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Ferromagnetic Invar and Elinvar alloys are considered as ferromagnets with strong
magnetoelastic interactions. A systematic treatment of the phenomenological theory of
magnetoelastic interactions in Invars and Elinvars is given. The thermodynamic quantities
(thermal expansion, elastic constants, magnetic properties) and dynamical properties
(propagation of acoustic waves and spin waves) are calculated theoretically. The combined effect
of magnetization fluctuations and volume deformations is considered, as well as the effect of
fluctuations on the thermodynamic properties. The theoretical results are compared to
experiment and it is shown that the phenomenological theory gives a satisfactory quantitative
explanation of the anomalies in the properties of Invars and Elinvars. The cause of the strong
magnetoelastic interaction in Invars is discussed.

1. INTRODUCTION

The Invar problem has a history going back more than
50 years. The term "Invar" comes from the Latin invariabi-
lis, meaning unchanged and refers to the constant length of
an iron-nickel alloy bar near room temperature. This prop-
erty was first observed by S. Hill in 1899. For this discovery
he received the Nobel prize in 1920.

A detailed discussion of the history of the problem is
given in Refs. 1-4. These books contain extensive informa-
tion on the anomalous thermal, elastic, and magnetic prop-
erties of Invars (materials possessing Invar or Invar-like
properties). The composition, properties, and region of en-
gineering application of Invar alloys are described. Dozens
of different models explaining Invar properties are dis-
cussed. These books, particularly Ref. 3, contain an exten-
sive bibliography of references up to 1986.

Experiment shows that in ferromagnetic Invar alloys
such as Fe65 Ni35, Fe72 Pt28, and others, there are large mag-
netovolume effects, together with anomalies in the coeffi-
cient of thermal expansion and in the elastic properties. In
particular, the dependence of the Curie temperature Tc on
pressure (3Tc/dP), the dependence of the magnetization on
pressure (дМ/дР), and the induced volume magnetostric-
tion да>/дНате all laige. These facts suggest strong coupling,
between the magnetic and elastic properties in Invar alloys.
Further progress in the solution of the problem is held back
by the lack of a reliable theory, which would make it possible
to calculate Invar effects.

Ferromagnetic or antiferromagnetic Elinvars (elastic
Invars) are similar in composition and properties to Invar
alloys. Elinvars are characterized by a constant value of the
Young's modulus E in a certain temperature interval.1-4 It is
evident that Invar and Elinvar effects are both caused by the
magnetoelastic interaction.

In the present review article we describe the phenome-
nological theory of magnetovolume interactions (MVI) and
the application of this approach to obtain quantitative esti-
mates of the anomalous properties of Invar and Elinvar al-
loys. The magnetovolume interaction is that part of the mag-
netoelastic interaction which depends only on pure volume
deformations (to first order in the deformations) and only
on the magnitude of the magnetization M. The magneto-

volume interaction depends only on M2 because it results
from a change in the exchange energy of the material in the
presence of deformation. Our review is based on results ex-
tending the ideas put forth in the works of Belov,4 Wohl-
fart,5 Shimizu,6 and others.

Here we will atempt to show: 1) the effect of magneto-
volume interactions on the thermodynamic and dynamical
properties of ferromagnets in the most complete form possi-
ble; 2) that Invars and Elinvars are ferromagnets with
strong magnetovolume interactions and their properties can
be explained in terms of the phenomenological theory. A
large number of calculated MVI effects agree with experi-
ment to within a few dozen percent for Invars and Elinvars.

The problem of magnetovolume interactions is also of
purely theoretical interest and represents one of the basic
problems of the physics of magnetism in compounds of 3d-
elements at finite temperatures.

In the theory of interacting subsystems (magnetic and
lattice) the interaction is expressed as a change (renormal-
ization) of the ground state (volume, magnetization) and of
the excited states (phonons, magnons). In this approach the
contributions from the renormalizations of the ground and

. excited states to the thermodynamic properties of the com-
bined system can be separated. From this point of view, the

... publications on the magnetovolume interaction in ferromag-
nets can be divided into three groups. The first group consid-
ers the consequences of the renormalization of the ground
state (spontaneous volume magnetostriction).4~6J~9 Mag-
netic fluctuations were taken into account in Refs. 7-9. Most
of the papers in this group assume a model of a ferromagnet
with collective electrons.

The second group10'1' is based on the Heisenberg mod-
el. The change in the excited states and their effect on the
thermodynamic properties are considered, while the renor-
malization of the ground state is not taken into account.

The third group takes into account the effect of renor-
malized phonons on the magnetic properties of ferromag-
nets with collective electrons.12'13 We note that Refs. 12 and
13 actually are not included in the theory of interacting sub-
systems. The changes in the phonon frequencies induced by
magnetovolume interactions are considered first, and then
the effect of this change on the magnetic properties is consid-
ered. In the theory of interacting subsystems, on the other
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hand, magnetovolume interactions affect the phonon and
magnetic properties simultaneously. We note that these
three groups of papers are being developed practically inde-
pendently of one another.

Hence there is a need for a systematic treatment of the
theory of magnetovolume interactions capable of comparing
the different approaches used in this theory. The phenome-
nological theory is useful in determining which magneto-
volume effects must be considered in the phenomenological
approach and which can be left for analysis in the microscop-
ic theory. It will be convenient to postpone the answer to this
question until the final section, however.

Kinetic properties of Invars and the effect of magneto-
volume interaction on the kinetic properties of ferromagnets
are outside the scope of this review article. The bibliography
given here is illustrative, but not exhaustive.

2. DERIVATION OF THE THERMODYNAMIC RELATIONS
FROM THE EQUATIONS OF STATE IN DIFFERENTIAL FORM

We consider the relations between the thermodynamic
quantities characterizing the magnetic and nonmagnetic
properties of the ferromagnet, as determined from the differ-
ential equations of state. The independent variables are cho-
sen to be the temperature T, pressure P, and magnetic field
H. The volume V, magnetization M, and entropy S are func-
tions of T, P, and H. The ferromagnet is assumed to be infi-
nite and with a single domain.

The equations of state in differential form are

dV-- Ии dT+ l^
P,H

' P,H

TS\ dH, (2.1)
T.P

dP +
'T,H

dH dH, (2.2)
T,P

ds=ff]\дт)р,н т,н т,р

The derivation of the thermodynamic relations for the jumps
in the coefficient of volume expansion and the bulk modulus
at the Curie point is somewhat different (see Ref. 4a, Ch.
IV).

We will concentrate on the magnetic and elastic proper-
ties of the ferromagnet, although if necessary (2.1)-(2.3)
can be used to obtain relations between the thermal quanti-
ties (heat capacity, magnetocaloric effect, and so on).

The differential relations (2.1) and (2.2) are coupled
equations of state for the magnetic and elastic subsystems.
The coupling constants are dV/dHa.nd ЗМ/дР, which obey
the well-known relation

dM
дР ''

1 дУ
VdH' (2.4)

We obtain from (2.1) with M = const and T = const

dH(дР)М,т \др)н.т

and from (2.2)

1дМ\ _ _ 1дМ\ 1дН\

> м,т
(2.5)

(2.6)

Using (2.5), (2.6), and (2.4)
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or, introducing the notation

л к * — "77 I ^ _ _ I , fl — '

we obtain for the isothermal compressibilities at constant M
and Я

KM = KH-^PI. (2.7)

Similarly we obtain the following relation between the
coefficients of volume expansion ан and
aM = (\/V) (dV/дТ) M at constant Я and M:

dM\ (2.8)

and for the magnetic susceptibilities Xv and XP at constant
volume and pressure

(2.9)

We also have the relation

(2.10)

Using (2.7)-(2.10) and introducing the notation
BH,M =f^ н,м> where В is the bulk modulus, we obtain the
relations

вн =

It is evident from (2. 1 1 ) that when h 2%p 1BH = 1, the quan-
tities Кн, ан, and XP are infinite. The resulting instability
means that a homogeneous state cannot exist. The physical
meaning of this instability will be discussed later. The ther-
modynamic relations in the form (2.7)-(2.11) have been
discussed in detail by Shimizu.6 He noted that it is necessary
to distinguish between BH and BM, between XP and Xv> an£i
between ан and ам. Unfortunately, this is not done in most
papers on Invars. In our opinion, a correctly formulated the-
ory of the magnetovolume interaction must give results that
are consistent with the thermodynamic approach.

The above relations, in spite of their great generality
(they do not depend on the specific model of the ferromag-
net) are incomplete, because they do not take into account
the anisotropy in the elastic and magnetic properties of real
Invar alloys. This deficiency can be overcome by replacing in
(2.1)-(2.3) the volume V with the deformation tensor uik

and the scalars M and Я with the three-dimensional vectors
M , and Я, . However, we choose a different method based on
the dependence of the thermodynamic potential of the ferro-
magnet on the deformations.4"6 The elastic subsystem of the
ferromagnet is treated in the harmonic approximation (a
more general approach is possible ) . The thermodynamic po-
tential of the magnetic subsystem is written in such a way
that the ferromagnetic-paramagnetic phase transition can
be considered. The explicit form of the MVI terms is deter-
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mined from symmetry considerations, by experiments, or by
the choice of a particular model for the ferromagnet.

3. THERMODYNAMIC POTENTIAL OF A FERROMAGNET
WITH MAGNETOVOLUME INTERACTIONS AND THE
EQUATION OF STATE

The thermodynamic potential of the ferromagnet is
written as a sum of the exchange interaction energy, the elas-
tic energy, the energy associated with external magnetic and
elastic fields, and the MVI energy. First and second-order
(in the deformations) magnetovolume interactions are tak-
en into account. The first-order MVI has the usual form
given in Refs. 4 and 5, for example. The second-order inter-
action depends on both volume and shear deformations. The
necessity of including this interaction follows from the ex-
periments and analysis of Haush.14 The discussion of this
Section is based on the results of Refs. 15 and 16.

The thermodynamic potential is written in the form

(3.1)

where <p(M2) is the exchange energy, c°iklm and crik are the
elastic tensor without magnetovolume interactions and the
external stress tensor, respectively; yik and elklm are the first
and second-order MVI constants, respectively.

We do not include the magnetic crystal anisotropy ener-
gy since for Invars it is much smaller than the MVI energy.
The fifth term in (3.1) is obtained from the general expres-
sion for the magnetoelastic interaction energy
YiklmuikM,Mm (Ref. 17) by identifying the terms involving
pure volume deformations, i.e. by putting / = k in the gen-
eral expression. It automatically follows that the MVI ener-
gy depends only on the magnitude of the magnetization, and
not on its direction. We assume that M||H. The effect of the
anisotropy in the magnetic properties will be discussed in the
Section devoted to fluctuation corrections.

The equilibrium equations of state are such that the
thermodynamic potential is a minimum with respect to M
and uik:

H = 2Myikuik + Meiklmuikulm,

(3.2)

A summation from 1 to 3 is understood over repeating
Latin indices. The symmetry properties of the tensor elklm

are the same as those of c°iklm. We will consider the case of a
cubic crystal, for which yik = ySik.

When aik =0 the second equation in (3.2) gives the
spontaneous equilibrium spontaneous deformations u°m as

fjj _i_ - A/f*\ij" — tt \A~ (1 "J Лv ijt/rtt iktm J Im ~ — ' i l r^ ' \^"^/

Taking into account the thermoelastic term aik uik TB0 in the
thermodynamic potential (see Ref. 17b, for example),
where aik = a8ik is the coefficient of thermal expansion,
(3.3) takes the form

(4/m (3.4)

When 7<0 the first term in (3.4) decreases with in-
creasing temperature, while the second term increases.

Hence the two terms can cancel and low thermal expansion
is the basic characteristic of industrial Invar alloys. This is
only one of the obvious consequences of magnetovolume in-
teractions. We will attempt to show that if the magneto-
volume interaction is large enough it can lead to a fundamen-
tal change in the equilibrium and dynamical properties of
the ferromagnet.

We see from (3.4) that у plays the role of a "magnetic
expansion" constant and the eiklm resemble "magnetic elas-
tic constants".

It follows from (3.3) that

4 = -
2c?2

and the spontaneous magnetovolume deformation is

COSH° = -YM
2B^. (3.5)

Differentiating the system of equations (3.2) with re-
spect to H with uik = const, we obtain the following expres-
sion for the longitudinal magnetic susceptibility at constant
volume Xv'-

Xy =
(3.6)

Differentiating (3.2) with respect to H with aik = const, we
obtain a system of linear equations for the susceptibility at
constant pressure XP and the induced magnetostriction
duik/dH:

.. d"/~

du.t

(3.7)

Similarly, it can be shown that the elastic constants
c",n, = (daik/dulm )я and с%1т = (daik/dulm )M are

We obtain from the first equation of (3.2)

where

Using (3.6)-(3.9), we obtain the following relations,
which will be needed in comparing the theoretical and ex-
perimental results:

при

BH , (3. 10)

These relations are consistent with (2.7)-(2.11), since
h 2Xp ^BH = 4f2Af 2XvB M '• It is not difficult to show from
(3.10) that the relation (2.4) is also satisfied. It is assumed
in (3.10) that Г л =у[1-(е п + 2е12)М2(ЪВм)~1]
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8ik =±7<5,*. It will be shown below that this relation is satis-
fied to within a few percent.

The expressions for the susceptibilities and the com-
pressibilities

where^0 is the longitudinal susceptibility without magneto-
volume interaction (which can be obtained from (3.6) by
putting 7 = 0 and eiklm = 0) resemble the formulas for the
Green's function in field theory170 and represent a renormal-
ization of the thermodynamic quantities because of magne-
tovolume interactions. The renormalization results from the
change in the ground state of the magnetic and elastic sub-
systems of the material due to magnetovolume interactions.
It will be shown below that fluctuations in the magnetic and
elastic subsystems (phonons, magnons, and so forth) lead to
additional changes in the thermodynamic quantities.

Numerical estimates show why magneto- volume inter-
actions must be taken into account in real ferromagnets. We
consider mainly Fe-Ni and Fe-Pt alloys, since they have
been extensively studied experimentally and show the
largest magnetovolume effects.

The following experimental quantities are known for
the disordered alloy Fe65Ni35 (Ref. 18): «(0 °K)
= 1.9- КГ2, M(0 °K) = 1.55- 106A/m = 1.55- 103erg/
G-cm3,BM(Q °K) erg/cm3 = 2- 1011 N/m2,
rc = 500 °K. The MVI constant is found from the experi-
mental value of <a(0 °K) using (3.5). We obtain
yzz - 1.6- 104 G2cmVerg = - 1.6- 10~3N/A2. Similar es-
timates can be found in Ref. 4a, Ch. IV. The second-order
MVI constants are found following Ref. 1 1 and are equal to
£„;= -2.5-104 G2/erg-cm-3, £n^\05 G2 cmVerg,
£44- -6-104.

The longitudinal magnetic susceptbilities XP and Xv ш

(3.10) are difficult to determine in terms of the experimental
high-field susceptibility (the susceptibility near technical
saturation) since this susceptibility is the sum of longitudi-
nal and transverse terms. We determine^ and Xv using the
experimental value of the induced volume magnetostriction
ды/дН. Then^p can be found from (3.10), since the other
quantities in this equation are known. For Fe-Ni Invar at
300 °K we have ^=;6.8-10~4 erg/G-cm3 and
;i>~4.3- 10~4. We note that ̂ cxpt ̂  13- 10~4. Then

BM-BH = 5,2- 1011 erg/cm3,

which agrees fairly well with the experimental value of
~6- 10" erg/cm3 (see Ref. 16, for example). From the ex-
perimental data of Ref. 18 (see also Ref. 4a, Ch. IV) we have

("я - «л/W. = 4,0-l<T5(deg)-1.

We see that the estimated value of %P is half as large as ̂ expt.
The cause of this disagreement has already been discussed
briefly. We will return to this question, as well as a more
detailed comparison with experiment.

For the disordered alloy Fe72 Pt28 we have the experi-
mental values:20 <u(0) = 1.6-10~2, M0(0°K) = 1.5-103

erg/G-cm3 = 1.5-106 A/m, BM(0 °K) = 1.8-1012

dyn/cm2, Tc =380 °K. Using the procedure for Fe-Ni, we
obtain y~ — 1-3' Ю4 G-cmVerg. In the same units we have
£„ ̂  - 7.4-104, el2 ж 1.8-105, £44 =: - 105. These values of
the MVI constants result in satisfactory agreement between
the experimental and calculated values of the shear modu-
lus, bulk modulus, and coefficient of thermal expansion. It
follows from these numerical values that for Invars the MVI
energy is yAf 2<y~5-108 erg/cm3, or about 10% of the ener-
gy of the exchange interaction.

Hence it is evident that the phenomenological theory of
magnetovolume interactions can provide a satisfactory
quantitative description of the thermodynamic properties in
Invars. The connection between the electronic structure and
the large magnetovolume effect in ferromagnets and the cal-
culation of the values of the MVI constants are questions left
to the microscopic theory.

We have discussed far from all of the consequences of
magnetovolume interactions. To make further progress, we
consider the magnetovolume interaction in the molecular
field approximation for the Heisenberg model. We note that
magnetovolume effects have been considered by many au-
thors using various models of ferromagnets.8'9'12'13 Without
considering the merits and deficiencies of these papers we
note, following Shimizu,6 that not all of their results are
consistent with the rigorous thermodynamic approach dis-
cussed above.

4. MAGNETOELASTIC INTERACTION IN THE MEAN-FIELD
APPROXIMATION FOR THE HEISENBERG MODEL

In spite of the fact that most Invars and Elinvars are
compounds of 3rf-metals and hence the applicability of the
Heisenberg model is questionable, a large number of proper-
ties can be calculated using this model over a wide tempera-
ture region and the overall effects of magnetovolume inter-
actions can be discussed. In addition, it will be shown that
the main consequences of magnetovolume interactions do
not depend on the model of the ferromagnet. Only the quan-
tities determining the magnetic properties (such as M(T),
X, Tc, and so on) depend on the model.

Following Ref. 19, we consider the dependence of the
exchange integral on the deformations:

J = J
1 .
2 eiklmuikulm (4.1)

where yfk and efklm are the first and second-order MVI ten-
sors. Below we will establish a connection between these
quantities and the tensors yik and eiklm introduced earlier.

In the Heisenberg model yfk are the first derivatives of
the exchange integral with respect to the deformations and
£?kim are linear combinations of the first and second deriva-
tives. If we had started from the model of collective elec-
trons, the MVI constants would have been determined by
the deformation dependence of the parameters of the elec-
tronic structure, such as the density of states and the elec-
tron-electron interaction constants.56 At the present time it
is not possible to calculate the values of the MVI constants or
to determine the features of the electronic structure respon-
sible for the large values of the MVI constants, although

688 Sov. Phys. Usp. 34 (8), August 1991 E. Z. Valiev 688



such a calculation was attempted in Ref. 9 and the value of у
was obtained to within an order of magnitude.

The thermodynamic potential per unit volume of the
ferromagnet is written in the form

(4.2)

where

Fm - nzJs2m2

, 2 s + l ,sh (A +
s V

sh-
A +

2s

is the free energy of the magnetic subsystem with the ex-
change integral given by (4.1); л is the number of atoms per
unit volume, z is the number of nearest neighbors, s is the
spin, т is the reduced magnetization, h = 2/n sH/kBT,
hE = 2psHE/kB T, HE = JS//LI, H is the external magnetic
field and // is the Bohr magneton. Our calculation is essen-
tially a generalization of the Bean-Rodbell model21 to the
case of arbitrary spin and nonlinear dependence of the ex-
change integral on distance. In the theory of phase transi-
tions22 a similar approach for Ising spins is known as the
Kittel model.

Minimizing the thermodynamic potential with respect
to т and uik, we obtain coupled equations of state for the
magnetic and elastic subsystems:

т = Bs(x), x = (2ftsH + 2zs2/m)(*Br)~1,

(c°iklm ~ nzs2m2£l>iklm)uik =
(4.3)

where B, (x) is the Brillouin function.
The nondeformed state is denned to be the unstressed

(trlk = 0) paramagnetic (m — 0) state at arbitrary tempera-
ture, since we have neglected thermal expansion.

The equations of state (4.3) are analogous to (3.2) and
determine all equilibrium properties of the ferromagnet.
Taking uik from (4.3) and putting it into (4.2), we obtain
that the exchange integral J is renormalized because of
magnetovolume interactions and depends on the magnetiza-
tion and external stresses. The molecular field HE will then
be a nonlinear function of the magnetization, and so under
certain conditions the magnetic phase transition can change
from second order to first order. The magnetization and Cu-
rie termperature depend on the external stresses.

Differentiating (4.3) with respect to uik=0 with
H = const, we obtain an equation for the elastic constants

4lm =

where Tfk = (yfk + efklm ulm ) and the magnetic susceptibil-
ity at constant volume Xv is determined later. To obtain cfklm

as functions of m, aik, and T, we substitute uik from (4.3)
into (4.4). The elastic constants cfk depend on the stresses
directly, and also indirectly through the magnetization.
Hence the magnetovolume interaction leads to effective an-
harmonicity.

When m = const the elastic constants are equal to

, - nzs2m2e'iklm. (4.5)

are identical if

, 4u2n 4u2n
- - - -

Since yfk = dJ/duik = a(dJ/da)8ik, we obtain an explicit
expression for the MVI constant у in terms of the derivative
of the exchange integral with respect to the coordinate:

У «_g. (4.7)

The spontaneous volume magnetostriction <a is, from (4.3)
with aik = 0

which reduces to (3.5), if we use (4.6).
Explicit expressions for the magnetic susceptibilities X

follow from (4.3)

(Щ = - 2zs2JB's(x)rl , (4.8)

3v~lBul [/ + i (ej, + TeJ

Xy =

where

Г2 =

Again it can be shown that (4.9) is identical to the corre-
sponding expression from the preceding Section. The equa-
tions for д(о/дН and дМ/дР are also the same. This proves
that the consequences of the magnetovolume interaction are
independent of the model of the ferromagnet.

We did not take into account thermal expansion in
(4.2). This can be done by adding a thermoelastic term of
the form B0 aik uik T, where aik = a0 Sik . Here a0 is the
coefficient of volume expansion of the ferromagnet without
magnetovolume interactions. Then the thermoelastic defor-
mation term B0 aik T appears on the right hand side of the
second equation of (4.3). Differentiating (4.3) with respect
to T, we obtain an expression for the coefficient of linear
expansion at constant H:

(4.10)

Comparing this expression with (2.11), we obtain a relation
between (дМ/дТ) у

(4.4) ^ =- (4.11)

which is valid for our model (like (4.10)) at temperatures
exceeding the Debye temperature QD.

Substituting uik from the second equation of (4.3) into
the first, we obtain an expression for m( T). From the high-
temperature series expansion of the Brillouin function one
can obtain an equation for Tc as a function of the external
stresses alm

2 £Mmsikpnapnslmrsars)>

Comparing (4.4) and (4.5) with (3.8), it is evident that they (4.12)
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where s°iklm are the elastic compliances.23

The dependence of the Curie temperature on pressure
aik = — PS,k has the form

Substituting in (4.13) the values y*=;3.6-10"14 erg and
(£f, + 2ff2) ~ - 3.8- ID"13 erg obtained with the help of
(4.6) and the numerical values of у and eik for the iron-
nickel alloy, and also z=12 and s = l , we obtain
дТс/дРс* - 3 "KTkbar at a pressure of 10 kbar, which is
consistent with the experimental data of 3-5 °K/kbar (Ref.
1). At P~ 10 kbar the third term is only a few percent of the
second. They are comparable for pressures of hundreds of
kbar.

The dependence of Tc on the shear stresses can be ob-
tained from (4.12). For example, for a torsion a about the
principal symmetry axis of a cubic crystal we have

(4.14)

Since (e?, - £?2) > 0 in Fe-Ni Invar, it follows that Tc in-
creases with increasing a.

Another consequence of magnetovolume interactions
in ferromagnets is a change in the nature of the magnetic
phase transition from second order to first order with an
increase in the absolute value of the constant y*. An expres-
sion for the critical value y?r can be obtained by setting to
zero the coefficient of m3 in the high-temperature expansion
of the Brillouin function. The coefficient of m must vanish
simultaneously. In the absence of external pressure and as-
suming s = 1 we have

32z2n '
Qr

з <*nW 1/2

(4.15)

This is the condition for a tricritical point on the second-
order phase transition curve.24 If y* < y£ the transition is
second order and if y* > y?r it is first order. This condition is
correct in the mean-field theory. When fluctuations are tak-
en into account a first-order transition is possible for small
values of ( Т - Tc )/Tc even when y* < У?г (

Ref- 25 ) •
For example, for Fe-Ni Invar y£=:4.9'10~21 J, or

Ycr~ — 2. 1 • 104 G2cmVerg. Comparing these values with
the experimental value | y| x 1 .6 • 104 in Fe-Ni Invar, it is evi-
dent that at zero pressure the magnetic phase transition
should be second order and this is indeed the case.

When 77 = 1 - h 2xe 1BH = \- Г2т2^к/2/^л van-
ishes, it follows from (2. 1 1 ) and (4.9) that^>, ан, and В Jj '
diverge. Substituting in the above formula for i):

8 _

3
„,2 c ~ T

m ~3 Т '

(which hold for Г<ГС and* = 1 ) and also r2from (4.9), we
find that (4.15) follows from the condition щ = 0 at T= Tc.
Hence some of the thermodynamic quantities diverge at the
tricritical point, as would be expected.

Although the magnetic phase transition in Fe-Ni and
Fe-Pt Invars is second order in the absence of pressure, the
transition can be changed to first order by applying pres-
sure.26 We calculate the magnetic phase diagrams of Fe-Ni

and Fe-Pt Invars under pressure, using the MVI constants
for these alloys.

It follows from (4.3) (compare with Ref. 27) that:

2zs Jmг> / \= B(x), x= .
*

, . , , .
(4.16)

here / depends on the deformations (see (4. 1 ) ).
It should be noted that a pressure-induced change in the

phase transition from second order to first order does not
follow from the thermodynamic potential (3.1) given in the
preceding Section. To obtain this conclusion magneto-
volume interactions must be taken into account more sys-
tematically in (3.1 ). At low pressures ~ 10 kbar the results
of the preceding and current Sections are the same. ( If у* < О
an applied pressure can change a first-order magnetic phase
transition to a continuous (i.e. a second-order) transi-
tion.25 )

The deformation tensor in the case of spontaneous mag-
netovolume deformation and uniform compression has the
form

ulk (4.17)

To construct the phase diagram it is sufficient to keep terms
up to fifth order in m in the equation of state (4.16). Substi-
tuting (4.17) into (4.1) and then into (4.16) and expanding
the Brillouin function and the coefficients depending on m in
power series in the magnetization, we obtain the equation of
state in the form

Am + Bm3 + Cm5 = 0; (4.18)

where^ = (T- TC(P))/T with T C ( P ) is given by (4.13),
and В and С are functions of temperature and pressure.

At low pressure В > 0 and the second-order phase tran-
sition curve is given by the condition A = 0. The tricritical
point is obtained by solving the equations A = 0 and B = 0
simultaneously. In the region B<0, C>0 the first-order
phase transition line and the spinodals of the magnetic
(m^O) and nonmagnetic (m = 0) phases are determined
by the equations A = (3/16)52/C, A = (1/4)52/C, and
A = 0, respectively.

The phase diagram of the disordered alloy Fe72 Pt28

shown in Fig. 1 was calculated using the experimental values
of the MVI constants. The phase diagram for Fe65 Ni35 is not
given, since it differs only slightly from the diagram shown
in Fig. 1. For Fe-Ni Invar we have Г3 = 322 "К and P3 =61
kbar.

We note the relatively small temperature hysteresis in
the first-order phase transition region of Fig. 1. The magni-
tude of the hysteresis is defined to be the temperature differ-
ence between the spinodals of the magnetic and nonmagnetic
phases at constant P.

These results show the important influence of the sec-
ond-order MVI constants on the position of the tricritical
point and on the phase diagram as a whole. Without the
second-order constants (£*, = е*г =0) the coordinates of
the tricritical point would be T3 = 145 °K, P3 = 61 kbar for
Fe72Pt28 and T3 = 250 "K, P3 = 84 kbar for Ре65№35. The
second-order MVI constants shift the tricritical point to-
ward lower pressure and lead to another tricritical point in
the negative pressure region. Its coordinates are
P3 = - 470 kbar, T3 = 320 "K for Fe72 Pt28; it is apparently
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We consider a weak collective magnet for which the
thermodynamic potential can be written in the form

200 -

150 -

FIG. 1. Magnetic phase diagram of the disordered alloy Fe72Pt28 under
pressure.27

only of academic interest. The large effect of the second-
order MVI constants in the phase diagram is another
demonstration of the importance of the second-order mag-
netovolume interaction for Invar anomalies.

We have given a detailed discussion of the effect of the
second-order magnetovolume interactions because they are
not nearly so well known as the first-order magnetovolume
interaction. The constants efk determine the temperature de-
pendence of the shear elastic constants c,, — c,2 and c^.
Second-order magnetoelastic interactions also lead to a non-
linear dependence of Tc on applied stress (see (4.13) and
(4.14)). Second-order magnetovolume interactions affect
the other properties only slightly. Hence they will sometimes
be neglected in the discussion below in order to simplify the
presentation.

5. MAGNETOVOLUME INTERACTIONS AND THE EFFECT OF
PHONONS ON THE MAGNETIC PROPERTIES IN WEAK
COLLECTIVE FERROMAGNETS

In this Section we consider the effect of magnetovolume
interactions on the thermodynamic properties of weak ferro-
magnets. In contrast to the preceding Sections, the effect of
thermal phonons is taken into account. Thermal phonons
are really outside the framework of the harmonic approxi-
mation for the elastic subsystem because they cause the De-
bye temperature 6D to depend on volume. The effect of
phonons on the magnetic properties was considered in Refs.
12 and 13 by assuming that the elastic constants and Debye
temperature depend on magnetization. Using this assump-
tion, it was concluded in Refs. 12 and 13 that phonons have a
significant effect on the magnetic properties. In our view,
phonons determine the temperature dependence of the mag-
netization, lead to the Curie-Weiss law in collective mag-
nets, and may explain the Invar effect. Even if the mecha-
nism proposed in Refs. 12 and 13 is correct, for which there
is insufficient experimental proof in our opinion, there is
another way of taking into account the effect of phonons on
the magnetic properties. The method discussed below is con-
sistent with the results presented earlier, unlike the method
of Refs. 12 and 13. A similar calculation for the Heisenberg
model was given in Ref. 10.

- HM; (5.1)

l - T2)/T2,

- Рш

here V=VQ(\+o>), a0 =X

% ~ ' (0) = %м ' — Я; XP — 2n2NFn is the one-particle Pauli
susceptibility, NF is the density of states on the Fermi level;
b0 = MO)d +gT2), MO) = (n2/2xtb)[N'F/NF)

2

- (NF/3NF )];T0 = TF (ЛХл - 1 ) 1/2, Y is the MVI con-
stant and can be expressed in terms of the parameters of the
band structure.5 The term proportional to 0f(T 7 в) is the
phonon contribution of the corresponding Gruneisen states,
V0 is the volume at Т = 0, M = 0 and without anharmonic
effects. The rest of the notation is the same as in Ref. 28. To
simplify the discussion, we have neglected second-order
magnetovolume interactions in (5.1).

Since 0( V) = G0 ( 1 - Гй)), where Г = - д ln<9 /д Inu
is Griineisen's constant, by minimizing (5.1) with respect to
M and &) we obtain the equilibrium equations of state:

Я = a0M + + 2ушМ,

P - (5.2)

=/(*) -xf'(x), b0 >0.
Substituting ea from the second equation into the first,

we obtain

Ш3 (5.3)

where a = a0 - 2yB0~
 1P + 6ynk5в0I>( 7Y0 0 ),Ь = Ь0

— 2y2B^~'. The main difference between (5.3) and the re-
sults of Refs. 12 and 13 is that there the renormalization of
the coefficient b0 was not taken into account, while the re-
normalization in a was determined by a different interaction
constant. In addition, the dependence of в on M was postu-
lated a priori, in Refs. 12 and 13 whereas here it is deter-
mined by the interaction. The dependence в(М) becomes
obvious if we substitute the equilibrium value of со from
(5.2) into 0(<o).

The renormalizations of the magnetic properties de-
scribed above originate from changes in the equilibrium vol-
ume of the ferromagnet caused by spontaneous volume mag-
netostriction, external pressure, zero-point vibrations, and
thermally excited phonons.

We write down the following expressions for the phys-
ical quantities in the ferromagnetic state:

a(Q) =

, X~
l=2bM2,

: = -alb,

• (5.4)

Comparing (5.4), (3.10), and (4.9), we can show once
again that the consequences of the magnetovolume interac-
tion are independent of the model of the ferromagnet. Be-
cause 7 < 0 for many weak ferromagnets and и ~ 1023 cm ~3,
<9~3- 1020K; |уД0- Ч~ 10-8G2(cm3/erg)2; Г/(0) -l.then
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for д-(О) ~ 10~3-10~4 the increase in XP ~ '(0) and M(0)
because of zero-point vibrations is 1-10%. The difference
between b0 and b is estimated to be only a fraction of a per-
cent for weak ferromagnets, whereas for Fe-Ni and Fe-Pt
Invars16 this difference reaches several dozen percent.

For P = Q and nonzero temperature

all) =;

When Т<в we have ф(Т/в) = (я-4/5)(7У0)4 and the
condition o = 0 determining the Curie temperature Гс takes
the form

, 1/4

(5.6)

Recall that T0 determines the contribution of Stoner excita-
tions. When T> в we have tp (Т/в) = Т/в and Гс is given
by the equation

(5.7)

In (5.6) and (5.7) Гс = Г0 if Г,(Г2)>Г0 and
Гс = Т, (Г2) when T0 > Г, (Г2). Numerical estimates give
Г, ~в~ T0 and Г2 ~ 104 °K for ;r(0) ~ 1Q-4. In most very
weak ferromagnets Tc < 7^ and so for the mechanism con-
sidered here, phonons do not have an important effect on the
temperature dependence of the magnetization and the sus-
ceptibility of a ferromagnet. This conclusion contradicts the
assertions of Refs. 12 and 13.

Assuming29 that Tc of a weak ferromagnet is given by
(5.6), but with T0 replaced by T^, where T^ is the tempera-
ture typical of spin fluctuations (T^ ^T0), we obtain the
following expression for the dependence of Гс on atomic
mass m (the isotope effect):

Il^-lflk) -10-3
2 d l n 0 4 Г,

dlnrc

d m m

This value is not inconsistent with experiment for ZrZn2

(Ref. 30). When ГС~Г, the phonon mechanism deter-
mines Tc and

dlnr.

d In m

Hence in our approach phonons do not have an important
effect on the magnetic properties of a ferromagnet, although
in some cases (large compressibility, strong anharmonicity)
they can facilitate the onset of temperature-induced ferro-
magnetism and then they significantly (~ 10%) affect the
magnetic properties. For weak collective ferromagnets like
MnSi and ZrZn2 we have 4M 2у*ХВ o~' ~10 ~ 2~10 ~~ 3>while

the differences between BH and BM, XP and XYI and * and *o
are less than a percent. In Fe-Ni and Fe-Pt Invars
4M27^f5 „~' ~ 1 and the above quantities differ by several
dozen percent. Note that in spite of the same value of the
MVI constant у m weak ferromagnets and in Fe-Ni Invar,
their magnetizations differ by nearly two orders of magni-
tude. Therefore in order for the effect of magnetovolume

interactions to be large, we need a magnetization of order
M~ 103 G, in addition to having y~ 104.

Finally, we consider the coefficient of thermal expan-
sion. According to (5.2) ан = ды/дТ is given by

(5.8)

cph is the phonon part of the heat capacity. Generalizing this
expression by taking into account thermal excitations in the
electronic subsystem and magnetic fluctuations, we can
write

where ce, cm and Te, Tm are the electronic and magnetic
heat capacities and Gruneisen constants, respectively.

It follows from (5.9) that there are two magnetic con-
tributions to the coefficient of volume expansion. One (the
last term in (5.9)) is due to the renormalization of the
ground state, i.e. spontaneous volume magnetostriction,
while the second (proportional to the magnetic heat capac-
ity) is due to the renormalization of the excited states.

A similar expression, but without the last term, was
discussed in Ref. 10 for the Heisenberg model. In this model

г d ln J = У*
M d In V 3/ '

Hence when у < 0 both magnetic contributions are negative,
which may explain the negative value of the coefficient of
thermal expansion in weak collective ferromagnets and in
many Invar alloys at low temperature.1 The equation (5.9)
is an attempt to take into account the effect of fluctuations
on a thermodynamic property.

6. FORMULATION OF THE THEORY OF MAGNETOVOLUME
INTERACTIONS AS A PROBLEM OF INTERACTING FIELDS IN
CLASSICAL FIELD THEORY

The phenomenological theory of magnetovolume inter-
actions discussed above can be used to explain the equilibri-
um thermodynamic properties of Invars. The anomalies of
the physical quantities discussed above were associated with
the renormalization of the ground state, i.e. with nonzero
spontaneous magnetization M0 and spontaneous volume
magnetostriction.

To discuss dynamical effects such as the propagation of
spin waves and acoustic waves, and also the effect of fluctu-
ations (phonons, magnons, and so forth) on the thermody-
namic properties, we consider the problem of magneto-
volume interactions in the spirit of the theory of interacting
fields, i.e. we consider Af(x,t) and uik (x,t) as functions of
the spatial coordinates x and the time /.

From the equations of motion for M (x,/) and uik (x,0
we will find that the magnetovolume interaction modifies
the dispersion of spin and acoustic waves and leads to attenu-
ation. In addition, it will be shown that magnetovolume in-
teractions lead to nonlinear effects in both the elastic and
magnetic subsystems of the ferromagnet (anharmonicity of
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magnetoelastic origin and nonlinear parametric resonance
in the spin system). We will consider the effect of magnetic
fluctuations on the thermodynamic properties, which lead
to magnetic contributions to the coefficient of linear expan-
sion and to the compressibility above Tc. It was shown above
that in the mean-field approximation the MVI problem can
be solved exactly. When fluctuations are included, however,
it is necessary to resort to an approximate treatment.

The thermodynamic potential in this case will have the
form31

(6.1)

where the thermodynamic potential density ф is

/ \ 2 •
c» ,

1 , , (dm*y"«4^J -*.•"'-"«««• (6.2)

<p(M2) and «о (дМ /dXj )2 are the volume energies associat-
ed with uniform and nonuniform magnetization, respective-
ly and the term in / is the magnetovolume interaction due to
the nonuniform magnetization.

In (6.2) we have neglected magnetic interactions and
anisotropic magnetostriction, since in Invars the energies
associated with these effects are two orders of magnitude
smaller than the MVI energy. We have also neglected
boundary effects, the effect of the domain structure, and the
second-order magnetovolume interaction.

For the effective stress tensor aik = d<f>/duik and the
magnetic field

we obtain from (6. 1 )

. = Я, -

The equations of motion have the form

(6.4)

where u, is the displacement vector, p is the density, and R is
the relaxation term.

Equilibrium equations of state of the form (3.2) and
(5.2) can be obtained from (6.3) by neglecting the spatial
derivatives in the equations 3fft = 0, aik — 0. Here we will
assume

which is correct for an arbitrary ferromagnet near Tc (Ref.
24). Then from (6.3) we obtain the magnetic equation of
state (5.3) and the equilibrium deformation
u°k = -B^l(yM2 + P)Sik/3. The dependence of the sus-

ceptibilities and the magnetization on the external magnetic
field H will be needed below. From (5.3) we have

Я

Recall that х у and XP are ̂ e longitudinal susceptibilities at
constant volume and pressure, respectively, and they depend
on pressure.

6.1. Fluctuation corrections to the equations of state

The effect of spin fluctuations on the thermodynamic
properties with magnetovolume interactions taken into ac-
count was considered in Refs. 9,32,33. However the method
used to calculate the fluctuation corrections in Ref. 32 is
hardly systematic. The contribution of transverse fluctu-
ations of the magnetic moment was not taken into account in
Ref. 9. Our approach31 assumes the Gaussian approxima-
tion and the results are similar to the conclusions of Ref. 33.
In addition, our approach includes magnetovolume interac-
tions with a nonuniform magnetization, which were not tak-
en into account in Refs. 9, 32, and 33.

A similar problem to that considered here was dis-
cussed in Refs. 11 and 25. The effect of magnetovolume in-
teractions on the critical behavior of the ferromagnet was
discussed in Ref. 25 using the Heisenberg model. It was
found that magnetovolume interactions change the frequen-
cies of spin waves and phonons (see the bibliography given
in Ref. 11). The effect of such changes on the thermodynam-
ic properties are not easy to estimate because of the complex-
ity of the analytical expressions and the fact that they involve
unknown parameters.

Fluctuations are taken into account in the Gaussian ap-
proximation by putting M = M0 + m(x) and uik = u°ik into
(6.1) and keeping terms no higher than m2. We then per-
form a functional integration with respect to m(x) in the
expression

Strictly speaking, we should write uik = u°ik + A/A. and
integrate with respect to Ал as well, in order to take into
account displacement fluctuations (or phonons) in an
equivalent way. However, it was shown in Ref. 25 that this
added complication does not change the results in our ap-
proximation.

Transforming to a Fourier expansion for т (х) and car-
rying out the calculation, we obtain the following expression
for the equilibrium thermodynamic potential

Ф(Р, Т, Я) =
k Т

°, т, m-~\ in У
Z.v ^J V

k
(6.5)

The subscript v in (6.5) signifies the contribution of the lon-
gitudinal (||) and the two transverse (1) components of the
magnetic moment. Also
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= е ч-1

ло"о
(6.6)

(6.7)

Ф0 (Р,Т,Н) is the equilibrium thermodynamic potential in
the mean-field approximation.

The constant a in (6.6) is renormalized by the volume-
elastic interaction and depends on pressure. By comparing
with the experimental D(P) dependence for Fe-Ni alloys,34

it follows that /~ — ya2 (a is the lattice constant), where
D = 2fj,Ma/fi. The potential (6.7) leads to the same results
as (5.2).

The equations of state with fluctuation corrections are
obtained from (6.5) using the relations са = дФ/дР and
M= -дФ/дН:

1

2

т< тс,

(6.8)

(6.9)

where <т|д} = 2^ <|т![д|2>. In the derivation of (6.9) and
(6.10) we used the relations dxfl/dP = 4y/BH,
да/дР= -r'/BH for T<TC and dx~l/dP= -2r/B0,
да/дР = - Y '/B0 for T> Tc.

The magnetization formula (6.8) reduces to the expres-
sion of Ref. 29 when (m\д >/Мц <€ 1, except for the factor
b0/b in front of (ml). Since bQ/b> 1, it is evident from
(6.8) that the magnetovolume interaction amplifies the con-
tribution of longitudinal fluctuations to the temperature de-
pendence of the magnetization.

It follows from (6.9) (y<0) that the contribution of
fluctuations to the volume deformation is negative, while the
spontaneous volume magnetostriction <y0(P=0) is posi-
tive. Qualitatively the same result was obtained in Ref. 32,
but there the fluctuation contribution was ~y~\ while in
(6.9) it is proportional to y, which seems more likely. Our
conclusion about the sign of the fluctuation contribution to
ы contradicts the results of Refs. 9 and 33 below Tc but
agrees with them for T> Tc. The signs of the fluctuation
contribution to со in (6.9) and (6.10) are different because
the coefficient a changes sign when the temperature passes
through Tc. The result is a negative contribution to the ther-
mal expansion both above and below Tc, which is a conse-
quence of the fact that (m2) increases with increasing tem-
perature below Tc and (m2) decreases with increasing
temperature above Tc. This behavior of (m\) and <m2) fol-
lows from (6.6) when only long-wavelength thermal fluctu-
ations of the magnetic moment are taken into account.

Using (6.10), we can estimate the fluctuation contribu-
tion to the coefficient of linear expansion /5 and the bulk

modulus for T> Tc. Using the fact that В ~' = - дсо/дР
and neglecting the pressure dependence of a in (6.10) and
also the last term, we obtain

AB
В

Л/2

В (6.11)

As already noted, these approximations correspond to tak-
ing into account only long-wavelength critical fluctuations
in {m2) with the help of (6.6). With the same approxima-
tions we have for Д/? = (\/Ъ)дш/дТ

3* 7У1/2 AV-I
Л/? = -У в * . °X (6.12)

Bn
dT

We note that expressions analogous to (6.11) and
(6.12) for the fluctuation contribution to the heat capacity
ДСр were discussed in Ref. 24. Also, (6.12) is consistent
with (5.9),i.e.in (6.12) Д/?~ДСР. Using the following val-
ues of the physical parameters for Fe65Ni35 from Ref. 16:
Y= - 1.6- 104 G2cm3/erg, 50^2-1012 erg/cm3, osslCr"
G2cmVerg, д^-К)-4 erg/cm3G2, Г=5.5-102 °К> Tc;
dx~l/dT=C~^6 G2cmVerg-deg, we find that
Д5/5= -2-10-2andA0= - 3- 10 ~6°K ~l, which agree
in order of magnitude and in sign with the experimental
data.1

A positive magnetic contribution to P above Tc was
predicted in Ref. 9. According to Ref. 9, (m2) increases
when Г> Tc . This is a result of the fact that the long-wave-
length critical fluctuations of the magnetization were not
taken into account correctly in calculating (m2) . To be fair it
must be said that the conclusions of Ref. 9 are correct for
many collective magnetic materials outside the region where
critical fluctuations of the magnetization are strong.

In connection with the derivation of (6.8), it is known
from the spin-wave approximation that the temperature de-
pendence of the magnetization

<sz> =s - (b+b)

can be rewritten in the form

where M0=gfins, M = gfj,n(sz), (ml) = (g/nn)2(s2

x),
(s2) =s(b +b);b+ and b are the spin deviation operators.
We can consider (6.8) to be a generalization of the above
formula to the case when longitudinal fluctuations of the
magnetic moment are taken into account.

For Invars there is the problem of "hidden" magnetic
excitations.35 The coefficient D in the dispersion equation
for spin waves со = Dk 2 has one value when determined
from magnetic measurements, and a different value when
obtained from neutron-diffraction experiments, i.e. spin
waves do not explain the temperature dependence of the
magnetization in Invars even at low temperatures. Therefore
(6.8) suggests that there are "hidden" magnetic excitations
in Invars among the longitudinal fluctuations of the magnet-
ic moment. The hidden excitations could be longitudinal ex-
citations of the paramagnetic type29 or longitudinal spin
fluctuations ("diffusions").36

We recall that in the theory of spin-phonon interac-
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tions, when the anharmonicity of the lattice vibrations is
taken into account, an additional term ~ Г4 appears in the
temperature dependence of the magnetization;10a>b see also
(5.4)-(5.6) above. This term is comparable to the contribu-
tion of the spin-spin interaction to the temperature depend-
ence,10 and obviously cannot explain the dependence M(T)
in Invars.

6.2. Propagation of sound waves with magnetovolume
interactions

6.2.1. Dispersion of the speed of sound

For small deviations from equilibrium we have from
(6.3)

Vй/

(6.13)

here Дл = (1/2) (du t /dx k + duk/dxt),Xq ' = 4M0/

M0j(p "(Mo) + [ 2 q > ' ( M 2

0 ) + 2уи°,]69 is the reciprocal of
the susceptibility for M,J = const.

It is evident from (6.13) that in the linear approxima-
tion only the component of m parallel to M0 (тг if M0 is
along z) interacts with sound waves. In this approximation
mz=m participates in the relaxation and diffusion motions.

We take Rt = ̂ ,/r, for the relaxation term. Then we
obtain for sound waves interacting with the magnetic sub-
system37

., ... ..^..Ч_._ч г 11д,г (6Л4)

We have put xzl =x\\ and have neglected the term involving
the spatial derivatives of m in the second equation of (6.14).

As an example, we consider the propagation of sound in
the [ 110] direction in a cubic crystal.

For sound waves propagating and polarized in the x,y
plane, we substitute in (6.14) a solution of the form
11ут~ exp [/ {[ k /^[2(x + y) ] — cot} ] . From the condition
for a nontrivial solution for M, and m we obtain the disper-
sion relation

(ОТ

where

M = 0,

(6.15)

•#Л .,2 _. 1 f 0 , 0
t0t ~ 2 ( И С12

We conclude that magnetovolume interactions do not affect
the propagation of transverse sound. This conclusion is cor-
rect if we neglect the second-order magnetovolume interac-
tion. If the second-order interaction is included the follow-
ing substitutions must be made in (6.15):

But even in this case transverse sound waves do not experi-
ence dispersion or attenuation, which is in agreement with
experiment.40

For longitudinal sound waves

- UtiTCn )•, (6.16)

ci =COL —
s ^e S4uare of tne equilibrium

speed of sound and т = т,х\\ is the relaxation time of the
longitudinal component of the magnetization. The result
(6.16) is identical to the MandeFshtam-Leontovich re-
sult.38 It follows from (6.16) that when <ar>l we have
с = CQL and when сот <^ 1 we have с = CL . The attenuation is
small, i.e. Im k /\k | <^ 1, in the high-frequency and low-fre-
quency limits.

Propagation of longitudinal sound causes a variation in
the volume, which then leads to a variation in the magnetiza-
tion because of magnetostriction. When r><a ~ ' the magnet-
ization cannot reach the equilibrium value and the speed of
sound is determined by the elastic constants with M = const.
When T-^CO~ ' the magnetization can reach the equilibrium
value and the speed of sound is determined by the equilibri-
um elastic constants. It is not difficult to see from ( 6. 1 6 ) and
(3.8) that they are equal to c"k.

All these conclusions are supported experimentally, as
is evident from Fig. 2. The temperature dependence of the
quantity (cu + c,2 +2044) /2 's shown for the alloy
Fe65 Ni35 as determined by neutron diffraction,39 along with
the measurements of the speed of ultrasound. 14'40'41 Neu-
trons measure the speed of sound with frequency а и 1012

sec ~ ', while the frequency of ultrasound is ~ 107 Hz. We see
from Fig. 2 that the elastic constants determined from high-
frequency and low-frequency measurements differ by about
27%, which is consistent with the estimate
p(c2

0z -cl)= 4fM2x}l -0.6- 10" N/m2. We have consid-
ered this example in detail because it illustrates an important
fact concerning the different times associated with first and
second-order magnetovolume interactions. The interaction
time associated with the first-order magnetovolume interac-
tion is determined by the relaxation time of the magnetiza-
tion and т~ 10 ~ 10 sec. The time scale associated with the
second-order magnetovolume interaction is evidently
5 10 ~ 13 sec. We see from Fig. 2 that the difference between
the high-frequency and low-frequency speeds of sound per-
sists above Tc, where the Mandel'shtam — Leontovich

100 200 300 400 SOU BOO
Г,К

FIG. 2. Temperature dependence of the elastic modulus
(cn + Ci2 +Cw)/2 in Fe65Ni35 (neutrons). Curves: results obtained
from the measured speed of sound in Fe65 Ni35 (1) andFe49Ni51 (2) (Ref.
37).
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mechanism does not operate. The dispersion of the speed of
sound above Tc can be explained in terms of interactions
between volume deformations and magnetization fluctu-
ations.42 The effect of magnetovolume interactions on the
lattice is not limited to small k. Anomalies in the dispersion
curves of transverse phonons measured in the (110) direc-
tion were observed in Ref. 43 in Fe3Pt and Fe65Ni35 for
&~0.5т7/д. A maximum in the dependence of the width of
phonon resonances on k lies in this wavevector region. It was
concluded in Ref. 43 that the electron-phonon interaction is
amplified when the wavevector is equal to half the size of the
Brillouin zone. These facts have yet to be explained.

6.2.2. Effective anharmonicity of the elastic subsystem

The elastic part of the thermodynamic potential of a
solid has the form

.ж. г т \ -Ф = ̂  с<^ий> -г
2 о

to third order in the deformation tensor u. Here c(2) ~ 1011

N/m2 are the second-order elastic constants, which have al-
ready been considered, and c(3)~1012-1013 N/m2 are the
third-order elastic constants and correspond to nonlinear
acoustic effects.

In magnetic materials the elastic subsystem interacts
with the magnetic subsystem and this interaction leads to
corrections Ac<2> and Дс<3). As noted above, for Invars
Дс(2)/с(2) reaches several dozen percent, which is of the
same order as in antiferromagnetic hematite. The effective
anharmonicity of the elastic subsystem of an antiferromag-
net was considered in Ref. 44 and it was shown that it should
exceed the intrinsic anharmonicity by a factor of 30-100.
This conclusion has been supported experimentally.45 We
calculate the second-order elastic constants and the effective
third-order elastic constants Дс(3) for Invars following Ref.
16. We analyze the symmetry of the elastic constants and
estimate their magnitudes.

Starting from the thermodynamic potential in the form
( 3. 1 ) , we write down the following equations for the longitu-
dinal component of the effective field <%*=£^2 and the effec-
tive stress tensor aik to within quadratic terms in т = mz and

A,-,:

- [f fef
2)

X\\ is the longitudinal susceptibility with uik = const

(X\\ — Xv)-
Solving the equation %f = 0 for т up to quadratic

terms in Д1/с and substituting the result into aik, we obtain

fftt = 4t?mA/m + 2 "SLAAi'

where

/4 2) — rtO i e A>f2 4 дж2L. г* г* У /r i ^\
'vWm - ciklm ̂  eiklmM0 ЧУИ0* I1 ik1 lm> I«. I / )
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These equations hold for сот <^ 1 , since the equation 3!f = 0 is
the equilibrium condition. Therefore c$m =с"Ыт , which can
be seen from (3.8).

In a cubic crystal there are six independent third-order
elastic constants. However in the effective elastic tensor in
(6.18) not all the components are of the same order of mag-
nitude. Converting to the three-index notation for c\Zjmr, fol-
lowing Ref. 46, we find

(6.19)

= 8(ЗМ0Я -

The other nonzero components of the tensor c(3) reduce to
the terms written out in (6.19).

Numerical estimates based on (6.19) for the alloys
Fe65Ni35 and Fe3Pt show that the first three elastic con-
stants in (6.19) are larger than the last constant. Therefore
nonlinear elastic effects in Invars should be observed mainly
for longitudinal sound waves. The largest constants are c\\\
and cJ23 • They should increase with increasing temperature
and reach the value 1013 N/m2 near Tc, which is several
times larger than the intrinsic anharmonicity.

Finally, we discuss a possible experiment to observe
nonlinear acoustic effects in Invars.

For a longitudinal sound wave of fixed frequency prop-
agating in the ( 100) direction in a cubic crystal, at a distance
r from the boundary of the sample a wave of twice the fre-
quency of the incident sound wave should be observable with
the amplitude

•r,

here MO, с = (cn /p)1/2, and k are the amplitude, propaga-
tion velocity, and wave number of the first harmonic, respec-
tively. Attenuation of the wave was not taken into account.
A similar calculation was given in Ref. 47. It follows that
nonlinear effects in Invars should be observable for attaina-
ble values of the deformation MO ~ 10 ~ 6 in the primary wave.

6.3. Dynamics of the spin system

6.3.1. Attenuation of spin waves

Experimental data48 indicate strong attenuation of spin
waves in Invars, a.ndIm(o(k)=r(k,T) = ro/:2inthepseu-
domomentum interval Л~(0.01-0.3)тг/а, where
ro/Z>~0.05, Re a(k) = Dk2. As mentioned in Ref. 48,
these results cannot be explained by the magnon-magnon
interaction T(k,T) ~ T2k 4 or by the electron-phonon inter-
action with r(k,T) ~ T2k3 and the attenuation is obviously
not connected with magnetic inhomogeneities of Fe-Ni In-
var, because the same effect is observed in the homogeneous
ordered alloy Fe72 Pt28. Therefore the source of the strong
attenuation of magnons in Invars is not clear.

We consider the effect of magnetovolume interactions
on the propagation of spin waves. From (6.4) and (6.11) we

E. Z. Valiev 696



obtain an equation of motion for the transverse component
of the magnetization vector

ди,
ihm+ =

ди,

-^- V2m+ т

(6.20)

where m+ = mx + imy. It follows that linear magneto-
acoustic resonance at the intersection of the dispersion
branches of acoustic and spin waves does not occur. The
condition for resonance is a linear term in ди/дх in the equa-
tion for spin waves, while (6.20) contains MVI terms in the
combination т(ди/дх). It also follows from (6.20) that
spin waves interact only with longitudinal sound waves.

To solve (6.20) , we apply a method similar to that used
in Ref. 49. Taking the Fourier transform of (6.20) and aver-
aging, we obtain

(01 - , co)>

X J k'\kt- k'j)(ufk - k', со - a/)m+(k', co'))dk'c/co' = 0.

We have introduced the notation uD = 2цМ0а,
fiA = 2fiM о у ' and we have neglected the last term in ( 6. 20 ) .

Decomposing the correlation function inside the inte-
gral, we have the following equation for the modified disper-
sion equation for spin waves to lowest order in A

nш — D m
4 Л

+,„ 4V.. . ^ C l - m -(k, и))) Н --- r - ; -
^ " (2л)8 •> (ш' - Dk'2)

x(u/(k - k', ш - co>m(k'- k", со' - ш"))

x(/n+(k", «/'))dk'dco'dk"dco" = 0.

As shown in Ref. 31, this equation gives the following
expression for Im ca(k) = Г (A:):

,
r(k) = rnk

2 =
^ ' °

3kBTA2

— 5-т
\tatMc2D

(6.21)

where kx = c/D, kD is the Debye wave number, and Mis the
mass of the atom.

The result (6.21) is correct in the limit k->Q and at
finite temperatures. It is consistent with the results of Refs.
10 and 50, which were obtained by considering the spin-
phonon interaction in the Heisenberg model, and represents
the attenuation of magnons because of inelastic scattering by
phonons.

To estimate the magnitude of the attenuation in Invars
we use AD = 2.4-10-40 J-m2, c = 5-103 m/sec, kD~Tr/a,
У-л- ya2, Т =3,00 °K. Then with the help of (6.21) we
obtain ro/D~0.002, which is only about 5% of the experi-
mental value.

Apparently a solution of this problem can be obtained
only outside the scope of perturbation theory. In this con-
nection see also Ref. 51.

6.3.2. Parametric amplification of spin waves

Here we consider the excitation of spin waves in Invar
by an external pumping sound wave. The possibility of this
effect follows from (6.20). We consider the steady case,
when a longitudinal sound wave with frequency &> transfers

energy to two spin waves with frequencies ca, and co2 propa-
gating in the same direction. The frequencies and wave
numbers of the pumping wave and the amplified waves are
related by the conditions

= со, + co2, k = £j + (6.22)

which can be interpreted as the laws of conservation of ener-
gy and momentum for the elementary process in which a
quasiparticle corresponding to the pumping wave is annihi-
lated and two quasiparticles corresponding to the generated
spin waves are created.

In (6.20) we introduce terms taking into account the
effect of an external magnetic field and the attenuation of
spin waves ~f3m +. Then in the case of plane waves propa-
gating along the z axis, (6.20) takes the form

im -D^+pm+=A^
dz2 dz dz1 dz

(6.23)

where co^ = 2цН /ft. The longitudinal pumping sound wave
is assumed to be undamped: u2=u ехр[/(оя — kz) ] + c.c.,
where и is a given constant, со and k = a>/c are the frequency
and wave number of the elastic wave. A consequence of para-
metric resonance is the generation of two spin waves by a
sound wave propagating along the z axis. When the ampli-
tude of the sound wave и exceeds a threshold value t/,h, the
amplitudes of the spin waves will increase according to the
equationm12 (z) = m°2exp(0z), where в is the growth con-
stant. The threshold amplitude is obtained from (6.23) fol-
lowing the procedure described in Refs. 31 and 52:

To obtain a quantitative estimate of и,ю we take
Г,^Г2~Г; Г,_2 =Г0А:2,2, kl~k2~k/2, a = ck,
cu=; 1011 sec ~', and we use the physical parameters of Fe-Ni
Invar given above. Then we obtain wt h~10~1 3 m, which
corresponds to an elastic wave intensity of a hundreth of a
watt through a cross-sectional area of ~ 10 mm2. In spite of
the strong attenuation of spin waves in Invars, the threshold
amplitude is not large because of the large value of the MVI
constant.

The growth constant is 0= (Г/Dk) (£- 1), where
£ = |и|/и,ь. When the threshold power is exceeded by 1%
the factor (f - 1)-0.005 and at a frequency of cy~10n

sec ~' we have в~ 50. Hence the spin wave power increases
by a factor of 1030 over a distance of 1 cm, which is obviously
impossible and so there must be an effective limitation on the
power of the elastic wave that can be transferred to the spin
waves.

The conditions of parametric resonance for the wave-
vectors and frequencies of the waves being amplified can be
obtained from (6.22) and the dispersion relations
<v\,2 =в>н + Dk 2

2 . In an experimental test of these results
it is simplest to observe saturation in the power of the elastic
(hypersonic) pumping wave leaving the crystal. The exis-
tence of spin waves exceeding the thermal level can be ob-
served in neutron diffraction experiments. However, be-
cause of experimental difficulties connected with the finite
angular and energy resolutions of present-day neutron spec-
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trometers, the frequency of the pumping sound wave must
exceed 1012 sec"1. Hence parametric amplification of spin
waves by sound may be another method of studying magne-
tovolume interactions in Invars.

6.4. Coupling between magnetization and displacement
fluctuations and diffraction effects

It is natural to expect that, in addition to the magnetoe-
lastic coupling between the magnetization and uniform vol-
ume deformations, the fluctuations of these quantities
should also be coupled. Magnetization fluctuations usually
increase strongly near the Curie point. In some ferromag-
nets, including Fe-Ni Invar, magnetization fluctuations
caused by fluctuations in composition are also observed at
low temperatures.53'54 Because of the magnetovolume inter-
action these fluctuations cause displacements of atoms,
which can be observed as a weakening of the intensity of
Bragg reflections and an increase in diffuse scattering of ra-
diation incident on the crystal. Following Ref. 55, we obtain
the correlation function of the atomic displacements caused
by the magnetovolume interaction.

An expression for the displacement vector caused by
small deviations of the magnetization in, from the equilibri-
um value M0 is determined by requiring the body forces to
vanish: daik/dxk = 0. A similar method has been used to
analyze the distortions in a solid solution due to fluctuations
in the composition56 and to calculate the diffuse scattering
by displacements caused by precipitations of the new
phase.57 We use (6.13) plus the additional term m2for aik.
Then we have for the Fourier component of the displace-
ment vector

. m,(q - /,

where M tj ' is the matrix inverse ofMy. For cubic crystals

Mij = (C12

We then obtain the following expression for the Fourier
transform of the displacement correlation function:

(arctg -y1 + 2 arctg (6.24)

гсцд = Ufm")"2 are tne correlation lengths. This expres-
sion is valid for TS Tc for an elastically isotropic solid. The
first term within the braces is the contribution of second-
order magnetization fluctuations and the second term is the
contribution of fourth-order magnetization fluctuations.
When T> Tc the displacement correlation function can be
found from (6.4) by putting M0 = 0 and гсц = rcl.

The differential cross section for diffuse scattering of
neutrons by displacement fluctuations follows from the well-
known expression56

da
d£2 (6.25)

BOO

FIG. 3. Polar intensity plots for scattering by atomic displacements in the
(001) plane of the reciprocal lattice in the case of volume magnetostric-
tion for Г5 Tc: 1) elastically isotropic solid, 2) cubic crystal Fe65 Ni35.

plitude of neutron scattering by nuclei, and TV is the number
of atoms in the crystal. The intensity of x-ray scattering can
be obtained from (6.25) by replacing b by the atomic form
factor for x-ray scattering.

Figure 3, taken from Ref. 55, shows polar plots of the
intensity around reciprocal lattice points in the (001 ) plane.
The distance between a point on a curve in Fig. 3 and the
nearest reciprocal lattice point is a measure of the scattered
intensity.

The scattered intensity is maximum along Q because
u(q)| |q in the fluctuation wave. According to (6.25) and
(6.24), da/dClvl b for Fe-Ni Invar near the lattice point
( 220 ). This effect was probably observed in Ref. 5 8 in diffuse
neutron scattering in an Fe68 Ni32 single crystal. The mea-
sured distribution of elastically scattered neutrons and their
intensity and temperature dependence correspond closely to
the results following from (6.24) and (6.25).

We note that (6.24) and (6.25) predict a sharp de-
crease (stronger than q ~~ 2) in the intensity as we move away
from a reciprocal lattice point associated with the fact that
the displacement correlation function falls off slowly with
distance in real space. The correlation function correspond-
ing to the first term in (6.24) has the form

and so the displacement correlations decrease as l/r, in con-
trast to the exponential decay of the magnetic correlations

The decrease in the intensity of Bragg reflections is de-
termined by the quantity (и2) = £(«2(q)}, where the sum-
mation over q includes all vectors lying within the first Bril-
louin zone 0<q<,2ir/a. An approximate expression for (и1)
valid when q < IT /a can be obtained by replacing the summa-
tion over q by an integration from 0 to qm , where qm is an
adjustable parameter. In (6.21) qm =kD. Using (6.24) we
obtain

rc arctg

qt = Q + q (Q is the reciprocal lattice vector), b is the am-

2

: — In-

Ус.
2

. Ус
(6.26)
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For Fe-Ni and Fe-Pt Invars, (6.26) gives
<«2)1/2~0.05-10-8 cm at Г~0.95ГС. Particularly large
values of the scattering cross section (6.25) and the mean-
square deviations (6.26) can be expected in magnetic mate-
rials with strong magnetovolume interactions and first-or-
der phase transitions. On the spinodal of the magnetic phase
•̂o ^®>X\\ -»oo, whereas at the Curie point ;f ц -• oo, MQ -»0.
Strong magnetovolume effects, which could possibly be ex-
plained with the help of (6.26), were observed experimental-
ly in Ref. 59, in which the anomalous temperature depend-
ence of the intensity of structural reflections was observed in
MnAs.

In addition to diffraction effects, displacement fluctu-
ations can cause anomalies in the kinetic properties and can
affect the intensity of the Mossbauer spectrum.

а,г 0,4 o,6 а,8 r/rc

FIG. 5. Temperature dependence of the reduced magnetization of the
disordered alloys Fe65Ni35 and Fe72Pt28 (Ref. 20).

7. DISCUSSION OF THE RESULTS OF THE
PHENOMENOLOGICAL THEORY OF MAGNETOVOLUME
INTERACTIONS AND COMPARISON WITH EXPERIMENT

We have already given numerical estimates of MVI ef-
fects in Invar ferromagnetic alloys. In this Section we com-
pare the results with experiment in more detail. We have
chosen the alloys Fe72 Pt2S and Fe65 Ni35 because they have
been studied extensively experimentally and also because the
temperature dependence of the thermodynamic quantities of
these alloys is different. In Fe72 Pt28 the anomalies in the
bulk modulus, coefficient of thermal expansion, and деа/дН
are concentrated mainly near Tc, whereas in Fe65 Ni35 the
largest anomalies in Б and a occur far below Tc. These dif-
ferences make it possible to consider the role of magnetic
inhomogeneities in the Invar problem.

The basic magnetic, thermal, and elastic properties
typical of Invar alloys are shown in Figs. 4—10. The differ-
ence between the thermodynamic quantities obtained by ex-
trapolation from the paramagnetic state and the experimen-
tal values in Figs. 6-10 represent the typical magnetic
contribution to the elastic constants and the coefficient of
linear expansion of Invar alloys. In addition, the following
values are typical for Invar alloys: co~ 10 ~2, да/дН~ 109

Oe -', dTJdP- (3-5) °K/kbar.
Itfollowsfrom (3.5), (3.8), (3.10), and (4.13) that the

magnetoelastic contributions to the thermodynamic quanti-
ties are determined by the MVI constants у and eik. The solid

curves in Figs. 6-10 show the temperature dependence of the
shear moduli 044 and (cn — c12 )/4, the bulk moduli BM and
BH, and the coefficients of thermal expansion calculated
from (3.8) and (3.10) with the values of у and elk given
above. It is evident from the figures that the calculations
explain not only the orders of magnitude of these quantities,
but also their temperature dependence.

Before continuing the analysis, we discuss the details of
the calculation. The temperature dependence of the shear
moduli was calculated using the following consequence of
(3.8):

\2>

and the numerical values of e,,, e12, and £44 given above.
The coefficient of linear expansion aL was calculated

from the formula

°х = «ф - з
-i 'dM\

ят

2-10

itr'-fO

10 -

500 ГА-

FIG. 4. Temperature dependence of the induced magnetostriction даз/дН
for disordered alloys: 1) Fe65Ni35 (Ref. 18), 2) Fe72Pt2S (Ref. 20).

Ч о
в

-2

BOO
7~, К

FIG. 6. Temperature dependence of the coefficient of linear expansion: /)
experimental results of Ref. 18 for FeMNi35, 2) experimental results of
Ref. 20 for Fe72 Pt2 8,3) a^h (upper curve) and coefficient of linear expan-
sion calculated from the formula given in the text for Fe65Ni35 (lower
curve), 4) calculated coefficient of linear expansion for Fe72Pt28.
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FIG. 7. Bulk modulus of FeMNi33 (Ref. 16).

I r" - г"
I _ ">' o 1L

о o,z P. 4 e,s o.f- 1.1/ ~r/''c

FIG. 9. Shear moduli of a Fe65Ni35 single crystal.19

We used BM~\. 8 • 1012 erg/cm3 (see Figs. 7 and 8) and the
temperature dependence of the magnetization shown in Fig.
5. The value of the derivative дМ/дТ was obtained by nu-
merical differentiation of the graph <r(T) in Fig. 5. The
quantity a^, shown by the upper solid curve in Fig. 6 is the
phonon contribution to aL in the Griineisen approxima-
tion,18 and is assumed to be the same for Fe-Ni and Fe-Pt
Invars.

The bulk modulus was calculated from the equations

j; •• ч 4- -- (- 4. I- Hf2

•->/,/ "0 r у •- : 1 ^ "I?,''1 '

If we compute ̂  K from (3.10) using the experimental value
of the high-field susceptibility (near saturation) for XP> the
resulting value of BH — BM is larger than the value mea-
sured experimentally by about a factor of two. We deter-
mined Xv from the experimental data on да>/дН. Then
(3.10) was used to compute^. Finally Xv was calculated
from the relation XP l =Xvl — 4у*М2В и'. The values of
Xv and%P calculated in this way are shown in Fig. 11. These
values o?Xv were used to calculate BH.

The close agreement between the calculated and experi-
mental quantities shown in Figs. 6-10 cannot be accidental
and demonstrates that the phenomenological theory of mag-
netovolume interactions can be used to explain Invar anom-
alies. Additional arguments in favor of the phenomenologi-
cal theory are the above estimates of дТс/дР, ДД and a

above Гс , the explanation of the dispersion of the speed of
sound, and the prediction of diffuse scattering by displace-
ment fluctuations observed in Ref. 58. In our view, Masu-
moto in 193 1 and Kornetskii and Delinger in 1936 were the
first to point out that the cause of the anomalies in Invar is
the large positive spontaneous volume magnetostriction (for
the history of the problem, see Ref. 1 ).

The longitudinal magnetic susceptibilities of Invar al-
loys are interesting. We see from Fig. 11 that when
T= (0-0.5) Гс the quantity Xv m Fe-Ni Invar is approxi-
mately an order of magnitude larger than in Fe-Pt Invar.
This is obviously a consequence of the magnetic inhomo-
geneities observed in Fe-Ni in Ref. 53 and studied in Refs. 54
and 60. Statistical fluctuations in composition lead to signifi-
cant magnetic inhomogeneities in this alloy over a wide tem-
perature range because of the strong dependence of the mag-
netization on composition.61 This picture is consistent with
the formula62

In the disordered alloy Fe72 Pt28 the composition fluc-
tuation (<5c2) is approximately the same as in Fe65 Ni35 , but
the dependence M(c) is much weaker.63 This is why x\\ and
the MVI effects are large only near Tc in this alloy, whereas
in Fe-Ni they are also large for Tzs (0.3-0.5) Tc . The same
conclusion can be drawn from the results of Ref. 64. The
magnetic inhomogeneities in Fe-Ni Invar are the basic cause

0,i 0.4 0,6 0.8 1,0 1,2

FIG. 8. Temperature dependence of the bulk modulus of Fe72Pt2S (Ref.
16).
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FIG. 10. Temperature dependence of the shear moduli of Fe72 Pt28.
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FIG. 11. Temperature dependence of the longitudinal susceptibility at
constant volume Xv (curves 2 and 4) and at constant pressure XP (curves
/ and 3) for Fe65Ni35 (curves / and 2) and Fe72Pt2g (curves 3 and 4).
Circles: experimentally measured high-field susceptibility in Fe65Ni35

(Ref. 18).

of the different temperature dependence of the magnetiza-
tion in Fe65Ni35 and Fe72Pt28 (Refs. 65 and 66).

In light of the above discussion, the role of magnetic
inhomogeneities in the Invar problem is as follows. Large
magnetovolume effects are observed in ferromagnets with
Y~ Ю4 erg/cm3G2, M~ 103 G, and large longitudinal sus-
ceptibility x\\ • This follows from experiment and from the
phenomenological theory of magnetovolume interactions.
The equations given above show that magnetovolume effects
also increase as the stiffness of the lattice decreases. In par-
ticular, the smaller is the value of the bulk modulus BM, the
larger is the value of со ~ yM 2В и '.

In homogeneous Invars (ordered and disordered
Fe72Pt28, Fe-Pd, and other alloys), the anomalies in ан,
BH, and дш/дН are observed near Tc because dM/dTand
Xv are only large near Tc. In inhomogeneous alloys (such as
Fe65Ni35; see Ref. 69), dM/dTand^y are quite large far
below Tc and hence ан and BH differ significantly from
"normal" behavior at temperatures ~ (0.3-0.5) Tc.

Hence the magnetic inhomogeneities are not them-
selves the cause of the large magnetovolume effects, but they
can strongly affect the temperature region in which anoma-
lies in the thermodynamic quantities are observed. There-
fore the effect of magnetic inhomogeneities is important in
the practical application of Invars, when it is required to
have some specified property of the thermal expansion or
elastic constants in a certain temperature region.

The antiferromagnetism of 7-Fe observed in the litera-
ture3 and its relation to Invars is connected with magnetic
inhomogeneities. In Fe-Ni Invar, the centers of magnetic
inhomogeneities (regions with a higher content of Fe
atoms) transform into a state with short-range antiferro-
magnetic order (a spin glass state) when the temperature is
lowered.3'48 These centers play the role of defects in the mag-
netic structure and lead to low-temperature anomalies in the
magnetic and other properties of Fe65 Ni35. On the other
hand, there are many alloys and compounds such as
Fe72 Pt28, MnAsSb (Ref. 67), YMn2 (Ref. 68), and so on, in
which inhomogeneities in the magnetic structure do not ap-
pear and there are no low-temperature anomalies. Neverthe-
less the magnetovolume effects are stronger in these com-
pounds than in Fe<,5 Ni35. Therefore one concludes that the

antiferromagnetism of 7-Fe is not the only cause of the large
magnetovolume effects. A final answer to the question of the
relationship of antiferromagnetism in 7-Fe to the Invar
problem must await further study. We only note that there
are some compounds with large magnetovolume effects that
do not contain iron atoms.67

Af effect of Invars and Elinvars

We consider the ДЕ effect of Invar alloys. As before, we
neglect the effect of the domain structure. The change in
Young's modulus ДЕ in passing into the ferromagnetic state
is usually written in the form of a sum70

ДЖ = (7.1)

&ЕШ is the change due to volume magnetostriction and was
considered by Db'ring,71 and Д-Е^сь is the exchange contri-
bution and is associated with the change in the interatomic
forces in passing into the ferromagnetic state.

We discuss the limits of applicability of (7.1) and pres-
ent explicit forms of the components of the sum. For poly-
crystalline samples the elastic constants can be expressed in
terms of two independent variables: the bulk modulus В and
the shear modulus G, where В = (cn + 2c,2)/3 and
G = (cn — c12 )/2 = £44. In exactly the same way, the sec-
ond-order MVI constants are determined by the two
independent quantities (EU + 2fl2 )/3 = £B and

£44 = (£n — £u)/2 = £G-
The temperature dependence of the Young's modulus

of polycrystalline Fe-Ni Invar can be obtained using the
elastic constants of a single crystal, if one assumes that the
bulk modulus of a single crystal is the same as that of a poly-
crystal and that the shear modulus of a polycrystal is given
by the approximate expression

(7.2)

(7.3)

The calculated results of the Young's modulus

£ = 9BG(3B + G)~l

are shown in Fig. 12 by the solid curve. The fairly good
agreement between the calculation and experiment suggests
that (7.2) can be used for Fe-Ni Invar. The second-order
MVI constants for polycrystals can be determined from the
data on single crystals: ев = (en + 2en)/3,
ea = [c44 + (l/2)(en -£12)]/2. We also note that the

20-10 '

14

200 400 BOO T,K

FIG. 12. Young's modulus of the disordered alloy Fe65Ni35 (Experimen-
tal results from Ref. 18): 1) for Я = 0, 2) for H = 500 G.
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magnetic contributions to the bulk modulus ЫВ and the
shear modulus Д(7 of polycrystalline samples can be easily
obtained from the expressions

(7.4)

have
It follows from (7.3) that for the Young's modulus we

1 ЛД 8 AG
9 В 9 С'

(7.5)

This last equation is obtained when В = 8G /3 (see Ref. 72)
and is valid for ЬВ/В<^1, AGYG<1. The exact formula
(7.3) should be used to calculate Д.Е1 in the general case. We
obtain from (7.4) and (7.5)

- 1 nzWV»= — •=* D I У,,

Once again we note that these equations are correct for the
same conditions as (7.5).

The above discussion, in our opinion, applies directly to
Elinvars as well. It was noted earlier that Elinvars are similar
to Invar alloys in composition. For example, Fe55 Ni45 is an
Elinvar alloy. Analysis of the experimental data1^'40 shows
that the MVI constants in Elinvars are several times smaller
in absolute value than in Invars. Hence instead of a positive
value of dE/dT for T< Tc, as in Fe65Ni35 Invar (see Fig.
12), the quantity dE/dT is nearly zero in a wide temperature
region T< Tc for Fe55Ni45 (Ref. 40). However, in order to
determine the MVI constants in Elinvars more accurately
and to compare their properties with the conclusions of the
phenomenological theory, experimental information is nec-
essary for polycrystalline and single-crystal Elinvars of the
same composition, as was assumed in the case of Fe65 Ni35

and Fe72 Pt28. In addition, the numerical values of the sec-
ond-order MVI constants in Elinvars are difficult to obtain
reliably because the magnetic contribution to the elastic con-
stants in Elinvars is smaller than in Invars.

This concludes our discussion of the phenomenological
theory of magnetovolume interactions and its comparison
with experiment. Although we have considered only the al-
loys Fe65 Ni35 and Fe72 Pt28 in our comparison with experi-
ment, the dozens of ferromagnetic and antiferromagnetic
compounds and alloys used as Invars and Elinvars have sim-
ilar properties, i.e. their basic behavior can be explained us-
ing the phenomenological theory of magnetovolume interac-
tions. The phenomenological theory described here can be
used only for ferromagnetic Invars but it is not difficult to
extend it to apply to antiferromagnetic compounds such as
YMn2 and also to antiferromagnetic alloys such as Fe-Mn-
Ni, (Cr)FeMn, and so on.

Examples of unsolved problems are the problem of hid-
den magnetic excitations,35 lattice dynamics for К ^0 (Ref.
43), the strong attenuation of spin waves,48'73 and finally,
the source of the strong magnetovolume interaction in In-
vars. The contribution of fluctuations to the thermodynamic
quantities remains an unfinished problem. Apparently a
more rigorous calculation of nonlinear effects is necessary.

Experimental confirmation would be desirable of the
predictions of the phenomenological theory such as the ef-
fects of anharmonicity, parametric amplification of spin
waves by sound, and diffraction effects.

8. CONCLUSION. ON THE MICROSCOPIC MECHANISM OF
THE LARGE MAGNETOELASTIC INTERACTION IN INVARS

As a guide to a correct microscopic theory of magneto-
volume interactions, we consider the formal analogy be-
tween the phenomenological theory considered above and
the semi-phenomenological approach used to explain the
properties of compounds with intermediate valency.74 For
example, the expressions for the spontaneous volume mag-
netostriction a)~yM2 and the volume deformation in com-
pounds with intermediate valency ea~n( (n( is the number
of localized electrons) are the same if we put nf ~ yM2. Since
the physical properties of compounds with intermediate va-
lency and Invars are similar (anomalies in the elastic con-
stants, the coefficient of thermal expansion, and the disper-
sion of longitudinal sound), we assume that the charge
density (valency) in Invars changes in the transition from
the paramagnetic state to the ferromagnetic state. Many au-
thors7'9'75 have related the large magnetovolume effects in
Invars to a change in the magnitude of the local magnetic
moment. But in our opinion the large magnetovolume effect
is caused not by a change in the local magnetic moment it-
self, but by the related change in the charge density, i.e. the
quantity yM2 may characterize the strong coupling between
the spin and charge densities in Invars.

A similar idea on the change in the electron density of
Invars has been mentioned by Zakharov.2 The Weiss mod-
el76 of a two-state Fe atom in Invar alloys is also consistent
with this idea if it is assumed that the two states have differ-
ent valencies. It is possible that Ref. 77 may be relevant to
this question. There the longitudinal spin susceptibility of
the electrons in a crystal was calculated and it was found that
the spin and charge response functions are coupled.

Based on these ideas, we can obtain a qualitative picture
of the change in the properties of Invar alloys when the tem-
perature is lowered. Above the Curie point the local magnet-
ic moment of Invar is somewhat smaller than in the magneti-
cally ordered state. When we pass through the Curie point
some of the collective electrons become localized on atoms,
which increases the local magnetic moment and decreases
the ionic charge. The change in the charge density accompa-
nying the increase in the local magnetic moment and the
magnetization leads to a change in the coupling forces be-
tween the atoms and therefore to a change in the volume and
in the elastic properties.

Although the decrease in the local magnetic moment in
Invars above Tc is a well established fact,78'79 apparently the
change in the charge density was studied only in Ref. 80.
Therefore measurements of the charge density through Tc or
TN would be desirable in compounds such as Fe72 Pt28 and
YMn2, where the charge density should vary in a narrow
temperature region near TC_N. A significant change in the
electronic structure of Invars with temperature has been ob-
served in photoelectron emission experiments.81'82

We also note that large magnetovolume effects should
be expected near critical interatomic distances, i.e. distances
separating the magnetically ordered and nonmagnetic
states.83 The same can be said for critical concentra-
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tions.66'84 These facts suggest that the coupling forces be-
tween atoms change significantly in the presence of local
magnetic moments or magnetically ordered states.

An interesting property of magnetically ordered states
in compounds with partial valency also suggests a depend-
ence between the spin and charge density distributions. In
helical magnetic structures observed in compounds such as
CeAl2, CePb3, and CeSb the magnitude of the magnetic mo-
ment (not the direction, as in the usual case) varies sinusoi-
dally.85 Some of these questions were discussed in a recent
international symposium.86

Therefore the nonrigidity of the magnetic moments, in-
termediate valency, and coupling between spin and charge
fluctuations may be crucial for a microscopic theory of mag-
netoelastic interactions. The brief discussion given here
shows that the Invar problem is related to the most funda-
mental questions of the theory of magnetism and the physics
of the solid state.
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