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We consider an approximate approach to the description of complex space-time structures in
different types of excitable media based on the kinematics of autowave fronts. Because of the
generality and relative simplicity of the kinematic approach, it is possible to obtain analytical
results for different types of autowave motion in two and three-dimensional excitable media. The
kinematic approach is used to treat steady-state autowave structures and also to study the
evolution of autowaves in inhomogeneous, time-dependent and anisotropic media.

INTRODUCTION

Modern physics is finding it increasingly necessary to
use fundamentally nonlinear models to explain a wide class
of natural phenomena. Examples of fundamentally nonlin-
ear effects are so-called self-organization processes, which oc-
cur in the formation, evolution, and decay of complex space-
time structures. The study of self-organization processes is
of great current interest in diverse physical, chemical, and
biological systems.25'51'55-57'"5'123'125 This rapidly develop-
ing interdisciplinary field is called synergetics.48-49-63

Dramatic examples of the phenomenon of self-organi-
zation are self-excited waves (or autowaves, for short) in so-
called excitable media.1*'*6 A distributed excitable medium
consists of locally coupled active elements which can form a
pulse in response to an external signal. Pulses propagating in
excitable media are often called autowaves, since their char-
acteristics (shape, velocity, and so on) are mainly deter-
mined by the parameters of the medium and are practically
independent of the initial conditions and boundary condi-
tions.

Examples of excitable media are nerve and muscle tis-
sues in living organisms,42 certain solutions of chemical
reactants,8'24'25 solid-state electronic systems,6'19'60 magnet-
ic superconductors,13 ecological systems,59 and so on.

A rotating spiral wave is a typical example of an
autowave in a two-dimensional medium. Spiral waves are
observed in solutions with Belousov-Zhabotinskii reac-
tants,65'102'103'121 (Fig. 1), colonies of microorganisms,82 in
the retina of the eye,69'83 and in the tissues of the heart mus-
cje 66,72,123

In three-dimensional media autowave structures are
observed in the form of cylindrical rolls or vortex
rings.45'46'122'12S When these waves interact with one another
the result can be three-dimensional structures with very
complicated topology.126

The currently accepted mathematical model of an ex-
citable medium is a system of parabolic equations of the "re-
action—diffusion" type

F(U), (1.1)

where U is the state vector of an elementary volume of the
excitable medium. In a chemical medium the components of
the vector U are the concentrations of the reactants, the ma-
trix D represents their diffusion coefficients, and the nonlin-
ear function F(\J) specifies the frequency of chemical reac-

tions in each elementary volume. In other types of media the
components of the vector U might be the temperature or
electric potential, while the elements of the matrix D might
be the thermal conductivities or the specific electrical con-
ductivities.

Real excitable media are normally described by the
multicomponent system of equations (1.1). However, nu-
merous studies32'123'130 show that the basic features of
autowave structures can be reproduced in the framework of
the two-component system

+ F(E, g),

+ eG(E, g).

(1.2)

The "excitable property" of the system (1.2) is deter-
mined by the saw-tooth form of the nonlinear function F.
The function G can be monotonic or even linear. The func-
tion F(E,g) is usually specified by polynomials or by
piecewise linear functions.78'105'108'110'111'117 As an example,
we show in Fig. 2 the piecewise linear function F(E,g) first
suggested in Ref. 47 and is often used to study autowave
structures.23'32'54'94'106 This function is given by the expres-
sion

FIG. 1. Formation of a spiral wave as a result of rupture of the front of a
concentric wave in a Belousov-Zhabotinskii reaction.
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FIG. 2. Piecewise-linear approximation of the null-isoclines of the model
(1.2).

FIG. 3. Autowave profile in a two-component model of an excitable medi-
um.

F(E, g) = f(E) + g,

where

/(£) =-£*,, £<a,
= (E - a)k{, a^E<:\
= (1 - E)k2, 1 -a<E,

(1.3)

k a~° kKl ~ f '
I — a — a

*r

The function G(E,g~) is given by
G(E, gy^kgE-g (kgE- g>0),

d-4)

The limiting case of the system ( 1 . 2 ) when e = 0 is effective-
ly a one-component system with two stable states. In a sys-
tem of this kind one can have transition waves from one
stable state to the other. These types of waves have been used
to describe "gene diffusion"43 and flame propagation.27-62

In the more general case of ( 1.2) with e^ 0 there exists
a single equilibrium state (E = 0, g = 0), which is stable to
small perturbations. Above-threshold perturbations in the
system generate a propagating pulse whose leading front
corresponds to a transition wave from the state of rest to an
excited state, and whose trailing front corresponds to a re-
turn of the system to the initial state (Fig. 3 ) .

It is important to note that the shape of the pulse and its
propagation velocity asymptotically approach steady values
independent of the initial conditions.

We see from Fig. 3 that just because the variable E (of-
ten called the activator) approaches the value E = 0, this
does not mean that the system has returned to its initial state.
The second component g (called the inhibitor) differs
strongly from the steady state over a certain time interval. It
follows from the solution of ( 1 . 2 ) with e = 0 and g > 0 ( Ref .
53) that the increase in the slow variableg near the autowave
front leads to a decrease in the propagation velocity of the
autowave until it stops completely and begins to propagate
in the opposite direction. There are two important conse-
quences of this property of the structure of an autowave
pulse. The first is that pulses propagating in opposite direc-
tions cancel one another out. The second is that the velocity
of a periodic train of pulses is smaller than the velocity of a
single pulse and it decreases as the period between pulses
decreases (this property of an excitable medium is related to
dispersion). In addition, when the period between pulses is
less than a certain minimum value 7*min , steady propagation
of the train of pulses becomes impossible. If the period Т

between pulses is large compared to Tmin, then the interac-
tion between the pulses (i.e. the response time of the medi-
um) can be neglected and the train can be considered as a set
of single pulses.

A large number of experimental data on excitable me-
dia are available and there have been numerous computer
simulations of the reaction-diffusion model. The basic prob-
lems of the theory of autowave structures are to explain the
data from a unified point of view and to propose new direc-
tions of experimental research.

It is important to note that the time evolution of an
autowave structure can be completely determined by de-
scribing only the time dependence of the position of the wave
front. This idea drastically simplifies the treatment of
autowave processes and is the basis of the kinematic ap-
proach to autowave structures considered in the present re-
view article.

This idea was first formulated in Ref. 119 and was later
extended and applied to the so-called axiomatic mod-
ejS)5,17.18,44,76,77,109,n2 щ which ̂  motk)n Qf autowave

fronts is specified heuristically based on the results of
autowave processes in one-dimensional models of the reac-
tion-diffusion type. Because of this extreme simplification,
the application of the axiomatic models to two and three-
dimensional media often leads to disagreements with experi-
ment and with simulation results.

Obviously two and three-dimensional excitable media
are of the most practical interest, and autowave processes in
these media are much more complicated and diverse than in
one-dimensional media. In the case of two and three-dimen-
sional media the kinematic approach discussed below shows
its superiority over other approximate methods in that it is
general and relatively simple. The kinematic approach is not
limited to steady-state autowave structures, but can also be
used for time-dependent problems.

2. BASIC PROPERTIES OF THE MOTION OF AUTOWAVE
FRONTS

The velocity and shape of a steady-state wave in a one-
dimensional medium described by (1.2) with Dg =0 are
found by introducing the change of variables
| = — x+ V0t. Then

дЕ

(2.1)

666 Sov. Phys. Usp. 34 (8), August 1991 Davydove/a/. 666



Кс, К* 0,5

FIG. 4. Dependence of the propagation velocity of an autowave on the
curvature of its front for the model (1.2) with k, = 1.7, kg — 2.0, d = 0,
a = 0.01, ke = 0.01, and e = 0.35.

Because of the small parameter e in this system, we can
use the perturbation method.70 We note that (2.1) has two
solutions. One solution represents a pulse propagating with
a velocity V0 which is close to the velocity Кда in the same
system with e = 0. In the first approximation

vo ~ voo ~ v\s > (2.2)

where F, >0.
The second solution represents a pulse whose velocity

Vn is much smaller than V0. This solution is unstable70'78

and is not observed in physical systems.
When E increases, the velocity of the stable pulse de-

creases and the velocity of the unstable pulse increases.
When E = ecr the two solutions join into one, and when
e > £cr steady propagation of a pulse in the system (1.2) is no
longer possible.

The system (2.1) also describes the propagation of a
rectangular autowave in a two-dimensional excitable medi-
um. However, in the two-dimensional case the propagation
velocity of the front depends on its curvature.9'26'95 Indeed,
steady-state motion of a wave front with curvature К is de-
scribed by the system of equations37'41

(2.3)

The propagation velocity F of a pulse in (2.3) will obvi-
ously depend on the curvature of the front K. It was shown in
Ref. 30 that V(K) can be expressed in terms of the function
V0(£):

(2.4)

Using (2.2), we can transform (2.4) to the form

= I (Koo -

FIG. 5. Evolution of the edge of a wave with a rectangular front in the
model (1.2) for different excitabilities of the medium, a) £ = 0.4, b)
0.388, c) 0.35, d) 0.3.

It follows from (2.5) that the propagation velocity of a con-
vex front decreases as its curvature increases (Fig. 4). It is
easy to show that for small curvatures

V(K) = V — D (V + V e) [(V — V e)K]~l (2.6)

When K>K* steady-state propagation of the front is no
longer possible. The limiting value of the curvature of the
front К = К * is given by

Ke^m-1 . (2.7)

1/2

(2.5)

Therefore analysis of (1.2) shows that the propagation
velocity of the wave depends on the curvature of its front and
demonstrates the existence of a critical curvature beyond
which steady propagation of a convex front is impossible.
These conclusions are supported by experimental data.79

However, they do not restrict the propagation of autowaves
in a two-dimensional medium.

Since the medium is in the same state of rest before the
arrival of an excitation wave and after the system leaves the
excited state and returns to the initial state, an autowave in a
two-dimensional medium can have a free edge (break) not
in contact with the boundary of the medium. For example, a
free edge exists near the core of a spiral wave (Fig. 1). Obvi-
ously the evolution of the free edge of the autowave must be
taken into account in its kinematics.

Calculation of the motion of a half-wave for the model
(1.2) shows that the evolution of the edge depends on the
excitability of the medium in an essential way (Fig. 5). If the
excitability of the medium is small (e = 0.4) the half-wave
contracts (Fig. 5a). When the excitability of the medium is
sufficiently high (e = 0.35) the half wave is elongated (Fig.
5c). Elongation and distortion of the wave form can lead to
the formation of a spiral wave (Fig. 5d) rotating about a
circular region (the core), which remains unperturbed.

We note that a spiral wave results in a periodic train of
excitation pulses through all points of the medium, except
within the core. Therefore the propagation velocity of the
wave fronts will depend not only on their curvature, but also
on the period of rotation Г of the spiral. When the period of
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FIG. 6. Diagram used in the derivation of the fundamental equation of
kinematics.

rotation 7"> Tmin the dependence of propagation velocity on
Т can be neglected and the kinematics of the motion of the
autowave can be derived by taking into account only the
curvature dependence of the velocity of the wave front.

3. KINEMATIC EQUATIONS

The mathematical model forming the basis of the kine-
matic approach takes into account the basic features of the
motion of autowave fronts in excitable media discussed
above. We consider an arbitrary smooth curve lying in a
plane. The curve is assumed not to intersect itself and it rep-
resents the wave front. We note that this curve effectively
has an "obverse" and "reverse", i.e. at each point one of the
two directions normal to the curve is in a consistent way.
Each segment of the curve moves along the direction of the
preferred normal with velocity V. The edge of the front (if it
exists) moves along the normal, but also experiences a
steady tangential "growth" or contraction with velocity C.

Any curve lying in a plane can be specified by its natural
equation К = K ( l ) relating the arc length / and curvature К
at a given point.56 Because the front is moving, its curvature
will obviously also depend on the time t: К = K(l,t).

We consider the position of the wave front at a certain
time t. Suppose its curvature at point a in Fig. 6 is equal to Ka

at time t. During the time dt a small neighborhood of point a
on the front moves to the neighborhood of point b and the
curvature at this point is Kb. We find a relation between Ka

and Kb. It is convenient to use polar coordinates with the
origin at the center of curvature of a small element of the
front near point a. Then we have the relation

Pb = Pa + Vdl' (3.1)

where/?,, = \/Ka is the radius of curvature at point a and pb

is the polar radius at point b. The curvature of a curve speci-
fied in polar coordinates by the equationp = р ( ф ) is

К = (p - 1р - PP") (p + P )2ч-3/2 (3.2)

where a prime implies differentiation with respect to ф. Sub-
stituting (3.2) into (3.1), we obtain, to within terms of order
dt

(3.3)

(here we have used the fact that дра/дф = 0, sincepa is the
radius of curvature at point a). Transforming to differenti-
ation with respect to arc length / (dl = раЛф) in (3.3), we
obtain

dt.
(3.4)

On the other hand, dK = (ЭК/31}dl + (dK/dt)dt. It is not
difficult to obtain the following expression for the increment
of arc length d/ after time dt

dl = dt + Cut.
(3.5)

The first term in (3.5) represents the increase in the arc
length due to a change in the radii of curvature at each point
on the curve. The second term corresponds to an increase in
arc length due to growth of the front at its free edge, which is
chosen to lie at a distance / from the origin.

Combining (3.4) and (3.5), we obtain the equation

dK
dl + с

dt dl2

(3.6)

which is called the fundamental equation of kinematics of
autowave fronts on a plane surface. It was first obtained in
Ref. 28, but for a long time it was used only for steady-state
motion of autowave fronts.29'30'32 The specific feature of the
steady-state case is that there is no growth or contraction of
the free edge of the wave front.

For non-steady-state motion of autowaves the growth
of the front at the end point of the wave plays a very impor-
tant role. This process was first described quantitatively in
Ref. 22, where it was noted that if the interaction between
the fronts is neglected, then the velocity С of the tangential
displacement of the free edge should depend only on the
curvature of the front K0 near it: С = C(K0), where

/C, = limK(f).
/ - o

Computer simulations show (see Fig. 5) that a change
in the excitability of the medium can cause contraction of the
free edge to turn into growth. Since a distortion in the front
of an autowave is equivalent in a certain sense to a change in
the excitability of the medium (see Sec. 2), the tangential
displacement of the free edge of the wave changes direction
at a certain value of the curvature Kct near the end point.
This property of the function C(K0) is reproduced by a lin-
ear function of the form

-Kn\ у >0. (3.7)

The dependence of the propagation velocity of the front
of an autowave on its curvature (Sec. 2) can also be repre-
sented by a linear function

V0-DK. (3.8)

A sufficient condition for the applicability of the linear
approximation (3.8) is

DKC,
(3.9)

The natural equation describes only the position of the
curve on the plane. To describe completely the displacement
of the front it is sufficient to specify the motion of any point
on the front with respect to a given coordinate system. It is
convenient to choose the free edge of the front for this pur-
pose. For example, let x0 and y0 be the Cartesian coordinates
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of the end point in the plane and let a0 be the angle between
the tangent vector to the front at the point / = 0 and the X
axis. Then we have the following equations of motion:

x0= — V(l = 0) sin a0 — С cos a0,

УО ~ v(l = 0) cos ccQ- С sin a0,

- di | /=o + CK0 •

(3.10)

(3.11)

The first term on the right hand side of (3.11) is the rate
of change of the angle a0 due to the different propagation
velocities at different points on the front, while the second
term is due to a slow growth of the free edge.10'11'21'22

Equations (3.6)-(3.8), together with (3.10) and
(3.11), are a complete system of equations for the form and
motion of an autowave front with an edge. Hence in the kine-
matic approach an excitable medium is characterized by a
small number of phenomenological parameters: F0, Kcr, D,
y. These parameters must be obtained from experiment or by
solution of (1.2), which are "microscopic" equations from
the point of view of kinematics. It turns out that in a number
of cases the values of certain of the coefficients do not depend
on the specific forms of the functions F(E,q) and G(E,g) in
(1.2). For example, if the diffusion coefficient of the inhibi-
tor Dg is equal to zero, then the coefficient D is equal to the
diffusion coefficient of the activator to within terms of order
£ [see(2.6)].If.DE = Dg, then D = DE = Dg and the coeffi-
cient у vanishes.10

It is simple to extend this model to the case when the
autowave propagates on a curved surface, rather than on a
plane. In this case К will be the geodesic curvature of the
front on the surface. We derive the fundamental equation of
kinematics in this more general case, following Ref. 11.

If we take a series of snapshots of the propagation of a
single autowave front on a two-dimensional surface, we ob-
tain a succession of positions of the front, i.e. a one-param-
eter family of curves with the time t as a parameter. We
introduce a curvilinear orthogonal coordinate system (ф,1),
in which the coordinate lines t = const coincide with the
fronts of the autowave at time t. In this coordinate system
the first quadratic form (the square of the differential arc
length) has the form

ds\t, ф) = V\t, B2(t, (3.12)

where Fand В are the Lame coefficients and Fis obviously
the velocity of normal propagation of the front. The Gaus-
sian curvature of the surface can be expressed through the
Lame coefficients as52

Г = — 1
VB

В

Ф .
(3.13)

where the subscripts t and ф denote the corresponding par-
tial derivatives. The geodesic curvature К (the curvature on
the surface) of a coordinate line can also be expressed in
terms of the Lame coefficients (Ref. 52): К = B,/VB. Then
using (3.13), we have

г = tf2 l эк 1 a / i ov
V dt VB дф \B

(3.14)

We next transform from the variable ф to the length of
the front /. It follows from (3.12) that А1 = ВАф. Then

(3.14) is transformed to the new variables with the help of
the relation d/dr-»<9/dt + (d//dr)d/<?l, where

d/
dt

Ч> Ф i

= j Btd<p = J KVBdф = J KVd% , (3.15)

and growth of the front can be taken into account by adding
the velocity С to the right hand side of (3.15). In terms of the
new variables we finally obtain from (3.14)

dl

l

J
+ с cTV = -FV. (3.16)

This equation is the fundamental equation of kinema-
tics of an autowave front on a curved surface with Gaussian
curvature Г. In the special case of a plane (Г = 0) (3.16)
reduces to (3.6).

The relation (3.16) must be supplemented by the equa-
tions of motion of the free edge of the front analogous to
(3.10) and (3.11). The form of these equations depends on
the choice of coordinate system on the curved surface.

In spite of the fact that the fundamental equations of
kinematics (3.6) and (3.16) are nonlinear partial integro-
differential equations for the function K( l,t), we will see that
they are much easier to solve than the "microscopic" equa-
tions (1.2). In addition, it is important to note that these
equations can be applied not only to autowaves, but also to
other evolution processes. For example, (3.6) was obtained
in Ref. 67 independently of earlier papers11'28 and used to
describe the growth of dendrites. The specific features of the
problem under consideration are introduced by replacing
(3.8) with a different relation between the propagation ve-
locity of the front F and its curvature K.b* The fundamental
equation (3.6) with the velocity (3.8) was later used in Ref.
99 to describe the time dependence of dual spiral waves.
However, the growth velocity С was not calculated using
(3.7), but was set equal to a constant. This assumption obvi-
ously cannot provide even a qualitative description of non-
steady-state autowave processes.

4. STEADY CIRCULATION OF SPIRAL AUTOWAVES ON A
PLANE

Equation (3.6) has the trivial steady-state solution
K(l,t) =0 for />0, which corresponds to a plane front with
an edge moving forward with velocity F0. However this so-
lution is unstable to small perturbations. Numerical analysis
of (3.6) shows39'73 that regardless of the form of the small
initial perturbation, a plane half-wave always turns into a
spiral wave rotating about a fixed center with a constant
angular velocity (see Fig. 7). The basic characteristics of the
steady-state circulation of a spiral wave can be calculated
analytically using (3.6).

In the case of steady-state circulation the form of the
wave front is constant. Only the position of the curve in the
plane changes in time. Therefore К does not depend on t. In
addition, in steady-state circulation the free edge of the wave
does not grow or contract, since in the steady-state case the
curvature of the wave front near the free edge K( I = 0) = K0

has reached the critical value Kcr, and therefore C=0 from
(3.7).

Since dK /dt=0 and С=0, (3.6) can be integrated once
to obtain11'29
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FIG. 7. Evolution of a rectilinear front in the kinematic model of
the motion of an excitation wave for different initial perturba-
tions, a) K(0,0) =0.1 AT c r ,b) -0.1 ATcr.

" d / "" (4.1)
и

The integration constant со is the angular velocity of the
spiral wave. This follows from (3.11), since C = 0, while
dY/dl= -DdK/dl [see (3.8)].

To obtain analytical solutions of (4.1) we first assume
D vanishes. Then (4.1) has the solution

К = (4.2)

Note that Л = V0/co is the radius of a circle (the bound-
ary of the core of the spiral wave) along which the free edge
of the front moves. Hence the wave front is given by the
natural equation

К = (2Rf)~l/2, (4.3)

which describes the involute of the circle. When />Л it be-
comes an Archimedean spiral with a pitch equal to A = 2-irR.

This result was obtained in the classic paper of Ref. 119.
Later it was rederived in Ref. 122, where it was emphasized
that the curvature of the front K^> oo when/-»0 [see (4.2)].
Hence the dependence of the velocity of the front on its cur-
vature cannot be neglected for small /, i.e. near the boundary
of the core.

We next calculate the parameters of a spiral wave when
the velocity of the front depends on its curvature. The fre-
quency of rotation of the spiral wave со = co0, which appears
in (4.1) as an unknown parameter, can be found as follows.
Far from the center of the spiral the curvature must ap-
proach zero, i.e. K-*Q when /-> oo. As noted above, the cur-
vature K0 near the free edge of the front is equal to KCI. The
solution of interest must therefore satisfy the two boundary
conditions

lim K([) = 0 .
/-> 00

(4.4)

Since (4.1) is a first-order equation, the two boundary
conditions (4.4) can be satisfied simultaneously only for a
certain value of co0. Hence (4.1), together with the boundary
conditions (4.4), is a nonlinear eigenvalue problem whose
solution gives the frequency co0.

This problem was solved numerically in Refs. 29, 32,
and 37. The following form for со approximately fits the nu-
merical results:

w = Vf.Kcr^>(p) , (4.5)

where

• Cjp ' — c2p — Сз/г , (4.6)

and c, = 0.685, c2 = 0.06, and c3 = 0.293.
According to (4.5), the angular velocity of a spiral

wave increases with increasing Kcr. It follows from (3.8),
however, that ATcr cannot exceed V0/D. Therefore the maxi-
mum value of со is reached when ATcr = V0/D, which corre-
sponds top = 1. In this case the velocity of normal propaga-
tion of the free edge of the wave vanishes. This special case
was first considered in Ref. 7 to describe the growth of spiral
dislocations in crystals. The angular velocity of a spiral dis-
location со = 0.33 F0A"cr obtained in Ref. 7 is in close agree-
ment with (4.6) with/? = 1.

Another important special case is p< 1, which corre-
sponds to a weakly excitable medium. An approximate ana-
lytical calculation for this case was given in Ref. 22 based on
"matching" the interior and exterior solutions. This is one of
the methods of solving singular perturbed equations where
the highest derivative in the equation is multiplied by a small
parameter.16 Indeed, when / is sufficiently large the deriva-
tive term on the left hand side of (4.1) can be neglected. The
solution in this region is given by (4.2). On the other hand, it
follows from (4.1) that when / = 0 the derivative
dK/dl = — co0/D. Therefore for small / the natural equa-
tion of the wave front has the form

con
*=*„--£/. (4.7)

The expressions (4.2) and (4.7) are the exterior and
interior approximations to a single phase trajectory and
therefore they must be matched in some way. We require
that the values of the two functions and their first derivatives
must match at a certain point / = /0. These conditions give
two equations:

(4.8)

(4.9)

(4.10)

(4.11)

JV
" _ * « 1-Л11.

~D ~ 2 й>„ 'О

-1/2
-3/2

Their solution has the form
/ _ v 3 / 2

ra — I—I fnV \ l / 2 lf3/2~ ^ ' cr

1/2
; _
1 0 ~ 2 2
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We note that the results of this approximate analytical
treatment are in good agreement with the results of numeri-
cal integration of (4.1). Indeed, when p < 1 we obtain from
(4.5) the angular velocity

= 0.685, (4.12)

which differs from (4.10) only by the more accurate value of
the numerical constant. To within terms of order
p = DKCT/V0 the radius of the core of the spiral wave can be
calculated from the condition a>0R0 = V0, which gives

/ K \ 1 / 2

R =*-1-2 к-"* (4.13)*o S (Dj *~ •

We now discuss these results. Clearly, when Kcr ->0 the
rotation frequency of the spiral wave <DO approaches zero
and the radius R0 of the core diverges. Except for a narrow
layer with a width of order /0 near the core boundary, the
spiral wave front has the form of an involute of a circle of
radius R0 and is given by (4.3) with R = R0. The width of
the boundary layer is small compared to the core radius:

The form of a spiral wave rotating around an aperture is
also described by (4.1). However, note that the edge of the
spiral wave moves along the boundary of the aperture, which
is nonpermeable to diffusion and therefore is not free. The
curvature of the edge can exceed KCT. Nevertheless it must
remain smaller than the critical curvature К * for a contin-
uous front [see(2.7)andFig.4]. Therefore the radius R * of
the smallest aperture for which a spiral wave can circulate
along its boundary can be found by replacing KCT by К * in
(4.13):

1/2

Tfl <**>
-3/2 (4.14)

When the radius is less than R *, the edge of the wave
breaks off from the aperture and the rotation frequency sud-
denly jumps to the lower value to0. This effect has been ob-
served in a numerical simulation of the reaction-diffusion
model.107

We also note that a spiral wave rotating concentrically
inside of a circle of radius RCT obeys the same kinematic
equation (4.1), but the boundary conditions are no longer
given by (4.4) ,32 In this case the normal velocity of the front
on the boundary of the circle must satisfy the condition

V(Kb) = (4.15)

which also determines the curvature of the front at the point
of contact. Hence the rotation velocity of the spiral wave
increases with decreasing radius Rcr.

In the kinematic model used here it has been assumed
that the velocity У depends only on the local curvature of the
front AT, i.e. V= V( K). In general, the velocity У of the front
near its free edge will also depend on the arc length /:
V = V ( l ) . The basic features of spiral waves were considered
in Ref. 11 taking this dependence into account. It is found
that this effect does not lead to essential differences, and we
do not discuss it in detail here.

We note also that we have neglected the response time
of the medium, which causes the propagation velocity of the
waves to depend on the time interval Т between them. This
dependence is extremely important for the quantitative
characteristics of spiral waves and also for many very impor-

tant qualitative effects. Keener and Tyson92'118 started from
this dependence in constructing a theory of steady-state spi-
ral waves, while the effect of the curvature of the front was
taken into account as a correction. In the kinematic ap-
proach discussed here, we assume the opposite order: we
first describe the spiral wave neglecting the dispersive prop-
erties of the medium, and then refine this description by in-
troducing dispersion (see Sec. 9). In the case of steady-state
circulation both approaches naturally lead to the same re-
sult: the velocity of the front is a function of the two param-
eters V = V(K,T). However, the advantage of our approach
becomes apparent in the case of non-steady-state autowave
processes, which are not amenable to treatment by the alter-
native approach.

5. THE QUASISTEADY APPROXIMATION

The fundamental kinematic equation of autowave
fronts (3.6) can also be used to describe different types of
non-steady-state processes. Assume that we have introduced
a small perturbation in the form of the front of a uniformly
rotating spiral wave and that the perturbation is localized at
a distance / from the free edge. We see from (3.6) that it will
move away from the center of the wave toward the periph-
ery, and at the same time it will spread out and attenuate
because of "diffusion" with the diffusion coefficient D. Ac-
cording to (3.6) the velocity of this drift can be estimated as
Kcr V0l near the free edge, where K~KCT.

Therefore a perturbation localized at the distance /
moves with a velocity of order Kcr V01 and its width grows as
(Dt)1/2. We consider the following question: at what dis-
tance must an initially localized perturbation be such that it
can reach the free edge of the wave in spite of its drift? A
necessary condition to reach the free edge is that over a cer-
tain interval of time the width of the perturbation
Ldi{ 2; (Dt)1/2 must exceed the distance between its center
and the free edge of the wave Lc ~/ + KCT V0lt. Comparison
of these two quantities shows that Ldif can be larger than Lc

only when the initial distance / does not exceed a quantity of
order (D /Kcr V0)

1/2. But according to (4.11) the width of
the boundary layer near the core boundary is of this order.

It follows that the motion of the end point can be affect-
ed only by perturbations of the front originating within a
narrow boundary layer at a distance of order /0 from the free
edge. The perturbation damps out after a time of order

I2

tD « -£ « (ЛГ„ К0)-' . (5.1)

We note that the relaxation time TD of a perturbation in the
shape of the front in a weakly excitable medium is always
much smaller than the period of circulation of the spiral
wave.10 Indeed, it follows from (4.12) and (5.1) that

CUT, - „1/2 = (5.2)

When the coefficient 7 in (3.7) is equal to zero, growth
does not occur and the quantity K0 remains constant with
time. In this case a spiral wave achieves a steady state after a
time of order TD . The rotation frequency of the wave can be
found from (4.12) by substituting K0 for Kcr.

If у is nonzero and positive, then growth or contraction
of the front is accompanied by a time variation of K0 such
that the difference between K0 and К„ damps out within a
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relaxation time тс. If Y is sufficiently small, rc >•TD and a
quasi-steady-state regime is established.

In the quasi-steady-state regime the shape of the front
near the core of a spiral wave can adjust itself adiabatically to
the instantaneous value of the curvature K0 (t) at the free
edge, and this curvature in turn slowly varies because of
growth or contraction. It is not difficult to show that the
equation describing this variation in the quasi-steady-state
regime can be obtained from (3.6) and has the form10

a* - dk_ i
"dF l/=o = c dl \l=o • (5-3)

The derivative (dK/dl), = 0 is given by [see (4.7)]
dk—7 , „ — —co/D, f S 41dl I /=0 \.J-^J

Hence in the quasi-steady-state case the curvature K0 at
the free edge is time dependent and obeys the following first-
order ordinary differential equation:

, 1 / 2

Kl/2(K0-K,r). (5.5)

For small perturbations 8K0 =K0 — Kcr this equation
can be linearized:

dSKQ &K0

dt - rc '
where the relaxation time rc is

(5.6)

(5.7)

Using (5.1), (5.2) ^ and (5.7), we obtain the following
condition for the applicability of the quasi-steady-state ap-
proximation:10

1/2

(5.8)

For typical excitable media the coefficient у is between
zero and a quantity of order D. Therefore since
( V Q / D K Q r )

I / 2 > 1, the condition (5.8) is nearly always satis-
fied and the quasi-steady-state approximation is valid.

To describe completely the evolution of a spiral wave in
the quasi-steady-state approximation, (5.5) must be supple-
mented by additional equations determining the time de-
pendence of the position of the end point of the front in the
plane and the orientation of the front. As noted above, the
motion of the end point is described by (3.10). The orienta-
tion of the front is specified by the angle a0 of inclination of
the tangent to the front at the end point. This angle obeys
(3.11). When (5.8) is satisfied this equation simplifies, since
then (dV/dl) l = 0 = co, where со is found from (4.12) by
replacing KCT with K0. Therefore (3.11) becomes

l/2

(5.9)

In the quasi-steady-state approximation the motion of a
spiral wave is therefore described by a system of four first-
order ordinary differential equations: (5.5), (3.10), and
(5.9). These equations are much simpler than the funda-
mental kinematic equation (3.6), not to mention the initial
"microscopic" system of reaction-diffusion equations.

6. RESONANCE AND DRIFT OF SPIRAL WAVES ON A FLAT
SURFACE

By varying the parameters of the medium we can
change its excitability and therefore the quantity Kcr . Sup-
pose this quantity varies periodically in time according to
the equation

+ ф), (6. 1 )KCI (t) = Ka + cos

where K, <^ATcr and the modulation frequency cDt is close to
the eigenfrequency ca0 of the spiral wave. The periodic time
dependence of KCT leads to a periodic variation of the veloc-
ity of growth С [see (3.7) ], which will be accompanied by a
periodic variation in the curvature K0 near the edge. The
result is a periodic variation in the angular velocity. Modula-
tion of the growth velocity and rotation frequency will lead
to motion of the center of the spiral wave.

The characteristics of this motion are conveniently cal-
culated in the quasi-steady-state approximation.21 With the
help of (6.1 ), equation (5.5) for K0 (t) takes the form

dK,
df = D Ю0

3/2

COS

(6.2)

whereuJ0 =|-(£>F0)
1/2^cr

3/2. Since ATt <ATcr, the solution of
(6.2) can be written in the form K0 = Kcr + SK0(t), where
8K0 ^Kcr . Keeping only terms of first order in SK0 in (6.2)
and assuming that \5J0 — a>{ | <&>0, we obtain the following
time dependence of the curvature K0 (t) near the free edge of
the front:

K0(t) = Kcr |sin cos

Substituting this expression into (5.9), it is not difficult
to find the time dependence of the angle a0. Then the motion
of the end point of the spiral wave (and hence the core cen-
ter) can be calculated from (3.10). Omitting the laborious
but straightforward calculations, we give the final result:21

when the curvature varies periodically according to (6.1),
the center of the core of the spiral wave moves with the veloc-
ities

Xc = у cos [(tt)j — ca0)t + ф + a] ,

Ус = —v sin [(to, - a>0)t + ф + a],
(6.3)

where

y/D

f l

= arccos

(6.4)

(6.5)

It follows from (6.3)-(6.5) that the core center of the
spiral wave moves along a circle of radius

(6.6)(y/Z>)2

The radius grows as <a, approaches the eigenfrequency o0

(resonance). The velocity v is proportional to the modula-
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FIG. 8. Trajectories of the end point of a spiral wave obtained in the model
(1.2) for a periodic modulation of the parameter e with frequency a,. a)
&), = 0.23, b) 0.255. The angular velocity of the spiral wave is <o0 = 0.24.

tion amplitude Л",. When <y, and a>0 are exactly equal (per-
fect resonance) the core center moves with the constant ve-
locity (6.4) along a straight line and the direction of motion
is determined by the initial phase of the modulation ф and by
the direction of rotation of the spiral wave (clockwise or
counterclockwise).

Analytical calculations of resonance drift of a spiral
wave are supported by computer simulations of the reac-
tion-dhTusion model21 (Fig. 8).

Resonance of spiral waves is also observed experimen-
tally using the light-sensitive Belousov-Zhabotinskii reac-
tion.31 A spiral wave is first created in the medium. Then the
illumination of the solution is varied periodically, which
leads to a periodic modulation of the excitability. The wave
pattern is photographed at equal time intervals against a
background of fixed reference lines. Figure 9 shows a se-
quence of photographs (a-c) of a spiral wave with a time
interval of 10 min and perfect resonance (the modulation
period is exactly equal to the natural period of rotation of the
wave). We see that the center of rotation moves with a con-
stant velocity along one of the reference lines; the total dis-
placement is 2 cm.

If two spiral waves are created in the medium with op-
posite directions of rotation, the initial phase of the modula-
tion can be chosen in such a way that the centers of the two
waves move toward one another and annihilate one an-
other.3

We next consider drift of a sprial spiral wave in a nonun-
iform excitable medium. This effect has been studied repea-
tedly in computer simulations21'58'87 and in experiments
with Belousov-Zhabotinskii chemical reactions. However, a
satisfactory theory of this effect does not exist. Below we
consider drift in the framework of the kinematic ap-
proach.21'73

Suppose Kcr varies slowly along the x direction, so that
the change in KCT over the core radius R0 is small

dKcr/dx« Kcr/RQ. (6.7)

As the spiral wave moves in the nonuniform medium its
free edge passes through regions of the medium with differ-
ent values of KCT . Therefore the end point moves as if the
critical curvature were time dependent:

Kcr (t) = К„ (XQ + R cos ш00 = Kcr + bR0 cos co ( 6.g )

where x0 is the position of the center of the spiral wave along
the x axis, Kcr = KCI (x0), and b = ( дКсг /дх )* = *„•

Therefore the drift of a spiral wave in a weakly nonuni-
form medium reduces to the problem considered above of
resonance with perfect coincidence of the frequencies and
zero initial modulation phase ф0. Substitution of (6.8) into
(6.3)-(6.5) leads to an expression for the drift velocity.21'73

The center of the spiral wave slowly moves along a straight
line at an angle в to the x axis. The drift velocity is equal to

(3/4)K0

(£>/y)2]1/2 *c, дх

and the tangent of the angle в is given by

(6.9)

(6.10)

A change in the sign of the angular velocity a>0 results in
a change in sign of the component of the drift velocity along
the у axis. But the direction of motion along the x axis re-
mains the same. In particular, (6. 10) shows that the drift of
a spiral wave can be used to determine the coefficient у of the
excitable medium.

We note that drift of a spiral wave cannot continue for
very long. In an infinite medium the core of a spiral wave
sooner or later drifts into a region where the kinematic de-

FIG. 9. Movement of the core center of a spiral wave in an experi-
ment using a light-sensitive Belousov-Zhabotinskii reaction.
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scription is inapplicable because the conditions (6.7) or
(3.9) no longer hold, for example. We emphasize, however,
that the dimensions of the medium are small in experiments
using Belousov-Zhabotinskii reactions and also in computer
simulations. Drifting with a constant velocity, the spiral
wave hits the boundary of the medium and vanishes.

We have considered the most interesting effects asso-
ciated with circulation of spiral waves in nonuniform and
non-steady-state media. If the properties of the medium de-
pend both on the coordinates and the time, i.e. the medium is
both in a non-steady-state situation and is nonuniform, then
the motion of spiral waves has new qualitative features. For
example, in a medium with a periodically varying inhomoge-
neity gradient, resonance (i.e. motion of the core center
along a straight line) is possible at twice the circulation fre-
quency, while resonance at frequency a>0 does not occur.2

It is interesting to note that resonance and drift of spiral
waves also occur in so-called A-<y systems. This important
class of nonequilibrium media is also described by systems of
equations of the reaction-diffusion type with spiral wave so-
lutions.84"86 But because of a number of important differ-
ences, the kinematic approach as described here cannot be
used to consider this problem,49 and study of resonance ef-
fects in A-ea systems required development of special meth-
ods.4

7. SPIRAL WAVES IN ANISOTROPIC EXCITABLE MEDIA

In studying autowave processes in excitable media one
normally considers only isotropic media. However, many
excitable media (such as semiconductor systems, biological
tissues, and so forth) are basically anisotropic. Therefore the
study of autowave structures in anisotropic media is of great
interest.

In an anisotropic medium the diffusion coefficients
form a tensor D. In the principal axis system of the tensor D
the system of reaction-diffusion equations (1.2) on a plane
with Dg = 0 takes the form

dE

(7.1)

We introduce new spatial coordinates x' =x,y'= уЛ,
where/I = (D /D, )1/2. In terms of these coordinates the sys-
tem of equations (7.1) reduces to (1.2) and therefore in the
new coordinate system the medium is isotropic and the diffu-
sion coefficient is equal to D. Hence we can study the motion
of an autowave in an anisotropic medium by using a
"primed" coordinate system in which the medium is isotrop-
ic. The solution is then transformed back to the initial "labo-
ratory" system.

For example, it is not difficult to obtain the dependence
of the velocity of a plane autowave front in an anisotropic
medium on its propagation direction:20

= V0(A2cos2<9 + sin26)l/2rl (7.2)

where V0 is the velocity of the plane front in an isotropic
medium with diffusion coefficient D and в is the angle be-
tween the propagation direction and the x axis. We note that

a different and erroneous expression for V0 (в) was given in
Ref. 89.

In the primed coordinate system the autowave front is
described by the natural equation К' = К ' ( Г ) . From the de-
finition of curvature

*'(0 = - ,̂ (7.3)

where a' is the angle of inclination of the tangent to the x'
axis. It is not difficult to obtain the following equation for the
coordinates of an element of the front in the laboratory sys-
tem:'

г Si
= *0 + / cos Щ - /*', «fJ)d£)d£,'

о о

1 r e
y = УО + IJ sin К ~ J

о о

(7.4)

where x0, yQ are the coordinates of the free edge in the labo-
ratory system and a'0

 1S tne angle between the tangent to the
front at the end point and the x' axis. These equations are
essentially parametric equations of a curve, where the pa-
rameter is the arc length / ' in the primed coordinate system.
Knowing the parametric representation of the front, its cur-
vature can be calculated in the usual way. For example, the
time dependence of the curvature as we approach the end
point is given by

*0(0 = &К„ [I + (Д2 - 1) cos2 (o>0< + Ф)Г3/2. (7.5)

Figure 10 (from Ref. 20) shows the calculated motion
of a spiral wave in an anisotropic medium described by (7.1)
with D = 1 and Z>, = 2. We see that the shape of the front is
not in a steady state and undergoes periodic changes.

In spite of the fact that the curvature of the front de-
pends on time, we can still refer to steady-state circulation of
a spiral wave in an anisotropic medium, since the core of the
wave (which has the shape of an ellipse with semi-axes R0

and Л0/А ) remains fixed.
We next consider the non-steady-state effects associat-

ed with the evolution of spiral waves in a medium whose
anisotropy varies in time. We first study the motion of a
spiral wave in the case of a sudden change in the anisotropy
of the medium. Suppose a steady spiral wave rotates in an

FIG. 10. Successive positions of a spiral wave in the model (7.1) of an
anisotropic excitable medium. D= I, D, =2.
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isotropic medium (7.1) with diffusion coefficient D^—D
when t < 0 and at t = 0 there is an instantaneous change in
the anisotropy of the medium so that Dl = D + AD for
t>0, where// = AD/D^l.

At time t = 0 the curvature of the front near the free
edge of the spiral wave is K0 = Kcr. This initial value will
then relax toward the "steady state" value (7.5) in an aniso-
tropic medium. The resulting core displacement is not diffi-
cult to calculate in the quasi-steady-state approximation:20

2ш„ ' *z I n - P. •

(7.6)

where

= sin2- a • cos « - Ф
(yl'D) sin a0 + cos «0

Ф

(у/Д)2 + 1

(y/£>) cos a0 - sin «0

(y/D)2 + 1
(7.7)

Ф = 3-
D)

1 — =• cos2 a.

In (7.6) and (7.7) we have omitted higher-order terms
that are small as a result of the condition p=DKCT/V0 < 1.

Similarly, we can determine the displacement of the
center of the core of a spiral wave when the anisotropic medi-
um (7.6) transforms suddenly into an isotropic medium
with diffusion coefficient D:

Suppose now that the diffusion coefficient in the у di
tion is given by

(7.8)

irec-

/? ,=£>- + sign (sin a (7.9)

where <и, — co0\^<a0. Because of the periodic jumps in the
anisotropy, the displacements of the core center resulting
from single jumps will accumulate and the end point will
move along a trajectory determined by the equations (for

(7.10)
f

In particular, in the case of perfect resonance (ы, = ca0) the
center of circulation will move along a straight line with the
velocity

1/2 (7Л1)

We note that in contrast to resonance in an isotropic medi-
um, where the core center moves with a constant velocity for
any aQ, the velocity in an anisotropic medium depends es-
sentially on the phase a0 .

But this is not the only distinguishing feature of reso-

FIG. 11. Resonance trajectories obtained in the kinematic model of the
motion of an autowave with modulation of the degree of ansiotropy of the
medium, as indicated by the values of y/D, and with/) = 0.

nance in an anisotropic medium. Indeed, integration of
(7.10) shows20 that the trajectory of the core center in this
case is not a circle or an ellipse, but a quite erratic curve. A
series of typical trajectories are shown in Fig. 11 for different
values of the ratio y/D and/? = 0. It is important to note that
changes in the initial phase a0 and the absolute value of the
frequency difference \to0 — ю\ \ do not lead to changes in the
shapes of the trajectories, but only affect their positions (but
not orientations) in the plane and their geometrical dimen-
sions.

It is interesting to compare the results of the kinematic
treatment of the motion of a spiral wave in an excitable medi-
um with periodically modulated anisotropy to the calcula-
tions of the reaction-diffusion model (7.1), in which the
diffusion coefficient has the form (7.9). Figure 12a shows
the trajectory of the center of the spiral wave for A£> = 0.2
and *y, =0.12. We note that for the medium modeled here
the propagation velocity V0 and circulation frequency a>0

measured in the computer simulations are F0 = 1.3 and
u>, =0.11. Since the diffusion coefficient D~\, it follows
from (4.6) and these values thatp = DKcf/V0 :p = 0.21. As

FIG. 12. Resonance trajectories obtained in the case of a periodic modula-
tion of the degree of anisotropy in the model (7.1) (a) and in the kinemat-
ic model with y/d = 3.3 (b), y/D = 6.0 (c), and y/D = 9.0 (d).
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shown above, for a given value ofp the form of the trajectory
is determined only by the time lag y/D, which is unknown.
Three trajectories calculated from (7.10) for different val-
ues of Y/D are shown in Figs. 12b-d. We see that when
Y/D = 3.3 the trajectory no longer has concave sections, as
in Fig. 12a. Concave sections appear for larger values of Y/D
(see Fig. 12c and 12d) but the trajectory shown in Fig. 12d
has too large of an inclination with respect to the у axis. By
comparing Figs. 12a and 12c it can be seen that the kinemat-
ic approach gives the correct qualitative picture of resonance
in an anisotropic medium. In addition, the results can be
used to estimate Y/D. For example, Y/D = 6 for the medium
modeled here.

8. SPIRAL WAVES ON CURVED SURFACES

The basis for the study of kinematics of auto wave struc-
tures on curved surfaces is (3.16), which was derived in Ref.
11. We first consider steady circulation of a spiral wave on
the surface of a sphere of radius R0, whose Gaussian curva-
ture is constant and equal to Г = l/R I. In the steady-state
case we can integrate (3.16) once. Using (3.8), we have

i

J V<£-D$jj- = (8.1)

where A is an integration constant. Unlike the plane case, A
is not the rotation frequency a of the spiral wave, but is
related to it as follows:

„,2 _ л2 4. v^F ( 8 5 Vw — л ^ 0 0 ' \°-*'/

Suppose the radius of the sphere is so large that
R0Kcr > 1. Then the method of matching interior and exteri-
or solutions used above to study spiral waves in a plane (see
Sec. 4) can be extended without difficulty to the case of a
spherical surface. The exterior solution of (8.1) can be ob-
tained by neglecting the term D dK /d/ in (8.1), i.e. the de-
pendence of the propagation velocity of the front on its cur-
vature. Unlike the plane case, here there are two solutions:
antisymmetric Ka (I) and symmetric Ks (I) with respect to
the equator:11

V I •**
K. = T7- ~

-1/2

(8.3)

(8.4)

The delta function in the second term in (8.4) indicates that
the front described by the symmetric solution Ks(l) has a
discontinuous slope on the equator at the point / = A / V0 Г0.
The antisymmetric solution (8.3) isunphysical.11

We see from (8.3) that the curvature blows up when
/-»0 and /-»2A / V0 Г0, i.e. near the north and south poles of
the sphere. Hence the dependence of the wave velocity on
geodesic curvature must be taken into account inside narrow
layers near the poles. In other words, boundary layers must
exist near the poles of the sphere. It follows from (8.1) that
inside the north and south boundary layers the curvature is
given by the following expressions:

К = К„ - Al/D, K= Kcr - A(L- [)/D , (8.5)

where L is the total length of the front.

FIG. 13. Front of a spiral auto wave on the surface of a sphere.

Therefore the front of a uniformly rotating spiral wave
on a sphere is symmetric about the equatorial plane (Fig.
13). The wave has two cores located near the poles. Inside
the boundary layers near the north and south poles the de-
pendence of К on / is linear. If the dependence of the wave
velocity Fon the curvature К is linear, the discontinuity in
the slope of the front on the equator disappears and there is a
third boundary layer near the equator where the curvature is
negative and depends on / quadratically.

From the matching conditions of the interior and exte-
rior solutions near one of the cores, the integration constant
A can be found and then (8.2) can be used to get the rotation
frequency a> (Ref. 1):

Ч
; w0 1 +

(8.6)

where co0 is the angular velocity of the spiral wave on a plane
and is given by (4.12). Hence for a given excitable medium
the angular velocity of rotation of a spiral wave on a sphere is
larger than on a plane.

We note that recently the evolution of spiral waves on
the surface of a sphere has been studied experimentally.97

Spiral waves were excited in a solution with a Belousov-
Zhabotinskii chemical reaction on the surface of a small
(R0 zzO.6 mm) bead. The steady-state limit considered here
was not observed during the experiment. Apparently this is
due to the fact that the spherical surface used in the experi-
ment was too small: one turn of the spiral barely fits on the
surface. Also the dispersion produced by the medium was
large (the typical width of a front on the photographs shown
in Ref. 97 is comparable to the radius of the sphere) and in
this case even on a plane non-steady-state (cycloid) rotation
of spiral waves occurs,33 which will be discussed below.

To study the evolution of spiral waves on a surface with
variable curvature it is convenient to consider first the dy-
namics of a spiral wave on a sphere whose radius oscillates
periodically in time according to the equation

R = cos + /3). Я, « Л0 (8.7)

In this case the Gaussian curvature of the sphere oscillates
with the amplitude Г, = 2R, /R I . Let 00 and ф0 be the po-
lar and azimuthal angles of the center of the core of the spiral
wave and let в and ф be the spherical coordinates of the
moving end point of the autowave front. For convenience we
choose the polar axis of the spherical coordinate system so
that the core center is near the equator (ir/2) — в0 ^ 1. In
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addition, we consider the special case DE — Dg in (1.2) for
which 7 = 0. The calculations simplify considerably in this
case, since С = 0, yet the qualitative picture of the evolution
of the spiral wave is not changed significantly by this approx-
imation. '

When С = 0 and r0 <^R0 the velocity of the end point in
spherical coordinates is given by the equations

. \' - — ;r sm cot, Ф =r
о cos u>t

— — - (8.8)
R ""•""' r R

\J

Suppose the oscillation frequency of the radius of the sphere
is close to the rotation frequency ca of the spiral wave:
\eo — w, |<<и. Substituting (8.6) [where Г0 is replaced by
Г0 — Г, cos(o)t + /?)] and (8.7) into (8.8) and averaging
over time (i.e. only the slowly oscillating terms with fre-
quency |u>] — a>\ are kept), we find that when the radius of
the sphere is periodically modulated the center of the spiral
wave drifts along the surface of the sphere with the following
angular velocities

sin [(o>, — ca)t + /?] ,

(8.9)

4s in00

cos [(to, - io)t +

As in the case of a periodic variation in the parameters
of a plane excitable medium,21'73 the drift is caused by reso-
nance. The trajectory of the core center is a closed curve
whose size increases as co} approaches ea. When ea = <a\ the
direction of the drift is determined by the initial phase /? of
the modulation and the drift velocity is proportional to the
amplitude of the variation in the Gaussian curvature Г,.

One would expect that spiral waves drift when they
move along a surface with variable curvature, as in the case
of a nonuniform medium (see Sec. 6). However, it can be
shown1 that on a surface with a constant Gaussian curva-
ture, but with variable average curvature (examples are a
cylinder, cone, and pseudosphere) drift does not occur.
Therefore a nonuniform average curvature is not a sufficient
condition for drift of a spiral wave, but a necessary condition
for drift is a nonuniform Gaussian curvature.

We consider a spiral wave on a sphere whose surface is
slightly deformed so that the Gaussian curvature Г is a func-
tion of the polar angle в. Since the deformation of the sphere
is small, the Gaussian curvature Г varies only slightly over a
distance of the order of the core of a spiral wave and
dIYd#( r0/R0) -4 Г0. When a spiral wave moves over such a
nonuniformly curved surface, the end point successively
passes through regions with different values of the Gaussian
curvature. Therefore it moves as if the Gaussian curvature of
the surface were time dependent:

Therefore the evolution of a spiral wave on a nonuni-
formly curved surface can be found by calculating the mo-
tion of a spiral wave on a spherical surface with a periodical-
ly varying radius, which was considered above. The time
dependence of the curvature (8.7) is characterized in this
case by the parameters

ro

For these values of the parameters we can obtain the
drift velocities from (8.9) (Refs. 1 and 74):

Vo
4 sin 0n

(8.11)

It follows from (8.11) that the drift velocity of a spiral
wave along a nonuniformly curved surface is proportional to
the absolute value of the gradient of the Gaussian curvature.
Also the motion is perpendicular to the gradient of the cur-
vature. We note that the term V0T0/(g2DKlt) inside the
parentheses in (8.11) is small compared to unity, since it is
of order (r0/R0 )2. Hence the sign of the angular velocity ф0

is determined by the sign of dIYd#. For example, on the
surface of a prolate spheroid a spiral wave rotating counter-
clockwise in the northern "hemisphere" should drift with
angular velocity ф0 < О.

We estimate now the drift velocity for a medium with a
Belousov-Zhabotinskii reaction. We assume the typical val-
ues VQ = 3 mm/min and r0 = 0.5 mm. Suppose that the spi-
ral wave rotates on the surface of a prolate spheroid with
semiminor axis a = 2 mm and semimajor axis 6 = 3 mm and
suppose that the center of the core corresponds to the angle
в0~тг/6. Using (8.11), we obtain the angular velocity
ф = 0.035 min ~', which corresponds to a drift velocity of
Vu ~0.04 mm/min. Under these conditions the center of the
spiral wave moves a distance of the order of the core radius
after about 10 revolutions of the spiral wave.

The drift of spiral waves along nonuniformly curved
surfaces has also been studied by computer simulations of
the model (1.2) with the functionsFand Gin the form (1.3)
and the coefficients kf = 1.7, /cg = 2, rf = 0.1, £ = 0.15,
ke = 6, a = 0.01, DE = Dg = 1. The propagation velocity
for this medium is V0 г; 0.4 and the core radius is r0 ~2. The
initial position of the center of the core was в0 г:0.56 and
00s0.2.

The calculated trajectory of the end point of the spiral
wave is shown in Fig. 14. The elliptical form of the trajectory
loops is an artifact of the use of angle coordinates. In metric
coordinates the boundary of the core is a circle. We see from
Fig. 14 that the core of the spiral wave drifts along the paral-
lel of the spheroid (00 = 0) in the direction given by (8.11).
In addition, the drift velocity estimated from (8.11)

в
0,55

0,60

/3 = 0, a», .= at.

Ц IS

FIG. 14. Trajectory of the end point of a spiral wave on the surface of a
prolate spheroid.
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(ф = 2.8-10 5) agrees fairly well with the numerical result

The above results are even more important because it is
now possible to observe this effect with the help of a modifi-
cation of the Belousov-Zhabotinskii reaction by means of an
immobilized catalyst. In this modification the reaction pro-
ceeds only within a thin layer near the bottom, not over the
entire volume of the solution. We recall that the resonance
effects for spiral waves on a plane predicted in the frame-
work of the kinematic approach21'73 have already been con-
firmed experimentally.3 This suggests that the drift effect
should also exist and the estimates given here suggest that
the displacement of the spiral wave should be observable
visually. Therefore if the catalyst is immobilized on a non-
uniformly curved surface of given topography, one has new
possibilities for the control of spiral waves. In particular, it is
possible to obtain motion of spiral waves in required direc-
tions, steady-state rotation in a certain region, or annihila-
tion of pairs of spiral waves with opposite topological
charges. It is very important that nonuniformity of the prop-
erties of the excitable medium, and this greatly simplifies the
implementation of such methods of controlling spiral waves.

9. CYCLOID CIRCULATION

All the examples of the kinematic approach considered
above assumed that the period of circulation of the spiral
wave is much larger than the response time of the medium.
Then the interaction between excitation pulses successively
passing through a given point of the medium is small and can
be neglected. However in the case of steady circulation of a
spiral wave, a periodic train of curved wave fronts passes
through each point of the excitable medium, except inside
the core. This fact must be taken into account if the period of
circulation is not sufficiently large.

Using the reasoning of Sec. 2 for single pulses,39'130 we
find that V(K,T) is determined by the following generaliza-
tion of (2.8):

V(K, T) = DEK + Vp (e*, eT), (9.1)

where Vp (e,£T) determines the propagation velocity of a
train of waves with rectangular fronts and a period Г be-
tween the waves. The dependenceK*(T) was found in Ref.
39 for the model (1.2) with Dg = 0 and is shown in Fig. 15a.
The dependence of the propagation velocity of the autowave
on the curvature of the front AT and the period Г is shown in
Fig. 15b for the model (1.2).

We assume as before that the propagation velocity of
the wave front depends only on its curvature and the period
Г is a parameter characterizing this dependence, but is not
related to a>. Then it follows from Sec. 4 that the angular
velocity о) is given by (4.5) or (4.12) and depends only on
two quantities: the velocity of a plane front Kp and the criti-
cal curvature Kcr zzK*. However, the quantities on the right
hand sides of (4.5) and (4.12) are now functions of the peri-
od Т between the waves, which is Т = 2ir/co for steady cir-
culation, where a> is the angular velocity of revolution of the
wave. Hence (4.5) becomes a nonlinear algebraic equation
for the angular velocity of the circulation

-i (9.2)

As noted above, the functions Vp (e,eT) and К * ( Т) in
(9.2) can be found numerically or analytically (see Refs. 32,
50, 100, for example). In particular, the angular velocity ol
circulation can be calculated analytically by solving the alge-
braic equation (9.2).

It can be shown3 1'32'40 that the right hand side of (9.2)
falls off with increasing со and hence it has a unique solution.
The angular velocity will be smaller than in the absence of
dispersion. This quantitative difference has been pointed out
in many papers.75'88'91'1 17'118

However, the interaction between the turns of the spiral
also leads to qualitatively new effects,31"33'39'93'98'130 such as
the loss of stability of circular circulation of a spiral wave
and the onset of cycloid circulation, which has been ob-
served in computer simulations33 and in experiments using
Belousov-Zhabotinskii reactions. ' l3-123-126 The main feature
of this case is that the trajectory of the free edge of a spiral
wave propagating in a uniform and steady medium is no
longer a circle, but forms a complicated curve resembling a
cycloid.

The existence of cycloid circulation can be explained
quite simply in the kinematic approach. As an illustration,
we assume the simplest linear dependence for V(K,T) and
*СГ(Г):34'39'130

V(K, T)=V0

=V(Kcr,T).

К >

, т),

(9.3)

1.0

О 0,05 0,10 2rt/T О
a

1,0 К

FIG. 15. Critical curvature K* (a) and propagation velocity of the front V
(b) in a periodic train of autowaves.
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Here F0 is the velocity of a single wave with a rectangular
front and Fmin is the minimum possible velocity for steady
wave propagation.

As noted above, in steady circulation the wave fronts
pass through all points of the medium with the same time
interval Т between fronts (equal to the period of circulation
of the wave). In general, the time interval between waves
may be different for different points of the medium and may
also vary in time: T= T(x,y,t). To construct the function
T(x,y,t), we note the instant of arrival of the preceding wave
front at a given point of the medium T*(x,y,t). Then the
function T(x,y,t) in (9.3) is given by the simple expression

T=l-T*lX(s,t), Y(s,t),t], (9.4)

where X(s,t) and Y(s,t) are the Cartesian coordinates of the
wave front.

The function T(x,y,t) is calculated at the nodes of a
square grid with a distance H between the nodes. Linear
interpolation of 1/Tis used between the nodes.

Two examples of the formation of a spiral wave from a
semi-infinite rectangular front are shown in Fig. 16 for dif-
ferent values of the parameter Tmin. The calculations were
performed using the fundamental equation of kinematics
(3.6), and the propagation velocity of the wave was calculat-
ed using (9.3) with 00 = 1.5, 6>cr =0.86, к = 0.9, 7=5,
H= 1.

We see from Fig. 16 that the front gradually curves and
then acquires a steady form and the trajectory of the end
point becomes a circle. The radius of this circle and the rota-
tion period are exactly the same as the calculated parameters
for steady circulation. If Tmm is small, then the period of
circulation is close to the quantity T0 determined by assum-
ing that the velocity of the front depends only on its curva-
ture. For the parameters chosen in Fig. 16 we have TQ = 34.

As Tm{n increases, the period of circulation and the ra-
dius of the trajectory of the end point also increase. Upon
further increase of Tmin there is a qualitative change in the
nature of the process and steady circulation becomes impos-
sible. The angular velocity and the instantaneous radius of
gyration of the end point are no longer constant, but oscil-
late. Hence the trajectory of the end point is no longer a
circle, but resembles a cycloid (Fig. 17).

A simple qualitative explanation of cycloid circulation
is as follows. In the case of steady circulation, the time be-
tween wave fronts (pulses) at all points of the medium is
T(x,y,t) = Tc, where Tc is the period of circulation. But in
the core of the spiral wave (bounded by the trajectory of the

FIG. 17. Trajectory of the end point of the front in the kinematic model of
the motion of an autowave for a large response time of the medium.

end point) the quantity T(x,y,t) increases without bound as
time goes on, since the wave front never enters this region of
the medium.

Therefore when Tm-m ^0 the circulation of the spiral
wave creates a nonuniformity in the conditions of propaga-
tion of the front. For example, it follows from (9.3) that ATcr

is different outside and inside the core. It was shown in Sec. 6
that a nonuniformity in the properties of the excitable medi-
um results in a distortion of circular circulation. However, in
the case considered here, the nonuniformity is of a specific
type, and so under certain conditions circular circulation of
the spiral wave is stable.

We assume that in an excitable medium with Tmin ^0 a
spiral wave is established with circular circulation. Because
of a random fluctuation, the end point of the wave falls into
the core, where KCT is different. This leads to a displacement
of the end point in the tangential direction (i.e. toward the
center of the core) with velocity С [see (3.7) ]. The rate of
change of the curvature of the front at the end point obeys
the following equation [see (3.7) and (5.3)]:

dK

/=0
(9.5)

But the quantity Kcr also varies near the free edge of the
spiral, since the end point moves into a region where the
medium is nonuniform and dKcr /dr = dKCI /dl (here r is the
distance to the core center):

dt dl \1=0
(9.6)

FIG. 16. Formation of a spiral wave in the kinematic model of a spiral
wave for different response times of the medium.
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It can easily be shown35'39 that the solution of (9.5) and
(9.6) is stable when

dK,
dl (9.7)

This inequality is a sufficient condition for circular cir-
culation of the spiral wave to be stable. Indeed, if (9.7) is
satisfied then the velocity С of tangential displacement of the
end point decreases with time to zero, and the penetration
length of the end point into the core varies directly with the
amplitude of the initial fluctuation. In the opposite case even
a small fluctuation can lead to a significant distortion in the
trajectory of the end point. This condition has been verified
by computer simulations of the kinematic model (3.6).39

10. THREE-DIMENSIONAL AUTOWAVE STRUCTURES

Some three-dimensional autowave structures can be de-
scribed analytically.45'54'90'118-127 The kinematic approach
developed for two-dimensional excitable media can also be
extended to the three-dimensional case and can be used to
treat the dynamics of different autowave structures from a
unified point of view.

As before, we assume that the autowave is completely
specified by its front surface. Any surface in three-dimen-
sional space has at each point two principal radii of curva-
ture RI and R2 (or two principal curvatures: Kt = 1/Л,
and K2 = l/R2). It was shown in Ref. 10 that the velocity of
normal displacement of a part of the front depends only on
the sum of the principal curvatures, i.e. on twice the average
curvature 2H = Kl + K2:

= V0-2DH. (Ю.1)

The front can expand or contract along its edge (if it
exists). The velocity С of this tangential growth depends not
only on the average curvatures of the front near the edge, but
also on the geodesic curvature x of the edge itself:

= у,(ЛГс г-2Я)-у2х, (10.2)

where 7, and J2 are positive numbers; the curvature x is
taken as positive if the edge at a given point is convex with
respect to the front.

The coefficient y\ is analogous to y, which determines
the velocity of growth of the end point of the front in a two-
dimensional medium. But the coefficient y2 occurs only in
the three-dimensional case. Like the other kinematic param-
eters, y2 can be determined by solving the "microscopic"
equations (1.2). In addition, it can be shown10 that if the
diffusion coefficients of the activator and inhibitor are close
(DE -+Dg = D), then y2 ^D. Recall that in this case yl -»0.

We apply the kinematic approach to calculate the evo-
lution of some three-dimensional autowave structures.

A spiral wave rotating on a plane can be considered as a
plane cross section of a cylindrical surface. This surface is
the simplest three-dimensional autowave structure: a rotat-
ing roll. A vortex of this kind is analogous to a spiral wave.
The vortex core is a cylinder whose axis is called the thread
of the roll.

The thread of the roll may be curved. In particular, it
may be closed into a circle and then we have a vortex ring
(Fig. 18a). Such structures are observed experimental-
ly121'123'125'126 and also in computer simulations45'106'126 us-

ing models of the reaction—diffusion type.
A vortex ring is a local autowave source; it creates

spherical diverging waves at large distances from its center.
Computer calculations show54 that, depending on the pa-
rameters of the excitable medium, a vortex ring can either
shrink or expand while moving in the direction perpendicu-
lar to the plane of the thread. The velocity of this motion
decreases with increasing radius R of the thread of the ring.
In particular, an analytical treatment of the evolution of a
vortex ring in a two-component model for identical diffusion
coefficients shows54'57 that the velocity of compression of
the thread of a vortex ring is proportional toD/R. Therefore
the quasi-steady-state kinematic approach discussed above
can be used to treat the evolution of a ring vortex when its
thread is only slightly curved.

We introduce cylindrical coordinates (x,p,tp) with thez
axis along the symmetry axis of the vortex ring. Because of
the cylindrical symmetry of the problem, it is sufficient to
consider the evolution of a section of the vortex ring in thep,
z plane, i.e. its meridian (Fig. 18b). Since the meridian lies in
a plane, its evolution is obviously described by the funda-
mental kinematic equation (3.6). However, unlike the case
of a spiral wave on a plane, the velocity of normal displace-
ment of the meridian and the velocity of tangential growth of
the end point will depend not only on its curvature. Indeed,
(10.1) shows that the velocity of normal displacement is
determined by the average curvature, which is not difficult
to calculate for the meridian

1 (10.3)

where/) is the distance of an element of the front from the z
axis and a is the angle between the tangent to the meridian of
the ring and the/? axis (see Fig. 18b).

The tangential curvature of the edge of the front surface
is

'cos «0; (Ю.4)

where a0 and/>0 are the values of the angle a and distance/?
at the end point of the meridian. It follows from the defini-
tion of the curvature that

« = a0 - J Kdl'.
о

(10.5)

Since, as emphasized above, the angular velocity in the
quasi-steady-state case is determined by the form of the front
near the free edge of the spiral wave, we need only study the
motion of that part of the surface of the vortex ring which is
right next to the core.

The motion of the end point of the meridian is deter-
mined by the equations

FIG. 18. Vortex ring in a three-dimensional excitable medium (a) and
axial cross section of the vortex ring (b).
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—2 = - v(l = 0)sin a0 - С cos a0,

dz0

(10.6)

dt
= v(l = 0)cos a0 - С sin aQ>

which are analogous to (3.10). In addition, (3.11) also re-
mains valid

d/ /=o (10.7)

It follows from (3.8), (10.3), and (10.4) that the quantity
dV/dl is given by the expression

d/ ~" dl и^~ё~- (10:8)

Substituting (10.1), (10.3), and (10.8) into (3.6), we ob-
tain the equation

Ь\к Г KtvTlKOJ K(V0-

(10.9)

It follows from ( 10.9 ) that ( 5.3 ) , which describes the quasi-
steady-state case in a two-dimensional medium, is modified
as follows for the case of a vortex ring:

dKn

Taking into account these differences, (5.7) and (5.9)
can be written in the form

b)

1/2

/T'sin a - D)cos a0

112

cos a IGOS «

?-l sin a0) ]. (10.11)

The system of equations ( 10. 1 1 ) completely determines the
dependence of the angle a0 and curvature K0 on time in the
quasi-steady-state case. Integrating these equations, substi-
tuting the solution into (10.6), and averaging over a period
of circulation, we obtain the following equations for the time
dependence of the thread of the vortex ring:

2 - D)/D]

dt 4Kcr

dz0

dt

(Yl/D)2 +1
(10.12)

(10.13)

Recall that we have assumed a vortex ring of large radius in a
medium with low excitability (DKcr <£ V0), and therefore we
have omitted terms of higher order in R ~' in the above
expressions, as well as small terms inp=DKCT/V0 ^ 1 and in
7, /D<g,p~ l/2 (the quasi-steady-state condition).

For the special case of a two-component excitable medi-
um with indentical diffusion coefficients we have10 Y-L=D
and Y\ =0- Substituting these values into (10.12) and
(10.13), we obtain

dR/dt = -D/R, dz/dt = 0,

which agrees with the numerical results and with analytical
results obtained by a different method.54 Hence a vortex ring
is practically always unstable. It either shrinks (R <0) or
expands (R > 0) with time.

There exists, however, a narrow interval of values of the
parameters in which the rate of change of R is very small and
passes through zero. Inside this interval higher order terms
in l/R must be taken into account in the expression for R.
Detailed analysis shows49 that a term of order l/R2 does not
exist, while a term of order l/R 3 appears in the expression
for R with a positive coefficient. Therefore, if the vortex ring
shrinks in the linear approximation in l/R, but its velocity of
compression is very small, the nonlinear positive term of
order l/R 3 may be able to compensate the compression and
stabilize the vortex ring.

In addition, numerical calculations show10'126 that
small vortex rings of stable size can be observed. The stabili-
zation mechanism in this case is the interaction between
wave fronts colliding on the symmetry axis of the vortex
ring.

The evolution of a vortex ring can be controlled by
means of a periodic modulation in the properties of the excit-
able medium. For example, if the critical curvature Kcr de-
pends on time according to (6.1) with a, = a>0, then a col-
lapsing ring can be forced to expand and also to reverse its
drift direction along the z axis by properly choosing the am-
plitude and phase of the modulation. It is interesting that a
proper choice of ЛГ, and ф can simultaneously stabilize the
size of the ring and stop its drift, i.e. completely stabilize the
ring.2 Depending on the parameters of the excitable medi-
um, this equilibrium position may be either stable or unsta-
ble.

Although the above estimates apply directly only to the
evolution of a circular vortex ring, they can be used as a first
approximation to describe the time behavior of any vortex
with an arbitrarily curved thread, as long as the curvature is
not very strong. Indeed, a small element of an arbitrary vor-
tex will appear to be part of a vortex ring of an appropriate
radius.10 Suppose initially we have a line vortex (cylindrical
roll) and we apply a small local deformation of the thread. If
the parameters of the medium are such that vortex rings tend
to shrink, the deformation will tend to decrease with time. In
the opposite case, when vortex rings expand, any deforma-
tion of the thread blows up and the vortex thread tends to
become longer. As a result, a straight cylindrical roll be-
comes unstable to small deformations of its thread and very
complicated structures can be formed in an infinite excitable
medium.

These qualitative features of the dynamics of three-di-
mensional autowave vortices can be formulated mathemat-
ically. For example, a system of kinetic equations for the
evolution of three-dimensional autowave structures was
proposed in Refs. 90 and 92. These equations are based on
the dependence of the velocity of the thread on its shape.

Finally we discuss the properties of twisted vortices,
which differ from straight vortices in that the edge is a heli-
cal curve coiled around the cylindrical core (Fig. 19). A
twisted vortex can be characterized quantitatively by the pa-
rameter fj, = 2-rr/h, where h is the pitch of the helix. For a
nonuniformly twisted vortex a more convenient definition is

681 Sov. Phys. Usp. 34 (8), August 1991 Davydove/a/. 681



FIG. 19. Twisted cylindrical vortex in a three-dimensional excitable me-
dium.

fi(z) = da/dz, where a is the azimuthal angle determining
the position of an element of the helical edge on the cylindri-
cal core. Depending on whether the edge forms a right or a
left helix, the torsion // will be positive or negative, respec-
tively.

The front surface of a uniformly twisted vortex is a heli-
coid. We consider a section of the helicoid formed by the
plane z = const. Its evolution is obviously described by
(3.6), where К is the curvature of the section and in our
approximation V does not depend on/j. (the first correction
to the velocity because of torsion is proportional to /г2).

Since// = const, the shape of the section z = const does
not depend on time. Therefore in the linear approximation in
fi the angular velocity of rotation of a twisted vortex can be
found by calculating the rotation of a spiral wave on a plane.
The rotation frequency of the twisted vortex is therefore giv-
en by (4.10) with KCT replaced by K(0), where K(0) is the
curvature of the section near the vortex core. The curvature
K(Q) is found by setting the growth velocity Cequal to zero.
Using the standard methods of the theory of surfaces,52 we
obtain12 that the average curvature of the helicoid as we
approach the core is -ff(O) = 1/2AT(0), while the tangential
curvature of the edge is x = \ft\. Substituting these curva-
tures into (10.2) and equating С to zero, we obtain the cur-
vature K(Q) of the section:

K(0)=Kcr
(10.14)

From ( 10. 14) and (4.9) we can obtain an expression for the
angular velocity of rotation of a twisted vortex

and the core radius

(10.15)

(10.16)

Therefore the angular velocity of rotation of a twisted
vortex is higher than in the case of a simple roll. The increase
in the rotation frequency was observed in computer simula-
tions,45 however the explanation of this phenomenon given
in Ref. 45 was based on the unfounded assumption that the
core radius of a twisted vortex is the same as for an untwisted
vortex. This assumption leads to a quadratic dependence of
&) on ц rather than a linear dependence.

We note that the motion of a uniformly twisted vortex
was considered in Ref. 101 in the Rinzel-Keller model and it
was shown there that the angular velocity of rotation in-
creases because of the twist.

We turn now to the dynamics of nonuniformly twisted
vortices. Suppose that ц =f(z) at the initial time. We see
from (10.15) that different parts of the vortex with different
values of ц will rotate with different velocities, and hence the
torsion varies in time. Using (10.15), it is not difficult to
obtain an equation describing the dependence of /u on z and
the time /:

.
dt (10.17)

where u= (3/2)(y2/y, )u>0/A"cr. This unusual nonlinear
equation belongs to the class of equations describing so-
called kinematic waves,6 and its solution is of the form

ft = /(z + (sign ft)uf). (10.18)

The solution (10.18) shows that if the vortex is twisted non-
uniformly at the initial time, torsional waves will propagate
along it. Initial torsional perturbations with opposite signs
propagate along the vortex in opposite directions with veloc-
ity и and form discontinuities (or shock waves) when they
collide.

11. CONCLUSION

It is evident from the present review that the kinematic
approach is an effective and quite general method of study-
ing the evolution of different autowave structures. Its do-
main of applicability is obviously not limited to the typical
examples discussed above. The techniques of the kinematic
approach are useful in studying the evolution of autowaves
in nonuniform and at the same time non-steady-state media,
in nonuniform or non-steady-state three-dimensional me-
dia, and other combinations of the "elementary" situations
considered above. The kinematic approach can be used to
study the behavior of spiral waves near the boundary of an
excited region and to describe the interactions between spi-
ral waves. Another important problem is also the improve-
ment of the kinematic treatment of cycloid types of circula-
tion of spiral waves.

The kinematic approach can be used not only to consid-
er spiral waves analytically, but also as a powerful method of
numerical analysis of autowave structures, since the kine-
matic equations are much simpler than the original reac-
tion-diffusion system of equations.

It is also important to note that the ideas on which the
kinematic approach is based have already been used to work
out alternative methods of describing excitable media. For
example, interest in the model of an excitable medium as a
network of cellular machines has been revived.36>80'81'96 The
cell models strive to reproduce to the maximum degree the
kinematics of autowaves motion, especially the effect of the
form of the front on the propagation velocity.

Meanwhile, there is also the possibility of further refine-
ments of the kinematic approach using the ideas and results
of alternative approaches.

This cross-fertilization of ideas will undoubtedly lead to
progress in understanding the formation and evolution of
autowave structures.
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