Whitehead,26 studying regimes with
(R — R,. )/Rc = e (here the designation of the small param-
eter is different from that of Ref. 26) in a layer with free
boundaries, employed a "modified neutral solution" of the
roll type

vz = ell2(A(X, У, 7>'k'X 4 c.c.) sin nz + O(e), (3.3)

where |kc | = kc and A is a slowly varying complex ampli-
tude or the envelope function (the other variables have anal-
ogous expressions, associated with Eq. (3.3), as in the
steady-state weakly supercritical regime), to describe a wave
packet with an admissible, for given E, band of wave numbers
of width 0(£1/2). Hereof and Y are slow spatial variables and
Т is the slow time. Thus the continuous spectrum of wave
numbers is embedded in the slow space-time modulation of
the amplitude, and the change of the phase factor is deter-
mined by the "central" wave number of the packet, equal to
the critical wave number.

Suppose that the flow is a somewhat deformed system of
x-rolls with wave number kc. Then, in order that all wave
vectors k = {kc + ax ,ay } present in the wave packet satisfy
the requirement |k| = kc + O(el/2 ), it is necessary to set
ax = O(el/2) and ay = 0(e1/4). Accordingly, it is natural
to choose as the slow variables

У=е1 / 4>>, ' = et. (3.4)

Substituting Eq. (3.3) into the starting equations gives
in the lowest nontrivial order the condition of solvability of

the boundary-value problem — the NWS amplitude equa-
tion, which after an additional change of scale of the vari-
ables by an O( 1 ) factor assumes the form

= A + (dx - id - \A\2At (3.5)

Here A = 0(1). For convenience we also write Eq. (3.5)
both in terms of the starting physical variables, making the
substitution £l/2A ->A :

- • - д2А - g\A\2A, (3.6)

wherer0 and£0 correspond to Eqs. (2.24) and (2.26), while
g = l/Зтг2, and in the form

2A- \A\2A, (3.7)

where x, y, t, and A differ from the corresponding starting
variables by O( 1 ) factors.

In Ref. 26 Newell and Whitehead derived, in addition, a
system of amplitude equations which describes the interac-
tion of several wave packets of the indicated type, whose
"central" wave vectors (whose modulus is equal to kc)
make certain angles with one another.

Sometimes amplitude equations of higher order ap-
proximations are studied. An example is given in Ref. 27
(see Sees. 6.4.1).

In Ref. 28 Segel employed an entirely analogous ap-
proach to derive Eq. (3.6) (also for a layer with free boun-
daries).

In the case of a layer with rigid boundaries the NWS
equation has the same form, only the values of r0, £0, and g
are different.29

In Ref. 30 an amplitude equation was derived for an
axisymmetric system of annular rolls for a layer with free
horizontal boundaries.

A variant of the amplitude equation was derived under
broader assumptions by Cross in Ref. 3 1 and Kuznetsov and
Spektor in Ref. 32. The boundaries of the layer can be either
free or rigid. In Ref. 32, in addition, the thermocapillary ef-
fect (temperature-dependent surface tension) and deforma-
bility of the free boundaries were also included in the analy-
sis. The authors do not employ the modified (modulated)
neutral solution, but rather they work with the Fourier
transform Ak in the variables x and у of the lowest (in the
variable z) harmonics of each physical variable (|k[ is close
to kc ) . The equation is derived by projecting the starting
system onto the lowest characteristic function of the linear
problem with the growth rate (2.22) and has the form

- J g(kk')/l*,,4k, + k' - k" - k'")dk'dk"dk'";

(3.8)

here k and k' are unit vectors in the directions of k and k',
respectively; g, as also do r0 and |"0 , depends on the bound-
ary conditions. If the free surface undergoes a finite defor-
mation and (or) the thermocapillary effect is present, then
the right side of Eq. ( 3.8 ) acquires an additional term which,
to within a constant factor, is equal to32

J k' -k")dk'dk". (3.9)
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This term can stabilize near R = Rc hexagonal cells (with a
hard excitation regime); see Sec. 4.1.

In Refs. 33 and 34 Siggia and Zippelius noted that in the
case of a layer with free boundaries the equations admit the
existence of a large-scale (depending only on the slow vari-
ables) horizontal flow B(X, Y, T} (average drift) that is
uniform in the direction of the z axis. Such flows are associat-
ed with a vertical component Q2 of the vorticity fl = curl v.
The vorticity £12 is generated by the term P ~ ' (v • V) v in the
Navier-Stokes equation (2.9). Of the nonlinear terms in the
starting system, however, the NWS equation takes into ac-
count only (v • V) в and it cannot describe the appearance of
П2 and B. For this reason it is incomplete. It is only in the
limit P— oo, when the convective term P ~ ' (v • V ) v becomes
insignificant compared with (vV)<9, that the large-scale
flow is suppressed and the NWS equation no longer has its
drawback [this also pertains to Eq. (3.8)].

Introducing the slow variables according to Eq. (3.4)
and neglecting the horizontal motion, governed by the initial
conditions, as well as the motion that can be eliminated by
introducing rigid sidewalls, Zippelius and Siggia obtained in
Ref. 34, instead of Eq. (3.6), in the lowest nontrivial order
the system

о л 2kc У ° '

(Э, - ЯД)£2 = 2а„[Л*(Л - ^- 02)A + c.c.], (3.11)
' У £%„ Ус

dyQz=-Mx, (3.12)

where Д = д 2

Х +д2. The analog of Eq. (3.5) is the system

" " I- {A^A-iB^A, (3.13)

1Z + bdY[A*(dx - id],)A + c.c.], (3.14)

(3.15)

where
i + p ,гъ f J~Fj_ л 1 т Г V ъ? С г V С / Ч 1 ^ ' \

b=2——, У = у^гр, <* = Щ-- С3-1 6)

As Р-> oo, obviously, Clz -»0 and Bx —0.

If the boundaries of the layer are rigid, then the hori-
zontal velocity В cannot be constant along z and generation
of the vorticity flz should appear in higher order in e. For
this case Siggia and Zippelius34 derived the amplitude equa-
tions in a nonrigorous manner, based on a phenomenological
model. If O2 and Bx are replaced by their values П2 and Bx

averaged over z, then (with a corresponding choice of
scales) Eqs. (3.13) and (3.15) remain unchanged, and Eq.
(3.14) is replaced by

Qz = C j V e bdy[A*(dx - ld\)A + c.c.], (3.17)

where c , = O ( l ) i s a constant and b depends on P in a man-
ner different from that in Eq. (3.16).

We note that in the case of purely two-dimensional flow
geometry the standard NWS equation (in this case one-di-
mensional) is also applicable for finite values of P, since drift
does not arise.

Different variants of the boundary conditions for the
amplitude function satisfying the NWS equation are studied
in Refs. 28, 30, 35, 36, and 37. They were derived by joining

the amplitudes, slowly varying in space far from a sidewall,
with the corresponding much more rapidly varying function
describing the boundary layer.

Thus in Ref. 36 Brown and Stewartson studied a rectan-
gular cavity with free horizontal surfaces and rigid, thermal-
ly poorly conducting, sidewalls. They gave an amplitude de-
scription of the flow, which is a superposition of two systems
of rolls—one parallel and the other perpendicular to one of
the sidewalls. For the particular case of thermally insulating
walls and a single system of rolls the boundary conditions
have the form

A = 0 on all walls, (3.18)

nV.4 = 0 on the walls, oriented perpendicular to the rolls (3.19)

(n is a unit vector normal to the wall). The authors note that
the derivation of the second boundary condition presented in
Ref. 28 (for different thermal boundary conditions) con-
tains an error.

In Ref. 37 Cross studied a system of rolls making an
arbitrary angle with the sidewall (not too close to the nor-
mal ) for a layer with free horizontal surfaces and a wall with
finite thermal conductivity. He showed that, generally
speaking, a system of small-amplitude "conjugate" rolls, ar-
ranged relatively to the normal to the wall symmetrically
with respect to the main rolls, will arise near the wall. The
boundary conditions for the amplitude of the main system
have the form

= 0, (3.20)

where according to Eqs. (3.3) and (3.5) Л = 0( 1). The cor-
rections introduced by taking into account f l z do not affect
the result. It should be kept in mind that the fundamental
possibility of the existence of systems of rolls making differ-
ent angles with the boundary still does not mean that all
orientations are physically equally legitimate (or are equally
realizable); see Sec. 4.2.

2) Manneville's "microscopic" equations. Since the ap-
plicability of the amplitude equations is limited to fields that
do not differ too much from a uniform roll structure, there
arose the question of searching for ways to describe convec-
tion that are free of this constraint but are also still simple
enough.

In order to describe the dynamics of textures taking into
account large-scale drift Manneville38 proposed a two-di-
mensional model of convection for a layer with free boun-
daries and small e. The Boussinesq equations are simplified
by a procedure based on the Galerkin expansion for the z-
dependence of the variables. The final representation con-
tains only harmonics with n = 0—drift flow u(x, y, t)—and
n — 1—in the form of the amplitude w(x,y, t) of the vertical
velocity. It is assumed that the second harmonics follow adi-
abatically the changes in the first harmonics and that, with
respect to w, Д. = — k \ + O(el/2), 9, = O(e), The system
of equations has the form

(d, - p (dyw d^w -

(3.21)

(3.22)
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Uy т - (3.23)

where f is the stream function of horizontal drift u, TO and £0

are given by the formulas (2.26), and g= \/6тг4. At the
boundary of the two-dimensional region, where v = 0, the
variables w and g must satisfy the boundary conditions

= nV£ = 0.w = = 0, (3.24)

In Ref. 38 Manneville discusses qualitatively the fact
that the system (3.21)-(3.23) must change if the horizontal
boundaries of the layer are rigid and drift is not uniform
along z but rather similar to the Poiseuille flow.

In contrast to the amplitude equations, the model de-
scribed above is based on an explicit "microscopic" descrip-
tion of the structure of the physical fields in the fast spatial
coordinates and imposes fewer constraints on the detailed
geometry of the flow. For a system of weakly deformed rolls
the amplitude equations (3.10)-(3.12) in which drift is tak-
en into account can be derived from Eqs. (3.21)-(3.23).

3) Model equations. Diverse model equations, which
cannot be derived from the hydrodynamic equations, have
also been proposed for the "microscopic" description of con-
vective structures. They determine a function w(x, y, t)
which is the vertical component of the velocity or the pertur-
bation of the temperature in the midplane z = 1/2 of the
convective layer. A model is considered to be applicable if
the behavior of the solutions of the model equation agrees
with the known solutions of the full hydrodynamic system.

The most popular model is the equation

(3.25)

where ш is a real function, sometimes called the order param-
eter,^ e is the analog of the reduced Rayleigh number, and
TO, £o, and g have the same meaning as in Eq. (3.6). This
equation was proposed (in a variational formulation and
with an additional term taking into account the fluctu-
ations) in Ref. 39 and has been termed the Swift-Hohenberg
(SH) equation (model). It is most often written in the form

d{W= [e-(A + I)2]*-*-3, (3.26)

which can be obtained from Eq. (3.25) by making an appro-
priate change of scale of the variables (after which kc = 1)
and redefining e.

The SH equation is invariant under translation and ro-
tation. For e <0 there exists the stable solution w=0. This
solution becomes unstable at the critical value e = 0 if the
disturbance has a wave number k = kc. Super-critical cases
(E > 0) are characterized by the presence of steady-state spa-
tially periodic solutions whose wave numbers lie in the inter-
val (Jtc — £l/2,kc + el/2). In addition, the SH equation can
be used to construct an amplitude equation (by the same
method as the NWS equation). The amplitude equation has
the same form as the NWS equation.40 Since first used in
Ref. 41, the SH equation has been used systematically in
investigations of the selection problem.

In Refs. 42 and 43 the equation

d(w = [e. - (d2 + I)2 ]w - wdxw (3.27)

work of a one-dimensional problem.
A generalization of the SH model is the family of equa-

tions4

dtw = [e - (A + l)2]w - aw3 - bw(Vw)2 + (3.28)

where a, b, and с are free parameters, which are adjusted so
as to give the best fit of the properties of the solutions to the
behavior of real convective flows (see Sec. 6.3). Wenotethat
in the absence of drift Manneville's equation (3.21 ) reduces
to Eq. (3.28) with a = b = 1 and с = 0.

Another family of model equations44

dtw = [e - (Д + l)2bv + c/(Aw)(Vw)2 + (3 - d)(diw)(d.w)didjw

(3.29)

provides a generalization of the (Herzberg-)Sivashinskii
equation,45 which is derived by expanding in powers of the
parameter determining the slow variables the convection
equations for a layer bounded by plates having poor thermal
conductivity and corresponds to the case d=l.

The model equations (3.25)-(3.29) do not take into
account in any way the effect of drift, which in real convec-
tion, as we saw, is related with ft., . In order to describe drift
effects Greenside and Cross proposed in Ref. 44 a modifica-
tion of Eqs. (3.28) and (3.29), adding a convective term,
i.e., making the substitution

where

U =curi(?z)

(3.30)

(3.31)

is the drift velocity, determined by the stream function f,
which is found from the equation

, Vw]z (3.32)

is(here у is some nonnegative coupling constant and —
the vorticity ft2 ) .

The boundary conditions for the order parameter w are
usually stated in the form46

n Vw = 0 (3.33)

at the boundaries of the two-dimensional region. They re-
produce the conditions (3.18) and (3.19) for the amplitude
function as well as, in lowest order, Eq. (3.20). In Refs. 44
and 47 the conditions

£ = n V £ = 0 (3.34)

were proposed for large-scale flow.
4) Lyapunov functional. The NWS equation (3.7) can

be represented in the variational form

(3.35)

where

F f \±e2-

(3.36)

is studied, together with the SH equation, within the frame-

is the Lyapunov functional (the integration in Eq. (3.36)
extends over the entire region of flow ) , and SF /8A * is a vari-
ational (functional) derivative. The constant £2/2 is includ-
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ed in the integrand so that F = 0 is obtained in the case when
the solution of the equation is constant as a function of both
the time and the coordinates, i.e., when A 2 = e.

The amplitude equation was derived under the assump-
tion that the deformation of the system of parallel straight
rolls is small. In the case of rigid sidewalls this condition will
be satisfied in the case of a rectangular region, when the rolls
are oriented mainly in the same as the direction as the pair of
sidewalls. For such a rectangular geometry, using the
expression (3.36), Eq. (3.7), and the boundary conditions
(3.18) and (3.19), it is not difficult to obtain

U0(x + ?> , z) = U0(x, z) + yd xU0(x, z). ( 3 .40 )

^=-2 Г
dt J

dA
dt

dxdy. (3.37)

This means that F decreases for any process dynamics deter-
mined by the NWS equation. For this reason, the functional
Fis often called the potential (or ihefree energy5^), and it is
said that the NWS equation describes the variational от po-
tential or relaxational dynamics.

Another example of potential dynamics is the behavior
of the system described by the SH equation (3.26). This
equation can be derived in the form

6F
dtw = - -5—
' dw

based on the potential

F =

(3.38)

(3.39)

The boundary conditions (3.33), for example, ensure
that F decreases monotonically.

When the vertical component of the vorticity and the
average drift are taken into account the amplitude function
is described by Eqs. (3.10)-(3.12). The dynamics is then
not variational and it becomes variational only in the limit
P-* oo. If, however, the boundaries of the layer are rigid,
then the low-order amplitude equations correspond to po-
tential behavior of the system for finite P also, since accord-
ing to Eq. (3.17) ilz appears in a higher order.

The model equation (3.27) is not variational. In the
family (3.28) only the equations for which b = — с are po-
tential equations, while in the family (3.29) only the Herz-
berg-SivashinskiT equation is a potential equation (d = 1).
Thus Manneville's equation is not a potential equation, even
neglecting drift. Drift, included with the help of the relations
(3.30)-(3.32), destroys the potential character of any mod-
el. The point is that drift advection can result in the appear-
ance of periodic regimes, while variational dynamics is
monotonic.

5) Phase equation. The amplitude equation represents
the flow as being the result of amplitude modulation of peri-
odic systems of parallel rolls. The phase equation, on the
other hand, represents them by the same structures but mod-
ulated in phase. This method was first used by Pomeau and
Manneville in Ref. 41.

The formal derivation of the phase equation is as fol-
lows. Let C/o (x, z) be a solution of the equations of the prob-
lem and let J70 be periodic in x and correspond to a system of
stationary two-dimensional x-rolls. Then, since the problem
is translationally invariant, t/0 (л: + q>, z) (where q> is a con-
stant phase shift) is also a solution. For small cp

If slow variations of cp in space and time are admitted, then
U0 (x + <p(x, y, t), z) will no longer be a solution. In this
case, however, a solution of the starting (non-steady-state)
problem can be sought in the form

U(x, y, z, 0 = U0(x, z) + <p(x, y, t)dxUQ(x, z) + Ul + U2 + ....

(3.41)

where C/, = O(V<p), U2 = 0(VV<p), etc. The equations of
phase dynamics are found in the form of conditions of solv-
ability of the linear systems of equations obtained at the
successive steps of the expansion.

The phase description is obviously limited to cases
when the amplitude of the rolls remains practically un-
changed in the presence of deformations. This is what makes
this equation different from the amplitude equation that op-
erates with a complex envelope function and thus takes into
account variations of both the amplitude and the phase.

In Ref. 41 Pomeau and Manneville employed as the
starting equation for constructing the expansion (3.41 ) the
model SH equation and they obtained, in the lowest nontri-
vial order of this expansion for small e, the equation of phase
diffusion in the form

+ (3.42)

where D\\ and Z>± are expressed in terms of E, kc, and
q = k-kc.

In Refs. 48 and 49 Manneville and Piquemal made a
gradient expansion for the complete system of Boussinesq
equations. They investigated the cases of both rigid and free
boundaries, but they studied only transverse or zigzag dis-
turbances of the starting system of x-rolls (i.e., perturba-
tions whose wave vector is oriented in the у direction). Tak-
ing into account large-scale drift (which, as we have already
mentioned, is constant along the z direction in the case of
free boundaries) shows that this drift is determined by the
curvature of the rolls and is oriented in a manner so as to
straighten the curved rolls. In the case of a layer with rigid
boundaries this does not destroy the diffusion character of
the relaxation of the zigzag disturbances, so that Manneville
and Piquemal took the drift into account in the effective
coefficient D± (its value is greater than in the case when drift
is neglected):

(3.43)

where^ andr0 correspond to Eqs. (2.24) and (2.25), N(P)
= 0.166 + 23.04P - ' + 6Л96Р ~2, and R2 (P) = 10.76
- 0.073P ~ ' + 0.128P ~2. If, however, the boundaries of

the layer are free, the process is not diffusional, but rather
oscillatory (oscillatory instability will be discussed in Sec.
6.3). In Refs. 48 and 49 D f is denoted as DL.

The phase equation can be derived by making an ampli-
tude expansion of the NWS.29'50'51

6) The Cross-Newell equation. In Refs. 52 and 53 New-
ell and Cross introduced a more general approach to the
description of the phase dynamics. The first noteworthy fea-
ture of this approach is that the supercritical reduced Ray-
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leigh number need not be small: The inverse aspect ratio is
employed as the small parameter. In addition, the flow ge-
ometry does not reduce to weakly deformed, straight, paral-
lel rolls and can be very diverse. The deviation of the phase
from kx need not be small. It is only necessary that the di-
mensions and orientation of the rolls as well as the amplitude
of the velocity in them change slowly in space and time. The
method is analogous to the nonlinear WKB method.54

The authors derived their own equation, starting from
two variants of the model description of convection (though
the method of derivation is quite general):

I. [df - (A - 1) ](Д - l)2w + (R - ww* - vWA)Aw = 0,

where

II. dtw + (A + l)2w - Rw + Vtv* = 0.
(3.44)
(3.45)

In each equation w(x, y,t) is a complex scalar field and R is
the analog of Rayleigh's number. The linear part of the mod-
el I is identical to the linearized equation obtained for the
vertical component of the velocity in the Boussinesq approx-
imation with P = oo, if the layer has free surfaces and, corre-
spondingly, the dependence of w on the vertical coordinate
has the form sin(Trz). The model II differs from the SH mod-
el (3.26) only by the fact that w is complex.

Both models have a family of spatially periodic station-
ary solutions of the form

w(x, y) = Ae®, в =k-x, (3.46)

and in addition k and A are related with one another by the
eikonal equation

II. R - A2 = (k2 - I)2,

(3.47)

(3.48)

which reflects the rotational degeneracy of the solutions,
since it does not take into account the orientation of the
vector k.

When studying a real convective flow that is more com-
plicated than a system of straight parallel rolls and that car-
ries an imprint of the initial and boundary conditions it is
natural to try to describe the structure of this flow by a local-
ly periodic solution with the local wave vector k, continu-
ously and slowly varying in the horizontal plane. We intro-
duce the slow variables

where the small parameter if is the ratio of the characteristic
width of a roll (or thickness of the layer) to the horizontal
size of the reservoir (the inverse aspect ratio). We define the
local wave vector as the gradient of the phase:

k(X, Y, T) = {m, n} = VX0 = VX0, (3.50)

where Vx = {дх,ду}, Vx = {dx,dY}, and the fast phase в is
related with the slow phase © by the relation

6(x, y, 0 = -т
1

(3.51)

We seek the solution of Eqs. (3.44) and (3.45) in the form

; X, Y, Т) = Д0; A, K) = Ae®, (3.53)

and A and k, which are no longer constants but rather func-
tions of the slow variables X, Y, and T, are once again related
by the expressions (3.47) and (3.48). Substituting Eq.
(3.52) into Eqs. (3.44) and (3.45), solving the resulting
ordinary differential equations for w(0>, w(1>,..., and requir-
ing that each w{p) (p> 1) be a periodic function of в with
period 2тг, we find nontrivial conditions of solvability—
successive approximations to the equation of the dynamics
of the phase variable <s)(X, Y, T). (If R is close to Rc, the
amplitude A cannot be regarded as an algebraic function of
the local wave number and is described by a partial differen-
tial equation.)

The Cross-Newell (CN) phase equation has a very gen-
eral form that does not depend on the details of the model. In
particular, this structure of the equation is also characteris-
tic for an expansion based on the Boussinesq equations in the
limit P-» oo. The variational nature of the starting model
also does not affect the form of the equation: The model II is
a variational model whereas the model I is not (but the pres-
ence of an average drift flow is important; see the discussion
below). The CN equation can be written in the form

(3.54)

and for the models studied, respectively,

- vk2)(k2 + I)2,

^-*4(1 -vk2)2,

II. r(k) = A2, B(k) = A2 ,
QK

(3.55)

(3.56)

and A 2 as a function of k2 is determined by the asymptotic
expansions of the eikonal equations (3.47) and (3.48)

I. R - A\\ - vk2) = R0 + v2

II. R - A2 = R0 + v2R2 + ...

(3.57)

(3.58)

w(x, y, t) = ; X, Y, T) + ; X, Y, T), (3.52)

where R0 = (k2 + l)3/k2,(k2 - I)2 for the two models,
respectively, R2 = 0, R4 contains terms of the form дтА /А,
д 2

ХА /A, etc. In the paper Eq. (3.54) is written in one other
form, convenient for investigating stability:

(3.59)

In order to be able to investigate regions where fragments of
differently oriented roll structures meet (grain boundar-
ies—see Sec. 4.3) and therefore the variables vary more rap-
idly in space than in the fragments, the authors also derived a
phase equation of a higher order approximation than (3.54).

In order to include average drift in the analysis correc-
tions must be introduced into the phase equation. In Ref. 53
Cross and Newell altered it as follows on the basis of phe-
nomenological considerations:

1 ^ , ._„, ,чч u-k (3.60)
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where

U = [Vx, (3.61)

(3.62)

and 7 is a coupling constant. In order to justify this choice
they studied a modification, necessary for taking drift into
account, of the general formal scheme of derivation of the
phase equation and they presented this derivation in applica-
tion to the complete system of Boussinesq equations for a
layer with rigid boundaries, but with the additional assump-
tion that the supercritical reduced Rayleigh number is small.

Finally, very recently Newell et a/.,210 following the
above approach, expanded in powers of т/2 the complete sys-
tem of Boussinesq equations with arbitrary R and P for a
layer with rigid boundaries. The equations of phase diffusion
and average drift were derived from the conditions of solv-
ability in the orders rj2 and т/4, respectively. The equations
arising in the order -rf can be reduced, by means of a Galer-
kin expansion, to a singular system of algebraic equations. A
special method that is insensitive to errors was required in
order to solve this system. Ultimately, the equations for the
phase © and the horizontal velocity V, averaged over the
vertical coordinate with some weight, acquire the form

(3.63)

rvx,

where

V = [Vx,

(3.64)

(3.65)

k = k/A:, and B, Ba, Be, т, та, p, a, /?, and A 2 are explicitly
computed functions of k. The quantity pV, the analog of U in
Eq. (3.60), plays the role of an effective phase-transporting
average drift (in addition, generally speaking, div (pV) Ф 0).
The equation (3.64) would reduce to Eq. (3.62), if the hori-
zontal velocity averaged with respect to the variable в over
an interval of length 2тг had a parabolic (Poiseuille) distri-
bution as a function of z (then the terms with Ba and Bp

would drop out, and in addition a = P = const). In reality,
however, this is not the case.

If P = oo and the coordinate axis X is oriented parallel
to the local vector k, then the phase-diffusion equation has
the same form as the Pomeau and Manneville equation Eq.
(3.42):

where

(3.66)

(3.67)

Now, however, k = Vx 0 is not a small perturbation of a
fixed wave vector.

The relations

can be used as the boundary conditions on the side walls over
wide limits,210 and when thermal forcing at the boundary is
significant (seetheendof Sec. 4.2) the first condition (3.68)
is replaced by

[kn ] = 0. (3.69)

kn = Vn = О (3.68)

3.2.3. Numerical modeling. A detailed discussion of
methods for numerically solving the equations of convection
(finite-difference and spectral) falls outside the scope of this
review. An idea of the finite-difference methods can be ob-
tained from the monograph of Ref. 55. The basic ideas of
spectral methods, which compete successfully with the fi-
nite-difference methods in geometrically simple problems
(to which the subject of our discussion pertains) and which
have a number of important advantages, are examined in
detail in Ref. 56.

We note here some fundamental elements in the formu-
lation of problems related to the problems studied in this
review.

In numerical calculations the difficulty of an investiga-
tion is less dependent on the choice of boundary conditions
than in the case of analytic calculations, so that it is much
simpler to study the "realistic" case of a layer with rigid
boundaries, though the computational algorithms based on
spectral (Galerkin) methods still appear to be simpler in the
case of free boundary conditions.

When modeling an infinite layer, most investigators im-
pose at the side boundaries of the region of computation the
condition that all computed fields be periodic, so that the
region is one spatial period in an infinite periodic pattern.
Some authors investigate the effect of the sidewalls and per-
form calculations for a cavity of finite horizontal dimensions
(for example, Refs. 57 and 58). A formulation of the prob-
lem in which the effect of any side boundaries on the flow
being modeled is completely eliminated has also been stud-
ied.59'60

Calculations based on a two-dimensional geometry
make up a significant fraction of numerical investigations of
convection in general and the selection problem in particular
(for example, Refs. 61 and 62). This seems to be completely
natural, since in a large range of values of the parameters
convection has a quasi-two-dimensional roll-type character
(see Sees. 4 and 5). Many important questions can be eluci-
dated along this path, and the two-dimensional numerical
experiments are still of interest (for example, the recent new
work in Ref. 57 is very interesting).

Calculations of three-dimensional convection were first
performed at the beginning of the 1970s, first for regions
with small aspect ratios.63'64 In the last few years such calcu-
lations have also been performed for regions with large hori-
zontal extent—for example, in Ref. 58 the dimensions of the
region are 11.5x16x1.

Thorough investigations of the dynamics of three-di-
mensional convective structure by means of a numerical ex-
periment are nonetheless very time-consuming. The two-di-
mensional models which have been developed to describe
three-dimensional convection make it possible (within the
restrictions of the models themselves) to form, using com-
paratively economical means, an idea of the complex spatial
dynamics of the process. For this reason, many studies in
which numerical modeling of three-dimensional convection
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is performed on the basis of two-dimensional model equa-
tions have already appeared (Refs. 65-70, 47 and others).

4. BASIC TYPES OF STRUCTURES OF CONVECTIVE FLOWS

4.1. Two-dimensional rolls and three-dimensional cells

In Sec. 2 it was noted that different planforms in the
linear problem of convection in an infinite layer are degener-
ate. This degeneracy remains even in the case of steady-state
nonlinear supercritical regimes: For a given value of R there
exist infinitely many solutions with fixed k which differ only
by their planforms.21 There thus arises the question of se-
lecting realizable planforms.

On the basis of the experiments of Benard,71 who ob-
served a flow pattern having honeycomb symmetry (each
cell is a hexagonal prism in which liquid flows upward at the
center and downward at the periphery; see Fig. 2b), there
emerged the opinion that steady-state laminar convection in
a horizontal layer occurs mainly in the form of hexagonal
cells61 (Benard cells). Subsequent investigations revealed
that the flow pattern in the case when the top surface of the
layer is free (as in Benard's case) is radically different from
the flow pattern in the case when the layer is covered with a
solid lid at the top. When such a plate is present, in a quite
wide range of values of R the steady-state flow has the form
of a system of rolls (Fig. 2a), if Pis not too small; this asser-
tion will be made more precise in Sec. 5. Neglecting the ir-
regularities or structural defects, which are usually present,
the velocity field of such convection is approximately two-
dimensional (see, for example, Refs. 72, 74, and 75). Here
"flow" refers to the "main" flow, which is not complicated
by secondary flows developing as a result of flow instability
(which for sufficiently large R is unavoidable), and it is as-
sumed that the factors that would cause the conditions of the
experiment to deviate appreciably from those of the stan-
dard problem (Sec. 2) are not present; these factors will be
discussed below.

Benard himself already proposed that the temperature
dependence of the surface tension plays an important role in
the convection that he observed. This was later confirmed,
and according to the modern interpretation the existence of
hexagonal cells in Benard's experiments was governed by the
quite strong thermocapillary effect. If, however, there is no
free surface and only the usual (thermogravitational) con-
vection occurs, the roll pattern is the preferred structure.
(Of course, the idealized boundary conditions usually em-
ployed in the theory for a "free" boundary (2.8) do not
make hexagons preferred, since these conditions do not take
the surface tension into account.) We note that the incorrect
assertion that under standard conditions the thermogravita-
tional mechanism can by itself generate hexagonal cells is
still encountered in the literature.

Starting from the assumption that quasi-two-dimen-
sional rolls are the main form of steady-state convection, we
list the most important factors which have been investigated
and which could make three-dimensional cells preferred.

4.1.1. Thermocapillary effect. Block76 was the first to
give a conclusive experimental demonstration of the role of
surface tension in the formation of hexagonal cells. In partic-
ular, he was able to observe cells for R<RC (and even
R <0), when the thermogravitational mechanism does not
operate.

To this day, not too many investigations of thermoca-
pillary convection or Benard-Marangoni convection have
been carried out. We omit the details and recommend to the
reader the corresponding sections of the reviews of Refs. 77
and 78 and the introductory part of Ref. 79 as a brief intro-
duction to this field.

Significant experimental results were obtained in Refs.
79, 80, and 81. An interesting comparison of the experimen-
tal data on and the theory of the selection of planforms under
the combined action of two instabilities — the standard con-
vective (Rayleigh) and thermocapillary (Benard-Maran-
goni) — was made in Ref. 82. In Ref. 8 1 it was found experi-
mentally that, when these two mechanisms interact, as ДГ
increases after Benard cells have appeared the characteristic
size of the cells at first decreases and then starts to increase.
Since under conditions of thermogravitational convection
the scale of the flow characteristically increases with Д!Г
(see Sec. 6. 1 ), it is concluded that for sufficiently large val-
ues of ДГ the Rayleigh mechanism predominates. Zero g
experiments on thermocapillary convection — when the
Rayleigh mechanism is not operating — have been per-
formed on board spacecraft.83

The first theoretical investigations concerned the linear
analysis of stability ( Ref. 84, where gravity was assumed to
be absent, and Ref. 85, where a combination of the two
mechanisms was studied ) . The planforms of thermocapil-
lary convection were studied within the framework of non-
linear problems in Ref. 86 (where, according to Ref. 32, the
quantitative results need to be made more accurate) , Ref. 32
(see Sec. 3.2.2), and Refs. 87 and 88.

4.1.2. Temperature dependence of the viscosity. Back in
the 1930s Graham89 discovered, while observing polygonal
convective cells in a layer of air, that under steady-state con-
ditions the air descends in the central parts of the cells — the
opposite of what happens in liquids (see Fig. 2; cells with
ascending motion at the center are sometimes called /-type
cells and cells with descending motion at the center are
called g-type cells, corresponding to the words liquid and
gas; meteorologists call cells of the / type closed and cells of
the g type open ) . Graham hypothesized that the direction of
circulation depends on the sign of the derivative dv/дТ: for
liquids it is usually negative and for gases it is positive. This
hypothesis was confirmed experimentally by Tippelskirch90

for liquid sulfur, for which dv/dT<0 for T< 153 °C and
dv/dT>Q for 153 С < Г < 200 °C. Convective cells in these
two temperature ranges are indeed of the / andg type, respec-
tively.

One can see that circulation occurs in a direction such
that the viscous stresses are weaker at the center of the cell,
where they are maximum by virtue of the geometry of the
flow.

Palm91 studied slightly supercritical convection in a
liquid whose viscosity depends on the temperature as

Tl), (4.1)

and it is assumed that ( y/v0 ) 2 «^ 1 . The admission of such a
dependence is, evidently, a departure from the Boussinesq
approximation. Analyzing the interaction of the different
modes with the lowest wave number, equal to the critical
wave number (the critical wave number has an O(y2/v^)
correction as compared with the case v = const), and using
the fact that the supercritical reduced Rayleigh number and
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the parameter у are small, Palm separated from these modes
the two most significant modes which give a planform func-
tion of the form

/(x, t) = Y(t)cos №. kcX} cos U k(y\ + Z(t)cos kcy (4.2)

[compare Eq. (2.28)]. Analysis of the nonlinear ordinary
differential equations describing the time dependence of the
amplitudes Y and Z shows that the stationary state of the
system in the limit / -> oo is characterized by the relation
Y = 2Z, i.e., it corresponds to hexagonal cells. In agreement
with the experimentally found law, the direction of circula-
tion in the cell is determined by the sign of the coefficient 7.

A detailed investigation92'93 of the system of equations,
corrected by Palm, for У and Z showed that near R = Rc for
sufficiently large values of у the hexagonal cells are the only
stable form of convective flow, and in addition the conclu-
sion that the direction of circulation depends on the sign of 7
remains correct. These cells are also possible for subcritical
values of R, if the amplitude of the initial perturbation is
sufficiently large (hard excitation). As found in Ref. 94,
where a wider range of interacting modes was included in the
analysis, as R increases, the two-dimensional rolls become
stable, and then the hexagons become unstable.71 Finally, an
analogous result was obtained, using a technique of this type,
in Ref. 95, where not only the viscosity but also other materi-
al parameters of the medium were assumed to be tempera-
ture dependent and deformations of the free surfaces of the
layer were also allowed.

In Refs. 91-95 the horizontal boundaries of the layer
were assumed to be free. Calculations of the range of Ray-
leigh numbers where the hexagonal cells are stable for other
boundary conditions are presented in Ref. 96.

Schluter, Lortz, and Busse25 investigated, by expand-
ing the Boussinesq equations (with v = const) with respect
to the small amplitude el/2 of the flow, in the linear approxi-
mation the stability of the geometrically diverse steady-state
solutions of the weakly nonlinear problem with respect to a
wide class of infinitesimal perturbations. The results of this
and the above-mentioned publications form a unified picture
demonstrating the role of the temperature dependence of the
viscosity. According to Ref. 25, in the case v = const all
three-dimensional flows are unstable, and there exists only
one class of stable two-dimensional roll flows (the stability
of the rolls will be studied in Sec. 6.3). This result is valid for
layers with free or rigid boundaries.

The method developed in Ref. 25 was applied to a liquid
whose viscosity depends weakly on the temperature (the
other material parameters, generally speaking, also are
weakly temperature dependent; this is discussed be-
low).97'98 Figure 4 shows a diagram of the stability of rolls
and hexagonal cells obtained for different types of boundary
conditions, and Fig. 5 shows the dependence of the ampli-
tudes of flows of both types on R. In this case /3 is a (small)
coefficient in the leading order (linear) term of the depend-
ence v(T).

Subsequent experimental investigations confirmed the
general features of the theoretically predicted regularities.

Liquids whose viscosity behaves differently can exhibit
different convective structures under similar experimental
conditions.99 In experiments with silicone oil, whose vis-

FIG. 4, The regions of stability of rolls and hexagonal cells of the /and g
types.22'98 e"2 is the amplitude of the flow and /? characterizes the vertical
nonuniformity of the layer (see text).

cosity is virtually constant, either convective rolls (in a layer
with a lid at the top) or hexagons (in a layer open at the top,
where the thermocapilllary effect operates) were observed.
In the case of Aroclor, whose viscosity is strongly tempera-
ture dependent, hexagons also appeared in a closed layer, if
the layer was sufficiently thin and, correspondingly, the tem-
perature gradient was sufficiently large.

In Ref. 100 controlled initial disturbances of the roll
geometry were produced and the k and R dependence of the
stability of the induced rolls was investigated for different
values of the ratio vmax / vmin of the maximum and minimum
viscosity in the layer (R was calculated from the value of
v(T0) of the viscosity at the temperature
T0 = (Г, + T2 )/2; this definition is used in most papers).
For the working liquids employed (glycerine and polybu-
tene oil) the quantity vmax/vmin reached approximately 20.
It was found that for sufficiently small values of R and large
values of vmax/vmin in the process of evolution the rolls
transform into hexagonal cells (if after this R is increased,
then the reverse transition occurs all the more easily the
more regular the system of hexagons was).

Much larger ratios vmax/vmin (up to 3400) were
reached using water-free glycerine in experiments with un-
controlled initial conditions.101'102 It was found that the
transition from hexagons to rolls as R increases is observed
only if the parameter 77 = ln(vm a x/vm i n) does not exceed,
roughly speaking, 2. In this case the interval of Rayleigh
numbers where the hexagons are stable becomes wider as 77
increases and agrees with the theoretical results of Refs. 97
and 98. For large values of 77, however, as R increases the
hexagons transform not into rolls but rather into a system of
irregular tetra-, penta-, and hexagons, and now the interval
of stability of the hexagons, on the contrary, shrinks as 77

FIG. 5. The amplitudes of the rolls and the hexagonal cells of/and g types
as functions of the Rayleigh number Л.22'98 £1/2 and 0 have the same
meaning as in Fig. 4. The solid lines pertain to stable flows and the dashed
lines pertain to unstable flows.
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FIG. 6. The regions of stability of rolls, hexagonal (6) and square (4) cells
in liquids with temperature dependent viscosity;'02 77 = In(vmax/vmin );
the Rayleigh number R is calculated with respect to v( T0); S is the de-
pendence of the critical Rayleigh number on rj for a layer with boundaries
of finite thermal conductivity according to Ref. I0l; В are the theoretical
values of the maximum value of Л at which the hexagonal cells must be
stable.97 Irregular tetra-, penta-, and hexagons are observed in the shaded
transitional region. The dots correspond to the absence of convective mo-
tions.

increases. As R increases further the irregular patterns of
polygons in turn transform into a system of square cells if
77 £ 4. These experimental data are presented in Fig. 6.

In Ref. 19 the stability of squares and hexagons with
Л<63,000 (R was calculated as in Ref. 100) and
vmax /vmin < 103 was investigated in experiments with golden
syrup under controlled initial conditions. For both plan-
forms delimited regions of stability in the (k, R) plane, anal-
ogous to "Busse balloons" for rolls (see Sec. 6.3), were
found. As vmax /vmjn increases these regions shift in the di-
rection of higher values of k. Subcritical convection was ob-
served in the form of squares and not hexagons (the author's
calculations of Rc are based on the dependence v( T) of the
type realized in the experiment). Different instabilities and
many types of transitions between flows of different struc-
ture are described in the paper.

Theoretical investigation of the possibility of the exis-
tence of square cells started with a study of their stabil-
ity. 103,104 As in a series of papers on the stability of rolls (Sec.
6.3), the main flow was calculated by Galerkin's method and
the stability of the flow was analyzed in the linear approxi-
mation. The boundaries of the layer were assumed to be rig-
id. It was found that in the case of uniform viscosity the
square cells are unstable.103 For the case of a linear tempera-
ture dependence of the dynamic viscosity // the stability of
such cells for given R depends on the ratio r = //max ///min -

104

Confining their attention only to the case when the wave
number of the flow is equal to kc and the disturbances have
the same symmetry and the same wave number as the main
flow, the authors found that as r increases the squares be-
come stable first, after which the rolls become unstable.

The possibility of square cells was later investigated by
Jenkins'05 who solved the problem of the evolution of a flow
with the planform function

/(x) = A(t)cos kcx + B(t)cos (4.3)

[compare Eq. (2.29)] with small supercritical reduced Ray-
leigh numbers, rigid boundaries, and two variants of the
function/n(T)—linear and exponential. He also studied the
effect of finite thermal conductivity of the boundaries (this is
discussed below). For a linear function /n(T) the results
agree qualitatively with Ref. 104, but the transitions were
found to occur at different critical values of the parameter r
(the author asserts that the disagreement is caused by the
fact that the method of Ref. 104 is applicable only for small
values of r). For an exponential function /z ( T ) the critical
values rlt r2, and гъ, bounding the following regimes, were
found: for /•</•, the flow exhibits a roll structure; for
f\ <r<r2 square cells exist in supercritical regimes; for
r2 <r<r3 subcritical convection in the form of squares is
possible; and, for r > гъ both rolls and squares can exist un-
der subcritical conditions.

In Ref. 106 Stuart stated his opinion that the solution
with the planform function (2.29) is unphysical, since it
does not incorporate all the characteristic features of the
actually observed convective cells. However numerical
modeling of refraction of light in shadow visualization with
automatic readout of the results in the form of model "shad-
ow patterns" with the help of a laser printer107 showed that a
flow of the form (2.29) gives a pattern that is very close to
the observed pattern. It is interesting that this pattern is not
at all similar to a checkerboard, as could be assumed on the
basis of the relative arrangement of the warm upward flow
and cold downward flow. In the process of shadow visualiza-
tion simple vertical averaging of the temperatures does not
occur (for this reason the pattern can change significantly
when the sign of the convective velocity changes). Some-
thing like a negative image of "square-lined" paper—dark-
colored squares with light-colored boundaries—is obtained
instead of a checkerboard pattern.

4.1.3. Temperature dependence of other material pa-
rameters of the medium. The variation with the temperature
of other characteristics of a material in principle plays the
same role as variation of the viscosity. In the papers men-
tioned,97'98 departure from the Boussinesq approximation
was permitted in the following form: the thermal expansion
coefficient was written as

(4.4)

where Г0 = (Т1, + Тг)/2, and the kinematic viscosity, ther-
mal conductivity, and heat capacity at constant pressure
were written analogously (with the corresponding coeffi-
cients ylt y}, and 74); in addition, the terms nonlinear in
T — T0 are higher order infinitesimals than the linear terms.
Analysis of the stability of the rolls and hexagonal cells
showed that the parameter/?, which is a linear combination
of all Yi ш dependences of the form (4.4), plays the deter-
mining role. The stability diagrams (see Fig. 4) and the dia-
gram of the R dependence of the amplitudes (see Fig. 5) thus
reflect the effect of the nonuniformity of each quantity men-
tioned.

An analogous conclusion concerning the character of
the transition from hexagons to rolls as R increases (with the
possibility of finite-amplitude perturbation of the hexagonal
cells in the subcritical regime) was drawn in Ref. 95, where
this effect was obtained as a consequence of the temperature
dependence of the viscosity, thermal conductivity, and ther-
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mal expansion coefficient. The approach employed in Ref.
95 was similar to that used in Refs. 91, 92, and 94.

The experiments of Ref. 108 show that the temperature
dependence of the physical properties of a liquid is manifest-
ed in the structure of the flows all the more sharply as the
thickness of the layer decreases and Д Т increases.

The eifect of the temperature dependence a ( T ) on the
convection pattern was observed in Ref. 109 in experiments
with water at temperatures close to 4 °C (when a varies from
zero to finite values). Laser Doppler anemometry showed
that near the critical regime the spatial distribution of the
vertical velocity has a form typical for a system of hexagonal
cells. As A ̂ increases hysteretic transition to roll convection
occurs.

Experiments with liquid helium,'10 whose density also
has a maximum value (at a temperature of 2.178 K), indi-
cate indirectly the same effect. Since the flow of liquid heli-
um cannot be visualized, the behavior of the heat flux
through the layer as a function of the Rayleigh number was
investigated. The two breaks in the curve of this dependence
were interpreted as transitions from a motionless state to
hexagons and from hexagons to rolls. In both cases the de-
pendence exhibits hysteresis.

Remark. The above-studied cases of preference for
three-dimensional cells are unified by a common feature: in
the layer there is an appreciable asymmetry of the physical
properties relative to the midplane z = 1/2. If, however, the
layer is symmetric, then two-dimensional rolls arise. This is
not difficult to understand: the transition from some system
of rolls to a mirror reflection of this system relative to the
midplane is equivalent [at least, in the approximation corre-
sponding to the lowest harmonic with the planform (2.27) ]
to uniform translation of the entire pattern in the direction of
the vector k. Three-dimensional cells do not have this prop-
erty. It is not surprising that rolls are typical for those cases
when the top and bottom parts of the layer are indistinguish-
able. In addition, the existence of hexagonal cells of / and g
types agrees with the presence of nonuniformity of the vis-
cosity: the direction of circulation is such that the viscosity is
minimum in the region of highest rates of deformation—at
the center of a cell. It can be expected that three-dimensional
cells will also be preferred in the following two cases.

4.1.4. Asymmetry of boundary conditions. In particular,
in Ref. 97 it was found that for a layer with rigid bottom
boundary and free top boundary cells of / type should be
preferred. Here, obviously, the point is that the velocity field
is not mirror symmetric.

4.1.5. Curvature of the unperturbed temperature profile
can also facilitate the appearance of hexagonal cells.''' Such
a curvature is made possible, for example, by internal
sources of heat. We note that non-steady-state heating,
which can result in the appearance of hexagons (see below),
also induces curvature of the temperature profile, which un-
der these conditions can be regarded as being unperturbed.

4.1.6. Finite thermal conductivity of horizontal boundar-
ies. Square cells can arise as a result of significant departures
from the conditions (2.5), which are realizable only if the
thermal conductivity of the horizontal boundaries of the lay-
er is infinite.

If the parameter £, which is equal to the ratio of the
thermal conductivity of the plates bounding the layer to the
thermal conductivity of the liquid, is small, then when it is

taken into account in the expansion according to the scheme
of Ref. 25 analysis of the stability of different steady-state
solutions with k = kc leads to the following result, obtained
for P= oo and infinitely thick plates.112 Only those solu-
tions for which N =2 [see Eq. (2.13) ] and the angles be-
tween the vectors k, and k2 lie between 60° and 120° are
physically realizable. Square cells are distinguished among
them by the fact that they give maximum heat transfer. In
addition, the most rapidly growing disturbances of unstable
roll flows tend to transform the rolls into a system of squares.
These results, as the authors showed, should remain sub-
stantially the same for finite P and finite thickness of the
plates.

It was shown subsequently in Ref. 113 that square cells
are most stable at finite amplitude also. On the basis of the
fact that the horizontal scale of flows with small values of £
should be much larger than the thickness of a layer, an ex-
pansion analogous to that employed in shallow-water theory
was employed. The thickness of the boundary plates was
assumed to be finite. The stability of flows with different
planforms was investigated with the help of a variational
principle derived in the paper.

The investigation of the equations of evolution of the
planform function (4.3), which were derived by expanding
in the small amplitudes (compare the previously mentioned
papers of Refs. 91-96 and 105), made it possible to find114

the critical value of the parameter £ at which a transition
from rolls to squares occurs. It depends on the ratio of the
thickness of the plates to the thickness of the liquid layer and
on P. For very small values of P (for example, values charac-
teristic for mercury: P = 0.025) the critical value off is very
small and squares are possible only if the plates are virtually
completely thermally insulating. If P is large, then squares
arise even when the thermal conductivity of the plates is
equal to that of the liquid.

Finally, further investigation by the method of Ref. 25
of the linear stability of stationary flows near R = Rc with
k = /cc, thick boundary plates, and generally speaking dif-
ferent (not small) values of the parameter g for the bottom
and top boundaries of the layer (gb and £,, respectively),
showed115 that the rolls are unstable when the squares are
stable and vice versa, and all three-dimensional solutions
with N> 2 (including hexagonal) are always unstable. The
stability diagram in the space (f t , fb, P) is presented in
Fig. 7.

Square cells were observed near the threshold of con-
vective instability (£ < 0.024) in an experiment with silicone
oil (P= 70) with E; = 7 (glass plates).116 A circular reser-
voir with Г = 20 was employed. In the region
0.024 < e < 0.057 the amplitudes of two mutually perpendic-
ular systems of rolls underwent periodic oscillations in anti-
phase with one another; as £ increased one system started to
predominate, until (for sufficiently large e) a single station-
ary system of rolls was established (neglecting the two re-
gions near the outer walls, where the structure remained
more complicated).

The experiment was subsequently altered:]! 7 Plexiglass
was used for the boundaries and water was used as the work-
ing liquid, since ̂  = 0.4 and P~ 7. A quite prolonged process
of settling of the flow structure resulted in a system of square
cells, which, in contrast to the preceding experiment, was
observed in a wide range of values of e without any indica-
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FIG. 7. Diagram of stability of square cells and rolls in the space (f t , fb,
Я)."5 Inside the region delimited by the thick curve in each plane
P = const the squares are stable and outside the region the rolls are stable.

tions of destabilization. The authors believe that in the first
case the silicone oil behaved as a mixture and the observed
pattern is governed by the Soret effect.

The finite thermal conductivity of the boundaries was
taken into account in order to compare the theoretical re-
sults with experiment and with the already mentioned article
of Ref. 105, devoted to the investigation of the role of the
temperature dependence v( T).

According to calculation, subcritical convection in the
form of squares should be observed for larger values of
vmax/vmin than in the experiment of Ref. 19. The reason for
this discrepancy was not determined in this work.

4.1.7. Deformation of a free surface. Thus far it was as-
sumed everywhere that the boundaries of the layer are not
deformed, even if they are free in the sense that there are no
tangential stresses. Taking into account the deformability of
the free surfaces (one or both) gives effects of the same type
as departure from the Boussinesq approximation95 (see
above). This result was obtained neglecting surface tension,
but the effect of deformation is appreciable only in very thin
layers, when the effect of surface tension is also significant.

An analogous result was obtained in Ref. 32 (see Sec.
3.2.2). The authors found that deformation effects are sig-
nificant if the following criterion is satisfied:
д In p/д In fi ~ 1 (fi is the dynamic viscosity). For most li-
quids this derivative is small and approaches unity near the
inversion point, where dfi/дТ — 0. In particular, for sulfur
inversion appears at Т = 153 "С.

4.1.8. Non-steady-state heating. Krishnamurti118 stud-
ied the case when the temperature of both surfaces of the
layer changes slowly and linearly in time, so that Rayleigh's
number remains constant and the undisturbed temperature
profile in dimensionless variables has the form

*(«- A), (4.5)

where 77 = const and % is the thermal diffusivity of the liq-
uid. Performing an expansion in the small parameters—the
convection amplitude and the rate of heating (cooling) 77

and investigating the stability of rolls and hexagons (as in
Ref. 25), Krishnamurti showed that the effect of non-
steady-state heating is entirely analogous to that of a tem-
perature dependence of the physical properties of a sub-
stance.97'98 In particular, the stability diagram has the form
shown in Fig. 4, if/? is the parameter 77. In the case of heating
(77 > 0) hexagons of the g type can be stable while in the case
of cooling (77 <0) hexagons of the / type can be stable. An
experiment in which hexagons were actually observed under
conditions of non-steady-state heating and the direction of
circulation in the cells agreed with the theory is described in
Ref. 119. Analogous results were obtained with numerical
modeling of three-dimensional flows under the conditions of
the same problem, but the cells were not precisely hexagon-
al.120

An effect of this type could be caused by the periodic
temporal modulation of the difference of the temperatures of
the bottom and top surfaces of the layer. If this difference
varies as ДД1 + S cos cat), where ATMs the average value,
then expansion of the Boussinesq equations in the small am-
plitude of the flow and the small amplitude 8 of modulation
and subsequent stability analysis show that near the thresh-
old of instability (including a narrow interval of subcritical
values of R) hexagonal cells are stable.121 For sufficiently
high supercritical Rayleigh numbers the roll flow becomes
stable, and for even larger values of R the hexagons become
unstable. The width of the interval of values of R in which
the hexagons are stable is O(S4) and decreases with со.

Investigation of the system of equations for the ampli-
tudes of several of the lowest harmonics of the Galerkin ex-
pansion of the convective disturbances ("generalized Lor-
enz model") confirmed122 the qualitative results of Ref. 121,
but the authors concluded that hexagons cannot be observed
for small values of S, since their interval of stability is very
small and the conditions of the experiment cannot be con-
trolled with the needed accuracy. In order to be able to ob-
serve hexagons much larger modulation amplitudes than in-
dicated in Ref. 121 are needed.

The theoretically predicted consequences of periodic
modulation of heating were observed in the experiment of
Ref. 123. Regions where hexagons and rolls are stable and
both types of flows coexist were singled out. The boundaries
of the regions and the direction of circulation in the cells
agree with the theory.

We call attention also to the experiment described in
Ref. 40. The behavior of a convective heat flux through the
layer of liquid helium under conditions when R varied with
time either in a step-like fashion or linearly was investigated.
The interpretation of the data on the basis of the amplitude
equations showed that the convection at the moment of ap-
pearance was not of the roll type, but rather a transitional
regime was present; the authors tentatively associate this
transitional regime with a system of hexagonal cells.

4.1.9. The presence of a suspension, generally speaking,
can strongly alter the mechanical properties of a liquid. For
information, we call attention to the fact that, according to
the experiment of Ref. 75, when the concentration of a poly-
dispersed solid additive used for visualization is high, poly-
gonal cells are observed in those cases when rolls appear
under conditions of low concentration.

4.1.10. Secondary flows. Roll convection is observed
only in a definite range of Rayleigh numbers (see Sec. 5).
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Beyond the upper limit of this range rolls are unstable and
the developing secondary flows make the velocity field
three-dimensional.

4.2. Quasi-two-dimensional roll structures

As we saw above, in the absence of complicating factors
a roll structure is the basic type of steady-state convection.
In this section we study the properties of such flows in
greater detail.

Even if the roll structure in a full-scale experiment is
very regular and free of defects, the rolls nonetheless are
never completely straight and the flow in them is never com-
pletely two-dimensional. This happens, at the very least, be-
cause ofthe fact that in reality the flow is always bounded by
sidewalls, which can have a large effect on the structure of
the flow.

On the basis of the linear problem of stability of the
steady state Davis,124 using the Galerkin method, showed
that the presence of sidewalls removes the degeneracy ofthe
eigenfunctions: In a rectangular reservoir with rigid hori-
zontal and vertical boundaries the critical Rayleigh number
is smaller than for rolls which are parallel to the short side of
the reservoir. Precisely such rolls are predicted on the basis
of the NWS amplitude equation28 and its extension for the
superposition of systems of mutually perpendicular rolls.36

The conclusion that such rolls are preferred was confirmed
by the experiment of Ref. 125, which was performed for dif-
ferent ratios of the sides of the rectangular reservoir and
different aspect ratios and agreed with Ref. 124. The linear
theory describes quite well126 regimes with a different num-
ber of rolls, which were observed in Ref. 25 with different
chamber geometry. In Ref. 126 it was predicted that in a
nearly square reservoir systems of mutually perpendicular
rolls can arise near the threshold of instability.

For an infinitely long channel with free horizontal
boundaries and rigid sidewalls and aspect ratio A the linear
problem gives127 as the preferred mode rolls that are orient-
ed across the channel, if A < 0.1 or A > 1. For intermediate
values of A the overall features ofthe pattern are the same,
but the velocity component transverse to the channel is quite
large. In Ref. 128 the structure of convection in a channel
with rigid walls is investigated in detail by Galerkin's meth-
od.

Rolls oriented perpendicular to the long walls of a chan-
nel were observed experimentally, for example, in Ref. 129,
in a finite but long (Г = 18) channel.

A laboratory model of an infinitely long straight chan-
nel is an annular channel between coaxial cylindrical walls.
If it is not too wide, then the rolls are oriented radially, per-
pendicular to the walls.130

Extensive experimental data have shown that the indi-
cated orientation of the rolls is a particular case of a more
general tendency: Near a wall rolls tend to be perpendicular
to the wall. This tendency is especially noticeable (since it
aifects the form ofthe rolls) when complicated structures
with defects (textures) are observed as well as in circular
reservoirs (Fig. 8).

Using the SH model equation, Pomeau and Zaleski43

showed that in the boundary layers near a sidewall a system
of rolls which are parallel to this wall must be unstable: Sec-
ondary flow in the form of rolls perpendicular to the wall and
the initial rolls develops (cross-roll instability; see Sec. 6.3).

FIG. 8. Experimentally observed structures of roll flows (the boundaries
ofthe rolls are indicated), a) Texture in a rectangular reservoir, R = 4ДС,
P = 2.5;14 regions adjoining the short walls of the chamber are not visible,
b) Schematic image of curved rolls in a circular reservoir, R = 1.14ЛС,
Р=ОЛ (according to the photograph from Ref. 131) ; the dashed lines
depict large-scale flow obtained in Ref. 156. In both figures the tendency
of rolls to approach the sidewalls at right angles can be clearly seen.

This effect was observed experimentally in, for example,
Ref. 132 (in a circular reservoir) and Ref. 18 (in a rectangu-
lar reservoir—see Sees. 6.5.3); see also Fig. 9.

Cross46 investigated the effect of a sidewall with the
help ofthe NWS amplitude equation with boundary condi-
tions which are identical to Eq. (3.20) in lowest order. He
found that the Lyapunov functional for the system of rolls in
the boundary layer is minimum when the rolls make with the
wall an angle тг/2 with accuracy up to O(e1/4).

This result was later refined by Zaleski et a/.133 They
performed numerical calculations of the Lyapunov func-
tional for the NWS equation in a boundary layer and they
obtained an optimal (minimizing the functional) angle be-
tween the rolls and the normal to the wall different from zero
and ofthe order of £!/4. Here the value ofthe angle is taken
outside the boundary layer, quite far away from the wall; at
the wall itself this angle is equal to zero in accordance with
the boundary conditions. For this reason, it can be imagined
that in a reservoir whose width is greater than twice the
thickness ofthe boundary layer and whose length is appre-
ciably larger than the width, the rolls must resemble the let-
ter S, approaching the long sidewalls along the normal and
making an angle with this normal in the central part.133

Greenside et a/.65-66 (Fig. 9) obtained such S-shape struc-
tures in numerical modeling ofthe textures based on the SH
equation and Le Gal134 observed them experimentally (in

FIG. 9. S-Shaped rolls obtained by numerical modeling in Ref. 66. The
cross-roll instability develops near the short boundaries o f the region. A
very similar pattern was observed in the experiment of Ref. 134.
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addition, the observed pattern was almost identical to that
shown in Fig. 9). We note that the fact that the optimal angle
minimizes the Lyapunov functional does not mean in this
case that this is the only realizable angle (see Sec. 6.4). Ulti-
mately, the overall geometry of the flow, which is deter-
mined, in particular, by the shape and horizontal dimensions
of the chamber and the conditions on the sidewalls, is impor-
tant for some particular structure to be realized. The situa-
tion here is analogous to the question of the realizability of
the optimal wave number of a system of two-dimensional
rolls; this will be discussed in Sec. 6.5.

For very small supercritical reduced Rayleigh numbers
the angle made by a roll with a sidewall can differ apprecia-
bly from a right angle. Thus in the experiment of Ref. 131
with e = 0.05 all rolls in a circular reservoir were practically
straight and parallel. It is possible that here the neglected
factors, which destroy the ideal boundary conditions (3.20),
become important.

The tendency for convective rolls to become aligned
near sidewalls perpendicularly to the walls is now a well-
known experimental fact. But, three important stipulations
must be made here.

First, what has been said above does not pertain to those
cases when the thermal regime of the sidewalls itself imposes
a definite character on flows in the region near the wall.
Suppose, for example, that the temperature at the wall is
always higher than the undisturbed temperature in the layer
at the same height (this happens when the heat conducting
wall has better thermal contact with the bottom boundary of
the layer than the top boundary of the layer, or it is heated
from the outside). Then a stable upward flow will exist near
the wall, and the rolls in the region near the boundary will be
oriented parallel to the wall. Situations of this type with forc-
ing at the boundary (wall) will be examined in Sec. 6.5.1.
They are often deliberately produced experimentally; see
Sec. 6.7.

It is understandable that the thermal effect of the
sidewalls under identical boundary conditions is all the
smaller the closer the thermal conductivity of their material
is to that of the liquid. This is especially noticeable under
conditions of non-steady-state heating:135 walls made of 5%
polyacrylamide gel, whose thermal conductivity is very well
matched to that of the working liquid (water), had virtually
no effect on the evolution of the flow; the structure of the
flow was not correlated with the geometry of the reservoir
and was not repeated from one experiment to another
(though the rolls approach the sidewall at close to right an-
gles). Polyethylene walls, however, had a forcing action on
the flow, and the flow developed away from the walls into the
chamber, while the structure of the flow reflected the geome-
try of the reservoir.

Second, the roll structure can be significantly affected
even by insignificant nonuniformities of heating from below
and (or) cooling from above. For example, in the well-
known experiments of Refs. 136 and 137 an axisymmetric
system of annular rolls in a circular reservoir arose as a result
of the presence of a radial temperature gradient in the top
heat exchanger, since the cooling water flowed into the cen-
tral part of the heat exchanger and was pumped out near the
outer edge.

Third, the effect of the walls can be significantly re-
duced, if there exists along these walls a zone where the layer

of liquid is not covered at the top with a solid cover and its
top surface is free (see Sec. 3.1 and Fig. 3). This zone plays
the role of a buffer, since there arise in it three-dimensional
flows with a complicated structure which easily match arbi-
trarily oriented rolls, arising far from the walls. For this rea-
son, in experiments on such setups the systems of parallel
rolls sometimes make different angles with the walls, and
their orientation changes in a random fashion from one ex-
periment to another.75

4.3. Convective textures

Convection developing spontaneously from noise, as a
rule, does not form a completely regular system of rolls: The
regularity of the pattern is "spoiled" to a greater or lesser
degree by structural defects of different types. Such compli-
cated patterns, in which several ordered fragments can be
identified, are called textures. We shall see that the presence
of defects gives the system of rolls additional "degrees of
freedom:" Wave-number restructuring of the rolls occurs
most easily in the presence of suitable structural defects.
Many observed defects are similar to defects of crystal lat-
tices, so that the terminology employed to describe them is
taken from the physics of crystals. Typical defects of roll
structures are shown schematically in Fig. 10.

4.3.1. A dislocation (Fig. Юа) is a defect arising at a
location where an "extra" pair of rolls, which is "wedged"
into a regular roll structure (whose rolls near the dislocation
are somewhat deformed), terminates. Both stationary and
moving dislocations are observed. They move most often in a
direction parallel to the rolls (climbing), though sometimes
movement in a perpendicular direction (gliding), accompa-
nied by topological restructuring near a dislocation, has also
been observed.

4.3.2. Disclinations are defects associated with point
singularities of the field of local wave vectors. Typical dis-
clinations are shown in Fig. lOb. PL focus singularity—a dis-
clination arising at the center of an axisymmetric system of
annular rolls or in fragments of a similar system, for exam-
ple, near a sidewall of the reservoir—is studied especially
often in papers investigating wave-number selection. In the
process of restructuring of a convective structure containing
foci, rolls often appear and disappear precisely at these
points.

4.3.3. Grain boundaries^—lines delimiting ordered
fragments of texture within which the flow has the form of a
regular system of rolls (Fig. 10с)—are a very characteristic
defect. As will be explained in Sec. 6.5.3, the motion of grain
boundaries can give rise to very effective wave-number res-
tructuring of rolls over wide limits.

FIG. 10. Defects of roll structures, a) Dislocation, b) disclination (focus
singularities are shown at the top), c) Grain boundary.
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5. EXCHANGE OF CONVECTION REGIMES

Convection is manifested in diverse forms: cells can
have diiferent configuration and form more or less ordered
spatial structures and the flow either can either attain a
steady-state or undergo oscillations (also with a different
degree of ordering) or it can be completely turbulent. The
convection regime in a horizontal layer under standard con-
ditions is determined, to a first approximation, by the
numbers R and P. Transitions between regimes can be repre-
sented in the form of the diagram shown in Fig. 11. This
diagram summarizes the experimental data of Krishna-
murti72'73'138 and a number of other authors. It was first con-
structed by Krishnamurti and modified by Busse.22'23 The
lines delimiting the regions of diiferent regimes were drawn,
to a certain extent, arbitrarily, since the results of different
experiments do not always agree precisely with one another
and, moreover, difficulties in determining the values of R
corresponding to the transitions are possible, especially if as
R changes in a step-like fashion the exchange of regimes is
accompanied by hysteresis. As will become evident from
what follows, the question of the transition from steady-state
to non-steady-state convection is especially subtle.

The region where the liquid is in a stable motionless
state lies below the line I(R = Rc). The region of steady-
state roll convection, conventionally speaking, two-dimen-
sional (see Sees. 4.2 and 4.3), lies above this line. For high
values of .Pit extends approximately up to R ~ 13RC ~2-104.
Close to two-dimensional, but, generally speaking, not com-
pletely steady-state convection can be observed right up to
supercritical Rayleigh numbers equal to several tens times
Rc (see, for example, Ref. 139). Thecurve//is the threshold
above which cross-roll instability (see Sec. 6.3) results in
steady-state bimodal convection: The flow consists of a su-
perposition of the primary rolls and secondary rolls, which
are perpendicular to and narrower than the primary rolls
and which extend vertically to less than the total thickness of
the layer. It is interesting that for very large P ( = 8.6-103)
the artificially induced bimodal convection (including its
limiting form—square cells) can be stable even for R ~ (2-
8) • 105 and, moreover, it is unstable at R =; 105.140

The transition to bimodal flow is observed only at quite
large values of P. For small values of P, however, a transition
to non-steady-state convection occurs immediately (curve

10* г о
to

/ / «О

'/ £t Steady-state
03 rolls
I

103l-L No motion

FIG. 11. Diagram of convection regimes (according to Refs. 72, 73, and
138 and other experimental works).

///). This transition is associated with oscillatory instabil-
ity: Wave-like bends are observed to travel along the rolls.
(It is now clear, however, that the last phrase pertains more
to theoretical predictions, made for idealized models (see
Sec. 6.3). In what follows it will become clear that for small
values of P it is impossible to indicate universal threshold
values of Л for exchange of regimes in diverse experimental
setups.) For some R bimodal convection also becomes of a
non-steady-state nature. In addition, according to Krishna-
murti, in the region P^ 50 this value of/? is almost constant
and is equal to 5.5-104, while subsequent experi-
ments17'140'141 give values which increase with P (see Fig.
11). The splitting of the curve /// into two branches is con-
nected with the fact that the appearance of oscillations de-
pends strongly on the presence of nonuniformities in the pat-
tern. Nonuniformities can engender oscillations in isolated
sections for relatively small values of R (branch Ilia) and
the very uniform bimodal convection pattern (created artifi-
cially in the experiment) demonstrates a transition to a non-
steady-state at much larger values of R (Fig. Illb).11 For
convection with R ~ 105-107 and moderate values of P there
characteristically exist sharply non-steady-state fine-scale
elements against a background of relatively non-steady-state
large-scale cells (spoke-pattern convection;17 see Sec.
6.3.1). The curve IV corresponds to the appearance of high-
er-order harmonics in the spectrum of oscillations (and, as
in the case of other transitions also, to a change of the deriva-
tive of the heat flux with respect to R). For it the above
remark concerning the characteristics of the exchange of re-
gimes for small P is valid. Above the curve V there lies a
region of completely turbulent convection.

The basic qualitative features of the diagram of regimes
were reproduced by Vel'tishchev and Zhelnin by numerical
modeling of convection.142

An important property of convection, which has been
actively studied for more than several decades and which
cannot be represented on diagrams of this type, is that the
attainability of a steady state for small and moderate super-
critical reduced Rayleigh numbers and small values ofP de-
pends on the aspect ratio and even on the shape of the reser-
voir.

Ahlers and Behringer143'144 (see also the review of Ref.
145) performed experiments with normal (not superfluid)
liquid helium-4 in circular reservoirs with different aspect
ratios. They studied the behavior of the temperature differ-
ence A T a s a function of time with a prescribed heat flux
through the layer. For Г = 57 and P~3-4, nonperiodic os-
cillations with a very wide spectrum, whose maximum lies at
zero frequency, were observed at a value of R practically
equal to Rc (here R is the Rayleigh number corresponding
to the average value of Д T). At the same time, for Г ~ 2-5
and PzzQ.% there is an interval of values ofR, having a width
of up to several multiples of Rc, in which steady-state con-
vection is established; for higher values ofR the steady-state
convection either is immediately replaced by irregular oscil-
lations (with higher values of Г) or it is preceded by periodic
and quasiperiodic oscillations (for smaller values of Г).
Analogous experiments, limited to small values of Г, are
described in Refs. 146 and 147. These investigations were
also performed for mercury.148

Further experiments with liquid helium, performed in
circular reservoirs with different Г (2.4<Г<22) with
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0.5SPS0.7,149 demonstrated steady states even for larger
values of Г, though, it is true, in the case of Г £ 15, in a very
narrow interval of R: /?С<Я<1.09ЛС. In addition, the re-
gime immediately following the steady-state regime, for
ГЙ4, is always periodic (though, generally speaking, far
from harmonic oscillations). It is possible that this regime
was not achieved in experiments with Г = 57 because of the
very long time required for it to become established.

It is noteworthy that experiments on liquid helium in
rectangular reservoirs with horizontal dimensions of
13.4Л X5.95A and 18.2h X8.12A show that a non-steady-
state regime starts at appreciably higher supercritical Ray-
leigh numbers: 3.39RC and 2.53RC, respectively.150

Low-frequency noise, observed in the behavior of
AT(f) for small supercritical reduced Rayleigh numbers,
began to be associated with a special type of turbulence. One
of the names given to it was turbulence at threshold [of the
convective instability]. Cryogenic experiments do not permit
visualizing the flow. Further experiments performed with
other liquids and with visualization of the flow showed that
this turbulence looks like slow motion of rolls and defects of
the roll structure. Since attempts are often made to describe
such processes in terms of space-time changes of phase of the
system of rolls, the phenomenon is often called (weak, low-
frequency) spatial or phase turbulence.

The experimental work in Ref. 14 was undertaken pre-
cisely in order to study the behavior of the spatial structure
of convection, both in the steady state and in the presence of
phase turbulence. The working liquid consisted of water
near 70 °C. For it P = 2.5, which falls in the range of values
for liquid helium. A rectangular reservoir, having the hori-
zontal dimensions 20A X ЗОЛ, was employed. It was found
that for R < 5RC evolution to a steady state looks like gradu-
al elimination of defects and transition to a comparatively
simple picture of smoothly curved rolls, which near the
sidewalls are oriented perpendicular to the walls (Fig. 8a).
This process can continue for hundreds of hours, which is
four orders of magnitude longer than rv and an order of
magnitude longer than rh. Nonetheless this is not always
sufficient for achieving a steady state. (We note that accord-
ing to the estimate made in Ref. 53 the settling time for such
processes is £ IYh.) At R ;= 5RC much faster processes ap-
pear, settling does not occur, and a continuous recording of
the flow velocity at a fixed point gives a pattern of wideband
noise with a principal spectral maximum at zero frequency.
Defects arise in the spatial pattern. These defects move, in-
teract, and vanish. Necks are a characteristic feature of the
rolls. For R Й 9RC the spectrum contains one other peak,
which occurs near 0.05 Hz and is associated with oscillations
of the rolls.

Different convection regimes were also studied in Ref.
151. The same working liquid and the same circular reser-
voir with Г = 14 were employed. Automatic processing of
the shadow images made it possible to investigate in detail
the field k(x) of local wave vectors and the distribution
function f ( k ) of the wave numbers. Three types of regimes
were found depending on the supercritical reduced Rayleigh
number e. I f e < 0.2, then aperiodic motion, connected with
restructuring of defects, is observed at least for a time 50rh.
For 0.2 <£ <3.5 steady-state textures form after sufficient
time has passed. For e > 3.5 the flow is once again of a non-
steady-state nature from time to time the necks in the rolls

engender new evolving defects. It is interesting that in the
first and third cases, when settling does not occur, the distri-
bution f ( k ) exceeds the limits of the wave-number band,
where, theoretically (see Sec. 6.3.1), uniform spatially peri-
odic roll flows should be stable (Fig. 12). As regards regimes
with very small values of e, the authors do not exclude the
possibility that a non-steady-state regime is determined by
random external actions and imperfect experimental condi-
tions. In a square reservoir, whose edge length is equal to the
diameter of a circular reservoir, they observed settling over a
time of 100rh. On the other hand, settling was not observed
in an experiment, lasting for a time of the order of 200rh

(about one month), in a circular reservoir with e = 0.141,
P=5.7, andr=15.152

Experiments with argon at room temperature
(P= 0.7) in a circular chamber with Г = 7.66 (Refs. 131
and 153) also demonstrated that under conditions of non-
steady-state convection topological changes occur in the roll
structure, and in addition they revealed that the character of
the exchange of regimes is very complicated. For e < 0.126
steady-state patterns of slightly curved rolls with two focus
singularities were observed (see Fig. 8b). For larger values
of e the flow is a non-steady-state one. Sometimes a neck
forms in some rolls at the center. This neck engenders two
dislocations, which separate and climb to the sidewalls, after
which they glide to the foci and vanish. New rolls are genera-
ted at the foci, and the pattern is restored. For
0.126<£ <0.\15 the process is periodic, and in this interval
five scenarios of the behavior of defects are observed depend-
ing on the value off. The general features follow the scheme
described above. For 0.175 < £ < 0.346 topologically diverse
structures arise. Their behavior is chaotic—phase turbu-
lence is observed.

In steady-state regimes the local wave numbers fill
some interval of values (the maximum lies at the center of
the vessel and the minimum lies near the outer wall) which
expands as £ increases. It is interesting that the upper limit of
this interval reaches the theoretical threshold of instability,
found for a uniform system of rolls (see Sec. 6.3.1), precisely
near the value of £ for which the steady-state regimes are
succeeded by non-steady-state regimes—the results ob-
tained in Refs. 131, 153, and 151 are similar to one another.

In the region 0.3465e51 there are four additional
transitions:153 chaotic evolution with increasing £ is once
again succeeded by a steady state flow, after which a periodic
process is observed, which is again followed by a steady-state
process and once again a chaotic process.

The settling time in these experiments reached 500rh.
In the experiments mentioned above,150 when liquid

helium filled a larger rectangular chamber, "fine structure"
as a function of E was also observed 'in the distribution of
steady-state, periodic, and aperiodic regimes.

Experiments with air154 showed that if the ratio of the
horizontal dimensions of a rectangular chamber lies in the
range from 0.5 to 1, then phase turbulence associated with
gliding of dislocations is possible. This process arises for val-
ues of A which approximately correspond to the threshold of
the skewed varicose instability (see Sec. 6.3.1), which plays
an important role in the disordering of the pattern.

It is natural to suppose that the intricate and clearly
nonvariational dynamics, observed in many cases for small
and moderate values of P, is related to the presence of large-
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scale flow (see Sec. 3.2.2). Manneville155 attempted to mod-
el numerically the phase turbulence in a rectangular reser-
voir with horizontal dimensions of 15.9h X 11.5h, starting
from Eqs. (3.21 )-(3.23), which take into account the z-in-
dependent average drift (which corresponds to a layer with
free horizontal boundaries). In his calculations the steady
state was reached, but, if P was sufficiently small ( = 1.6), a
prolonged settling process, which can be interpreted as a
process of transition to turbulence, was observed. The aver-
age flow creates local compression of the roll structure and
necks appear; the necks engender dislocations, which in turn
climb; and, the rolls become deformed. This sequence of
events is reminiscent of the experimentally observed se-
quence and can be repeated many times. An important fea-
ture of the process is, in my opinion, that the average flow
(whose structure depends on the overall geometry of the
flow, in particular, on the shape and dimensions of the region
of flow) is inconsistent with the local curvature of the rolls
(and, therefore, with the phase diffusion velocity). The un-
balanced nature of phase diffusion and transfer of the rolls
by the average flow results in "dynamic breaking" (frustra-
tion)—topological changes—of the roll structure and, ulti-
mately, it makes the dynamics nonrelaxational.

The results of numerical modeling of flows in a circular
chamber47 on the basis of the model (3.28) and (3.30)-
(3.34) wuth a = b = 0 and с = a correspond closely to the
behavior of defects observed in the experiments of Refs. 131
and 153. The calculations revealed chaotic regimes for both
circular and rectangular regions.

Pocheau156 constructed an explicit analytical solution
of the Cross-Newell equations (3.60)-(3.62) for the field of
the phase and average flow in a circular region, using an
expansion in the small parameter related to the curvature of
the rolls. In the process, for P = 0.7 a steady-state pattern of
curved rolls and instability of this pattern under supercriti-
cal conditions, when the highest local wave number lies out-
side the stability band for straight rolls, were reproduced.
This occurs when the average flow, directed in the region of
greatest curvature of the rolls (at the sidewalls) toward the
foci, and from the foci toward the center of the reservoir
(Fig. 8b), becomes sufficiently intense. In the process, in the
central part the rolls become appreciably compressed.

It was later shown157 both experimentally and theoreti-
cally (by solving the Cross-Newell equations) that flow sta-
bilization is possible if the sidewalls of the chamber are per-
meable to the average flow. If the circular reservoir is
surrounded by an annular region, where there exists a large-
scale flow but there is no convection, then the average flow
distributed over a larger area will no longer compress the
rolls at the center of the reservoir as strongly. As a result,
steady states become unattainable only for e = 1.2 and phase
turbulence is observed only for E = 1.5. In the experiment
convection in the outer annular region was suppressed by a
thin horizontal annular plate, which divided the layer into
two convectively stable sublayers.

We shall now summarize. For the cases of small and
moderate values of P the character of convection cannot be
determined by a universal method starting only from the
numbers R and P. The corresponding part of the diagram in
Fig. 11 illustrates only the roughest features of the exchange
of regimes. The detailed description must be very specific—
for a reservoir with given dimensions and shape.

The fact that the stability of convection depends on the
overall geometry of the flow will also be clear from the dis-
cussion of the question of the wave numbers of convective
rolls (Sec. 6.5). Threshold turbulence is associated with the
motion of defects. The degree to which the flow can be rear-
ranged and the possibility of achieving the optimal wave
number depend on the presence of defects.

6. SELECTION OF WAVE NUMBERS OF CONVECTIVE ROLLS

Even if the formulation of the problem or the conditions
of a proposed experiment make it possible to predict the rela-
tive planforms of convective cells, the question of the scale of
the realized flow, which can be characterized by the width of
a roll, the radius of a polygonal cell, etc., nonetheless re-
mains open. In the literature this subject is referred to as
selection of wave numbers (or wavelengths).

Here we shall discuss this problem for the simplest
case—when rolls are the main form of the convective flow.
Even in this variant the problem has by no means been
solved, though in the last decade many papers have been
devoted to it. Dissimilar and at first glance sometimes con-
tradictory results have made the term "selection of wave
numbers" itself less meaningful.

As a rule, spontaneously developing roll convection
demonstrates some distribution f ( k ) of the local wave
numbers, which has a more or less wide peak for some value
of k (Refs. 75, 151, and others), indicating the existence of a
preferred optimal scale (see Fig. 12). The expression "selec-
tion of scales" is associated precisely with such a preferred
scale.

As will become clear from the examples presented be-
low, however, this scale preference can be manifested to a

0,4 0,6 0,8

FIG. 12. Distribution functions of local wave numbers for different values
of E (experiment; P= 2.5 (Ref. 151)). The intervals of wave numbers in
which uniform roll structures are stable according to the linear theory are
designated and the types of instabilities arising at the boundaries of these
intervals are indicated (see Sec. 6.3.1).
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different degree. In particular, cases are possible when the
function/(/c) is delta-function-like and there exists essen-
tially only a single wave number. We shall call it the final
(having in mind the final result of the temporal evolution)
or realized wave number. Since the selection of this wave
number appears to be completely unique, it is tempting to
talk about selection precisely on the basis of data on such
situations and to call them the "mechanisms of selection"
and the realized wave number the "selected" wave number.

On the other hand, as we shall see, even for identical
values of the parameters R and P of the regime, the single
value of k that is realized depends on the history of the flow
(and ultimately on the initial conditions), to say nothing of
many other factors, which in the simplest cases reduce to
boundary conditions. The discrepancy between the wave
numbers which are achieved in different cases is often re-
garded as a basis for the assertion that not only does there
not exist a universal principle of selection of wave numbers
but there is also no universal principle for unique (for fixed
R and P) selection of the spatial scale. There also arises the
question of whether or not it is reasonable to term selection
(or mechanism of selection) any act of realization of flow
with a definite wave number, if the "separation" of this num-
ber is limited, possibly, to only the given case.

We shall adhere to a general viewpoint that makes it
possible to represent the existing results in the form of a
consistent integral picture of the phenomena.

We shall assume at the outset that there exists an opti-
mal (preferred) wave number kp = kp(R,P), which is an
internal characteristic of roll convection in an infinite hori-
zontal layer and to which definite dynamical selective factors
tend to drive the flow. This tendency (which we shall term
selection) can to a greater or lesser extent be suppressed by
other (antiselective) factors, associated with the overall ge-
ometry of the flow, in particular, with the initial degree of
ordering of the flow, the presence of sidewalls, etc. As a re-
sult the selection process stops at some particular stage of
evolution from the initial state and the final (realized) wave
number can to a greater or lesser degree differ from the pre-
ferred wave number. Artificially introduced ordering is ca-
pable of making the flow highly stable against the action of
selective factors—as a result the difference between the real-
ized and preferred wave numbers can be large. When con-
vection develops from noisy initial disturbances there are
usually no such powerful anti-selective factors, and the peak
of the distribution f ( k ) corresponds to kp.

6.1. Wave numbers in experiments with random initial
disturbances

We saw that for sufficiently large values of P stationary
roll convection is observed right up to R ̂  IQRC. Roll flows
which are not in a completely steady state can also be ob-
served for larger supercritical Rayleigh numbers (for exam-
ple, in Ref. 139 even with P= 2.5 the flow was primarily
two-dimensional up to 4Q/?C). In a quite wide range of values
of the parameters flows with phase turbulence are quasi-
steady state with respect to the characteristic turnover time
of the liquid in the rolls. Defects destroy two-dimensionality
only locally. The larger the value of R, the greater is the
natural spread of the values of the local wave numbers,
which is measured by the width of the peak of the distribu-
tion f ( k ) ; see Fig. 12.

0,70 0,8u 0,90 , 1,00
k/kc

FIG. 13. The average values of the wave number of steady-state roll struc-
tures for different values of e (experiment; P=2.5 (Ref. 51)). The
threshold curves for different types of instabilities are shown (see Sec.
6.3.1).

Numerous experiments have established that there is a
general regularity in the behavior of the average wave num-
ber of roll convection. (Without distinguishing here between
this average value of k and the position of the maximum of
f ( k ) close to it, we shall term both wave numbers the ob-
served preferred wave number kp.) This value of kp de-
creases as R increases (Refs. 72, 74, 75, 139, 15, 131, 151,
and others), and this is also true for experiments in which
annular axisymmetric rolls have been observed (Refs. 158
and 137; see also the review of Ref. 159). An example of such
behavior of kp is presented in Fig. 13. Experiments per-
formed with different liquids under similar conditions have
shown that the degree to which kp varies as a function of R
decreases as P increases, and in addition for sufficiently large
values of P the dependence kp (R) exhibits hysteresis.72'74 In
Ref. 139 (P = 2.5) it was noted that kp was almost constant
in the range 6 5 e 5 40 (for larger values ofR the two-dimen-
sionality was lost).

Attempts to describe theoretically the behavior of wave
numbers of convection in an infinite layer have led, for a long
time, to a result that contradicts experiment: k increased
with R. This is also true for the value of k at which heat
transfer through the layer is maximum (and which should
be realized according to the so-called Malkus principle) and
for the values of k which correspond to extrema of some
other characteristics—see Sec. 6.2. The same effect has also
been obtained in two-dimensional numerical modeling.63

Relative agreement with experiment was achieved on the
basis of a three-dimensional model. For this reason, the au-
thors concluded that purely two-dimensional processes can-
not lead to a preferred wave number. In their opinion,
steady-state two-dimensional flow is formed after a three-
dimensional transitional process, which affects the final
wave number. It has also been stated that kp decreases with
increasing R because of secondary factors—the presence of
side walls (in a bounded volume the condition of maximum
heat transfer gives a qualitatively correct behavior of k;160

the role of the side walls is further discussed in Sec. 6.5.1) or
nonideal thermal conductivity of the plates bounding the
layer at the top (according to Ref. 161, in this case &c de-
creases; however, in experiments with plates having very
good conductivity kp nonetheless decreased with increasing
R (Ref. 158)).

The question of the factors which affect the wave
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numbers of two-dimensional rolls will be discussed in detail
in subsequent sections. For the time being we note only that
k decreasing with increasing R can be obtained in a purely
two-dimensional numerical experiment, modeling the con-
ditions of an infinite layer with boundaries having ideal ther-
mal conductivity, if the condition of spatial periodicity of the
flow, which is usually used in the practice of numerical mod-
eling, is removed (Refs. 162 and 60; see Sec. 6.5.2).

6.2. Searches for universal selection criteria

The idea that there exist preferred forms and scales of
convection is itself recent. Searches for a general principle
that would make it possible to distinguish such forms and
scales have apparently been conducted starting with the
work of Malkus.163 It makes sense to summarize everything
done to implement this idea, which recently has been often
undeservedly criticized.

Malkus' principle was suggested on an intuitive basis.
According to this principle, flows for which convective heat
transfer is maximum should be realized. Later, an attempt
was made21 to relate this principle to the stability of the
steady-state solutions of the equations.

To this day, however, many cases have been found when
predictions made based on Malkus' principle disagree with
experiment or accurate theoretical investigations of stabil-
ity. First of all, for two-dimensional roll flows the wave num-
ber for which heat transfer is maximum increases with in-
creasing R (see, for example, Refs. 164 and 23) while the
opposite behavior is observed experimentally. (It is true that
Davis160 indicated that in a bounded reservoir, in contrast to
an infinite layer, the wave number selected according to
Malkus' principle should still decrease with increasing R; in
Sec. 6.5 we shall see that the decrease of A: with increasing R
is not necessarily caused by the effect of the side walls.) The
fact that the readability of a flow is not directly related with
the condition of maximum heat transfer is indicated by nu-
merical experiments.165 Further, among the cells of several
possible planforms, the greatest heat transfer is obtained
with square cells,21'103 which are unstable under the condi-
tions of the standard problem. The motion of dislocations in
the experiment demonstrates changes of the wave number
such that the heat transfer decreases.166 Finally, for a non-
linear temperature dependence p ( T ) there exists an interval
of Rayleigh numbers where the rolls are unstable, but they
transfer more heat than stable hexagons.22'94

Busse98 formulated an extremal principle, according to
which for small supercritical reduced Rayleigh numbers,
among the stationary solutions with different planforms and
fixed k = /cc the stable ones are those that minimize some
functional. Under certain conditions this principle is equiva-
lent to Malkus' principle, as well as the requirement that the
kinetic energy of convection be maximum. (In this ap-
proach, however, there is no preferred wave number.)

The maximum kinetic energy as also the maximum heat
transfer, generally speaking, also do not agree with the ob-
served values of kp.

23 This is also true for the maximum
decrease of the potential energy in the layer of convecting
liquid as compared with the static value,23 the maximum of
the rate of growth of disturbances which is found from the
linear theory,10 and for a number of other characteristics of
convection.16"' The author of the last paper concluded that
the /c-dependence of the determinant of the second variation

of the mean-square time derivative of the average tempera-
ture gives a much better result. The determinant is found by
solving the so-called mean-field equations. We note that the
method used to solve the problem has some flaws.

The thermodynamic approach based on the application
of the principle of maximum production of entropy168

makes it possible to investigate stability in concrete situa-
tions. The stability criterion obtained as a result does not, by
itself, single out a unique preferred wave number within
some interval of stability (see Sec. 6.3). But the stability
functional ф has in this interval a single maximum, which
shifts in the direction of smaller values of k as R increases.167

This shift, however, is much more rapid than that of the
experimentally observed value of kp. In Ref. 167 the require-
ment

, = о (6.1)

is proposed on the basis of general considerations as a selec-
tion criterion. Together with an equation for ф it determines
the dependence kp (R), if the initial conditions—the values
of kp and dkp/dR atR = Rc—are given. It is understanda-
ble that kp (Rc) = kc. The author uses experimental data to
determine k'c(Rc). The obtained dependences agree satis-
factorily with the specific experiments for which the corre-
sponding values of k 'p (Rc) were found.

The possibility of finding a preferred wave number with
the help of Lyapunov's functional for the equations describ-
ing convection will be discussed in Sec. 6.4 and subsequent
sections.

6.3. Stability of two-dimensional roll flows

As noted in the introduction, a widely used approach to
solving the selection problem involves the investigation of
the stability of steady-state flows. The greatest attention has
been focused on the question of the stability of two-dimen-
sional spatially periodic systems of rolls.

6.3.1. Theoretical results. This direction was initiated
by Schliiter, Lortz, and Busse25 (see Sec. 3.2.1 and Sec. 4.1),
whose work was based on the expansion of the undisturbed
flow in terms of small amplitudes (supercritical reduced
Rayleigh numbers) and investigation of the stability of the
obtained solutions against small perturbations in the linear
approximation. The authors showed that all three-dimen-
sional flows are unstable (the problem is formulated in the
standard manner). For two-dimensional flows, however, it
was found that irrespective of the value of P and the bound-
ary conditions on the horizontal surfaces, rolls with k < kc

are unstable and rolls are stable in some interval
kc <k<k{(e). The subsequently published stability dia-
grams (see Fig. 15 below) agree with the result for k<kc

only for P = oo. The reason for this disagreement became
understandable after the role of the vertical component of
vorticity for finite values of P was elucidated in Refs. 33 and
34 (see below). In Ref. 25 this component was eliminated by
assumptions, introduced there, about the structure of the
flow, and in later papers it was taken into account.

A detailed study of the linear stability of roll flows was
performed for a wide range of supercritical Rayleigh
numbers in a series of papers by Busse et a/.164'169-176 д
steady-state unperturbed spatially periodic flow was calcu-
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lated from the complete nonlinear equations Eqs. (2.9)-
(2.11) by Galerkin's method and had the form

(6.2)

with corresponding expressions for vx and в). Here <pv(z)
(v = 1, 2, ...) form a complete system of orthonormalized
functions, satisfying the boundary conditions for vz. Small
three-dimensional perturbations of the form

(6.3 )

(with corresponding expressions for v's, v'y, and в ' ) were su-
perposed on this two-dimensional flow. Linearization of the
starting equations with respect to the perturbations leads to
an eigenvalue problem for the growth rate a. A detailed de-
scription of the procedure of investigation is given in Ref.
170.

Some characteristic modes of instability of rolls have
already been mentioned above. Some idea of these modes
will be needed in what follows also. It makes sense to enu-
merate them with an indication of the range of Prandtl
numbers where they can appear (we are now talking about a
layer with rigid boundaries; a more detailed summary of the
properties of these modes is given in Ref. 173).

1. Zig-zag (ZZ): a = О, Я + v is even, BAv = 0, and
PS 2. Results in sinusoidal curving of the rolls.

2) Cross-roll (CR): a = О, Я + v is odd, CXv = 0, and
PS 1.1. Forms a system of rolls perpendicular to the initial
rolls.

3) Skewed varicose (SV): a/b is finite, Я + v is even,
P S 30. Roll deformation caused by it is shown schematically
in Fig. 14.

4) Knot (K): a supplementary branch of the CR insta-
bility with maximum a for relatively small b; 1.1 SI P Si 10.

5) Eckhaus (E): b = О, Я + v is even, Ся„ = О, and
PS 1. This is the only mode that does not destroy the two-
dimensionality of the flow; it leads to compression and ex-
tension, alternating along the x-axis, of groups of rolls.

6) (Even) oscillatory (EO): a = О, Я +v is even,
B^v = 0, PS 2.5. It corresponds to sinusoidal wavy distur-
bances, traveling along the rolls.

7) (Oscillatory) two-blob instability (BO2): a = 0,
Я + v is odd, CAv =0, and 2 5 PS 8. The transverse section

105 r-

R

10*

7Z-0,71 E -0,1

FIG. 14. Deformation of rolls as a result of the skewed varicose instability
(solid and dashed lines correspond to the boundaries of the rolls along
which upward and downward motions occur).

FIG. 15. Regions of stability of infinite spatially periodic systems of rolls
(in the k, R plane)—"Busse balloons"—for.P= oo (filled with dots),164

P=l (horizontal hatching),172 /> = 0.71 (oblique hatching),171 and
P=0.l (vertical hatching).171 The boundaries of the regions are formed
by segments of the threshold curves of different types of instabilities,
which are designated by letters with an indication of the values of P.

of a roll contains two spots of high temperature, which are
located in diametrically opposite parts of the cross section,
and two spots with low temperature, which are located anal-
ogously.

8) (Oscillatory) one-blob instability (BE1): a = 0,
Я + v is even, Сл„ = 0, 7 SPS 12. The transverse cross sec-
tion of a roll contains one spot of high temperature and one
spot of low temperature. They are located at diametrically
opposite parts of the cross section.

Some results of the investigation of stability for the case
of rigid boundaries are summarized in Fig. 15. Curves are
constructed in the (k, R) plane for each chosen value of the
Prandtl number. Each curve corresponds to the threshold of
instability (Re a = 0) of a definite mode; the region of stable
flows (where all Re a < 0), sometimes called the "Busse bal-
loon," delimited by such curves is shown.

The main forms of instability for large values of P and
the important instabilities for moderate values of P are the
ZZ instability, which results in an effective decrease of the
characteristic scale of the flow and thus raises the long-
wavelength boundary of the region of stability, and the CR
instability, which can both increase and decrease the charac-
teristic scale.164'172 According to the experimental data of
Ref. I l l (see below), for moderate values of R the develop-
ment of the CR instability results in replacement of the start-
ing rolls by new rolls, oriented in the transverse direction. If,
however, R £ ЮЛС, the cross rolls develop primarily in the
temperature boundary layers, created by the main flow, and
correspondingly have smaller horizontal dimensions. Ulti-
mately a three-dimensional flow—a superposition of the
main and cross rolls (bimodal convection)—is established.
The stability of stationary bimodal convection against infini-
tesimal perturbations was investigated in Ref. 103.

For intermediate values of P the knot instability can
come into play.171'172 In Ref. 177 the behavior of established

760 Sov. Phys. Usp. 34 (9), September 1991 A. V. Gelling 760



rolls with secondary flow engendered by the knot mode and
the characteristic oscillatory instabilities of such a superpo-
sition were investigated in detail by means of a numerical
experiment. If R is sufficiently large, then the development
of the knot mode results in the formation of concentrated
ascending and descending flows. After this mode is com-
pletely developed it forms a characteristic oscillating spoke
pattern, in which large polygonal cells are observed (the for-
mation of such a structure, observed experimentally in Ref.
17, was initially termed a collective instability).

For moderate values of P the existence of a small seg-
ment of the boundary of the region of stability (in its top
part, near the intersection of the neutral curves for CR and
knot modes), which is governed by the action of the BE1
(for large values of P) or (and) BO2 (for small values of P)
instability, is also characteristic.173 In particular, both
modes are present in the case P = 7; they are not designated
in Fig. 15 only because the corresponding diagram was not
given in the original paper.

For moderate and small values of P the short-wave-
length boundary of the region of stability is determined by
the SV mode,'7' •'72 which is observed experimentally'72 and
increases the characteristic scale of the flow.

Finally, for PS 1 one boundary of the region of stability
is the neutral curve of the EO mode.170 We note that the
analytical investigation of the stability of rolls in the limit
P—0 for a layer with free boundaries'69 gives the threshold
value of the Rayleigh number for the EO instability
R: =Rc(l +0.3IP2) (it was calculated for k = kc). This
means that the interval of values of R where rolls are stable
vanishes in this limit—in contrast to the case of rigid boun-
daries, when it is finite. The reason for this difference lies in
the fact that the EO mode is related to the appearance of a
vertical component of vorticity, absent in the unperturbed
roll flow. In the case of free boundaries in the limit 6 — 0 an
undamped perturbation with uniform vertical vorticity
along the layer (rotation of the layer as a whole) can exist.
The critical Rayleigh number for the oscillations corre-
sponds to such a perturbation. For rigid boundaries vertical
vorticity which is constant as a function of z is forbidden by
the boundary conditions, and the critical value of R is
reached for a finite value of b. The oscillatory instability is
further studied in Ref. 174.

The results, obtained up to 1980, of investigations of the
stability of two-dimensional rolls are also reviewed by
Busse.22-23

For the case of free boundaries the intervals of values of
the parameters where stable roll flow is possible are appre-
ciably narrower. An investigation, performed analytically
for small supercritical reduced Rayleigh numbers175 and nu-
merically for a wide range of supercritical Rayleigh
numbers,176 showed that for P < 1 the band of wave numbers
of stable rolls is very narrow (for example, for P = 0.71 it
does not exceed 0.0065 for any value of R). The long-wave-
length boundary of the region of stability is determined in
this case by the oscillatory skewed varicose instability (which
is not observed in the case of rigid boundaries) while the
short-wavelength boundary is determined by the standard
(monotonic) SV instability. For P<PC = 0.543 stable flow
is completely impossible. We note (this will be important in
what follows) that the interval of wave numbers where the
rolls are stable against the Eckhaus instability, is nonetheless

quite wide for any value of P. For P = oo the boundaries of
the Busse balloon, which are determined in this case by the
CR instability, were found in Ref. 211.

Two important conclusions can be drawn from the re-
sults described here.

First, if the case just mentioned (free boundaries,
P< P c ) is excluded, then in some range of Rayleigh numbers
there always exists an interval of wave numbers which corre-
sponds to stable two-dimensional roll flows. For not too
small values of P, this interval is quite wide (and in addition,
the shrinking of this interval as P decreases is always related
to the three-dimensional instabilities). Thus all flows with
wave numbers lying in the interval of stability appear to be
equally realizable. From what follows it will become clear
that this is not so.

Second, if the flow is artificially restructured, this re-
structuring is most often governed by three-dimensional
processes, since k for the flow lies outside the region of stabil-
ity. This engendered the widespread belief (supported by
numerical experiments63) that two-dimensional deforma-
tions are an ineffective means for changing k (in particular,
the experimentally observed decrease of k with increasing
R). We shall demonstrate below the error of this point of
view.

We now note some results of investigations of the stabil-
ity of rolls by other methods.

In Ref. 44 such an investigation was undertaken on the
basis of model equations in order to choose a model that
would best reproduce the properties of stability that were
found by solving the Boussinesq equations. The authors
studied two classes of models—a generalization of the SH
equation (3.28) and the Herzberg-SivashinskiT equation
Eq. (3.29). Since the vertical component of the vorticity
plays a fundamental role in the development of some insta-
bilities (in particular, the SV instability), the authors in-
cluded in the equation a term which is governed by it and
describes drift, and in a number of cases they also introduced
a special filtering procedure which suppresses the short-
wavelength instabilities (for example, the CR instability).
The model (3.29) with d = 3, to which drift and filtering
were added, gave the best qualitative agreement with a rigor-
ous theory.

In the language of the theory of phase dynam-
ics29,4i,49.52.53,2io (seeSec 3 2.2) the Eckhaus instability cor-
responds to the case D\\ <0, and the ZZ instability in the
absence of average drift corresponds to the case D± < 0. The
average drift, of course, affects the stability of the
rolls.33'34'175'176'210 The ZZ instability is strongly suppressed
by it for small values of P (in this case it occurs if D *f < 0).
Conversely, drift has a destabilizing effect on the SV mode.
Analysis based on Eqs. (3.63) and (3.64) showed210 that in
the case when the SV instability develops the average drift
creates positive feedback: Caused by deformation of the
rolls, the drift intensifies the deformation, creates necks, and
ultimately can cause reconnection of the lines of constant
phase and creation of pairs of dislocations. For this reason,
the SV instability plays an important role in the appearance
of phase turbulence (see Sec. 5). The boundaries of the
Busse balloon and the threshold boundaries for the Eckhaus,
ZZ, and SV instabilities are reproduced very well with the
help of the indicated equations,210 and in addition explicit
expressions can be obtained for the growth rates and the
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form of the most dangerous disturbances.
It is by no means always possible to describe in terms of

the theory of stability the results of numerical modeling of
flows, though in the main theory and the model calculations
do agree with one another. We note only that in two-dimen-
sional calculations with conditions of periodicity on the side
boundaries of the region of computation with both free61

and rigid62 horizontal boundaries the band of wave numbers
of stable flows is very wide (as in the case of the Eckhaus
mode) and almost fills the entire region of linear instability
of the immobile liquid. If, however, the side walls are rigid,
then the stability band shrinks57 (see Sec. 6.5.1). Of the
three-dimensional numerical experiments performed in or-
der to investigate the stability of rolls, we call attention to
Ref. 212 (P = oo, free boundaries, small aspect ratios of the
region of computation), where the results are compared
with the results of Refs. 176 and 211.

6.3.2. Experimental results. The same question was
studied experimentally—by observing the artifically created
rolls with fixed width—in parallel with theoretical investiga-
tions of the stability of two-dimensional roll flows.

It is interesting that in the first investigation of this se-
ries, performed by Chen and Whitehead16 almost simulta-
neously with Busse's calculations,164 there were noted fea-
tures of the phenomena which for a long time were not
mentioned in discussions: The fact that these features could
not be directly associated with the theoretical predictions of
instabilities apparently played a role. Chen and Whitehead,
using the technique of controlled initial conditions (see Sec.
3.1), investigated the behavior of rolls with different initial
widths. Circular reservoirs with Г = 10-16, liquids with
P~ 103 (silicone oils), and the method of shadow visualiza-
tion were employed. It was found that in the range of Ray-
leigh numbers studied Rc <Л<2.5ЛС the region where the
rolls are stable against three-dimensional perturbations is
clearly delimited in the (k, R) plane, and in addition on the
short-wavelength side it is bounded by the threshold of the
CR instability while on the long-wavelength side it is bound-
ed by the ZZ instability. In this sense the results agree with
Ref. 164. But within this region the rolls by no means always
remained unchanged. Their width, generally speaking,
changed, approaching some optimal value close to 1.1 h. The
process of such restructuring is primarily two-dimensional
and is possible because of the fact that at the side walls, near
focus singularities (see Fig. 8b), new rolls appear or old rolls
vanish. The characteristic restructuring time is equal to tens
of hours, which is 100 times longer than rv and is compara-
ble to rh. The interval of roll widths (or wave numbers)
where significant changes of the rolls are not observed, is
much narrower than the interval where the rolls are not sub-
jected to three-dimensional restructurings. Conversely, in
the regions of three-dimensional instability changes of the
roll width are accompanied by development of three-dimen-
sional modes.

Thus two-dimensional restructuring of the rolls in this
case appears to be a more general property than the three-
dimensional instability and a more universal mechanism for
achieving an optimal scale.

Later experiments with controlled initial conditions
were performed in order to check directly the theoretical
results obtained by Busse and Clever (see Sec. 6.2.1). Rec-
tangular reservoirs were employed. Experiments with sili-

cone oil with P~102 and jRc <R <6-l04~35Rc are de-
scribed in Ref. 111. In Ref. 141 experiments with silicone oil
with P = 16 and water at 70 °C (P = 2.74) as well as a wide
range of Rayleigh numbers covering the region of existence
of stable flows are described. Depending on R and the artifi-
cially set value of k, either stable regimes (without explicit
restructuring of the roll structure) or development of insta-
bilities of some particular type, which in most cases can be
identified with the theoretically predicted instabilities, were
observed. In Ref. 111 the distribution of points, representing
the experimental regimes, in the (k, R) plane showed satis-
factory agreement with the computed diagram of stability164

forP= oo (see Fig. 15). In Ref. 141 the regions of stability
were appreciably deformed and displaced toward smaller
values of k compared with those calculated for the corre-
sponding values of P (especially for P = 2.74). The authors
attribute this discrepancy to the finite thermal conductivity
of the top and bottom surfaces of the layer. The characteris-
tic dimensions of the region of stability, even in the latter
case, nonetheless do not differ very much from the theoreti-
cal dimensions, so that the theory can be considered to be
qualitatively confirmed.

An important circumstance should, however, be kept in
mind.9' In contrast to Ref. 16, in Refs. I l l and 141 the
conclusion that the rolls are stable was based on the passage
of a comparatively short period of time from the moment at
which free evolution of the flow started (i.e., the "forcing"
lamp was switched off). This time interval exceeded rv by
only a factor of two or, at the most, by several fold, and it was
vanishingly small compared with /h. This means that in
those cases when the authors thought the regime to be stable,
generally speaking, the possibility of slow quasi-two-dimen-
sional restructuring of the rolls along their width with a ten-
dency toward some optimal final wave number—a process
observed in Ref. 16—was not excluded. We shall see below
(see Sec. 6.5.4) that under some conditions this process can
proceed rapidly.

Busse and Clever172 also performed an experiment with
controlled initial conditions in order to check the conditions
under which the knot and SV instabilities, predicted in the
same work, arise. In Refs. 17,141, and 140 the stability of an
artificially generated bimodal flow was also investigated.
Further experimental investigations of the stability of rolls
in a reservoir with a moderate value of Г are described in
Ref. 179; these experiments agree qualitatively with the the-
ory.

In Ref. 178 the reaction of a roll structure to artificially
induced Eckhaus and ZZ disturbances was studied experi-
mentally and compared with the theory of phase dynamics.

6.4. Lyapunov functional and selection

The fact that the dynamics of a convecting liquid, gen-
erally speaking, is nonvariational is already evident from the
possibility of low-frequency turbulence, associated with the
motion of defects (Sec. 5). In particular, the monotonic de-
crease of the potential is incompatible with the possible cy-
clical nature of the restructuring of the pattern.

There are situations when potential dynamics can none-
theless be expected. For a chamber of finite dimensions this
happens, for example, if P— oo or if the flow is two-dimen-
sional, and the conditions of applicability of the NWS equa-
tions are satisfied.

762 Sov. Phys. Usp. 34 (9), September 1991 A. V. Getling 762



For spatially periodic flows in an infinite region the in-
tegral representing the Lyapunov functional diverges. Some-
times a potential calculated for an integer number of spatial
periods and rescaled to unit length in the direction x of the
wave vector (and, of course, per unit length in the direction
y) is studied. We shall call it the specific potential. In an
infinite region, to an arbitrarily small change of the wave
vector there corresponds a finite variation of the periodic
function (flow velocity). For this reason it is obvious that
there cannot be an analogy between variation of the func-
tional of a finite system associated with a small variation of
the velocity field and variation of the specific potential of an
infinite system associated with a small change of the wave
number.

According to the calculation of Pomeau and Manne-
ville41 for the SH model (3.26), the specific potential has a
minimum at the edge of the band of wave numbers which
corresponds to stable spatially periodic roll flows. The wave
number kf at which this minimum is reached and which the
authors have termed optimal decreases slightly as £ in-
creases, and in addition its departure from the critical wave
number kc is proportional to e2.

It is clear from what has been said above that the pres-
ence of such a minimum does not mean that the roll struc-
ture must necessarily be restructured from a nonoptimal to
an optimal wave number, and it does not contradict the fact
that flows with arbitrary wave numbers falling within the
band mentioned are stable.

A completely analogous situation arises when deter-
mining the "optimal" value of the angle a made by the rolls
and the normal to the side wall (Ref. 133; see Sec. 4.2).
Although the minimum of the potential falls at a = aopt =^0,
a linear stability analysis of the rolls shows that they are
stable at a = 0. Since a semi-infinite region was studied, for
an arbitrarily small change in a the variation of the function
describing the roll structure at a quite large distance from
the wall is found to be finite.

With accuracy up to corrections of highest order in E
the optimal value of kF in the SH model corresponds to the
value of /czz at which the transverse diffusion coefficient D
of the phase vanishes (see Sec. 3.2.2) or, in other words, it
corresponds to the threshold of ZZ instability.41

In a number of cases (though not in all cases), which
will be studied in the subsequent sections, the wave numbers
realized in potential systems coincide with kF.

In Ref. 46 an attempt was made to use the Lyapunov
functional to investigate the comparative stability of differ-
ent (not too complicated) textures.

The behavior of the Lyapunov functional, calculated
from the formula (3.39) of the SH model for experimentally
observed evolving textures, was studied.'5'''80 More precise-
ly, the calculations were performed using the formulas
found in Ref. 46 for contributions made by different compo-
nents of the texture to the functional. Although in this exper-
iment the Prandtl number was comparatively small
(P = 2.5), in the range of supercritical reduced Rayleigh
numbers 0 < e < 3 the functional either decreased monotoni-
cally or exhibited small brief increases, associated primarily
with the appearance of new defects, against the background
of an overall decreasing trend. For larger values of e the
nonrelaxational character of the behavior became more ob-
vious. For very small values of £ the temporal changes of the

functional are very slow and they are difficult to study. In
the established regimes the values of the Lyapunov func-
tional have a spread of about 25%; this reflects the fact that
the possible stationary textures in the case of sufficiently
large aspect ratios are not unique.

6.5. Selection in a system of straight parallel rolls

We saw in Sec. 6.3 that spatially periodic two-dimen-
sional roll flow in an infinite layer can be stable if its wave
number k lies in a more or less wide interval of values. With-
in this interval each k can be realized with equal success, if
only the corresponding spatial periodicity is prescribed ini-
tially. (Formally, following a widespread tendency (see the
beginning of Sec. 6), any of these values of A: can be said to be
"selected," though the absurdity of this word usage is ob-
vious. )

The situation is approximately the same in the experi-
ments of Refs. I l l and 141 with controlled initial condi-
tions, though there rolls with prescribed k filled only a re-
gion of finite size—the experimental chamber. At least this is
the case if the possibility of restructuring over times longer
than the time of the experiment (of the type which were
observed in Ref. 16) is neglected.

Restructuring of rolls over their width without topolog-
ical changes and significant breakdown of two-dimensional-
ity, when they tend toward a preferred wave number, is
termed elastic relaxation. Such relaxation has not been ob-
served under the conditions mentioned. We shall now dis-
cuss some other situations.

6.5.1. Effect of the side walls. Cross etal.21 investigated,
with the help of the amplitude equations, the stationary re-
gimes of two-dimensional convection with small supercriti-
cal Rayleigh number E = (R — Rc )/18т72 in a bounded
chamber with free horizontal surfaces and large aspect ratio
(here Rc is the value of R for an infinite layer). The purpose
of the work was to analyze the possibility of flows with dif-
ferent wave numbers k (different q = k — kc). In an infinite
layer such flows can be represented by the "phase-winding"
solutions

A(X) = (1 - (6.4)

of the NWS equation (3.5) for the stationary case. Accord -
ingtoEq. (3.4) this means that — £-l/2<#<£1/2. If, however,
the region is bounded in the x direction (even if it is semi-
infinite), then the phase-winding solutions are impossible
under the condition A = 0 on the sidewalls (see Eq. (3.18)),
but they are possible in the presence of boundary forcing,
which gives near the wall a nonzero value of A of the order of
the small quantity Я. It was found that far from the wall,
where A = O( 1), the band of admissible values of q has a
width of the order of Яг1/2.

In a more realistic case (side walls of finite thickness
and thermal conductivity and thermally insulated on the
outside) it follows from the amplitude equation (derived by
the authors in the next order in E 1/2 compared with the NWS
equation) that A = e'/2. This gives for a semi-infinite region
(with one wall) a band of wave numbers q _ <<?<g+ of
width O(e) and for the finite region — L^x^L a discrete set
of values of q, which lie in the same band (the number of
these values is of the order of eL /IT). The quantities q _ and
q + are proportional to e, and in addition q _ < 0 always and
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the sign of q + depends on P and the thermal conductivity of
the walls.

Thus the contribution of the side walls will decrease the
width of the band of wave numbers of possible steady-state
solutions from O(£l/2) to O(e). Instabilities can make this
band even narrower.

Analogous results were obtained in Ref. 43 from the
model equations—the potential SH equation Eq. (3.26) and
the nonpotential Eq. (3.27)—with the conditions
w = dxw = 0 on the boundaries of the region.

We note that the band q _ <<?<# + does not depend on
the size 2L of the system. In Ref. 27 the impossibility of
passing in the limit directly to the case of an infinite layer is
explained by the fact that as L -» oo the propagation time of
the effect of the walls along the layer increases without
bound. In such a case, however, it is not understandable why
the admissible values of q in the case of a semi-infinite region
are limited to the same band. We shall now present some
arguments showing that in the presence of at least one wall
steady-state solutions with q outside the indicated band are
impossible.

The effect of shrinking of the band is interpreted by
some authors in the sense that the side walls themselves cre-
ate a selective factor. We shall interpret this effect differently
on the basis of the idea of a preferred scale of convection.

We now compare the situations in an infinite layer and
in a bounded region. In the first case the system of rolls
cannot be smoothly restructured by means of expansion or
compression, since a small change of the width of all rolls by
the same amount cannot be obtained as a small perturbation
of the flow. Such a system should become unstable only if the
nonoptimality of the wave number, which will result in de-
struction of the pattern formed—appearance of new or dis-
appearance of existing rolls, is sufficiently large. In the sec-
ond case, adjustment to the optimal wave number does not
necessarily require significant changes in the velocity field:
As the authors themselves point out,27 the boundary layers
at the side walls can give rise to smooth adjustment. Even if it
is impossible to approach the optimum without changing the
number of rolls, the process of appearance or disappearance
of rolls also occurs more easily in the boundary layers, where
the flow velocity is low (this is proved by numerical integra-
tion of the equation of phase diffusion51 ). It is understanda-
ble that if the scale is not optimal, the rolls must become
restructured even in the presence of one wall and the regime
will be a non-steady-state one.

Thus spatial periodicity (high degree of ordering) of
the flow emerges as a powerful antiselective factor. The side
walls do not have a selective effect, but they give rise to a
weaker antiselective effect than in the first case.

The role of boundary layers is evident, in particular,
from the results of Ref. 181, where the formulation of the
problem is analogous to that studied in Ref. 27, but (with
more general boundary conditions) the values of the bound-
ary-forcing parameter A are not small and can reach (9(1)
(in the notation of Ref. 181, O(e l / 2 )) . In the case of strong
forcing the band of wave numbers is wider and its boundaries
can reach the boundaries of the Eckhaus instability.

In connection with the proposed point of view, it is in-
teresting that the numerical modeling of the evolution of
disturbances in a long region, into which 50-80 rolls fit, per-
formed on the basis of Eqs. (3.26) and (3.27) on long time

intervals,42 demonstrates in all cases that a single wave num-
ber is generated. For the potential model of Eq. (3.26) it
minimizes the specific potential and, in addition, it coincides
with the threshold of the zig-zag instability, determined by
the condition DL = 0 (see Sec. 3.2.2). For the nonpotential
model of Eq. (3.27) the realized wave number falls in the
region of instability with respect to zig-zag disturbances,
where DL < 0.

As mentioned above, the evolution of convective flows
involves different characteristic times. Daniels,50 extending
the work performed in Ref. 27, investigated the stability of
phase-winding solutions for a chamber — L<;c<Z, and he
identified among a discrete set of admissible solutions with
q - <<?<# + the stable and unstable solutions. He found that
the final value of k is established by means of elastic relaxa-
tion over a time O(E ~2) that is much longer than the time
O(s ~') over which the amplitude is established. For suffi-
ciently small values of P, k decreases appreciably with e, i.e.,
qualitative agreement with experiment is achieved in spite of
the two-dimensionality of the model.

The results of Refs. 27 and 50 were supplemented by
numerical calculations of the evolution of rolls on the basis
of the NWS equation.182 As in Ref. 50, it was found that the
stable regimes are not unique. This, by the way, does not
eliminate the possibility of obtaining (as in Ref. 42 based on
the model equations) a unique wave number with the help of
an amplitude equation of a higher order approximation than
the NWS equation.

In experiments with controlled initial condi-
tions,'"'141'172 described in Sec. 6.2.2, one would expect
good agreement with Ref. 27, which is not the case in reality.
Aside from the fact that the duration of the experiment may
not have been long enough, it was not excluded that the dis-
crepancy is associated with the strong forcing at the wall: It
is possible that in these experiments the thermal boundary
conditions gave stable ascending flows at the side walls,
which fix the position of the extreme rolls.

In Ref. 183, however, an experiment was performed in
which the narrowing of the band of wave numbers associated
with the presence of the side walls was observed. It is true
that in this case the thermocapillary effect played a signifi-
cant role. The experiments were performed in an annular
channel, imitating an infinite layer; a radial barrier could be
inserted into the channel in order to obtain the case of a finite
reservoir.

This effect was also observed in two-dimensional nu-
merical experiments based on the complete equations.57 At
the initial stage a different number of rolls was produced.
Restructuring usually began near the side walls in the man-
ner of the development of the Eckhaus instability. Over a
time < 12rv the convection wave number was found to fall
within the band of stability predicted in Ref. 173. The
further evolution occurred over times several times longer
and narrowed the band of values of A: by a factor of three.

Thus in laboratory and numerical experiments only fast
processes can be identified with the instabilities found theo-
retically for an infinite layer.

6.5.2. The case of great freedom of elastic relaxation. A
pronounced tendency for a preferred wave number to be sin-
gled out can be observed in the absence of side walls.

Getling162'184'60 performed, on the basis of the complete
system of Boussinesq equations, numerical calculations of
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FIG. 16. The development of convection in an infinite
layer from initial disturbances of the first (a) and sec-
ond (b) type60 (the side boundaries of the figures are
not the boundaries of the region of computation). The
streamlines (isolines of the stream function ф) and the
isotherms are shown. The time is expressed in units of
rv (in contrast to the original paper of Ref. 60).
Р=0.1,Л= 1.5ЛС.
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the evolution of a two-dimensional roll flow in an infinite
layer with free horizontal boundaries. The condition of spa-
tial periodicity was not imposed, and the flow velocity and
temperature were represented by Fourier integrals over x.

Two types of initial conditions were studied. The first
type is illustrated at the top of Fig. 16a. In the process of
evolution the convection encompasses an increasingly wider
region, and in addition the rolls that are formed rapidly enter
a steady-state regime (bottom of Fig. 16a), characterized by
a definite value of the wave number—the computed pre-
ferred wave number kp, determined by R and P. An initial
condition of the second type corresponds to a temperature
perturbation which at the very beginning of the evolution
process generates a set of rolls of given width, which occu-
pies some region of finite (along x) width (Fig. 16b). It is
noteworthy that the wave number of these rolls, regardless
of its value initially, tends to approach the wave number kp

which was obtained in the calculations with the initial condi-
tions of the first type. Figure 16b illustrates this restructur-
ing of the rolls. An important feature of this process is that
the more rolls are produced at the initial stage the slower is
the subsequent restructuring. This confirms the antiselective

role of the ordered spatially periodic structures.
We also note that for sufficiently small values of P the

computed value of kp decreases with R. This corresponds
qualitatively with the experimentally observed behavior (see
Sec. 6.1). As in Ref. 50, the restructuring of the flow with
respect to the wave number is possible within the framework
of the purely two-dimensional geometry.

Thus if convection develops from localized distur-
bances, a preferred wave number can be "generated" very
effectively by means of elastic relaxation of the rolls. Antise-
lective factors are even weaker than in the case when side
walls are present.

6.5.3. Motion of grain boundaries. A finite set of лг-rolls,
which are bordered on both sides, forming two grain boun-
daries, by systems of transverse .y-rolls (Fig. 17), clearly
demonstrates elastic relaxation. If thex-rolls are not optimal
with respect to the wave number, then the length of the y-
rolls easily changes and the j>-rolls do not present any signifi-
cant resistance to restructuring of the;c-rolls. Although such
a flow pattern is, on the whole, three-dimensional, restruc-
turing of the x-rolls is a substantially two-dimensional pro-
cess and the systems of j>-rolls play the role of mobile side
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FIG. 17. Roll pattern with two grain boundaries (according to Ref. 69).

walls, adjusting to the optimal width of the system of x-rolls.
This situation was investigated in Ref. 69 by solving the

model equations—the SH potential equation Eq. (3.26) and
the nonpotential equation Eq. (3.29) with d = 3. The equa-
tions were integrated over time numerically; the condition of
periodicity in x and у was imposed on the boundaries of the
region of computation (Fig. 17). In addition, the apparatus
of amplitude equations, which were derived from the start-
ing model equations, was employed in order to find the
steady states. These states are the same, with good accuracy,
as the states to which the temporal evolution leads.

For both model equations it was found that to each e
there correspond unique values of the wave numbers of the x
and у rolls kx = k s

x and ky = k *, for which a steady state is
possible. If initially kx >ks

x, then thex-rolls expand (and,
correspondingly, they-rolls become shorter), as a result of
which a steady state is reached. For the initial wave number
ky > ks

y new x-rolls appear, i.e., the area occupied by the
nonoptimal _y-rolls decreases. If initially kx > k s

x and
ky > k y, a combination of both processes occurs. In all cases
the final value kx = k s

x is independent of both ky and the
initial value of kx. For the potential model of Eq. (3.26)
ks

x = ky = kF = &zz, where kF is the value of the wave
number that minimizes the specific Lyapunov functional
and kzz is the threshold wave number for the zig-zag insta-
bility. For the nonpotential model Eq. (3.29) (d = 3)
k x Ф k y, and in addition both values are different from kzz,
found in Ref. 44.

Pocheau and Croquette18'185 investigated experimen-
tally the behavior of a system of rolls confined between two
grain boundaries. The experiment was performed with sili-
cone oil, for which P = 70, under controlled initial condi-
tions. The initially induced лг-rolls did not completely fill the
reservoir, and near the side walls, parallel to these rolls, due
to the cross-roll instability, there arose systems of short y-
rolls, separated from the main system by grain boundaries
(see Sec. 4.2). The flow was allowed to settle down for each
value of R, which was changed in small steps. Study of the
sequence of equilibrium stages gave a clear unique (hystere-
sis-free) dependence of the wave number of the main collec-
tion of rolls on R (see the crosses in Fig. 18). As one can see
from the diagram, this wave number in some part of the
range of values of R exhibits a systematic, though small,
deviation from the value of kzz. At the same time, it is prac-
tically identical to the value obtained in the same paper by
studying the conditions of equilibrium of dislocations (see
Sec. 6.7).

2,1163 3,1163 4,1163

FIG. 18. The wave numbers in the experiments with grain boundaries and
dislocations (P= 70)."U85 The solid curve at the bottom is the neutral
curve of stability of the motionless state. The crosses are the average val-
ues of the wave numbers of the central system of x-rolls in an experiment
with grain boundaries; the circles are the wave numbers of structures with
a steady-state dislocation; the squares are the wave numbers obtained by
extrapolating the climb velocity (see Sec. 6.7); the solid straight line is the
dependence k7z (E) according to Refs. 48 and 49; and, the dashed line is
the dependence ka (e) according to Ref. 49 (see Sec. 6.6).

In the presence of only a single grain boundary, separat-
ing two semi-infinite systems of rolls with wave vectors ori-
ented arbitrarily relative to this boundary, it was found,186

at the level of analysis of the amplitude equations, that a
steady state is possible for certain values of the wave
numbers, which depend on the indicated angles and differ
from kc by an amount O(e) (if only these angles are not too
close to one another). In this case the restructuring of the
rolls of each system, generally speaking, is impeded as
strongly as in a homogeneous infinite system. The possibility
that the boundaries reach an equilibrium state is determined
by the interaction of the rolls in the boundary region. (We
note that the applicability of the apparatus of amplitude
equations to the investigation of real grain boundaries is lim-
ited. For defects of this type sharp spatial transitions are
characteristic; this contradicts the idea that the amplitude
changes slowly.)

6.5.4. Elastic relaxation at a contact with disordered
flow. The behavior of rolls, initially induced artificially in
the central part of the reservoir, was also investigated in an
experiment performed by Berdnikov, Getling, and Markov
with ethyl alcohol (P= 16). Thin wires, along which an
electric current was passed for several seconds at the begin-
ning of each experiment, were stretched horizontally
through the chamber. As soon as the induced rolls became
clearly visible, the current was switched off.

In contrast to the experiments of Pocheau and Cro-
quette,18'185 these rolls occupied a comparatively small part
of the reservoir, so that there was enough time for a much
less ordered flow to form on both sides of the rolls even be-
fore the current was switched off. Since along the perimeter
of the chamber there was a gap where the top surface of the
liquid layer was free (see Fig. 3), the orientation of the spon-
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taneously developing rolls could be arbitrary. By means of
their effect on the induced rolls, they gradually destroyed
the latter. For this reason, the induced rolls never settled
down: only a single roll pattern can become established un-
der these conditions at the later stage of evolution—general-
ly speaking, after the induced rolls are demolished. It made
sense to follow the change in their wave number only while
they were still, on the whole, ordered.

Over this comparatively short time (a maximum of sev-
eral minutes; compare with rv ;= 3 min) very significant re-
structuring—elastic relaxation—of the induced rolls none-
theless occurred. Their average wave number, irrespective of
the initial value, approached the value of kp observed in ex-
periments with random initial disturbances75 (on the same
apparatus and with the same working liquid). This process is
basically two-dimensional. Since it occurs over times that
are short compared with ть and the time rh /P of transmis-
sion of the disturbance along the layer due to viscosity, it is
not significantly affected by the side walls (moreover, the
effect of the side walls can be additionally suppressed by the
above-mentioned buffer role of the gap where the surface of
the liquid near the walls is free).

Thus the preferred wave number is manifested as an
internal characteristic of convection for fixed values of R
and P. (We note that it does not correspond to the threshold
of stability with respect to zig-zag disturbances.)

It is interesting that in spite of the presence of disor-
dered flows on both sides of induced (ordered) rolls, these
rolls evolve approximately in the manner described in Refs.
184 and 60, where the liquid outside the zone of the initial
disturbances was assumed to be completely still. Just as in
Refs. 184, 60, 18, and 185, here three-dimensional processes
are not necessary in order to achieve the optimal wave num-
ber of the rolls, which, as usual, decreases as the Rayleigh
number increases.

Remarks for Sees. 6.1, 6.3 and 6.5.2-6.5.4. Comparing
the above results shows that the wave numbers falling in the
stability band of two-dimensional spatially periodic roll
flows are by no means equivalent from the standpoint of
realizability. First, experiments with uncontrolled initial
conditions (Sec. 6.1) show that the average wave numbers of
roll flows, according to their own laws, fall within the region
of stability and fill its bounded part (Fig. 13; see also Fig. 9 in
Ref. 72, Fig. 1 in Ref. 171, where the experimental data of
Ref. 74 are employed, and Fig. 5 in Ref. 75). Second, the
experiments described in Refs. 18, 185, and 11 (see Sees.
6.5.3and6.5.4)andthe calculations of the evolution of flows
in the absence of side walls with initial localization of the
rolls in a bounded strip of the layer184'60 (Sec. 6.5.2) show
that the local wave number can change as a result of elastic
relaxation, even if it initially lies in the region of stability. On
the other hand, it follows from calculations based on model
equations47 that for some values of Г steady states in which
the wave numbers of the central rolls lie beyond the thresh-
old of the skewed varicose instability are possible in some
circular region. Hence there follows the important conclu-
sion that the stability criteria found for an infinite layer can-
not be applied locally to a fragment of the convective struc-
ture, starting from the local wave number of the rolls in this
fragment. Whether or not the local value of k will change
depends on the general geometry of the flow.

6.5.5. Spatial ramp of the parameters. Imagine that the

thickness h of the layer and (or) the temperature difference
Д Tbetween the surfaces of the layer varies along the x coor-
dinate, so that the local Rayleigh number is also some func-
tion R (x ) . In such cases it is said that there exists a (spatial)
ramp of Rayleigh numbers and the parameters determining
it. We shall be interested in ramps such that for some x = xc

the function R(x) passes through a critical value Rc. As-
sume for definiteness that everywhere dR /dx<0, and in ad-
dition the conditions are supercritical in the region x < xc

and subcritical in the region x > xc . We shall also assume
that the supercritical region to the left of some point jc, <xc

is uniform: h — const, АГ= const.
For a sufficiently small slope of the ramp \dR /dx\ it can

be expected that the amplitude of the two-dimensional flow
of the x-roll type, if such a flow exists in the supercritical
region, will gradually decrease with the transition into the
subcritical region. Such a ramp must operate as a "soft side
wall" — in particular, it should give little resistance to elastic
relaxation of the rolls. (Generally speaking, in a system with
a ramp large-scale circulation of the liquid, encompassing
the region with characteristic dimensions of the region of the
ramp, can occur. In the particlar case when the vertical co-
ordinates and the temperatures of the surfaces of the layer
vary in unison, so that the undisturbed isotherms in the layer
are everywhere horizontal, circulation does not occur. )

There arises the question of whether or not a regime
with a preferred wave number will be established in a uni-
form supercritical region in the presence of a slow ramp? At
first glance, the results of existing theoretical investigations
by no means answer this question positively. We shall see
that they nonetheless do not contradict the concept of an
internal optimal scale.

Kramer etal.1" (see also Ref. 1 8 8 ) studied a quite gen-
eral problem, starting from the system of reaction-diffusion
equations

dtui - !• 2

where the parameters a/, on which Dt] and/ depend, vary
slowly as a function of x. As a result the system goes over in
space from supercritical conditions (when the perturbations
of the initial steady state can lead, as they develop, to the
formation of periodic structures) to subcritical conditions
(when the perturbations are damped). The authors intro-
duced the slow coordinate X and the slow time Т with the
help of a small parameter, which characterizes the rate of
change of a,, and they performed an expansion of the equa-
tions analogous to the expansion employed in the derivation
of the Cross-Newell equations (see Sec. 3.2.2). The ob-
tained equation of phase diffusion (containing, generally
speaking, drift of the entire structure as a whole owing to the
nonuniformity of the conditions ) gives in the steady-state
case a first-order differential equation, determining the dis-
tribution of the local wave number k(X) , if it is given at some
point. In order to choose such a unique dependence, the au-
thors employed a device which has become standard for
problems of this type, namely, they set k = kc at the critical
point. (The justification of this assumption is a key element
and will be discussed below. ) It was found that all ramps
which can be transformed into one another by a transforma-
tion of the spatial variable give the same dependence of k on
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a/. In potential systems all ramps lead to the same value of A:
in the uniform supercritical region, namely, to the value kF

that minimizes the specific potential of the uniform system.
The relation between the wave numbers of structures in

systems in which there is a slow ramp of one parameter e and
the wave numbers that minimize the functional was demon-
strated in Ref. 189. A differential equation relating e(x) and
the local wave number k(x) of the "adiabatic" solution of
the starting equation was derived for a starting steady-state
equation of the most general form. The explicit dependence
of k on £, found for a family of equations of the amplitude
type, in the case of potential systems is identical to the de-
pendence of kF on e. (An example of a system of reaction-
diffusion equations, which was discussed in Ref. 187, was
studied next; according to Refs. 188 and 190 the amplitude
equation derived for it is incorrect.) An important point is
that the transition from a smooth ramp to a steep ramp
should, according to the considerations presented in Ref.
189, be manifested as a transition from a single wave number
to a finite band of wave numbers.

Convection of a liquid with P = oo in the case when the
top surface of the layer is an isothermal horizontal plane and
the position and temperature of the bottom boundary de-
pend on the slow coordinate X was studied in Ref. 191. The
expansion of the system of Boussinesq equations, following
the example of Ref. 187, gave an equation for k(X), which
for small supercritical values ofe and free boundaries greatly
simplifies and in some cases can be solved analytically. Gen-
erally speaking, the system of rolls undergoes drift. When
there is no drift (which does not necessarily mean that there
is no large-scale flow), the local value of A: can be expressed
directly in terms of the local value ofe. The curves in the (k,
s) plane, representing such dependences and passing
through the critical point (kc, 0), can, depending on the
structure of the ramp, have slopes of very different charac-
teristic magnitude and of different sign also. An impression
is created that the preferred wave number is in no way mani-
fested.

The formulation of the problem in Ref. 192 differs from
the preceding formulation in that the top and bottom boun-
daries of the layer are assumed to be rigid and the Prandtl
number is finite. The layer is uniform over its thickness, and
a ramp is present only in the distribution of Д T. The equa-
tion for the phase of the rolls in the steady-state case (when a
large-scale flow nonetheless exists, but convective transfer of
phase is compensated by diffusion) relates the local value of
k with the local value ofR. The dependence k(R) is found by
numerical integration in a wide range of Rayleigh numbers
for different values of P. The quantity P strongly affects the
form of the integral curve, drawn through the point (fcc,
Rc). In particular, for P< 0.7 the value of k increases as R
increases; this is radically different from the behavior of the
observed value of kp in a uniform layer.

Few experimental investigations of convection in the
presence of a ramp have been performed, and in addition in
some of the existing investigations, for example, Ref. 193,
the ramp is so steep that it cannot play the role of a "soft"
side boundary. A slow ramp was reproduced in the experi-
mental paper of Ref. 13, but in this paper the behavior of the
wave number as a function of the coordinate x through the
dependence R (x) was not investigated.

We shall now discuss the physical interpretation of the

basic results. The theoretical conclusions regarding the val-
ue of the realized wave number in a uniform supercritical
region are drawn based on the key assumption that locally
k = kc at locations where R = Rc. From the logical stand-
point, this step is doubtful. The values of Rc and kc were
found for spatially periodic flows in a uniform layer, where
the interaction of the convective rolls does not generate an
average flow of energy along the layer. In systems with a
ramp this is, generally speaking, not the case: The more ener-
getic rolls, located in a region with high supercritical Ray-
leigh numbers, transfer their energy to less energetic rolls,
existing under less supercritical conditions. Moreover, this
energy flow cannot become zero at the point where the re-
gime is critical, and energy will unavoidably flow into the
subcritical region. This is shown by the fact that there exist
solutions which describe systems of rolls extending into this
region. This effect is analogous to the well-known phenome-
non of penetrating convection (see, for example, Ref. 194):
If the undisturbed temperature profile T(z) is not linear and
in some range of heights z convective instability occurs
(d7Ydz>0), then convective motions penetrate into this
stable region. In the case when a ramp is present, penetration
into the region of stability should also occur but along the
horizontal rather than the vertical direction. Since there ex-
ists a family of solutions, reflecting the effect of the horizon-
tal penetration, it is at least in principle possible to generate
artificially different distributions k(R). Similarly to the fact
that the criterion of stability of existing rolls cannot be ap-
plied locally (see the remark at the end of Sec. 6.5.4), there
are also no grounds for applying locally the criterion of sta-
bility of a motionless liquid and moreover, for assuming that
the local conditions also dictate the local value of the wave
number.

Therefore the disagreement in the realized wave
numbers between systems with different ramps or between
the case of a ramp and other situations cannot serve as an
argument against the existence of a preferred wave number.
Moreover, it is interesting that in potential systems there is
no such disagreement (the case studied in the next section is
an exception).

6.5.6. Motion of the convection front. The situation162'60

when a localized two-dimensional disturbance is created in a
layer of motionless liquid located in an unstable (supercriti-
cal) state was studied in Sec. 6.5.2. The roll structure ex-
tends over an increasingly wider part of the layer. This pro-
cess looks like motion of two convection fronts, moving in
opposite directions away from the region of the initial distur-
bance.

The motion of the front separating the formed periodic
structure from the undisturbed region is regarded as one of
the "mechanisms of selection," since under certain condi-
tions the wave number of the structure arising behind the
front can be predicted.195-196

We shall now consider the simplest variant of the NWS
equation

= д^А + А — . (6.6)

with a real function A—a particular case of a nonlinear diffu-
sion equation. We are interested in solutions of this equation
that have the form A(X,T) = Ac(X — cT), where с is the
constant velocity of the front, and which therefore satisfy the
equation
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and in addition

lim Л (*)=!, H m A ( X ) = 0.

(6.7)

(6.8)

Obviously, Eq. (6.7) can be interpreted as the equation of
motion of a material point of unit mass in the potential field
Ф(АС) = A 1/2 — A */4, if Ac is the coordinate, X is the
time, and с is the coefficient of friction. According to Eq.
(6.8), the particle leaves with zero velocity the point of the
maximum of the potential (Ac = 1) and moves toward the
final state—to the point of minimum of the potential
(Ac = 0). It is understandable that solutions of this problem
exist for any с > 0. The larger is the value of с the more slowly
does the particle move, i.e., the wider is the front.

There exists a class of initial conditions of the starting
problem that leads to selection of a definite velocity of the
front. This was shown in Ref. 197 in connection with prob-
lems in population genetics: All initial states of the system
described by the functions A(X, 0), which are confined to
the strip 0<Л< 1, where A does not vanish everywhere and
decreases with X at least just as rapidly as e~x, generate
fronts moving (in the limit Г-» со ) with the velocity с = 2.
This velocity is the minimum velocity for which A (X, T)
remains nonnegative everywhere (in the language of the
analogy mentioned above с = 2 is the lowest value of the
coefficient of friction for which a particle, having rolled into
the potential well, does not pass through the point of the
minimum of the potential with finite velocity).

The velocity с = 2 is distinguished in a different respect
also—the solution A2 exhibits marginal stability, under-
stood in the following special sense. We employ a reference
system moving with the front velocity c. If a weak localized
disturbance, distorting the form of the function Ac, such that
Ac does not increase or decrease at some fixed point of the
moving reference system, is possible, we shall say that Ac

exhibits marginal stability, even though the introduced dis-
turbance generated a wave of increasing amplitude, moving
away from the observation point.

If Eq. (6.6) for real A is interpreted to be an amplitude
equation (for example, NWS or the amplitude equation of
the same form for the SH model), then the roll structure
behind the front has, in any case, the wave number kc. With
the help of a complex amplitude function whose phase de-
pends on X it is possible to describe a structure with k ^ kc.
The amplitude equation for complex A has a class of solu-
tions with a traveling front and a "winding" phase. In Ref.
196 there are presented arguments according to which the
localized initial disturbance must nonetheless generate a re-
gime with a traveling front, an amplitude function with al-
most constant phase (i.e., with k = kc) and correspondingly
front velocity с = 2.

The authors also applied the condition, but now as a
hypothesis, that the "natural" front velocity must corre-
spond to marginal stability to the case for which such a cor-
respondence has not been proved, namely, to the description
of the propagation of a spatially periodic structure on the
basis of the SH equations. The values obtained in this man-
ner с = с* and k = k * differ from the values found from the
amplitude equation с = 2, k = £c by O(E") corrections,
where a > 0, and in addition k increases with e.

Further, this process was modeled numerically on the
basis of the SH equation with a localized initial distur-
bance.195'196 The values of с and k were found to agree well
with the values that follow from the hypothesis of marginal
stability.

The quantity k * differs appreciably from the value kF of
the wave number minimizing the specific Lyapunov func-
tional for the SH model.

The motion of a convective front in a layer with rigid
boundaries was modeled, by solving numerically the two-
dimensional Boussinesq equations, in Ref. 198 for P=l.
The process was initiated by briefly heating the side wall.
The range of supercritical reduced Rayleigh numbers
0.01 $550.2 was investigated. The obtained values of the
velocity were found to be close to the values predicted in
Refs. 195 and 196. The wave numbers of the structure be-
hind the front agree well with the wave number
^max = Лс (1 + 0.245s), for which according to the linear
theory the disturbances of the steady state grow at the maxi-
mum rate.10

In Ref. 199 the propagation of a front was investigated
on the basis of the amplitude equation in the case when the
starting (unstable) state is not undisturbed, and corre-
sponds to a periodic structure with some wave vector lying
outside the stability band. A new stable structure with a dif-
ferent wave number forms behind the front. Numerical mod-
eling with initial conditions corresponding to an abrupt
transition from a stable state to an unstable state at some
point x = x0 showed that the front velocity agrees with the
hypothesis of marginal stability. On the level of our discus-
sion, it is interesting that the final wave number generated
behind the front depends on the starting wave number in
front of the front. Moreover, some final values of k cannot be
reached for any initial value of k.

In all cases studied above the front velocity c, rescaled
to the standard physical time and length scales, which do not
depend on the supercritical reduced Rayleigh number E, is
equal to

K = c —e1/2 (6-9)
T0

Therefore the front traverses a fixed distance in a time
O(e~l/2). According to Eq. (2.22), convection develops
from small disturbances over a time O(e l ) . This shows
that the motion of a convection front can be produced in a
motionless unstable liquid only with very small supercritical
reduced Rayleigh numbers. Otherwise convective structures
will develop spontaneously before the front has advanced
appreciably.

An experiment with water at 30.2 °C (P= 5.373) in the
range 4 - 1 0 ~ 4 < £ < 2 . 5 - 1 0 ~ 1 is described in Ref. 200. A
chamber whose length is equal to 27.3h and whose width is
approximately four times shorter was employed. At the be-
ginning of each experiment the layer of liquid was trans-
ferred, by increasing the heating from below, from a subcriti-
cal into a supercritical state and at the same time one of the
short side walls was heated also. A front began to move away
from this wall and left behind it a roll structure. The velocity
of the front in the interval of values e studied corresponds,
with high accuracy, to Eq. (6.9) with с = 2. The wave num-
ber of the structure behind the front increases with E.

Proceeding now to a discussion, we call attention to the
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fact that on the basis of the hypothesis of marginal stability
and the numerical experiment (except for Refs. 162 and 60)
as well as on the basis of a full-scale experiment the wave
number of the structure behind the front increases as the
supercritical Rayleigh number increases. The discrepancy
between this wave number and the values realized in other
"mechanisms" as well as the minimum specific potential (in
the SH model) is presented as an illustration of the fact that
there is no universal selection criterion.

It is even possible to strengthen the thesis that the wave
numbers "selected" in different situations are different. The
motion of the front is apparently in itself capable of giving
structures with different wave numbers. Even if the assertion
that the selection of regimes with velocity с = 2 is of a uni-
versal character, it pertains only to the limit f-> oo. Until
settling is achieved the velocity of the front can vary over
wide limits: The more slowly the initial disturbance de-
creases along x, the more rapidly, obviously, will the front
move initially. Generally speaking, the wave numbers will
also be different.

On the other hand, however, in the results presented
here the elastic relaxation effect—wave number restructur-
ing, noted in Ref. 60, of the roll structures formed behind the
front-—is completely absent in the results presented here.
One would think that for small e this process is unnoticeable,
since the settling time of the position of the roll boundaries in
a chamber of finite length is O(e ~~2).50 But this is true for a
reservoir that is already filled with rolls. If, however, the
collection of rolls is confined between fronts behind which
the liquid is almost motionless, then the velocity of the pro-
cess depends strongly on the width of the collection and can
be much higher.60 Further, the faster the front moves, the
faster the state of the system approaches the conditions of
"close packing" of rolls in the reservoir and the more rapidly
the elastic relaxation slows down. According to recent calcu-
lations performed by Getling213 using the NWS equation,
high velocities should "conserve" the wave number, even if
the wave number is not optimal. It is interesting that the
degree of supercriticality affects the rate of relaxation pri-
marily through the velocity of the front, and the lower the
supercritical Rayleigh number, the more rapidly the restruc-
turing occurs.

If the motion of the front is described by the NWS am-
plitude equation, then the wave number of the structure
formed, as we have seen, is equal to kc. The wave number kF

that minimizes the specific potential and is manifested in the
variational dynamics as the preferred wave number kp is also
equal to kc for the NWS equation. In this case the realized
wave number corresponds to the optimum wave number.

In the numerical experiments of Ref. 198 based on the
complete Boussinesq equations and the full-scale experi-
ment of Ref. 200 the relaxation of the rolls could have re-
mained unnoticed owing to the short length of the region of
flow and, correspondingly, the short observation time. In
the numerical experiments of Refs. 195 and 196 based on the
SH equation the distribution of the local wave numbers k
along x has a minimum at the point of initiation of the pro-
cess x = 0, where k is much closer to kF than k = k * for rolls
formed later (k * > kp). This could be a reflection of the
elastic relaxation, with which k decreases, approaching
kp = kF. (It is true that the authors assert that near x = 0,
on the contrary, k increases. This is possible at a later stage

when there are many rolls with k = k *: They also tend to
expand and in the process compress the rolls near x = 0.)

All this means that the existing results of investigations
of the motion of fronts are in no way inconsistent with the
possibility of the existence of a preferred wave number.

6.6. Wave numbers of axisymmetric flows

In the last two subsections of Sec. 6 we discuss the prop-
erties of two important classes of flows with qualitatively
different geometry.

Pomeau and Manneville201 studied a steady-state axi-
symmetric system of annular rolls in an infinite layer at large
distances r from the symmetry axis. The general procedure
of expanding the equations in powers of \/r leads, to first
order in this parameter, to a system of equations the condi-
tion of solvability of which determines a unique wave num-
ber ka of the rolls. The authors concluded that this wave
number is always equal to the threshold value kzz for the
zig-zag instability and ensures that the condition D± = 0 is
satisfied. It was later found that this criterion is applicable
only under certain conditions.

Manneville and Piquemal49 introduced an important
refinement into this question. As shown in Sec. 3.2.2, these
authors obtained48'49 the effective value of DL for a layer
with rigid boundaries, taking into account the large-scale
drift flow, which has a vertical profile of the Poiseuille type
and tends to eliminate the zig-zag deformation of the rolls.
Such a flow is impossible in a system of concentric annular
rolls, since it must be directed radially toward the symmetry
axis and result in accumulation of matter at the center. For
this reason, in an axisymmetric system the radial flow ac-
quires, owing to pressure redistribution, a different vertical
profile—with two nodes and zero total flux. If this flow is
taken into account, then for large values of r and sufficiently
small supercritical Rayleigh numbers the wave number ka

will be determined by the relation49

= N'(P) R-RC
(6.10)

where N'(P) = 0.166 + 1.426P -' - 1.220P -2, and
R2 (P) has the same form as in Eq. (3.43). Comparing Eqs.
(6.10) and (3.43) shows that fca corresponds to the condi-
tion D f = 0 only in the limit P^ oo, when D f = D±, and if
P is finite, then for k = kHDf>0.

As Cross and Newell, analyzing the modified CN equa-
tion (3.60), write53 regarding this fact, taking the average
drift into account has no effect on the wave number of the
axisymmetric pattern (since drift does not arise in this ge-
ometry ), but changes the value of kzz, stabilizing the trans-
verse disturbances of the rolls.

In the case of free boundaries, as we have already said,
diffusion relaxation of the zig-zag disturbances does not
arise. The zig-zag mode is replaced by an oscillatory mode,
and the coefficient D f does not exist for finite values of P.
The following expression was obtained in Ref. 49, using the
same technique, for the wave number of axisymmetric con-
vection:

R-R.
(6.11)

In the further development of this work the assumption
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that the supercritical reduced Rayleigh number is small is
not made.202 A combined numerical method is used to find
the value of ka for which the equation obtained in first order
in l/r has a solution: The horizontal dependence of the vari-
ables describing the flow is represented by a Galerkin ap-
proximation and the vertical dependence is represented by a
finite-diiference approximation. The authors investigated a
wide range of values of R and P.

The results of Refs. 49 and 202 have a characteristic
feature that contrasts sharply with the experimentally
known behavior of the wave number: according to Eq.
(6.10), for P < 0.784 as well as for, roughly speaking, P< 0.7
according to calculations of Ref. 202 the wave number &a

increases as R increases (as was noted in Sec. 6.1, in experi-
ments with uncontrolled initial conditions the fact that k
decreases with increasing R is more evident precisely for
small values of P).

Here it should be noted that, generally speaking, it can
hardly be expected that the results presented here of the
analysis of the "selection" of wave numbers in an axisym-
metric system of rolls would agree with experiment. This
analysis pertains to rolls with a large radius and at the same
time it is not assumed that the reservoir has an external
boundary. For this reason, in reality the radius of this
boundary (of a cylindrical wall) should, in turn, be appre-
ciably greater than the radii of the rolls studied, so that the
effect of the boundary would not be significant. This means
that the rolls will no longer form concentric rings, since it
will hardly be possible to maintain such an axisymmetric
pattern. There must arise either a unified system of almost
straight and almost parallel rolls or a texture in which sec-
tions with such rolls play the main role. The wave numbers
found will thus be of quite academic interest.

On the other hand, the equation of phase diffusion
(3.63) makes it possible to obtain the exact value of the wave
number of a steady-state axisymmetric pattern for any value
of P.210 Because of the absence of average drift in such a
pattern rkB = const and in order that this hold right up to
the center of symmetry, the constant on the right side must
be equal to zero in the leading order of the expansion. This
means that k is equal to the value of kB at which B(kB) =0
(compare the expression (3.67) for DL; we note that in Ref.
210 DL does not include drift effects and the formulas (3.67)
are always correct, but kzz = kB only for P = oo). The wave
numbers of the rolls, measured in Ref. 151 (forP= 2.5 and
three values of R; see Fig. 12) and in Ref. 204 (P= 6.1; see
below) agree well with the values of kB calculated for the
corresponding values of P. (These experimental data are
also close to the values of ka found in Ref. 202 for large
values of P.) In Ref. 210 it is shown that for k < kB (k>kB)
the focus of the roll pattern acts like a source (sink) of rolls.

The experimentally measured wave numbers of the an-
nular rolls, as already mentioned in Sec. 6.1, decrease as R
increases. As R increases, from time to time the "extra" an-
nular roll vanishes at the center of the pattern (Refs. 136 and
137). The focus singularity thus plays an important role in
wave-number restructuring processes; this role is accurately
reflected by the result of Ref. 210.

Croquette and Pocheau185 compared their experimen-
tal values of k for Г = 20 and P =70 and 14 (silicone oils)
with the theoretical values of /ca and &zz (according to Ref.
49). A significant discrepancy with the computed data was

FIG. 19. Eccentric annular rolls and profile of large-scale flow in the
experiment of Ref. 203. The solid curves and arrows are the actually mea-
sured velocities and the thick dashed curves are the hypothetical veloc-
ities.

obtained: for P = 70, at some value of R the value of k is
appreciably less than both theoretical values (and from the
standpoint of the theory it should fall into the region of insta-
bility), while for P= 14 it lies between these values (for
P= 70 the theoretical dependences kzz(e) and ka (e) are
shown in Fig. 18; forp = 14 the line kzz (E) is inclined even
more strongly to the left). The change of the number of rolls
in the system, occurring due to the creation or annihilation
of a roll at the focus of the system, as R changes is a discrete
process. Understandably, when R alternately increases and
decreases the changes of the wave number exhibit hysteresis.
But the nonuniqueness associated with the hysteresis is ap-
preciably smaller than the discrepancy between the mea-
sured value of k and ka and kzz.

Careful measurement of the observed pattern revealed a
detail which the authors associated with the mentioned dis-
crepancy and which is very interesting from the viewpoint of
investigation of stability and flow geometry. The pattern was
not strictly axisymmetric. It was found that the focus of the
system of rolls is displaced relative to the center of the reser-
voir (by an amount of the order of 1 mm for a reservoir with
a radius of 40 mm). The displacement was larger for P = 14
than for P = 70, and in trial experiments with methyl alco-
hol (/*=?) the displacement could even be seen with the
naked eye. This indicates that the strictly axisymmetric pat-
tern in which the radial pressure gradient suppresses the ra-
dial flow averaged over the height of the reservoir is unstable
relative to small disruptions of the symmetry. The authors
proposed that the asymmetry engenders general circulation
of the double-vortex ("dipole") type (Fig. 19), which is
what makes the formula (6.10) inapplicable.

In Ref. 203 a special experiment was performed in order
to check this hypothesis. A photochromic material—ben-
zothiazolinic spiropyran, which becomes colored when irra-
diated with UV radiation—was added to the working liquid
(methanol, P—l). Irradiating a selected diameter in the
system of annular rolls, the experimenters marked in this
manner part of the volume of the liquid and were then able to
reveal the large-scale flow.

If R is gradually increased, then the asymmetry of the
pattern appears to be strongest before the next central roll is
annihilated and disappears after annihilation. For this rea-
son, at almost the same value of R it is possible to observe
both a symmetric and an asymmetric pattern. It was ob-
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served that the diameter marker is not deformed in an axi-
symmetric pattern (although diffusion smears it), but is sys-
tematically transported by the average flow in an
unsymmetric pattern, if it is oriented perpendicularly to the
eccentric displacement of the focus.

This experiment thus demonstrates the existence of
large-scale flow, which according to Refs. 33 and 34 is asso-
ciated with the curvature of the rolls. The average drift in an
eccentrically deformed system of annular rolls was calculat-
ed in Ref. 2 on the basis of the modified Cross-Newell equa-
tion (3.60) and also in Ref. 210: The focus instability result-
ing in such a deformation was obtained there by linear
analysis of the stability of an axisymmetric flow on the basis
of Eqs. (3.63) and (3.64). It is interesting that this instabil-
ity can arise for R and k = kB lying inside the Busse balloon.

Another experiment in which eccentricity was observed
(and wave numbers of axisymmetric convection were stud-
ied) was performed in Ref. 204 with Г = 7.5 and P = 6.1
(water at 25 °C). For £ > 0.16 a system of annular rolls, gen-
erated at the beginning of the experiment by forcing at the
walls, subsequently remained stable with virtually no such
forcing (this is undoubtedly a consequence of the small as-
pect ratio). For e<0.16 over times much longer than rh a
transition to a lower degree of ordering (textures) occurred.
The eccentricity of the annular rings was noticeable starting
at£;=2.5 and changed withe qualitatively just as in Ref. 203.

The measured wave numbers were found to be close to
those obtained in Ref. 137 at P^ 500-900 and were sharply
different from &a, calculated for P= 6.8 according to Ref.
49, though they are in good agreement with the values of kB

found for the same value of P in Ref. 210. Hysteresis was
observed in the dependence of k on E.

6.7. Motion and equilibrium of dislocations

The presence of defects in the convective structures
makes the possible paths along which the system can arrive
at the preferred wave numbers very diverse. The appearance
and disappearance of rolls in the presence of focus singulari-
ties occur most easily precisely at these foci. We have already
mentioned the role played by structural boundaries in the
change of the wave numbers. We shall now study restructur-
ings associated with the motion of dislocations. Such pro-
cesses are, in principle, not two-dimensional, though the
study of two-dimensional restructuring greatly aids in un-
derstanding what happens in this case.

Most investigations are concerned with the mechanism
of climbing of dislocations. This mechanism could enable
the system to adjust itself effectively to the optimal wave
number.

Siggia and Zippelius205 were probably the first to study
theoretically the motion of dislocations. They studied the
question both analytically (on the basis of the NWS equa-
tion) and numerically by integrating both the complete sys-
tem of Boussinesq equations and the NWS equation. They
studied a pair of dislocations which forms if a segment of an
"extra" pair of rolls is "wedged" into the rolling system—
such a configuration is obtained if Fig. 20 is supplemented by
its mirror image with respect to the top edge. Since the au-
thors employed the amplitude equation without taking into
account the vertical component of the vorticity, the results
based on it are valid only in the limit P-> oo.

The analytic calculation was performed under the as-

sumption that the undisturbed (no dislocations) system of
rolls (filling an infinite layer) has the wave number
k = kc +8k, <5fc<l (only 8k >0 was studied, since for
8k < 0 and P> 1 the initial roll system is unstable under
slightly supercritical conditions). It was also assumed that
3k ~1/2 is much less than the distance between dislocations
(i.e., the length of the "wedged in" segment of the roll pair).
For the indicated choice of wave number the dislocations
come closer to one another, i.e., the "wedged in" pair is
shortened. This means that the rolls compressed together
when the dislocation is introduced tend to expand. An
expression whose structure does not depend on the type of
boundary conditions on the surfaces of the layer was derived
for the velocity V of each dislocation (climb velocity):

V =1,47 (6.12)

where £0 and r0 are given by the formulas (2.24)-(2.26).
Thus in the approximation used by the authors the wave
number kd of the undisturbed structure in which the intro-
duced dislocation turns out to be stationary is equal to kc

(i.e., for the NWS equation to kp also).
The numerical experiments were performed by the

pseudospectral method with periodic boundary conditions
along x andy. This means that if the size of the region along x
is equal to Lx and the undisturbed system of и pairs of rolls
has, correspondingly, the wave number 2irn/Lx, then in the
part of the roll pattern (bounded along y) that is disturbed
by the presence of a defect (at the top of Fig. 20) the wave
number is equal to 1ir{n + 1 )/Lx.

The authors were mainly concerned with determining
the velocity of the dislocation. They found that the values of
this velocity obtained on the basis of the complete equations
and from the amplitude equation do not always agree well
with one another, even with P= oo. In many cases the evolu-
tion of flow is complicated by instabilities and the results are
difficult to analyze. If the overall structure remains for a
sufficiently long time, then the velocity of the dislocations
settles down quite rapidly and subsequently changes very
little. The relation between the velocity and the wave
numbers was not studied systematically. It was found that as
n and Lx increase with the wave number of the unperturbed
pattern remaining fixed and equal to kc, the velocity of dislo-
cations approaches zero (it is difficult to expect a different
result, since in this limit the perturbed wave number ap-
proaches the unperturbed wave number).

The force determining the climbing of dislocations in
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the crystal structure is called the Peach-Koehler (PK)
force?06 If the additional layer wedged into the structure
and terminating in a dislocation is squeezed by the surround-
ing layers, the PK force strives to expel this layer and elimi-
nate the dislocation. If, however, the pressure of the sur-
rounding layers is negative, the PK force pushes the
additional layer in deeper. In the theory of convective struc-
tures an analog of this force is studied. In the case of poten-
tial dynamics the change of the Lyapunov functional, asso-
ciated with the displacement (climb) of a dislocation over
some distance, is interpreted as the work performed by the
PK force. We shall calculate this force following Ref. 68.

We assume that the main parameter of a roll system
containing a dislocation is the wave number k obtained by
averaging the local wave numbers over the region being
studied. Assume the dislocation is located at the point (0,
yd ) inside the strip — L < x < L, whose boundaries x — ± L
fix the position of the extreme x-rolls. Then the change 8FL

of the Lyapunov functional FL accompanying a displace-
ment Syd of the dislocation will be determined only by the
fact that in a rectangle with area 2LSyd rolls with the wave
number k + = k \y__ + „ will be replaced by rolls with the
wave number k _ = k Thus

6FL = - -/•(*_) -2Ldv. = -
dk

dF,

•2L(k+-k_)dyd

where F(k) is the specific potential for a uniform pattern
characterized by the wave number k, and the final difference
is replaced by a differential under the assumption that L is
large and k = (k + + k_ ) / 2 . Thus the PK force is equal to

fpK ~ ~
dF

dj-н
(6.14)

Obviously, the dislocation is stationary when/PK = 0, i.e., k
is equal to the wave number kF that minimizes F and there-
fore, in addition, it corresponds to the boundary of stability
with respect to zig-zag disturbances:

— kF— (6.15)

In Ref. 207 the relation between the velocity of a dislo-
cation with the wave number of the roll structure was inves-
tigated for two problems: the problem of convection in a
layer bounded by plates through which weak heat conduc-
tion occurs (this problem admits a variational formulation;
see Sec. 3.2.2) and the problem of convection in a layer of a
porous material. As in the analytical part of Ref. 205, here a
structure transforming at large distances from the disloca-
tion into a regular roll structure with wave number k is stud-
ied. The apparatus of amplitude equations is employed. In
the steady-state case the condition of solvability of the equa-
tion for the complex amplitude determines the value of kd

and in the non-steady-state case with prescribed k it deter-
mines the climb velocity V.

In the first problem it was found that

\3/2 (6.16)

and in addition kd = kF = kzz. A relation was also obtained
between this velocity and the diffusion coefficients DL and
DU of the phases. The second problem, which is nonvaria-

tional in the approximation studied, leads to a value of kd

that is different from kzz.
Gliding of dislocations, i.e., motion in a direction per-

pendicular to the rolls, was also studied in Ref. 207. It was
found that under conditions of the variational dynamics
gliding is impossible in a system of uniformly curved rolls:
The potential of the system does not change in the presence
of gliding and there is nothing to compensate the energy
losses due to viscosity.

In Ref. 68 the behavior of dislocations was studied ana-
lytically and numerically on the basis of the model equa-
tions—the SH potential equation (3.26) and the nonpoten-
tial equation (3.29) with d= 3. A modification of these
models, which includes large-scale drift, was also studied in
Eqs. (3.30)-(3.32).

The velocity of a dislocation in the potential models is
proportional to (k — kd)

}/2 (compare with the formula
(6.12) derived in Ref. 205). For nonpotential models kd is
different from the other distinguished wave numbers kzz

and &a. For small k — kd the climbing velocity increases lin-
early with this quantity.

Thus the basic characteristics of the motion of disloca-
tions do not depend on the details of the formulation of the
problem and can be easily interpreted based on the idea of a
preferred wave number. Climbing tends to make the roll
structure approach kp, while a dislocation is in equilibrium
when the wave number of the undisturbed system is equal to
kp. For potential systems kp = kF.

Experiments designed specifically for studying disloca-
tions were apparently first undertaken by Busse and White-
head"1'166 (the first paper contains only qualitative results,
the word dislocation is not employed yet, and the process of
displacing a dislocation is called the pinching mechanism; its
role as a possible mechanism of change of the wave number is
noted). A chain of dislocations, which arises on the line of
contact between two systems of rolls, joining at their ends,
was studied with the help of the technique of controlled ini-
tial conditions, and in addition the wave numbers of the sys-
tems are in the ratio 2:3. The values of the wave numbers
were such that the narrower rolls were displaced by the
wider rolls. The speed of the dislocations increased nearly
linearly with increasing R and it decreased with increasing
p 166

Pocheau and Croquette made a detailed experimental
study of the behavior of an isolated dislocation.18'185 The
dislocation was produced, when the initial flow was genera-
ted, by illuminating the layer through an appropriately
shaped mask. Special measures were taken to prevent the
cross-roll instability from developing near the sidewalls of
the chamber, as was done in the experiment with grain boun-
daries described in the same work. Thin copper wires, glued
to the bottom of the reservoir near the sidewalls, created, due
to their thermal contact with the bottom, upward flows,
which fix the position of the extreme rolls. Silicone oil with
P = 70 was employed.

The motion of the dislocation was, as a rule, almost
uniform—only near a wall it sometimes slowed down and
even stopped (the authors write about this effect as trapping
of the dislocation by the wall). The basic results of measure-
ments of the optimal wave numbers kd, which correspond to
the stationary position of a dislocation not trapped by the
wall (i.e., in the central part of the reservoir), are presented
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in Fig. 18. In those cases when a stationary situation was
achieved by adjusting the value of R, kd was determined as
the arithmetic mean of the two wave numbers present in the
pattern—undisturbed and disturbed. These values are desig-
nated in the figure by cross marks. A different method for
determining ku was based on applying the (k — kd )

3/2 law
(see Eqs. (6.12) and (6.16)) to the climb velocities, mea-
sured for different values of A: and a fixed value of R (here k is
also the half-sum of two values). The corresponding values
of kd in the figure are designated by squares.

It is obvious that the measured wave numbers agree
fairly well with kzz right up to ezz 1.5. The authors regard
this agreement as being good in the entire investigated range
of supercritical Rayleigh numbers, extrapolating to this
range the linear dependence of kzz on e, obtained in Refs. 48
and 49 for small values off. It seems that there are still not
sufficient grounds for arriving at this conclusion (and corre-
spondingly for the conclusion about the variational charac-
ter of the dynamics for all e). But it is all the more interesting
that the data provided by the authors demonstrate right up
to £~4 excellent agreement between the optimal wave
numbers found in the experiment with dislocations and in
the experiment with the motion of grain boundaries (see Sec.
6.5.3). This supports the existence of a single preferred wave
number, irrespective of the potentiality of the system. In the
case of the motion both of dislocations and of grain boundar-
ies the flow geometry does not create strong antiselective
factors, and the system arrives at a wave number very close
to the preferred wave number.

The role of climbing of dislocations in the restructuring
of the wave number of the roll structure has also been investi-
gated in experiments with air;154 it was also found that glid-
ing can lead to the appearance of phase turbulence.

Finally, Whitehead208'209 performed some interesting
investigations of dislocations in bimodal convection. Such
dislocations can also exhibit gliding209 and play an impor-
tant role in the transition to chaotic motion.208

7. CONCLUSIONS

The material examined above convincingly shows that
the realizability of a flow is not identical with stability of the
flow. The realized state in turn is not necessarily optimal. It
is the result of the combined action of selective and antiselec-
tive factors and depends on the overall flow geometry, deter-
mined by the initial and boundary conditions. Correspond-
ingly, the stability cannot be judged on the basis of only the
local structure of the flow.

In the case of systems of two-dimensional rolls, there
does not exist even one fact that would contradict the con-
cept of the existence of a preferred wave number or an inter-
nal optimal scale of such flows, in spite of the difference
between the wave numbers realized in different concrete si-
tuations. In those cases when the convection dynamics can
be described by relaxational models, such an optimum corre-
sponds to a minimum of the specific potential.

The presence of structural nonuniformities (defects) or
at least boundary layers at the side walls gives rise to antise-
lective factors and gives the structure additional degrees of
freedom. For this reason, the more defects—"margins" for
restructuring to the optimum—there are in the evolving
structure the closer the final wave number (at least, on the
average over the spatial pattern) is to the preferred wave

number. In spontaneously arising structures, which pass
through a stage of complex textures and gradual elimination
of defects, the preferred wave number is thus the most likely
wave number.

Complete understanding of the conditions of equilibri-
um of textures is a matter for future work. From what has
been said above it is clear only that the more complicated is
the structure the more stringent must be the conditions un-
der which it is a steady-state one. For this reason, different
parts of the texture can depart by different amounts from the
optimum and they can have different degrees of stability;
some fragments can be optimized at the expense of deoptimi-
zation of other fragments. Under some conditions, together
with vanishing of defects, new defects can constantly arise,
the texture does not become a steady-state one, and phase
turbulence is observed.

Slow processes must be studied more carefully. It has
not been excluded that in many cases, when the optimum
seems to be unattainable, antiselective factors still can be
overcome over long periods of time.

Finally, the character of the approach to the optimal
scale and the appearance of antiselective factors under con-
ditions when three-dimensional forms of flow are preferred
still have not been investigated. It can be expected that the
general laws observed in two-dimensional flows will also be
manifested in one form or another in three-dimensional
flows.

I wish to thank all my colleagues who sent me material
on the subject of this review and L. M. Alekseev for a de-
tailed discussion of the content and text of this review.

'' It is occasionally called Benard-Rayleigh convection as well as Benard
convection or Rayleigh convection. It is pointless to omit the name of
either of these two pioneers of the systematic investigation of convec-
tion—an experimenter and a theoretician. Chronologically, it would be
more accurate to mention, in spite of tradition, Benard's name first.
With respect to the physics of the phenomena, however, combining both
names in one term reflects the long-standing confusion, which has still
not been eliminated, in the understanding of the mechanism of convec-
tion: Benard observed the phenomenon in which instability associated
with the temperature dependence of the surface tension played an ap-
preciable role while Rayleigh studied convection caused by a different
instability—owing to the temperature (and density) nonuniformity of
the layer of liquid. The difference between these two mechanisms is
manifested in the different structure of the flows; this will be discussed
in Sec. 4.1. Convection owing to the Rayleigh mechanism is almost
exclusively studied in this review. The term Rayleigh-Benard convec-
tion usually refers precisely to this type of convection, and the term
Benard-Marangoni convection refers to thermocapillary convection.

2) The word cell is recently often employed in the literature in a different
sense—as a synonym for the term reservoir, chamber, or cavity (the
working volume of the experimental setup). These two usages should
not be confused.

"The aspect ratio is sometimes defined as the reciprocal of the quantity
indicated here.

4) It is understandable that the setup for a cryogenic experiment is struc-
turally very different from the setup described here.

5' It is often noted that there is an analogy between the equations of two-
dimensional models of convection and the Ginzburg-Landau equation
of the theory of superconductivity. This is the origin of the terminology.

6) For incomprehensible reasons, in the literature published in the USSR
the latinized word (geksagony) is often used instead of the common
Russian equivalent (shestingol'niki).

71 It is obvious that in this situation (and in all analogous situations that
will be encountered more than once) hysteresis is possible accompany-
ing the transitions (motionless state) =5 (hexagonal cells) in the region
of finite-amplitude subcritical instability of the motionless state and the
transitions (hexagonal cells) t> (rolls) in the region where both types of
motions are stable.

8J The corresponding English term grain boundary in the literature on the
physics of crystals, whence it is taken, is often translated as the boundary
of grains. In the hydrodynamic context a different Russian equivalent of
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this term seems to be better—structural boundary, especially since
structure is one of the meanings of the word grain. The term domain
wall is also employed to designate defects of this type.

' I am grateful to E. L. Koshmider for bringing this fact to my attention.
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