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We discuss the geometrical theory of wave propagation in regularly inhomogeneous waveguide
media from the point of view of nonlinear Hamiltonian dynamics. We consider ray dynamics in
waveguides with periodic longitudinal inhomogeneities, including the phenomenon of spatial
nonlinear resonance of rays, which leads to the formation of an effective waveguide channel in the
neighborhood of the ray in resonance with the periodic inhomogeneities. We consider different
properties of spatially resonant rays: the optical path length and propagation velocity of a signal
along rays trapped in a separate nonlinear resonance; the fractal properties of rays, such as the
"devil's staircase" form of the dependence of the spatial oscillation frequency of the ray and the
propagation time of a signal along the rays. The trajectory of sound rays in a model of the ocean
with transverse flow is considered using the adiabatic invariant method and the transverse drift of
a ray with respect to the main propagation direction of sound is described. We consider the
conditions for dynamical chaos of rays in a waveguide with longitudinal periodic
inhomogeneities. We examine the conditions for internal spatial nonlinear resonance and chaos of
rays in waveguides with an irregular cross section and their effect on the propagation velocity of a
signal. We study the connection between the structure of the wave front and the dynamics of rays
in waveguide channels with regular inhomogeneities. Finally, we discuss the applicability of
geometrical optics in waveguides under the conditions of nonlinear resonance and chaos of rays,
and the relation between this problem and quantum chaos.

1. INTRODUCTION

Geometrical optics is the oldest application of the laws
of classical mechanics to phenomena far from the realm of
mechanics. Modern methods adequately describe the condi-
tions under which geometrical optics represents an adequate
physical picture. There exists an obvious parallel between
the quasiclassical approximation in quantum mechanics and
the approximation of geometrical optics (or ray dynamics,
in the more general case) to wave dynamics. The quantum
condition for a particle

j« 1 (1.1)

where / is the action of the particle and # is Planck's con-
stant, corresponds to the condition

kl« 1, (1.2)

where / is the characteristic dimension of the wave propaga-
tion problem. In both (1.1) and (1.2) the dispersion of a
wave packet is weak and hence one can use an approxima-
tion in which the dynamics of the wave packet is replaced by
the dynamics of a much simpler object: a particle or a ray.''

Significant progress in classical nonlinear dynamics has
led to an understanding of a new phenomenon called dynam-
ical chaos, or simply chaos.1-* The incorporation of the new
ideas in problems of ray dynamics is only in its infancy and
the present review is the first2' in which the propagation of
rays in weakly inhomogeneous media is studied in the ap-
proximation of geometrical optics using the methods of the
modern nonlinear theory, in terms of which various types of
nonlinear resonance and chaos can be treated.

Long-range and ultra-long-range wave propagation is
possible when the phase velocity of the wave in the medium
depends nonmonotonically on the coordinates transverse to
the direction of propagation (for example, depth in the
ocean or height in the atmosphere). Some examples of wave-
guide propagation are the propagation of low-frequency
sound waves in the ocean and atmosphere, short radio waves
in the ionosphere, seismic waves in the earth's crust, and
optical radiation in optical waveguides.5'12

There are many factors which limit the distance of
propagation of a wave in an inhomogeneous medium. An
example is a regular inhomogeneity of the medium along the
propagation direction of the wave. Examples of such inho-
mogeneities in waveguide media are periodic and quasiper-
iodic longitudinal inhomogeneities in the ionosphere,13'14

and internal waves in the ocean.7 The dimensions / of the
inhomogeneities parallel and perpendicular to the propaga-
tion direction of the wave are such that the ray approxima-
tion can be used (see Refs. 5, 15, 16, for example).

Therefore the problem of wave propagation in a wave-
guide medium can be reduced to a corresponding problem in
ray dynamics. Ray dynamics in an inhomogeneous medium
can be described in the Hamiltonian approximation.11'16

The study of nonlinear ray dynamics in regularly inho-
mogeneous waveguides leads to a number of new and inter-
esting effects due to the interaction of the rays with the regu-
lar inhomogeneities of the medium.

The first effect, called nonlinear resonance of rays,17 is
the formation of an effective waveguide channel in which a
group of rays is trapped in the neighborhood of a ray in
resonance with the periodic inhomogeneities (Sec. 3). In
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particular, this effect leads to fractal localization and other
properties of the rays18 (Sec. 4). A similar effect is observed
in waveguides with complicated two-dimensional cross sec-
tions.19 Nonlinear resonance of rays is the analog of nonlin-
ear resonance in classical mechanics.1"4

The second effect is the chaotic instability of rays in a
regularly inhomogeneous (nonrandom!) waveguide and is
the analog of stochastic instability in nonlinear mechanics.
This phenomenon leads to effects such as the formation of a
stochastic layer of rays near the separatrix, from which there
is an effective radiation loss, a random distribution of propa-
gation times of a signal along the channel, and an irreversible
distortion of the wave front.20

By using the methods of nonlinear dynamics to study
ray dynamics in inhomogeneous media, a number of prob-
lems can be formulated in a much more convenient form and
unexpected results can often be obtained by a very short and
physically transparent method. For example, the standard
methods of studying ray dynamics use the idea of separation
of the spatial variables in some form, which restricts the ap-
plicability of the theory. The techniques of modern nonlin-
ear analysis make it possible to formulate and solve problems
without assuming separation of variables and thereby avoid
one of the most troublesome problems of the old theory.

With the help of another formal technique, the equa-
tions of motion of rays in a moving medium can be written in
the form of Hamiltonian equations for a charged particle
moving in an electromagnetic field. The velocity of the medi-
um is then analogous to the vector potential in the dynamical
problem.

The present review includes basic results obtained by
the authors in collaboration over the last few years. The first
example of stochastic instability of rays in a regularly inho-
mogeneous waveguide was described in Ref. 21. Nonlinear
resonance of rays and the formation of a stochastic layer in a
regular waveguide with periodic longitudinal inhomogene-
ities and with an irregular cross section were considered by
the present authors in Refs. 17 and 19. The effect of nonlin-
earity of the ray oscillations on the parametric resonance of
rays in a parabolic waveguide was studied in Ref. 24. The
formation of a stochastic layer in a regular waveguide was
also treated in Ref. 22 for the example of a wave channel in
the ionosphere. The stochastic instability of rays in a regular
horizontally inhomogeneous ocean was analyzed numerical-
ly in Refs. 23, 25, and 26. The fractal properties of rays in a
waveguide with periodic corrugations on one of its walls
were established in Ref. 18. The connection between dynam-
ical chaos of rays and the structure of the wave front in wave-
guides was studied in Ref. 20. In the present review some
new results obtained recently by the authors are also includ-
ed.

At the end of the review we discuss a new aspect of ray
dynamics: the analogy between ray propagation and the for-
mation of images on the one hand, and so-called quantum
chaos2 on the other.

2. FORMULATION OF THE BASIC EQUATIONS FOR RAYS

2.1. Hamiltonian equations for rays

We consider the propagation of a scalar monochromat-
ic wave with frequency v: u(R,t) = w(R)exp( — ivt) in a
medium with a spatially inhomogeneous phase velocity
с (R) (R = (r,z), r = x,y). When the length / over which the

wave velocity c(r,z) varies significantly in space is much
larger than the wavelength of the radiation Л /14, \ , then the
wave field can be represented in the form

u(R) = (2.1)

where the slowly varying amplitude A (r,z) and phase func-
tion S(r,z) satisfy the equations

(VS)2 . и2(г, z), rt(r, z)

V(A2VS) = 0,

' c(r, z) '

(2.2)

where n(r,z) is the index of refraction of the medium and
c(r,z) is the phase velocity of the wave. In (2.1) and (2.2)
k = 2-гг/Л and c0 are the wave number and the wave velocity
in a homogeneous medium, respectively.

The first equation in (2.2) is called the eikonal equa-
tion. It is a first-order nonlinear differential equation of the
Hamilton-Jacobi type.27 It can be solved by the method of
characteristic equations. The most convenient form of the
characteristic equation is the Hamiltonian representation.
Introducing the generalized momentum p = VS, the eikonal
equation (2.2) can be written in the form

Я = H(R, p) = 0, (2.3)

where Я(К,р) is a function of the coordinates R and the
generalized momenta p.

The form of the function Я is determined by the eikonal
equation and depends on the choice of the independent vari-
able т specifying the characteristic curves R = R(r),
p = p(r) in the six-dimensional phase space (R,p) . The aux-
iliary variable т determines the ray equations in parametric
form. They are found with the help of the Hamiltonian ca-
nonical equations16'35

_
dr dp ' dr 5R ' dr dp

with #(R,p) as the Hamiltonian function. The independent
variable т is related to the element of arc length of the ray
do-=(dR2)1/2:

ЭЯ
da-.

dp
dr,

which follows from the first equation of (2.4). The projec-
tion of the characteristic curves R(r), p(r) onto the three-
dimensional configuration space is called a ray.

We consider some forms of the Hamiltonian function
H. Suppose #(R,p) has the form

Hamilton's equations in this case are

f-p, f =

(2.5)

(2.6)

In this representation the arc length of the ray is da = n dr.
The tangent vector d R/dr to the ray points along the normal
p to the surfaces of constant phase 5(R) = const.

In many problems of waveguide propagation it is conve-
nient to use the representation where the independent vari-
able is the coordinate along the axis of the waveguide. Let z
be this coordinate. Then the ray coordinates r = r(z),
px = pL (z) are determined by Hamilton's equations
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dz dz
ЭЯ
dr'

Я = -P| = Я(г, p±, z) = - [п2(г, z) - p2 ]

Pj. = (PX' Py)-

(2.7)

It is not difficult to obtain a relation between the com-
ponents of the normal vector p to the surfaces of constant
phase S = const in the transverse plane (x,y) on the one
hand, and the angles в and ф between the vector p and the z
axis and between p± and the x axis, respectively on the other:

p - n(r, z)sin 0-cos V, pv - n(r, z)sin 0-sin V,

(2.8)Я= -n(r, z)cos0.

In the case of wave propagation in a weakly inhomogeneous
medium the typical linear dimension / of an inhomogeneity
is much larger than the wavelength Л (see the inequality
(1.2)) and the waves are scattered by small angles в. Then
the Hamiltonian function (2.8) can be simplified using the
condition 0<1. Assuming also that the inhomogeneous part
of the index of refraction n (r,z) is small:

F(r, z) = n2(r, z) - 1 « 1,

we easily obtain the following approximate expression forff:

The corresponding approximation for rays is called the par-
axial approximation.

2.2. Rays in an inhomogeneous moving medium

The study of sound propagation in an inhomogeneous
moving medium is of great interest in connection with the
acoustics of media in nature. Examples are the atmosphere
in the presence of wind velocity inhomogeneities with
height, and the ocean in the presence of inhomogeneous
flow. The approximation of geometrical acoustics is conve-
nient in studying sound propagation in these media. The ei-
konal equation in a moving inhomogeneous medium was ob-
tained in Ref. 29 from the hydrodynamical equations. The
convenient Hamiltonian formalism for the solution of the
eikonal equation was developed in Refs. 31-33. A review of
the basic assumptions and the latest results of the ray theory
of sound propagation in an inhomogeneous moving medium
was given in Ref. 28. Below we consider some aspects of the
ray equations in moving inhomogeneous media using the
results of Ref. 30, where an analogy was drawn between the
equations of motion of a ray and the equations of motion of a
charged particle in an electromagnetic field.

The eikonal equation in an inhomogeneous moving me-
dium has the form29

[c0-(vV5)]2

c2(R)
(2.10)

where v = v(R) is the velocity field of the medium.
We introduce the generalized momentum p = VS. The

Hamiltonian function reducing to (2.5) in the limit v -> 0 has
the form
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Я = H(R, P) = I p2 - I „2(R)(1 - PA)2 = 0,
(2.11)

where n (R) = c0/c(R) and A = v(R)/c0 is the normalized
velocity vector of the medium. It determines the ray equa-
tions

dr ЭР dR '

The ray equations take on an interesting and simple
form in the case of a weakly inhomogeneous and slowly mov-
ing medium, as in the atmosphere and the oceans, i.e. £< 1
and v | /c0 < 1 . Then in (2.11) we can neglect higher-order
terms such as г2, v2/c$>, EV/CO. We then obtain

Я=-1 + p2 + P A - 7 ( R )

The ray equations take the form

(2.12)

Introducing the new generalized momentum p = P + A, the
ray equations can be written in the form

dR
di

where
-p. - + s (2.13)

The quantity ^F is the negative of the vortex vector of the
moving medium.

In contrast to a nonmoving medium, the tangent vector
to the ray p = dr/dr does not lie along the normal vector
p = VS to the surfaces of constant phase S(R) = const, i.e.

We consider the paraxial approximation. Suppose that
the rays propagate at small angles to the main direction of
wave propagation along the z axis. Then in a weakly inhomo-
geneous and slowly moving medium the rays are determined
by the Hamiltonian30

Я = Я(г, P, z)

( ") \
ifr,.)-^(r,,)J. (2.14)

where Px = dS/dr; vz is the longitudinal component of the
velocity vector of the medium; A± = У±/СО is the transverse
normalized velocity vector of the medium. The ray equa-
tions in a moving medium in terms of the canonical variables
(r, Px) are

d£__ML dPJ. ^
dz ЭР. dz ~дт'

(2.15)

The application of these equations to particular prob-
lems of sound propagation in an inhomogeneous moving me-
dium will be considered in Sec. 6.

2.3. Optical-mechanical analogy

Hamilton first suggested an analogy between classical
mechanics and optics.34 A particle moving in a potential
field behaves just like light in a medium, where the potential
energy U is related to the index of refraction n by the equa-
tion

п = с[2т(Е-и)Г"/Е, (2.16)
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where m and E are the mass and energy of the particle and с
is the speed of light in a vacuum. Indeed, substituting (2.16)
into (2.3) and defining the momentum of the particle as
pm = pE /c, we obtain the classical expression for a particle
in a potential field

/2m + U(r). (2.17)

In addition to this direct analogy, there is also a formal
analogy between the equations of classical mechanics and
geometrical optics (see Ref. 11, for example). We see from
(2.9) that the Hamiltonian in the paraxial approximation
has the same form as the classical expression for the energy
of a particle, where the momentum corresponds to p± , the
potential energy corresponds to the inhomogeneous part of
the index of refraction e (r,z) divided by two, and the spatial
coordinates correspond to the transverse coordinates
r — (x,y) of the ray. The role of time is played by thez coor-
dinate defining the main direction of propagation of the
wave.

There is also an interesting analogy between the ray
dynamics in an inhomogeneous moving medium (described
by (2.3)-(2.15)) and the dynamics of a charged particle in
nonuniform electric and magnetic fields. It is evident from
(2.13) and (2.14) that the scalar potential of the electro-
magnetic field corresponds to the inhomogeneous part of the
index of refraction £(R), while the vector potential corre-
sponds to the negative of the velocity field of the medium
v(R) . Hence the electric field corresponds to the gradient of
e ( R ) and the magnetic field corresponds to the vortex vector
of the medium ( — curl v(R) ). Because of this analogy, the
methods of particle dynamics can be used in the ray theory of
wave propagation in inhomogeneous media.

2.4. Ray equations in an inhomogeneous medium

The index of refraction of a waveguide medium per-
turbed by regular inhomogeneities is written in the form

n\r, z) = rtg(r) + e/t,(r, z), (2.18)

where n0 (r ) corresponds to the unperturbed waveguide me-
dium, which is homogeneous in the z direction, and en , (r,z)
describes the perturbation of the medium in the z direction.
The quantity £<1 is the small dimensionless perturbation
parameter. Because E is small, the Hamiltonian function
(2.7) can be written in the form

where

(2.19)

(2-20)

Rays in the unperturbed waveguide are determined by
the Hamiltonian H0. Hence a ray propagating in an inhomo-
geneous waveguide medium is equivalent to a particle de-
scribed by the unperturbed Hamiltonian H0 and acted upon
by an unsteady perturbation or by the interaction of the dif-
ferent degrees of freedom of the particle when it performs
finite motion.

In the case of a plane waveguide и is independent of у
and (2.7) takes the form

dx ая dp ая _^
dz ~~ dp ' dz dx ' x' (2.21)

2.5. Action-angle variables

The trajectories of rays trapped by the waveguide chan-
nel are bounded in the transverse directions (x,y) and are
periodic along the z direction. Therefore it is convenient to
introduce action-angle variables (/,#) (Ref. 35 ) . In the case
of a plane waveguide they are defined by

(2.22)

In terms of these variables the equations of motion of
rays in the perturbed waveguide take the form

d/

Я =

where

edV dV
dz

I, {>, z), (2.23)

is the nonlinear spatial oscillation frequency of a ray along
the z axis of the unperturbed waveguide. The quantity

is the spatial period of the ray.
The ray coordinates x ( z ) , p ( z ) are periodic functions of

the angle i? in the unperturbed waveguide. Therefore they
can be expanded in Fourier series

*<*> (2.24)

We next consider a waveguide with a two-dimensional
cross section and the index of refraction л (r) = n (x,y). Sup-
pose that in the unperturbed waveguide besides the integral
of the motion E = H(r,jt), where p = (px,py), there exists a
second independent integral of the motion FP(r,p). Then
there exists an invariant two-dimensional torus and the tra-
jectory of a ray performing finite oscillations (i.e. a wave-
guide ray) coils around the surface of the torus. The action-
angle variables (I,t?) = (1г ,I2 ,&i ,&г) in this case are defined
as36

ct

 Г> * d/* r/ > Г Г

(2.25)

where the Ck are the contours defining the two-dimensional
torus.

In terms of these variables the unperturbed Hamilto-
nian has the form H = H(It ,I2). The ray coordinates (r,p)
are periodic functions of the variables dk with period 2ir and
with the oscillation frequency along the z axis

Я = Я0(х, p) + eV(x, p, z), Я„ . - - p2)1/2.

The second integral W(r,p) no longer exists for a wave-
guide with a general cross-section profile, and in this case the
invariant torus does not exist and hence the contours Ck do
not exist. This case corresponds to a multidimensional dy-
namical system in which the integrals of the motion no long-
er exist and dynamical chaos develops in the system;'^ it
will be considered in Sec. 7.

Action-angle variables were successfully applied for
the first time in Ref. 37 to wave propagation in waveguides in
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a study of ray statistics in statistically irregular light guides.
The Hamiltonian formulation of the ray equations in

terms of action-angle variables is also convenient in study-
ing the propagation of rays in continuously regular wave-
guides using perturbation theory.39 This method is much
simpler and more general than the asymptotic methods used
to study continuously regular waveguides ( see the literature
cited in Ref. 39).

2.6. Wave-number spectrum

We point out an important feature of action-angle vari-
ables (Ik ,dk ) in problems of wave propagation in wave-
guides. We consider the integrable case, when there exist two
integrals of the motion H and W. Then the action variables
(/, , /2 ) are also integrals of the motion and the spectrum of
wave numbers km of the wave field is determined by the
boundary-value problem

[A + *V(r) ]um(r) = им(г) -» 0 ( И oo ) .

(2.26)

In the short-wave approximation the km are determined by
the dependence of the Hamiltonian (2.7) on the action vari-
ables /, and /2 (see Refs. 37 and 38, for example) :

km = -*Я(/, (2.27)

where v is the wave frequency and the action variables /, , /2

are proportional to the mode numbers т = (ml,m2):

0=1, 2). (2.28)

From (2.27) it is simple to determine the wave-number
spectrum of the waveguide field km and the group velocity of
the wave vm with the help of the relation

d*,.
/2o>2 - (2.29)

without having to solve the boundary-value problem (2.26)
and using only the classical ray equations.

3. RAY DYNAMICS IN A WAVEGUIDE WITH PERIODIC
LONGITUDINAL INHOMOGENEITIES

For simplicity we consider a plane waveguide channel.
For a periodic perturbation of the medium along the axis of
the waveguide channel (the z axis) the perturbation of the
Hamiltonian V(I,$,z) in (2.23) can be written as a double
Fourier series:

eV(I, 0, z) =
m,s (3.1)

where fl is the spatial frequency of the perturbation of the
medium along the z axis (2-ir/f l is the spatial period of the
perturbation) and c.c. denotes the complex conjugate of the
preceding term.

3.1. Spatial nonlinear resonance of rays

It often occurs in nature and in practical applications
that the index of refraction n ( x ) depends on the transverse
coordinate x in such a way (Fig. 1) that the spatial oscilla-
tions of the ray along the z axis are nonlinear in general and
their expansion in a Fourier series contains a large number of
harmonics.

FIG. 1. Index of refraction n(x) of a plane-layer waveguide.

When rays propagate in a medium perturbed by the pe-
riodic inhomogeneity (3.1), the perturbation has the stron-
gest effect on the rays in the case of the resonance condition

mco(I) + sQ = 0, (3.2)

where m and s are integers.
Let /o be the resonance value of the action / satisfying

(3.2) for certain values of m and s. We consider the trajec-
tory of a ray in the neighborhood of a single isolated reso-
nance. We assume the condition of moderate nonlinearity

e «. a « e-1 du>
d7 (3.3)

where a is the dimensionless nonlinearity parameter. Then
the nonresonant terms can be neglected in (2.23) with the
perturbation (3.1 ). Introducing the new canonical variables

Д/ = / - 1 = md +

the ray equation in a small neighborhood of the resonance
action /o can be written in the Hamiltonian form

dA/ _ _ аяи dW _ дЯи

dz ~ W • dz ~ ад/
with the universal Hamiltonian

Яц = i mw'(/0)(A/)2 + em \ V^\ cos Ф,

(3.4)

(3.5)

d/

From the system of equations (3.4) we obtain an equation
for the phase oscillations

dz2

where

- Q2sin Ф = 0,

11/2

(3.6)

(3.7)

is the frequency of the modulated oscillation. Note that
( 3.6) is equivalent to the equation of motion of a pendulum,
where ft is the frequency of small oscillations.

According to (3.5), when

the rays perform phase oscillations bounded with respect to
Ф, i.e. the spatial oscillations of the ray in the z direction are
synchronized with the periodic inhomogeneities of the medi-
um. In other words, the rays are trapped in nonlinear reso-
nance. The widths of the region of trapped rays in terms of
the action / and the frequency со are found with the help of
(3.5):
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2max|/-/ 0 | = 4
О)

1/2

"dT (3.8)

This phenomenon can be called spatial nonlinear reso-
nance of rays. It is the analog of nonlinear resonance in clas-
sical mechanics,1"4 but occurs in space instead of time. It has
been studied in Ref. 17.

The physical interpretation of nonlinear resonance of
rays is as follows. In the absence of the perturbation the
trajectory of a ray is an oscillating line along the z axis with
spatial period L — 2-ir/co. In the presence of a periodic per-
turbation in the z direction a group of rays in the neighbor-
hood of the unperturbed ray corresponding to the resonance
action /o is trapped into resonance and the rays perform
additional oscillations with the modulation frequency
П = m&co.

In other words, an additional effective waveguide chan-
nel of width Д/ is formed along the axis of the unperturbed
ray with action /0. The number of these additional wave-
guide channels is determined by the number of possible non-
overlapping resonances of the type (3.2).

We note that our approximation of an isolated nonlin-
ear resonance is valid only when the width of a resonance A&>
is much smaller than the separation 8<o between neighboring
resonances:

К = (3.9)

3.2. Propagation velocity of a signal along resonant rays

We consider the effect of spatial nonlinear resonance of
rays in a waveguide on the important characteristics of the
radiation propagating in the waveguide, such as the trans-
mission time and propagation velocity of a signal along the
rays. Let t (z) be the transmission time of a signal along a ray
from the plane z = 0 to the plane z = const and let v(z) be
the local velocity ofpropagation of the signal along the ray in
the direction of the waveguide axis:

• da
с(г, z) ' dt(z)/dz ' (3.10)

where the integration goes along the arc of ray у and
da=(d/{2)1 / 2.

Using the Hamiltonian representation (2.7) with z as
the independent variable, the transmission time (3.10) of
the signal can be written in the form11

ь (3.11)

The integrand in (3.11) is invariant to the choice of the ca-
nonical variables (r, p A ). Choosing the action-angle vari-
ables (/,1?) as the canonical variables, we obtain

(3.12)

In the special case of an unperturbed waveguide which
is homogeneous in the z direction such that the system has
the integrals of the motion I = (/, ,I2), we have

co
(3.13)

This last expression for the propagation velocity of a
signal is identical to (2.29), which was obtained using a dif-
ferent method.

We consider the behavior of the optical path length of
the ray S(I^) = c0t(z) and the local velocity of the signal
v(z) in the neighborhood of an isolated resonance. Let /0 be
the value of the action / for which the nonlinear resonance
condition (3.2) is satisfied for a certain pair of numbers
(mj). Then, using the solution of Hamilton's equations
(3.4) and (3.5), it is not difficult to obtain the following
expressions forS'(z) and v(z) in the neighborhood of an iso-
lated nonlinear resonance:

S(I, z) = S0(/0> z) - H z + -£ arccos dn(Qz, p)
т Ш / "I

(3.14)

v(I, z)

(3.15)

where en (и,/?) and dn(wvo) are^acobian elliptic functions
with modulus/? = [ (H + П2)/2П2]1/2; Я = Hu is of the or-
der of the small perturbation parameter e< 1; A/ms is the
width of the nonlinear resonance.

It is evident from (3.14) and (3.15) that the transmis-
sion time of the signal t ( z ) and the local velocity of the signal
v(z) are modulated along the direction ofpropagation z of
the wave with a spatial frequency of order П. The differences
S(/,z) — S0(I0j) andc/u(/,z) —c/v0(I0) vary only slight-
ly when the initial coordinates of the ray are changed. Ac-
cording to (3.15), the average propagation velocity of a sig-
nal along the ray

remains equal to its unperturbed value v0 (/„) at the reso-
nance value of the action /0, to within terms of the order of
the small perturbation parameter £< 1. But the propagation
velocity of a signal along the unperturbed ray v0 (I) varies
much more strongly within the width of the resonance A/ms

about the resonance action /0. Indeed, from (3.3), (3.8),
and (3.13) we have

л C0

(3.17)

where ДУ is the corresponding variation of the average veloc-
ity of the signal (3.16) of resonant rays over the width A/ms.

This result means that when a signal propagates along
rays trapped in resonance, the broadening of a pulse is much
less than in the case of propagation along unperturbed rays.
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This effect can be important in practice in suppressing the
broadening of signals caused by intermode dispersion in
problems of wave propagation to great distances.

3.3. Examples

We discuss several examples of waveguide channels
perturbed by periodic inhomogeneities along the z axis.

3.3.1. We first consider a waveguide whose axis deviates
periodically from a straight line along z. The index of refrac-
tion is given by the expression17

n(x, z)

«*A
(3.18)

ch2(x/a) '

where/(z) = f0cosflz describes the periodic deviation of the
waveguide axis from the z axis. For small deviations
(£=Уо/а^1) an expression for the perturbation can be
found from (2.18) and (2.20) and has the form

eV(x, p, z) .
dz (3.19)

In the absence of the perturbation, the trajectory of the
ray is periodic with spatial period L — 2ir/<a(I), where

(3.20)

2 т 1/2

"о«:

The quantities I = IS and HS=H0(IS)= — и„ corre-
spond to the separatrix.

The condition for nonlinear resonance in this case takes
the form

(2m + l)a>(I) = Q, (3.21)

since the expansion of the generalized momentum p in a
Fourier series contains only odd harmonics.

The widths of the nonlinear resonance near the separa-
trix (/-»/,) in the action / and frequency со are given by

,1/2

*)

,1/2

1/2

(3.22)

3.3.2. As a second example we consider a homogeneous
waveguide with perfectly reflecting walls, one of which is
periodically corrugated (Fig. 2). The deviation of the corru-
gated wall from the unperturbed state is specified by the
periodic function/(z) =/(z + /) with spatial period /.

Rays in the unperturbed waveguide are straight lines
which reflect periodically from the waveguide walls. The
spatial period of the ray is

L =

where

2л
•• 2a ctg в,

(3.23)

Tn <t>n+i Vz

\

FIG. 2. Rays in a waveguide with a corrugated wall.

11/2

f. ад--
в is the angle between the z axis and the ray and a is the width
of the waveguide.

The periodic perturbation is assumed to have the form

/(z) = 4й£(1 -1), (3.24)

where b is the maximum deviation of the corrugated wall
from its unperturbed level and £ = {z/l} is the fractional
part of the normalized longitudinal coordinate z/l.

The condition (3.2) for nonlinear resonance deter-
mines the angles в'""' corresponding to resonant rays:

* a. 2a т (3.25)

(m = 1,2,3, ...; s = 0,1,2,3,...).

The angular width of the isolated nonlinear resonance
(m,s) is given by

1/2
sin». (3.26)

лт -Ia]
Rays propagating within the width (3.26) of the angle в(m'^
are trapped in an effective waveguide channel. The funda-
mental resonance (m = 1, s = 0) has the largest width.

3.3.3. Rolling of rays in a parabolic waveguide. Finally,
we consider a waveguide channel with a quadratic profile
and with a periodically varying width. This model has been
used to study the leakage of radiant energy from an iono-
spheric waveguide channel by means of rolling of rays
caused by periodic inhomogeneities of the medium.47 The
nonlinearity of the ray oscillations along the channel axis
leads to a restriction on the amplitude of the rolling.24 Here
we consider this problem using a somewhat more physically
obvious and simple approach with the help of phase portraits
of the rays.

The index of refraction of the waveguide is assumed to
have the form

a\z)
(3.27)

where a(z) = a0 + ea0sin(£lz) is the periodically varying
width of the waveguide with spatial frequency П and small
amplitude e •< 1 relative to the unperturbed width a0 .

Introducing the action-angle variables (/,1?) with the
help of the unperturbed Hamiltonian H0 (with £ = 0), the
ray equations (2.23) are written in the form

2el(o(f) sin Qz- sin 29,

sin QZ(1 - cos 29),
(3.28)

d/
where
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а

-1/2

«о'1.

1/2
(3.29)

are the unperturbed oscillation frequency of the ray along
the z axis and the Hamiltonian, respectively.

The periodic perturbation will have the strongest effect
on rays whose frequencies are near trajectory parametric
resonance

2co(I) = Q. (3.30)

Therefore we can neglect the rapidly oscillating terms
in (3.28). Then, keeping only the resonant terms, (3.28) can
be written in the form of Hamilton's equations

d/ _ _ dff dy _ dH
dz ~ ~W' dz ~ dl '

where

(3.31)

We note that H(J,i/>) is an integral of the motion. We consid-
er the motion of the ray in the phase plane (I,ifr). We intro-
duce the dimensionless variables J" = 21 /a0, к = a0 ft/2 and
we also put «0 = 1. Let /0 be the value of the action / satisfy-
ing the condition (3.30).

In Fig. 3 the contours correspond to constant values of
the Hamiltonian H(I,i/>) = const in the phase plane (£,ф)
and were obtained numerically for the perturbation param-
eter г = 0.01 and for three values of the dimensionless quan-
tity x = 1.05, 1.4, and 3.0, which correspond to the reso-
nance values of the dimensionless action
|0 = 1 - x~2 = 0.093, 0.49, and 0.889. It is evident from
Fig. 3 that inside a small neighborhood around the reso-
nance value of the action £0 = 2I0/a0 the ray dynamics is
fundamentally different from the unperturbed case. Some of
the rays begin to perform finite phase oscillations in ф
(curves 1 and 2), i.e. they are trapped in a resonance. The
rays not trapped by the resonance correspond to curves of
the type 4, which can be obtained by a simple deformation of
the unperturbed curves £ = const. These two types of curves
are separated by the separatrix 3.

Therefore a periodic perturbation causes modulations
in the oscillation amplitude of a ray trapped in the paramet-
ric resonance (3.30). The amplitude oscillates about the res-
onance amplitude d0 = (2I0a0)

l/2. We estimate the width
of the parametric resonance. For small values of the reso-
nance action £< 1 the width of the parametric resonance is

A£ = 2[8(x-l)e + e2]1/2. (3.32)

For resonance values |0 close to unity, the width of the
resonance is

(3.33)

It is not difficult to show that this estimate corresponds to
the width (3.8) in the approximation of nonlinear reso-
nance.

These results show that the nonlinearity of the ray oscil-
lations leads to a restriction on the rolling amplitude of the
ray and prevents the leakage of radiant energy from the

x-1,05

0
-1

FIG. 3. Phase portrait of rays, showing parametric resonance of rays in a
parabolic waveguide with periodically varying width. Curves 1,2) rays
trapped in resonance, 3) separatrix, 4) nontrapped rays.

waveguide channel due to the periodic inhomogeneities
along its axis.

4. NUMERICAL ANALYSIS. "DEVIL'S STAIRCASE"

4.1.

We consider the example of Sec. 3 of wave propagation
in a waveguide with a corrugated wall with the help of the
discrete mapping method.

Let the source of the radiation be located in the upper
wall of the waveguide at z = 0. Let zn be the longitudinal
coordinate of the ray at the point of nth reflection of the ray
from the upper unperturbed wall of the waveguide and let в„
be the angle between the ray and the z axis after the nth
reflection. The relation between the quantities (гп,в„) and
(zn +1 ,в„ +,) after a single reflection from the corrugated
wall is determined directly from the geometry of the problem
and is given by the exact mapping:

p ' w - < u '

where the longitudinal coordinate ф„ is the point at which
the ray is reflected from the lower periodically corrugated
wall after its nth reflection from the upper wall.

The mapping (4.1) assumes that the ray is reflected
from the perturbed wall only once per period /. However,
when the ray propagates at small angles в to the z axis the ray
can be reflected more than once per period. This case is de-
scribed in Ref. 18.

It can be shown directly that the mapping (En ,zn) to
(En -+i ,zn +,), where En +, = cos#n + 1 , preserves area, i.e.
the Jacobian is
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FIG. 4. Fractal dependence of the normalized spatial frequency x on the
angle of emergence в0 of the rays from the source calculated using the step
size Д00 = 0.01. Insert: tenfold magnification of the rectangular region
calculated with the step size Д00 = 10 ~3. The waveguide parameters were
a/l=

zn)
= 1.

It is important to note that the mapping (4.1) reduces
the exact Ulam mapping in the problem of Fermi accelera-
tion2'3 when the angle and the perturbation are small.

The results of a numerical analysis of the mapping (4.1)
are shown in Fig. 4. The dependence of the normalized spa-
tial oscillation frequency of the ray along the z axis

.. N1к = hm —
JV-»°o ZN

(4.2)

is shown as a function of the initial angle of departure from
the source 00, as calculated with a step size of Д00 = 0.01.
The insert to Fig. 4 shows the area enclosed by the rectangle
magnified by a factor often. The step size for the calculations
shown in the insert was Д00 = Ю ~ 3. The waveguide param-
eters were chosen as a/I = 1/3 and b/l= 10 ~2. We note
that the spatial oscillation frequency к of the ray is equiva-
lent to the so-called rotation angle for the dynamical system.

In the unperturbed waveguide the dependence of x on
<?0 is given by the smooth function

which follows from (3.23) and (4.2). This dependence
changes completely in the presence of a periodic perturba-
tion. The calculations show that there exist intervals
Ь.в(Р /Q) of angles of departure of the ray from the source
for which the frequency x is constant and rational x = P/Q,
where P and Q are integers.

Another feature of x ( 60 ) is that it is a self-similar func-
tion of the step size.

2 3 ~~4 L

FIG. 5. Dependence of N(&da) on the step size of the calculation

The dependence of the spatial frequency к on the angle
#0 shown in Fig. 4 is called a "devil's staircase". There are a
number of other problems of the Hamiltonian type in which
a devil's staircase appears in the problem (examples are the
one-dimensional Ising model48 and the Frenkel-Kontorova
model.49 The devil's staircase is a special case of a fractal
object.52'54 The fractal behavior of the scattering angle as a
function of impact parameter is observed in the classical
scattering of a particle by a potential field.50'51

The fractal dimensionality of the dependence of л; on в0

is given by the exponent D in the power-law dependence of
the number of gaps N( Д#0) on the step size Д00 in the graph
of x against f?0:

52

D

(4.3)

We determine the fractal dimensionality D in the depend-
ence of x on 00 for a waveguide with the parameters
a/I = 1/3 and* // = 0.001. The dependence N( Д<90) on step
size Д00 is shown in Fig. 5 for 0.2 < 90 < 0.3. It follows from
this graph that D = 0.45.

The physical cause of this phenomenon is nonlinear res-
onance. It is not difficult to see from Fig. 4 that the steps in
the dependence of x on 00 lie in the neighborhood of the
resonance angles в (m's) defined by the nonlinear resonance
condition (3.25). It follows from (3.2), (3.23), and (3.24)
that the value of the spatial frequency x corresponding to the
resonance (m,s) is determined by m and 2s + 1:

л _ m
"~ Jjt - 2 i * " ~ T s + l ' (4'4)

The width of a step Д<9(/э'/Q) should be determined by
the width of the corresponding nonlinear resonance (3.26).
Rays with the oscillation frequency x=\/\ have the largest
width (Д0(1/1) =0.260 for the step size Д6>0 = 10 ~2).
From (3.26) we obtain for this resonance (m = \,s = 0) the
next estimate Д0 (1'0> = 0.245 for the waveguide parameters
b/l— 10 ~2 and a/1 = 1/3. This estimate agrees closely
with the numerical result.

Ray dynamics in the neighborhood of a nonlinear reso-
nance can be studied with the help of the portrait of the
mapping (4.1) in the phase plane (z,0). Figure 6 shows the
phase portrait for the waveguide parameters b /I = 5 • 10 ~3

and a/l= 1/3. The coordinate ^„={(zn/l) + (1/2)}, is
plotted along the vertical axis and в„ is plotted along the
horizontal. We see that the coordinates of rays trapped in
nonlinear resonance form regular closed curves.

A more detailed analysis of Figs. 4 and 6 shows the
existence of a random distribution of spatial frequencies x
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FIG. 6. Phase portrait of the mapping (4.1) in the
£ = {(z/l) + (1/2)}, в plane for 15 initial angles of emergence
from the source (angular width Д0 = 0.1).

в0, rad

and coordinates (£„,#„) for small angles of departure в0 of
the ray from the source. This random distribution is asso-
ciated with a stochastic instability of rays in this region of
angles and will be discussed in more detail in Sec. 6.

4.2.

We consider the effect of inhomogeneities in the index
of refraction of the medium along the transverse x axis. Let

(0<x<a+f(z)),
(4.5)

where a < 1 is a constant characterizing the inhomogeneity
of the index of refraction.

In this case rays leaving the upper unperturbed wall of
the waveguide at small angles в less than the value
вс = arcsina do not reach the lower corrugated wall (curves
of type / in Fig. 7). Rays begin to be reflected from the lower
wall when 9 > #c (type 2 curves). In this case the exact map-
ping (4.1) has the form

off.
• arcsin •

where Hn = /J0cos0n is conserved between reflections from
the corrugated wall, and the coordinates i/>n, zn, and zn +,
are shown in Fig. 7.

Figure 8 shows the dependence of the reciprocal of the
normalized spatial frequency of the ray /= x ~' on the
quantity H = cos#0, where 00 is the initial angle of depar-
ture of the ray from a source located in the upper wall. The
mapping was analyzed numerically for the waveguide pa-
rameters a/I = 0.4, a = 0.01, and*// = 0.01. The perturba-
tion was of the form (3.24). Each of the steps in the devil's
ladder lies in the neighborhood of a resonance value of Я
given by the nonlinear resonance condition

(47)

where
no.

оЯагс8ш[«(1 -Я2)1/2]
is the spatial oscillation frequency of the ray in a waveguide
with the profile (4.5) in the absence of the perturbation
(/(z) =0). An expression for &(I) can be obtained by intro-

ff

-2arctg/4vn)],

zn+l (4.6)

FIG. 7. Types of rays in a waveguide with a nonuniform profile (4.5): 7)
rays which do not reach the corrugated wall, 2) rays reflected from the
corrugated wall.

0,5 1-H

FIG. 8. Fractal dependence of the quantity x 'onH = cos 00, where 00 is
the initial angle of emergence of the ray from the source.
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ducing action-angle variables and using the relations given
in Sec. 2.5.

The width of the nonlinear resonance in H is found from
(3.8)

1/2

(1 -Я2)1/2 1 -(-l)mCOSg
I 1/2

л2т2 — i 1 +
(4.8)

where k = a/( I — f f 2 ) 1 / 2 , q = arcsin k. This analytical esti-
mate for the resonance width is in satisfactory agreement
with the numerical results.

An aspect of this problem that is different from the case
of a waveguide with a uniform profile is the absence of a
random distribution of the quantity к in the small-angle
(00) region.

4.3.

As noted in Sec. 3.2, the most important characteristic
of radiation in a waveguide is the propagation velocity of a
signal along the waveguide axis. We analyze this quantity
numerically for a homogeneous waveguide with a corrugat-
ed wall.

Let S( 60 ,z) be the optical path length along the ray as a
function of the angle 6>0 of deprature of the ray from a source
located at the point (x = 0, z = 0). Here z is the distance to
the plane of observation z = const.

Figure 9 shows the numerical results for the path-
length difference

„, z) = S(80, z) - z (4.9)

as a function of the angle 00 for the waveguide parameters
a/I = 1/3, b /I = 0.005, and z = 50/. The smooth curve
shows the dependence in the unperturbed case (6 = 0).

We see from Fig. 9 that there exist intervals of angles
Д0(/>/Q) for which the optical path S(80,z) remains nearly
constant, whereas in the unperturbed case the optical path
varies significantly within these intervals. This behavior of
S(00)z) is analogous to the devil's staircase behavior of the
spatial frequency of the ray considered in Sec. 4.1.

The largest value of the width Ь.в(Р /Q) corresponds to
the fundamental resonance ( m = l , s = 0) and is equal to
Д6>( 1/1) =0.19= 10.9° for the perturbation parameter
b /I = 0.005. A qualitative estimate of the width of the funda-
mental resonance (1,0) according to (3.25) gives the value
Д0 (1'°> = 0.173 = 10.0°, which is in satisfactory agreement
with the numerical result. The maximum difference of the
optical path lengths corresponding to rays of the fundamen-
tal resonance is nearly two orders of magnitude smaller than
the difference for an unperturbed waveguide. This result is
consistent with the results of Sec. 4 for the transmission time
of a signal and its propagation velocity along resonant rays.

5. RAY DYNAMICS IN AN INHOMOGENEOUS MOVING
MEDIUM

In this Section we consider some features of the ray
trajectories in inhomogeneous moving media. In sound
propagation in the atmosphere and ocean, which are exam-

15

\AS(S,,!)/l

0,5
0> rad

FIG. 9. Fractal dependence of the optical path difference
,z) = S(00,z) — z on the initial angle 00. The curve describes an

unperturbed waveguide.

pies of moving media, the typical linear dimension charac-
terizing the variation of the parameters of the medium in the
horizontal direction is usually much larger than the corre-
sponding linear dimension in the vertical direction. There-
fore many of the features of sound propagation in the at-
mosphere and ocean can be explained in terms of the model
of a stratified medium, in which the parameters of the medi-
um depend only on the vertical coordinate. Then the ray
equations with the Hamiltonian (2.11) describing sound
propagation in the moving medium are completely integra-
ble, since there are three integrals of the motion: the Hamil-
tonian Я = 0 and the two horizontal components of the gen-
eralized momentum P. The corresponding ray equations can
be reduced to quadratures in this case (see the review article
ofRef. 28).

When the parameters of the medium vary along the hor-
izontal coordinates exact solutions of the ray equations do
not exist. Approximate methods must be used to study the
ray trajectories in this case.

We consider sound propagation in a model of the ocean
in which the speed of sound and the flow velocity vary slowly
in the horizontal direction.30 The solution is found with the
help of the adiabatic invariant method of classical mechan-
ics.35

For simplicity we consider sound propagation at small
angles to the z axis. Then we can use the paraxial approxima-
tion for the ray equations (2.14) and (2.15). The x axis is
taken along the vertical. We assume that the parameters of
the medium are slowly varying functions of the horizontal
coordinate z defining the main direction of propagation of
the wave:

, z), v(x, 2).

The quantity e(x,z) can be expressed in terms of the inhomo-
geneous part of the speed of sound AC(JC,Z) = c(x,z) — c0:

- 2Ac(x,z)
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We consider horizontal flow and assume that it also varies
slowly along the z axis:

v(x, z) = (0, v(x, z), vz(x, z)). (5.1)

Since the parameters of the medium are independent of
the transverse coordinate y, it follows from the equations of
motion (2.15) that the у component of the generalized mo-
mentum is conserved:

Py = py ~ = const < 5-2>

Hence the Hamiltonian system (2.14) and (2.15) with two
degrees of freedom can be reduced to a system with one de-
gree of freedom with the Hamiltonian

(5.3)

where

U(x, - (Лс(х, z) vz(x, z)) + - Pyvy(x, z).

We consider waveguide propagation. Assume that the
typical linear dimension / characterizing the variation of the
speed of sound c(x,z) and flow velocity v(x,z) along the
propagation direction z is much larger than the cycle length
L of the ray: />L. Then the action, defined by the relation

7 = (5'4)

where the integration goes along the x axis for one cycle, is
an adiabatic invariant and is constant in the horizontal di-
rection z. In terms of the new action-angle variables
where the angular variable i? is defined by the relation

the Hamiltonian H = H(I,z) is a function of the action /,
while z appears as a parameter. The ray trajectories
x = x(I,&) andp =p(I,&) are periodic functions of the an-
gular variable i? = <a(I\z)z + t?0 with period 2-ir. The spatial
oscillation frequency of the ray ca(I;z) = dH(I,z)/dI and
the spatial period L = 2ir/ca(I;z) are local functions of the
longitudinal coordinate z.

The coordinates of the ray along the у axis are obtained
from (5.2) and the relation dy/dz = py:

P°y(
z - zo)

•f J4<c°i
z

l Г /•zj ("У zo»dz>
zo

(5.5)

where p° and P° are the у components of the tangent vector
to the ray p and the normal vector to the wave front in the
initial plane z = z0, and (x0 ,yQ) are the initial coordinates of
the ray in this plane.

In the case of uniform flow v = const with a nonzero
transverse component vy, the ray will lie in a vertical plane

(5.6)

making a certain angle with the propagation direction of the
wave along the z axis.

If the flow is nonuniform with depth, but vy = 0, then
the moving medium is equivalent to a nonmoving medium
with an effective speed of sound

ДсеК = , z) + v2(x,

In this case the rays will lie in the vertical plane.
The two-dimensional property of the rays is lost when

the transverse component vy is nonzero. In this case the ray
trajectories will be three-dimensional curves in space.

We consider a model of the ocean with linear profiles
for the speed of sound c(x,z) and flow velocity v(x,z) along
the vertical coordinate x:

I r\

c(x, z) = c0(l + 80(z)x), v(x, z) = vQ(z) 1 1 - ^J , ( 5.7)

where the speed of sound increases with depth, while the
flow velocity decreases. Here h is the depth of the ocean and
the gradients of the speed of sound g0 (z) and flow velocity
u0 (z) are slowly varying in the z direction. In this medium a
waveguide channel is formed near the surface and sound
waves propagate inside the channel and are reflected repea-
tedly from the surface of the ocean.

The ray trajectories in the x direction are given by

2 1

(5.8)

where

I; z)z + $0,

ag(z)( I -1/3

= g0(z) -

(5.9)

The ray coordinates in the у direction are found by substitut-
ing (5.8) into (5.5). The action I is related to the initial
coordinates of the ray:

/ = К/Ф2 + 2^z0)*0]
3/2(37rg(z0))-

1. (5.10)

It follows from (5.5) and (5.8) that in the presence of
transverse flow the ray is a three-dimensional curve whose
projection onto the x,z plane is a parabola which is periodi-
cally reflected from the surface of the ocean x = 0 (Fig. 10).
The maximum distance of the ray from the surface of the
ocean is xm = g(z)L 2(/;z)/8. A ray reflected from the sur-
face of the ocean at an angle 00=arcsin p°, where
p°x = (2Ag(z))l/2, reaches the bottom of the ocean (the an-
gle в is measured with respect to the surface of the ocean
x = 0).

We see from Fig. 10 that after one cycle the ray is dis-
placed along the transverse direction у by a distance Ду from
the initial plane of departure of the ray from the source. This
effect is called transverse drift of the ray. It is analogous to
the drift of a charged particle in a transverse magnetic field
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FIG. 10. Trajectory of a ray in a model of the ocean with linear speed of
sound and flow velocity profiles. The initial coordinates of the ray are

in the presence of a reflecting surface.2

The transverse displacement Ду of the ray per cycle
from the initial plane of departure of the ray can be calculat-
ed from (5.5):

z+L

(vy(x, z) - vy(x0, . z)dx, (5.11)

where

- 2(Дф, z) + vz(x,

(5.12)

Using (5.3) and (5.9), the transverse displacement of the
ray per cycle can be rewritten in the form

Д.у=-2л:^-, (5.13)
у

where / is the action givenby (5.3).
For an ocean with linear profiles of the speed of sound

and flow velocity (5.7), it is not difficult to obtain from
(5.9) and (5.10) the following expression for the transverse
displacement of the ray:

for a ray with initial coordinates x0 = p° = 0.
We consider the transverse drift of a ray in an under-

water waveguide channel. In this case the ray does not reach
the surface or the bottom of the ocean and a transverse drift
of the ray along they axis only occurs when the second deriv-
ative of the flow velocity with respect to the vertical coordi-
nate x is nonzero: d2vy(x)/dx2^Q, which implies that the
vortex vector of the moving medium

£{.•=. —rot v

is nonuniform along the vertical coordinate x. Indeed, we
have from (5.11)

ДХ2) = т-Ф (vy(x, z) - v(x0, z0))p-\x, z)dx

X (x-x0)

, z)

dx2

^
dx

(x -

The integral of the first term in (5.15) vanishes, therefore
the transverse shift Ду of the ray per cycle along they axis is
determined mainly by the second term:

d

(5.16)

x0

(5.15)

This type of transverse displacement of the ray is not
associated with the reflection of the ray from the surface or
the bottom of the ocean, but is determined by the rate of
change of the vortex vector along the vertical axis. It is anal-
ogous to the drift of charged particles in a nonuniform trans-
verse magnetic field.4

We note that in contrast to a stratified moving medi-
um,46 in the case of a continuous inhomogeneity in the prop-
agation direction of the wave, the transverse drift of the ray
per cycle Ду is not the same for all cycles, but varies slowly
from cycle to cycle.

The adiabatic approximation used here becomes inap-
plicable when the linear dimension characterizing the inho-
mogeneities of the medium along the propagation direction
are of the order of the cycle length L of the ray. Then one can
have a resonant interaction between the ray and the inhomo-
geneities, which significantly changes the nature of ray prop-
agation in an inhomogeneous moving medium.

6. DYNAMICAL CHAOS OF RAYS

One of the most important properties of a dynamical
system is the possibility of random motion induced by regu-
lar (nonrandom) forces. This phenomenon is called dynam-
ical chaos,1"4 and is also observed in the ray theory of wave
propagation in regularly inhomogeneous waveguide me-
dia.17-26

It has been shown (see Refs. 1-4, for example) that in
the neighborhood of the separatrix a periodic perturbation
forms a so-called stochastic layer in which the particle tra-
jectories are random. The most important feature of this
phenomenon is that the stochastic layer is formed for arbi-
trary (shape and magnitude) periodic perturbations and
only the width of the layer is determined by the nature of the
perturbation.

The fact that rays show the same properties in regularly
inhomogeneous waveguide media was noted for the first
time in Refs. 17 and 21. In particular, it was shown in Refs.
18 and 20 that a stochastic layer is formed not only near the
separatrix, but also in other regions of the ray phase space far
from the separatrix.

Below we consider several examples of regular wave-
guide channels in which there is stochastic instability of
rays. The condition for a chaotic instability of rays can be

657 Sov. Phys. Usp. 34 (8), August 1991 S. S. Abdullaev and G. M. ZaslavskiT 657



studied qualitatively using the condition of overlap of non-
linear resonances: the motion of the system becomes chaoti-
cally unstable when A> 1, where К is denned in (3.9) (the
Chirikov criterion1"*).

6.1. Regular waveguide with Index of refraction (3.18)

It follows from (3.21) that in the neighborhood of the
separatrix <a-»0 the distance between neighboring reson-
ances is 8u)~2u>2/Cl. It then follows from this relation and
(3.32) that when the separatrix is approached (#-»0) the
quantity 8ы goes to zero more rapidly than the resonance
width Aw. Hence К reaches unity at a certain value a>c and
the condition K> 1 is satisfied. Therefore a stochastic layer
forms near the separatrix and its width coc is determined by
the condition К = 1:

(6.1)
From (3.20) and (6.1) we obtain the following estimates for
the width of the stochastic layer in terms of the action / and
H:

11/3

Я0| (6.2)

'&!

If the initial state of the ray lies within the stochastic
layer (6.2), its path in space along the z axis will be like that
in diffusion. Because of diffusion, the ray reaches the unper-
turbed separatrix and escapes from the waveguide channel.
Therefore the inhomogeneities of the medium, like the per-
turbation, lead to an effective decrease in the width of the
waveguide channel.

We note that from (6.2) the width 81 of the stochastic
layer is proportional to the cube root of the small perturba-
tion parameter. Therefore even a small perturbation can lead
to a stochastic layer of significant width.

6.2. Waveguide with a corrugated wall

According to (3.25) and (3.26), the distance between
neighboring resonances 89 decreases more rapidly than the
resonance width Д0 when the angle в approaches zero.
Hence the nonlinear resonances overlap in the region в<вс.
The critical angle вс is defined by the condition К = 1

ec = *«H£ f (6.3)

Hence it follows that rays propagating at small angles в to
the z axis become chaotically unstable. The stochastic layer
is defined by the inequality 0<0< 0C. This result explains
the numerical results of Sec. 4 using the mapping (4.1). Fig-
ure 4 shows that the spatial frequency distribution x is ran-
dom in the small-angle region 0 < вс < 0.16 of propagation.
The value of вс obtained from the analytical result (6.3) is
0C =0.148 for the waveguide parameters considered above;
this is in satisfactory agreement with the numerical analysis.

Figure 11 shows the phase portrait of the mapping
(4.1) in the phase plane (£,0) in the interval 0 < 00 < 0.3 for
the waveguide parameters a/1 = 1/3 and b /a = 1.5 • 10 ~2.
The trajectory points determined by the mapping (4.1) are
randomly distributed in the (£0) plane in the small-angle
region, where the rays are chaotically unstable.

This is also consistent with the ray divergences calculat-
ed for three values of the initial coordinates of the ray in the
phase plane (£,0). In Fig. 12 we show the dependence of the
quantity

where

(6.4)

on the step я of the mapping. Here (£„,<?„) and (|„,0„) are
the values of the variables in the nth step of the mapping for
two _trajectories with close initial conditions (|0,^o) and
(fo A )• Curve 1 corresponds to a highly unstable ray with
initial coordinates (£0 = 0,00 = 0.03), curve 2 corresponds
to a slightly unstable ray on the boundary of the stochastic

'•ffi'X Л ":'
0,1 0.2

FIG. 11. Phase portrait of the mapping (4.1) in the (|,0)
plane for small angles. The waveguide parameters were
a//= 1/3 and 6/a= 1.5- 1СГ2.

0, rad 0,3
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along the propagation direction of the wave, was chosen to
have the form

10 20

FIG. 12. Dependence of the logarithm of the relative divergence of the
rays In (О„/.Ь0 )/ln( \/DQ) on the mapping step л for different values of
the angle 6>0: /) 00 = 0.03, 2) 0.12, 3) 0.25.

region (£0 = 0,00 =0.12), and curve 3 corresponds to a reg-
ular ray (|0 =0,6»0=0.25).

Finally, we consider the propagation time of a signal
along a ray in the stochastic region. Figure 13 shows the
dependence of the optical path difference A5( 90^) along
the ray on the angle of departure в0 of the ray from the
source. It is obvious that this dependence is random. The AS1

points are distributed about the unperturbed "regular" de-
pendence

on #0 (curve). The waveguide parameters were a/I = 1/3,
b/a= 1.5-1Q-2, andz=50/.

6.3.

The chaotic behavior of an acoustic ray in a horizontal-
ly inhomogeneous model of the ocean was analyzed numeri-
cally in Ref. 23. The Hamiltonian system of rays was consid-
ered in the paraxial approximation with a Hamiltonian of
the type (2.9). The deterministic function
e(x,z) = — V(x,z), where x is vertically downward and z is

С\Х)\ (6.5)

where

c(x) = ca[l+ e(e-i + »7 - 1) ], r, = 2(x- xj~l.

The expression (6.5) describes sound propagation in an
underwater acoustic channel with small periodic inhomo-
geneities along the horizontal coordinate z with period R.

Numerical calculations were carried out for the follow-
ing values of the parameters of the ocean model:
c0 = ca = 1.5 km/sec, xa = В = 1 km, e = 0.0057, R = 1.0
km. The quantity A is the mean-square deflection of the
acoustic ray along the surface of the ocean and is of order
10 ~3 for many regions of the ocean.

In Fig. 14 the Poincare sections of regular and chaotic
rays are shown in the phase plane (x, ф = arctanp), where
p = ojc/dz, for a series of initial values of the ray. We see that
a stochastic layer in the phase plane of the ray develops as the
perturbation amplitude A increases.

7. WAVEGUIDES WITH COMPLEX CROSS SECTIONS

Waveguides with complex cross-section shapes are
most often encountered in fiber optics, where there is in-
creased interest in nontraditional fiber optical waveguides
with noncircular cross sections. The main results and an ex-
tensive bibliography of papers on waveguides with noncircu-
lar cross sections are contained in Refs. 56-60.

The main difficulty in studying the structure of the field
in such waveguides is the fact that separation of variables
cannot be used in the wave equation. For a certain class of
waveguides with two-dimensional index of refraction pro-
files which are nearly quadratic functions of the transverse
coordinates (x,y), the most effective method of solution is
apparently the Birkhoff-Gustavson40"45 normal mode meth-
od, which is well known in classical mechanics. Below we
consider the dynamical phenomena in the ray theory of wave

&S(9.,z)/L

1,0 -

0,5

0,05 0,10
0, rad

0,15

FIG. 13. Dependence of the optical path difference (4.9) on вд for small
angles. The curve corresponds to the unperturbed case.

2

0)
•

0,0000 0,0025 0,0100
i—i—i—i—i—i—i—i—i—i—i—|—i—i—i—г

- 8 0 8 - 8 0 3 - 3 0 8 - 8 0 8
angle (rad)

FIG. 14. Poincare sections for a series of rays with initial coordinates
X0 = 1 km and фа = 1.5°, 3.0°, 4.5°, 6.0°, 7.5°, and 9.0° for different values
of the perturbation parameter Л. In each square the arrow corresponds to
the ray with angle фа = 7.5°, which becomes stochastic when
Л>4.612-10-3.
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propagation in waveguides with a two-dimensional cross
section and nonseparable variables.19

We consider a waveguide medium which is homoge-
neous along the waveguide axis (the z axis) and whose index
of refraction is n = n (x,y). The ray equations have the form
(2.7) with the Hamiltonian function

Я = H(r, p±) = -(n\x, y) - p2

x)
1/2. (7.1)

This system corresponds to a dynamical system with
two interacting degrees of freedom. For general shapes of the
waveguide cross section one can have the phenomenon of
nonlinear resonance and chaotic instability caused by the
interaction of the different degrees of freedom of the ray.19

These phenomena occur even when the index of refraction
n (х,у) does not vary along the z axis.

7.1. Internal nonlinear resonance of rays

The index of refraction of a waveguide with a nonuni-
form cross section is written in the form

where n0 (r) corresponds to the integrable case, when the
Hamiltonian of the system in terms of the action-angle vari-
ables (7, ,72,i?, ,«?2) has the form 770 (II ,72). The quantity
£«, (r) describes the small perturbation of the cross section.
When£<l we have

The perturbation eV describes the interaction between
the different degrees of freedom and can be represented as a
Fourier series:

X expiwj.i', т ипм~\ •+• с.с. ,_ .,^v i i 2 1> ^ (7.4)

The perturbation will have the strongest effect on the ray
when

Let (7 °, 7 °) be the resonance values of the action vari-
ables II, 72 satisfying the resonance condition (7.5) for cer-
tain values of the numbers (т,, m2). Then in a small neigh-
borhood of the resonance action variables (7°, 7°) the
different degrees of freedom of the spatial oscillations of the
ray along the z axis are synchronized, as in the case of a plane
waveguide with longitudinal periodic inhomogeneities (Sec.
3.1). This effect is called internal spatial nonlinear reso-
nance of rays19 and is analogous to internal nonlinear reso-
nance in classical mechanics.2 In other words, an effective
waveguide channel is formed in the neighborhood of the res-
onance values of the action variables (7°, 7°), and the
width of the channel in (7,, 72) is given by the relation19

(* =

(7.6)

where

The following relation exists between the action variables 7,
and 72 in the neighborhood of each resonance

У = ~ m\Ii = const. (7.7)

The quantity У is an integral of the motion, in addition to
the usual energy integral H.

As in the case of a waveguide with longitudinal periodic
inhomogeneities (see Sec. 3) the propagation of a signal
along rays trapped in an effective waveguide channel is fun-
damentally different from the case of an unperturbed wave-
guide. The average propagation velocity u(7, , 72, z) of the
signal (3.16) is, to within terms of order e < 1 , equal to the
velocity of a signal along an unperturbed ray i>0(7°, 7°)
given by ( 3 . 1 3 ) , where 7 ° and 7 ° are the resonance values of
the action variables, for all rays trapped in the given reso-
nance.19

7.2. Chaotic instability of rays

For most waveguide cross-section shapes there exist re-
gions of space in which the ray trajectories become chaoti-
cally unstable. In these regions the additional integral У
given by (7.7) does not exist and the only constant of the
motion is the energy integral H . As in the case of a waveguide
with longitudinal periodic inhomogeneities, the propagation
times of rays along chaotic rays will be randomly distribut-
ed.

It is useful to note the analogy between ray dynamics in
a wave-guide with a uniform index of refraction over its
cross section and the motion of particles in billiards.2'61"63

The possibility of stochastic motion in scattering billiards
(Sinai billiards) has been studied in the work of Sinai (see
Ref. 61, for example) and in nonscattering billiards in Ref.
62. The conditions for stochastic motion in certain special
cases were derived in Ref. 2.

In contrast to the formation of a stochastic layer in the
neighborhood of the separatrix in a waveguide with longitu-
dinal periodic inhomogeneities (see Sec. 6), in this case the
energy of the wave is not radiated from the stochastic region,
since 77 = const is an integral of the motion and the rays are
distributed uniformly inside the stochastic layer with a given
value of H = const.

The propagation velocity of a signal along the rays de-
pends in this case only on the integral of the motion
H = const and is given by65

ffn2(x, y)dxdy

\H\fJuxuy ' (7.8)

in which the integration goes over the entire classically al-
lowed region n2(x,y) — 772 > 0.

A similar distribution of rays over one of the variables
when the other is conserved is observed in so-called quasi-
regular optical waveguides, in which weak random inhomo-
geneities of the medium lead to strong diffusion in one of the
variables (for example, in circular waveguides the diffusion
is strong along the angular variable and is much weaker
along the radial direction) ,38

7.3.

We consider a waveguide whose cross section is close to
the stadium shape of Fig. 15. The index of refraction is
и0 = const within the cross section and is equal to n^ out-
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FIG. 15. Stadium cross section.

side it ( и „ < n0 ) . The function ef(x ) describes the deforma-
tion of the sides AB and CD, where ef(x) = d cos(irx/2a)

In the unperturbed case (e = 0) the Hamiltonian
H0 (/, ,/2 ) in terms of the action-angle variables

FIG. 16. Curves of constant Я0(/,,/2) and resonance lines (7.10)
(m = 1,2,3,...) in the plane of the normalized actions Tj,,r]2.

,1/2
__м

~u~i
k= 1,2.

2ak*
я

(7.9)

Deformation of the sides AB and CZ> leads to interac-
tion of the different degrees of freedom. Resonance occurs
when

or

±L = (2m + l)^. (7.10)
У10 " Y20

In Fig. 16 we show the constant curves E = H0(Il ,I2 )
(the solid curves /) and the resonance lines (7.10) in the /, ,
I2 plane. We see that the distance between neighboring
resonances decreases as the number т of the resonance in-
creases. The width of the resonances in the action /, is

(7.11)

The width is greatest for the m = 1 resonance, which corre-
sponds to large values of /2//20 (see Fig. 16).

Compression of the resonances occurs for large m, i.e.
as the ratio /2//20 decreases. The distance between neigh-
boring resonances decreases as

(7.12)

Then from the resonance overlap condition we obtain chao-
tic behavior of rays in the region I2 < I20, where

I-^=[(nl-E2)bda~2}1'2. (7.13)
^20

The stochastic region is shown in Fig. 17 in the (77, ,rf2)
plane. The critical angle <pc determines the region of chaos
Q«p<<pc, where tp = arctan(r)s/r)2). We obtain the fol-
lowing relation for qpc:

•• arcsm db
1/2

(7.14)

When the waveguide parameters are such that
db /a2>l, nearly all waveguide rays become chaotic. This
condition is the same as the condition for chaotic motion of
particles in stadium billiards.2 Chaotic dynamics of rays in
inhomogeneous resonant cavities have been studied in Ref.
64.

6. RAY DYNAMICS AND THE SPECKLE STRUCTURE OF THE
WAVE FIELD IN MULTIMODE WAVEGUIDES

An interesting and important problem is the study of
the connection between ray dynamics and the structure of
the wave field in regularly inhomogeneous waveguides. A
characteristic feature of wave fields in multidimensional
waveguides is that the field consists of irregularly distributed
spots. This structure of the field is called the speckle struc-
ture. A typical example is the speckle structure formed when
a coherent laser beam is reflected from a rough surface in
which the size of the inhomogeneities exceeds the wave-
length.67-68

The speckle structure of the field in multidimensional
waveguides is formed as follows. A large number of rays
arrive at the point of observation from the excitation plane.
Since the optical paths traveled by the different rays are in
general different, the field at the observation point is the
result of interference between a large number of fields with
different phases, corresponding to these rays. The resulting
speckle structure will be regular if the ray trajectories in the
waveguide are regular and will be random if the rays are
chaotic.

20
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We turn to the quasiclassical representation of the wave
field u(r,z). The waveguide is excited by the coherent field
«o (r ) in the plane z = 0. The wave field in the region z > 0 is
then given by16'66

u(r, z) =
,

2 (g. i

where u0 (r) = u(r,0) and 5, (r,z) is the action along thej'th
ray:

Sj = J n(r, z)da,
(8.2)

where da is the element of arc length of ray 7, and roj is the
coordinate of the ray in the plane z = 0. The quantity

£^_ da

is the divergence of the ray. Here da0 and da are the cross-
sectional areas of an elementary ray tube in the planes z = 0
and z = const, respectively, fj.j is the Morse index for the/th
ray, and k = v/c0 is the wavenumber. The summation in
(8.1) goes over all rays passing through the observation
point (r,z).

8.1.

We first consider a waveguide channel which is homo-
geneous along the z axis and where the ray dynamics is regu-
lar. Then the phases of the waves ф = kSj are determined by
(3.13) in terms of the action-angle variables (/,#). The
speckle structure of the field begins at a distance z where the
phase difference along neighboring rays
Д^ = k(Sj; — SJ+1) becomes of order ITT. We have from
(3.13)

,dSШ
d7 (8.3)

Hence we obtain the following estimate for the critical dis-
tance z0 for the formation of speckle structure

-i (8.4)

where Л/ is the difference in the actions corresponding to
neighboring rays and a is the nonlinearity parameter (3.3).
It follows from (8.4) that speckle structure is formed only in
waveguides with intermode dispersion:

Т?d/
(8.5)

An expression for z0 in terms of wave number km can also be
obtained. It follows from (2.27) and (2.28) that

-i-i

V ' 1л [т
dm2 (8.6)

Therefore speckle structure is possible only in wave-
guides with nonequidistant wave numbers km, i.e. when
d2km/dm2^0 (Ref. 75). The speckle structure of the field
will be regular in this case and is reversible in principle.

The statistical properties of a wave field with speckle
structure were analyzed in Ref. 75, in particular the distribu-
tion of dislocations of the wave field over the cross section of
a regular fiber optical waveguide.

8.2. Chaotic instability20

In this case, because of the strong exponential instabil-
ity of rays at sufficiently small distances from the plane of
entry of the radiation into the waveguide, the divergence of
the rays ̂  and the number of rays TV arriving at the obser-
vation point increase as exp(Az), where h is the instability
growth factor. Hence the optical path length S,(r,z) will
vary irregularly from one ray to another and will be random-
ly distributed in the stochastic region (see Fig. 13). One then
expects that the phases of the waves ф] = kSj (mod 2тг)
along the rays will be uniformly (or nearly uniformly) dis-
tributed in the interval (0,2-ir).

Hence the wave field (8.1) is the sum of a large number
of quasiplane waves whose phases are uniformly distributed
in the interval (0,2тг). Because of the randomness of the
phases, the resulting interference pattern of the wave field
will be irregular with the field maxima and minima distribut-
ed randomly in space.

Because of the exponential growth of the chaotic insta-
bility of the rays, the speckle structure forms over a very
short distance scale of the order of the phase correlation
length of the ray oscillations zr s 1/wln K, where £> 1 is the
parameter defined by (3.9). This leads to a loss of informa-
tion about the details of the structure of the wave front of the
original field, i.e. to irreversibility of the wave field. A rigor-
ous treatment of the formation of speckle structure of a wave
field is given in Ref. 20.

We note that a system of periodic ray instabilities can
also lead to the formation of a regular speckle structure, in
spite of the fact that neighboring rays are stochastic. This
phenomenon is called 'scarring' in problems of quantum
chaos,76 although it has still not been studied.

It is useful to point out an analogy between the problem
considered here and similar problems in quantum mechan-
ics. The possibility of quasi-random wave functions in quan-
tum К systems (systems with dynamical chaos in the quasi-
classical limit) has been discussed in Refs. 2, 69, 70, 76. A
pattern of nodes of the wave functions in quantum К systems
resembling speckle structure was obtained by numerical
methods in Refs. 71 and 72.

8.3.

We next consider the difference between the speckle
structures formed in a waveguide with regular ray dynamics
and in a waveguide where the rays are stochastically unsta-
ble.

In the case of a stochastic instability of rays the typical
linear scale of the speckle structure zr is much smaller than
the corresponding length z0 in a regular waveguide: zr <z0.
A weak partial coherence of the initial wave in space or time
leads to additional blurring of the speckle structure. Suppose
the initial radiation is a spectral line of width Д v about the
central frequency v0. Then in a regular waveguide with in-
termode dispersion, the blurring of the speckle structure oc-
curs over a distance z,.~z0v0/Av>-z0 (Refs. 74 and 75),
where z0 is the typical linear scale of the speckle structure
(8.4). On the other hand, in the case of chaotic instability
one expects blurring of the speckle structure over very short
distances of order zs ~zrln(v0/Av), wherezs ^zc. However,
this question is actually quite complicated and requires a
rigorous treatment of wave effects.
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We see that stochastic instability of rays in waveguide
channels leads to two effects:

1) the distribution of speckles becomes random;
2) any slight broadening of the initial radiation leads to

an irreversible blurring of the image.
The exponential blurring of the speckle structure of the

field in the case of weak incoherence of the initial field is
important in suppressing noise caused by the speckle struc-
ture of the field in information transfer systems using wave-
guide channels, especially in fiber-optical communication
lines.

9. CONCLUSION

The results discussed and reviewed here were obtained
in the framework of geometrical optics. Hence it is necessary
to discuss the restrictions imposed by wave effects. A neces-
sary condition for the approximation of geometrical optics
to be valid is that the index of refraction of the medium n (r)
must vary slowly over a scale of the order of a wavelength.

Additional restrictions occur during wave propagation
because of the accumulation of wave corrections due to
spreading of a wave packet either because of a slight nonlin-
ear divergence of the oscillations of the rays, or because of
strong stochastic divergence.

The first case is quite common. It is associated with the
nonlinearity of the ray dynamics and is analogous to the
quantum spreading of a wave packet corresponding to a par-
ticle moving in an anharmonic potential. The distance ZD

below which wave effects appear is determined by the non-
linear oscillation frequency of the ray со (I) and is equal to17

ZD

-1

(9.1)

where k = 2ir/A is the wave number. For a waveguide with
the index of refraction profile (3.18), the value of ZD is of
order

2 т 1/2

0 (9.2)

The minimum value of ZD is of the order of the diffrac-
tion length for a ray whose radius is of the order of the effec-
tive width of the waveguide. Since ka > 1, it follows from
(9.2) and the results of Sec. 4 that the fractal properties of
the rays (the propagation time of a signal, for example) be-
gin to appear earlier than wave effects.

As in the corresponding problems in quantum mechan-
ics,2 wave effects begin to appear in the case of stochastic
instability of rays at much closer distances because of the
exponential spreading of the wave packet. One of the stron-
gest manifestations of stochasticity is as follows. The time
over which the quasiclassical approximation in quantum
mechanics begins to break down has been studied quite ex-
tensively.2'69'70'77 There are two time scales over which the
quasiclassical approximation of a quantum system breaks
down for a system which is chaotic in the classical limit.
Over very short times t0 of order c o n s t - I n ( \ / f t ) the expo-
nential growth of the divergence of nearby trajectories
stops.72 But classical diffusion in the system continues up to
the relaxation time tR

where p is the density of the quasi-energy spectrum of the
quantum system and Д is the average distance between ener-
gy levels.77

Something analogous should exist for the distance over
which the approximation of geometrical optics is valid. In
quantum mechanics the small parameter of the problem is

H/I0 (see (1.1)), wher^, is the action of the problem. For
rays this parameter is I/A:/, where / is the linear scale of the
problem. Hence, as in quantum mechanics, one expects that
the longitudinal distance z0 where the simple geometrical
picture of the ray dynamics breaks down will be of order
const • In (const/A:/), while ray diffusion continues over the
relaxation distance ZR ~p, where p is the density of quasi-
wave numbers of a waveguide with periodic inhomogeneities
along its axis. The calculation of the constants is a very com-
plicated problem and there are no results on this question
available at the present time.

We emphasize the deep analogy between problems of
stochastic ray dynamics and quantum chaos. The analogs of
chaos suppression in quantum mechanics (in particular, the
phenomenon of "scarring"76) may be important in applied
problems in acoustics and wave propagation in inhomogen-
eous media. These problems require a special discussion, and
are outside the scope of the present review article.
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manuscript and for useful comments. We also thank V. S.
Buldyrev, V. S. Buslaev, R. F. Matveev, Yu. A. Kravtsov,
and A. S. Chirkin for useful discussions of the results cov-
ered in the article.

1' The conditions (1.1) and (1.2) are actually simplifications of the prob-
lem and there exist more rigorous restrictions on the applicability of the
quasiclassical approximation and geometrical optics.

2) At the time of publication.
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