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A review is presented of a new field in optical spectroscopy, in which the dynamics of wave
packets composed of stationary states of atoms and molecules is studied. The time limits of
applicability of the correspondence principle and wave packet collapse caused by nonlinear
effects are considered. A new phenomenon is discussed, in which the wave packets are revived
during their long-term post-classical evolution. Recent experiments on wave packet generation
and detection in Rydberg atoms and molecules are reviewed. The experiments provide new
opportunities for investigation of the transition region between classical and quantum physics of
atomic particles. The relations between the phenomena discussed and the problem of generation
of non-classical states of light in nonlinear optical systems is considered.

1.INTRODUCTION

Is it possible to observe the motion of an electron in a
Kepler orbit around the nucleus? That is, is it possible to
obtain experimentally a Rutherford atom? Is it possible to
observe oscillations of the nuclei in a molecule that are simi-
lar to classical oscillations of point particles bound by a
quasielastic force? An affirmative answer to these questions,
as is well known, is given by the correspondence principle of
quantum mechanics.! The mathematical expression of the
statement that the predictions of quantum theory must coin-
cide with the predictions of classical mechanics in the region
of validity of the latter is that for sufficiently high energies,
wave packets composed mainly of short-wavelength compo-
nents must move according to the laws of geometrical op-
tics.>* This means, specifically, that the position of the “cen-
ter of gravity” of a spatially localized wave packet (the
average values of the particle coordinates) must vary in time
according to Newton’s law

M = -VQ) (1)
ax
Here M is the mass of the particle, x is the coordinate of the
center of gravity of the wave packet moving in a potential
U(x). It is well known that for Eq. 1 to be applicable the
following condition must hold*

. 3 - e
W@ | 1 a—l{(ﬁ Ax?, (2)
ax 21 %3

Ax? = X2 - (2.

The overbar means the average value of the corresponding
quantity. Inequality (2) places a limit on the duration of the
classical dynamics of the packet. With the passage of time

the dispersion Ax? of the coordinate increases because of
the spreading of the wave packet, and condition (2) is violat-
ed. In all these discussions a natural and important question
arises: What are the laws governing the long-term ‘“‘post-
classical”’ evolution of wave packets beyond the bounds of
the dynamics according to the correspondence principle?
Until recently, experiments in the field of atomic and molec-
ular spectroscopy have bypassed these fundamental ques-
tions. Even though during the early development of quan-
tum mechanics, data of atomic and molecular spectroscopy
formed the foundation of the transition from classical con-
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cepts to quantum mechanical concepts, a historical curios-
ity, or, perhaps more appropriately, a certain lack of logic in
the development of physical understanding was the fact that
it was not possible with experiments existing at that time to
create conditions under which one could observe effects at
the boundary region between quantum and classical physics.
The methods of ordinary optical spectroscopy generally in-
volve excitation of individual stationary (or quasistation-
ary) states in atoms or molecules. Such states describe ob-
jects that are quantum mechanical by nature. For example,
even for arbitrarily large quantum numbers a single station-
ary state of an electron in a Coulomb field does not describe
(even approximately) the motion of a localized particle in a
Kepler orbit, just as for any quantum number a stationary
wave function of a harmonic oscillator does not describe the
harmonic oscillations of a localized particle. Only recently,
with the use of ultrashort optical pulses, has it become possi-
ble to create coherent superpositions of many highly-excited
stationary states of atoms and molecules—localized wave
packets that are particle-like objects whose dynamics obey
quasiclassical laws.

Thus, in spite of the fact that at the time of the develop-
ment of quantum mechanics classical ideas were used as a
heuristic basis for the understanding of quantum phenome-
na, only recently has it been possible to create and study such
objects as a Rutherford atom, a classical molecule, and the
like. Immediate progress in this field was attained in certain
directions associated with particular goals. First among
these was the perfection of the technique of working with
highly-excited Rydberg atoms and the commencement of
experiments in the excitation and multi-photon ionization of
the Rydberg atoms by short and ultrashort laser pulses. Sec-
ond has been progress in the so-called laser femtochemistry,
in which one of the major tasks is the use of femtosecond
optical pulses to study short-lived molecular complexes that
appear at intermediate stages of chemical reactions. Both
these topics have moved forward rapidly in the last few
years, both experimentally and theoretically, demonstrating
results that are valuable from a general physics point of view,
and making it meaningful to speak of a new field of atomic
and molecular physics, which involves the study of phenom-
ena at the boundary between quantum and classical physics.

Turning now to the history of the subject, we should
note that the first attempts to observe wave packets of sta-
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tionary states of quantum systems undergoing bounded mo-
tion in the classical limit go back to the work of Schro-
dinger.>® He introduced the so-called coherent state of a
harmonic oscillator, which has minimum indeterminacy,
and formulated the problem of the analogous wave packet
for the electron moving in a Kepler orbit in a hydrogen
atom.® Efforts to generalize the concept of a coherent state
to the Kepler problem have continued up to the present
time.”'* The main complicating factor in the introduction
of these states in atomic physics is the nonlinearity of the
atomic ‘“‘oscillator.” The problem of the evolution of wave
packets in nonlinear systems arose independently in various
fields of quantum physics. Active development has occurred
almost simultaneously, as mentioned above, in the theoreti-
cal and experimental investigation of packets of highly-ex-
cited states of Rydberg atoms,'®*® the dynamics of packets
of the vibrational states of molecules excited by pulsed laser
radiation,**3¢ packets of quantum states of the electromag-
netic field, generated in nonlinear-optics systems,®’** and
the evolution of wave packets in an “atom + field” sys-
tem.95A97

This review is an attempt to consider from a unified
point of view a variety of questions related to this new field of
optical spectroscopy. The temporal limits within which the
correspondence is applicable to the description of wave
packets are discussed, as is the breakup of the wave packets
due to nonlinear effects. The recently observed universal
mechanism of the revival of wave packets during long-term
evolution of highly-excited quantum systems is discussed.
We analyze a number of recent experiments on the genera-
tion and detection of wave packets in Rydberg atoms and
molecules. It is shown that there is an intimate connection
between this set of phenomena and the problem of the gener-
ation of nonclassical states of light in nonlinear systems.

2. LONG-TERM EVOLUTION OF PACKETS OF STATIONARY
STATESIN VERY SIMPLE QUANTUM SYSTEMS

2.1.Coherent and squeezed states—packets of stationary
states of the harmonic oscillator

First we shall discuss some general properties of the
evolution of packets of quantum systems with discrete spec-
tra, undergoing bounded motion. The simplest system of this
type is the harmonic oscillator. Let us consider a linear su-
perposition (packet) of stationary states of the harmonic
oscillator.

Y(x,1) = 2:;1 cnun(x)exp(—% Ent-) ; (3)

where u, (x) is the stationary wave function corresponding
to the quantum number » and energy E, = #w(n + 1/2),
where @ is the oscillator frequency, ¢, are arbitrary con-
stants, whose dependence on the quantum number » deter-
mines the localization of the packet in energy space. If we
take ¢, in the form

all

cn=exp(—%la|2) a7 (4)

then the packet (3) is the so-called coherent state of the
harmonic oscillator.> With the use of (4) the series (3) can
be summed explicitly. For # = 0 and real a this summation
gives the following result
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1/4
w(x,0) = (;#) exp [— # c(x - \/Tao)z] ; (5)

here 0 = (#i/Mw) '/? and M is the mass of the oscillator. The
wave function ¢(x,0) is the eigenfunction of the ground
state of the oscillator, displaced from the equilibrium point,
where it is centered, to the position x,,,, =+/2 ao without
change of shape (the wave packet is Gaussian with a disper-
sion of the order of the amplitude of the zero-point oscilla-
tions of the oscillator). The evolution of this packet, accord-
ing to the rules of quantum mechanics, is given by the
formula '

y(x,t) = fdx’G(x,l: x",0p(x,0), (6)

where G(x,t;x't’) is the Green’s function of the harmonic
oscillator:*?

Mo 1/2
2nih sin wt

G(x,t; x',0) = (

iMw

m [(x2 + x’2) cos wt — 2xx’' ]} (7)

xexp{

Using Eqgs. (5)-(7) one can easily derive the following
expression for the probability density of the distribution of
the oscillator coordinate®-'®

1/2 ,
lp(x,0)]% = (;#) exp [—ﬁ (x — E(l))z-] . (8)

The average value x(#) of the oscillator coordinate depends
periodically on the time, with the period of the classical mo-
tion, T = 27/ w:

x(f) = fdxw"(x,l) p(x,0) = x,. coswt . 9)

Thus, the coherent state given by the sum (3) with coef-
ficients (4) is a spatially localized Gaussian wave packet
with a characteristic localization dimension ¢. The center of
gravity of this packet, according to Eq. (9), undergoes har-
monic oscillations in accordance with the classical equation
of motion. As a rule, the oscillations of a particle in a poten-
tial well become quasiclassical for large values of the dis-
placement amplitude. We note, however, that expression
(9) is exact for any a. This fact is a property of the harmonic
oscillator, for which condition (2), necessary for classical
motion of the center of gravity, is satisfied automatically
(8°U(x)/8%* = 0). The indeterminacy of the coordinate
and the momentum of the oscillator Ax = [x? — (X)2]"?
and Ap = [ p? — (7)2]"? in the coherent state do not de-
pend on the time and are, respectively,

Ax = 75, Ap =1

V2o’
where the product ApAx = #i/2 is a minimum. This means
that the packet (3) and (4) evolves without any spreading
whatsoever over an arbitrarily long time. The condition for
the system to be quasiclassical, > 1, means obviously, that
the region of spatial localization of the packet ( ~¢) is much
smaller than the size of the classical orbit L = 2*/%ag, which
corresponds to the energy

E = Mw?/2-(L/2)? = a*ho.
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The largest contribution to the sum (3) comes from the
terms with n~# = a*> 1, since the distribution of ¢, has a
near-Gaussian shape with a dispersion An«ca < (7)"*> 1.
Thus, to achieve strong spatial localization of a packet, the
number An of states that form the packet must be quite large.
In the classical limit An o« (77) /> . We note that packets
composed of a small number of states also exhibit nonclassi-
cal behavior for large values of 7#.'"!

In recent years there has been vigorous study of the so-
called “squeezed” states of light,"® which are packets of
stationary states of the oscillator of the quantized electro-
magnetic field. In the squeezed states, as opposed to the co-
herent states, the dispersion of the coordinate (and of the
momentum) depends periodically on the time and takes on
values that are less than the amplitude of the zero-point os-
cillations. This property is of interest from the point of view
of reducing the quantum noise in measuring systems and
information transmission systems. A squeezed state can be
obtained by, for instance, choosing the coefficients ¢, in for-
mula (3) in the form'®*-'3

_ (22 -1 1/4;4_”/2 x+1) x+1 5
%= " H exp |- —a ;(10)

V2inl M V2x
where the H, (z) are the Hermite polynomials. The param-
eter x characterizes the degree of “squeezing.” At ¢ = 0 the
direct sum in (3), with coefficients (10) gives'®*

_ (L ey (x ~ VZao)®
Y(x,0) = (mz) (N - 1) TR

(11)

The function ¥ (x,0) is a Gaussian, obtained by the displace-
ment of the ground state of the oscillator by a distance v2ao
with a dispersion that is compressed by a factor of

+1 12
x—1

Thus, the indeterminacy in the coordinate of the squeezed
state (11), unlike in the case of the coherent state, is less than
the amplitude of the zero-point oscillations of the oscillator.
Clearly, in the state (11)

1/2 1/2
_ o (x=1 __h (x+1
x=ﬁaa,Ax—V-2—(H+l) ’Ap_na(—ﬂ—l) ,

i.e., to conserve the minimum indeterminacy ApAx = #/2,
the squeezing of Ax entails a corresponding increase in the
indeterminacy of the momentum. For x — « the squeezed
state goes over into a coherent state. The squeezing is maxi-
mum for » — 1. The evolution of the squeezed state for £ > O is
given by formulas (6), (7), and (11). It is easy to find the
probability density distribution of the oscillator coordinate
in the squeezed state with the use of these formulas®*1%°

1/4
lp(x,0)% = (L) (ch 2ry — sh 2r,-cos 2cut)_‘/2

na?
(x = X(1))*
X - >
exp[ a%(ch 2ry — sh 2r-cos 201) (12)
_1. x+1
ro = ElnR —1
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The squeezed state thus evolves while maintaining the shape
of the Gaussian wave packet, whose parameters depend peri-
odically on the time.

The center of gravity of this packet moves along a classi-
cal trajectory (9) as in the case of the coherent state, but
unlike the latter, the indeterminacy in the coordinate and
momentum vary periodically'®

Ax = % - (ch 2ry — sh 2r, - cos 20)}/2,
(13)
Ap = # (ch 2ry + sh 2r, - cos 201)'/?

going through maxima and minima out of phase. During the
course of each period Ax and Ap take on values that are
smaller than the corresponding values in the coherent state.
This property of the indeterminacy of the coordinate and
momentum in the squeezed state is, in essence, a macroscop-
ic quantum effect, since it is manifested for any amplitude,
no matter how large, of the oscillations of the center of gravi-
ty of the packet.

The quantity |c, | is the distribution of the oscillator
quanta in the packet of stationary states (3). In the coherent
state this is the Poisson distribution (see expression (4)). In
the squeezed state (Expression (10)) the distribution is nar-
rower than the Poisson distribution (sub-Poisson photon
statistics), and for strong squeezing (x— 1) it becomes an
oscillating function of the number n of photons. The proper-
ties of the distribution of the number of photons for lightin a
squeezed state have been analyzed in detail in Ref. 104.

2.2, Classical stages in the evolution—the breakup and the
revival of packets of stationary states of an anharmonic
oscillator

Let us now consider the bounded one-dimensional mo-
tion of highly excited wave packets in an anharmonic poten-
tial. In the region of energy E corresponding to large quan-
tum numbers, the energy spectrum is quasi-equidistant, with
the frequency spacing w,, ,, = (I/#)(E,,, —E,) be-
tween adjacent energy levels determined by the reciprocal
T, of the period of classical motion

21
@nsin = 2alE) = T 7Fy - (14)

For times much shorter than the period of classical oscilla-
tions, 77, the discreteness of the spectrum is not important
and the initial spatially localized packet moves over a classi-
cal trajectory, in general spreading out in a manner similar to
the spreading of a squeezed state (12). However, this broad-
ening is not irreversible as it is in the case of free or infinite
motion, and the packet almost completely recovers its shape
after the period T, because of quasi-equidistant nature of
the energy spectrum of the states of which it is composed.
This correspondence between the quantum and classical de-
scription is not preserved forever, however, as in the case of
the harmonic oscillator. In the long-term evolution of the
packet, because of the dependence of w,, on the energy

w

4 (15)

Dpttn " Ppun-1 =

there will inevitably be some unequal spacingsin the levels at
high excitations. The dephasing contributions of the various
stationary states in the superposition of the form (3) results
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in the decay of the packet after many classical periods, and
thus a limit is imposed on the duration of the “classical”
evolution of the packet:

0w
cl

oE

-1
) . (16)

1 <<T, (ﬁi

A natural question arises regarding the laws of the evolution
of a packet in the long-term post-classical stages. A very
general answer to this question is that this dephasing is not
totally irreversible, and in time scales much longer than T,
the packet almost exactly recovers its shape and again
evolves for a time according to the classical laws. The neces-
sity of this sort of behavior of wave packets in quantum sys-
tems with an arbitrary discrete spectrum can be proved in
general by the following reasoning.'°® We shall demonstrate
that for a quantum system with a discrete spectrum a wave
packet of the form (3) is an almost periodic function of time.
In other words, we shall show that for any arbitrarily small
£> 0 there exists a sufficiently dense set of times {7, } such
that for each 7, of this set

Jaxlp(at+ 1) —pxpl?<e (17)

for all ¢. Actually, using the orthonormality of the stationary
states u, (x) and the fact that the wave packet as a whole is
normalized,

n=1

le,1?=1, (18)
it is easy to obtain

fdxlw(x,t + 1) — w(x,n|?
= 22::1 le,|? [1 - cos (%En’)] . 19

It follows from (18) that for arbitrarily small £ > O one can
find a value n(g) = n, such that

o £
2
¢ |“<3z.
Eu=no+l | "l 8
Consequently,

® 2|1~ cos (L ® 2 &
En=n0+l lc,] [1 cos (h E"t)] < 2En=no+1 le, |° < i
(20)

For the remaining finite sum of periodic functions, it has
been correctly pointed out'®’ that for any ¢ > O there exists a
sufficiently dense set {7, } such that

y L2 [ (L £
S e, [1 cos(h E”rﬁ)] <t 1)

Inequalities (20) and (21), together with Eq. (19) prove
that inequality (17) is correct.

The absence of true irreversibility in systems with a dis-
crete spectrum leads eventually to an arbitrarily exact resto-
ration of the initial packet. This discussion does not, how-
ever, have anything to say about the structure of the wave
function in the intermediate stages. The surprising fact is, as
we have pointed out recently,**? that for a broad class of
physical systems the long-term evolution of quasiclassical
packets proceeds (after a stage of dynamics in accordance
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with the correspondence principle) according to a universal
scenario that does not depend on the shape of the packet or
on the specific physical nature of the object. In this scenario,
the wave function of the system, besides the almost complete
“revival” of the initial packet, undergoes a deterministic se-
quence of changes corresponding to the formation of regu-
larly bounded structures made up of condensations of proba-
bility density with a high degree of localization. The shape of
each of these condensations is determined uniquely by the
shape of the initial wave packet. The regular structures that
are formed are purely quantum objects, having no classical
analogs even at very high energies and macroscopic dimen-
sions. In this sense one can speak of a new macroscopic
quantum mechanical effect.

Let us consider this topic in more detail. We shall recon-
sider a wave packet of the form (3), consisting of highly
excited discrete states of a quantum system undergoing
bounded motion in the energy region E~E;(A>1), in
which classical dynamics corresponds to regular periodic
motion. We shall assume that at time t = 0 the packet is
strongly localized in space (its spatial dimension Ax is much
less than the characteristic dimension L of the classical orbit
corresponding to Ex~ E; ). It follows from the uncertainty
principle that the energy width of the packet, AE is of the
order of

AE « vAp« hw L ’
c Ax
where v and Ap are the characteristic values of the velocity
and the uncertainty in the momentum. This means that the
distribution of |c, %, which has a sharp maximum for n =74
has the width

AE L
h’“cl o« Ax > 1.

Anc

For the coherent state of the harmonic oscillator,
L« (E,/Mo*)'? and Ax~ (#i/Mw) /%, which gives us the
estimate An o« (%) /2, which coincides, of course, with the
value obtained above with the use of the explicit expression
for the wave function of the coherent state. In this way we
have again verified that a strongly localized, particle-like
packet must consist of a large number of stationary states:
the larger the number, the greater the degree of localization
of the packet.

If we take into account the fact that the energy levels of
the quantum system are slightly nonequidistant at high val-
ues of 7, we can write the energy in the region E « E; in the
form

5 _ 72
E=E, + 2r"> n) S Rl K (22)

ct rev
where 4 refers to the sign of dw_, /dE and

ow ol

-1
3E ) . (23)

Trev = 2Tcl (ﬁ

Here, in addition to the classical period T, another, purely
quantum mechanical time scale T,., > T, appears, which
plays a very important role in the long-term evolution of
wave packets. For

9 { awcl
9E Lwd oE

1 -1
T, < —

ﬁz
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we can restrict ourselves to the terms in the expansion given
in (22) and write the wave function of the packet as

P(x,l) = zk Celty(x)-expl—2wi(kt/ Ty + K2/ T, )1,  (24)

k=n-n.

Here and below the energy is reckoned from E,,, and for the
sake of definiteness it is assumed that dw_ /dE > 0. At times

T, 5t<T,, the terms proportional to k in the exponent in
expression (24) can be discarded and the time scale T, will
not be manifested. Thus, ¥(x,t + T,;) = ¥(x,t). As aconse-
quence, after a time equal to the classical period of oscilla-
tion, T, the packet, having undergone motion along a clas-
sical trajectory, returns to its earlier position in an
unchanged form. Essentially, this means that the packet
evolves according to the correspondence principle. At later
times the dephasing of the individual terms in the superposi-
tion (24) begins to play a role because of the terms quadratic
in k. It is easy to show that this dephasing for a packet com-
posed of An levels takes place in a time

rcy

t A

An additional phase shift between the various components
of the packet (24) (within the limits of energy width
AE « fiw An) is of the order of unity. The dephasing leads
to a decay of the packet after many periods of classical mo-
tion, that is, it limits the duration of the classical stage of
evolution of the packet.

However, as shown above, in a system with a discrete
energy spectrum the evolution of a wave packet cannot be
completely irreversible. Actually, for ¢t = T, the additional
phases due to the terms quadratic in k are exactly integral
multiples of 27, so that the wave packet can be completely
restored. It is obvious that for ¢ = T, the classical evolution
of the packet is again revived. This phenomenon has been
called the “revival” of the packet.'®

To answer the question of what sort of structure a wave
packet has at intermediate times T, €t S T, we shall study
the form of the packet (24) for ¢t /T,,, =m/n, where mand n
are integers and m/n is an irreducible fraction. The addi-
tional phase shifts due to terms proportional to k 2 are equal
to 270, where ®, = {mk?/n}. Here the curly brackets
stand for the fractional part of the argument. It can be shown
directly that the quantities ®, form periodic sequences with
a period /, that depends only on the denominator n of the
fraction

O+ =9

where l, = n/2 if n is divisible by 4, and [, = n otherwise.
The periodic sequences exp( — 27iQ, ) can be decom-
posed into /, fundamental sequences having the same period
exp(— 21i0,) = S0 o exp (~2nisk/ly), (25)
k s=0 S 0/
-1

0
exp (-zme + 2 j") . (26)
=0

ag
lok

Substituting (25) and (26) into (24) we have
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sk

wx,t) = 2;,k c agu, (x) exp —2mi kt/ Ty — 2mi = L 27
or

Y(x,0) = zs"; agp(x.t + T, (28)
where ¢, (x,t) means

Y6t = zk iy (x) exp (-Znik %d) . (29)

As follows from this analysis, expression (29) describes the
evolution of the packet in a “classical” way. One can show
that the number of nonzero coefficients 4, in formula (28) is
g= (n/4) [3 — (— 1)"] with the moduli of all of them be-
ing identical.

Thus, for any rational number m/n the initial packet
splits near =T, (m/n) into q spatially separate packet-
fractions undergoing classical motion, shifted in time from
each other by the gth part of the classical period. This struc-
ture was called in Refs. 31 and 32 fractional revival of order
m/n. Of course, this structure will be clearly defined if the
separate fractions do not overlap, that is, forg < L /Ax ~ An.
The better the initial packet satisfies the conditions of classi-
cal behavior, the higher the order of splitting that can be
observed.

Let us examine some specific structures. The simplest of
them occurs for t=7T.,., /2. Thena, =0,a, =1, and

rev

1
'/’(x,l) = wc;(xvt + _2— Tc|) 5 (30)
which is the original packet shifted in time by half the classi-
cal period.
Neart=T,, /4
y(x, l)

[exp( i 4) Yy (50 + exp(+1 4)¢c|(x t+ = 1 Tu)]
3D

Expression (31) describes an essentially nonclassical object,
consisting of a superposition of two correlated localized
packets macroscopically separated by a length of the order
of the dimension of the classical orbit. A similar structure
arises for t~3T,, /4.

For T=T.., /3 the wave function is

rev

Y(x,1) =% [1 + 2exp ( 2‘; )] [zpcl(x,t)

+ exp(-zsli) ( P (X, +3 L T+ ¥yt +3 2 Tcl)):l
(32)

This kind of structure, consisting of three packets, occurs
also for ¢t /T,,, ~1/6,2/3,5/6.

Let us illustrate these forms of behavior in the example
of an anharmonic oscillator with a potential energy of the

form

Ulx) = -;—szx2 + x4, (33)

The eigenstates and the energy spectrum of this oscillator
have been well studied. In the case of a weak anharmonicity
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FIG. 1. Wigner distribution function of an anharmonic oscillator (from Refs. 32 and 47). Parameters: 7 = 0.001, T,., = 667 T.;;a = 5;a) ¢t /T, = O;b)
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A very clear picture of the evolution of the wave packets in
this system under quasiclassical conditions can be obtained
with the use of the Wigner distribution function'®
Py (x,p,t), defined in phase space

(34)

1 4o . , riny
Pylx,p.1) = A f_w dyy*(x + y, )y (x — y,0) exp (—:ﬂ) .

(35)

Figure 1 shows the results of numerical calculations’**’ that
depict the distribution Py, (x,p,t) at the initial instant of time
(the initial wave packet is specified in the form of the coher-
ent state of the harmonic oscillator, Eq. (3) with coefficients
(4)) and also at succeeding instants of time that correspond
to fractional revival of various orders. The smooth peaks in
the Wigner distribution function correspond to the splitting
of the initial packet, and the localized rapidly oscillating
spikes in the phase plane appear as a result of the interference
between the various packet-fractions and have no classical
analog.

2.3. Preparation and evolution of packets of stationary states
in model multilevel quantum systems

Many features of the dynamics and the generation of
wave packets with different physical systems (atoms, mole-
cules) are reflected in a very simple model system that has
been used many times in the theory of multi-photon ioniza-
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tion of atoms and molecules.''®''* This same model has
been used previously for the description of nonradiative
transitions in complex molecules.''*''® We shall examine a
quantum system excited out of the ground state |0) into a
group of states |n) with energies E, by a laser pulse with an
envelope f(¢). The probability amplitudes a, of finding the
system in the states |n) are given in the resonance approxi-
mation by the equation

iﬁ&O = ZVOn(t)an’
n

(36)
iha, = A a + V,oDay

n nn [

where A, = (E, — E) /4%, E is the energy of resonance with
the ground state, the composite matrix element is
Voo (1)~ [f(1) 1%, where ko is the number of photons in-
volved in the transition from the ground state to the group of
states |n). The solution of the problem (36) for an arbitrary
f(p) is unknown, but it is possible to identify three different
regimes of excitation for which it is possible to predict the
behavior of the system.

1. Let us assume that the pulse is sufficiently long so
that the spectral width #/7 (where 7 is the pulse length) of
the excitation ¥, () is much less than the energy spacing &
between the excited levels in the neighborhood of the reso-
nance. Let us also assume that | ¥, | 8. In this case a transi-
tion is induced to only one of the resonance levels. The sys-
tem is described by a two-level model in which Rabi beats!!®
occur between the ground and resonance excited states. If
the excited level is ionized by the same pulse, then the pro-
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cess of multiphoton ionization through this intermediate
state has a resonance nature.'!>-!18

2. Let us assume that the pulse as before is weak
(V5. | €6) but quite short #i/7 2 &. Then the probability am-
plitude @, for finding the system in the state |n) after the
pulse ends is

e 1 +® R
1@, ~ J 41V, (0 exp (@A, 1/hy |

(37)
and the wave function of the system is a packet
3,d,exp( —(E, t/#)|n). If the energy spectrum is quasi-
equidistant in the vicinity of E (E, ~E + n8) and the ma-
trix element ¥V, depends only weakly on n, then in the case
of a one-photon excitation @, is determined by the Fourier
transform f,, of the envelope of the pulse f(¢). The temporal
dynamics of the packet that is formed can be followed from
the time dependence of afterglow of the system resulting
from the transition to the lower-lying level or from the time
dependence of the ionization signal induced by a supplemen-
tary laser field. If the matrix element of the transition to the
final state depends only weakly on the energy, then the in-
stantaneous rate of the radiation (or ionization) process is

I« ,z" £, exp (indt/#) g (38)

and is determined by the quantum beats of a large number of
transitions. If #ir> 8, then, unlike the usual quantum beats
associated with the coherent population of a small number of
levels,’” the intensity 7(#) of the process at times
t = 2wn#i/5 exhibits sharp spikes (recurrences). The forma-
tion of these spikes is analogous to the appearance of the
sharp diffraction peaks in the scattering of waves by a dif-
fraction grating with a large number of lines.'?! Near the n-
th recurrence the summation in (38) can be replaced by an
integral, and as follows from expressions (37) and (38), the
shape of each luminescence (or ionization) peak replicates
the shape of the initial exciting pulse.!®!?!

3. If the exciting pulse is sufficiently strong (|V,,|>6)
and long, then the formation of the packet can no longer be
described by perturbation theory. Here the behavior can be
followed for the case of a step-function excitation that is
switched on discontinuously at ¢=0 and remains un-
changed thereafter. For times 7 <#/6 the pulse does not dis-
tinguish the discrete nature of the energy spectrum but sees
thelevels £, as a continuum with a density of statesp = 1/6.
The ground state component is destroyed exponen-
tially”s'llg :

lay()12 = exp(~y1) , (39)

where (taking |V, |=V") the quantity

PSS 1 %
y—?Jer/ﬁ———-—ﬁa

is given by Fermi’s Golden Rule. In this way there is a time
scale ¥ ~! during which the excited states form a packet of
“destruction.” Because of the discrete nature of the spec-
trum, the system has a high probability of returning to the
ground state near times t o« n#i/8. If the excited levels are
exactly equidistant, and the transition matrix elements are
independent of the level index (the Bixon-Jortner model;
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Ref. 115) the exact solution for the time dependence of a, (?)
is known'?>12

ay(t) = zoexp (—inAyt/#)
=

x  exp [=y(t — n§)/2)L,(y(t — n£))O(t — nf), (40)

where £ =_2_17'ﬁ/8, ®(z) is the unit step function, A, is the
spacing of E from the nearest level of the quasicontinuum,
and the functions L, (z) have the form

L (2) = Ly(2z), n=0,

L(@=L()-L, (2 nz1;

where the L,(z) are the Laguerre polynomials. For
#iy/6> 1, the coefficient a, (¢) falls off exponentially near
t = 0 (compare with Eq. 39). Near t = t, = 27#i/§ the vari-
ation of a, (1) is |a,()|*=y(t—t,)exp[ —y(t—1,)],
and so forth. In Refs. 110 and 111 an approximate theory
based on the existence of two different time scales (¥~ 'and
#/8) was developed for the description of the photoexcita-
tion of a quasicontinuum by a long optical pulse. By this
theory it is possible to describe the shape of each recurrence
even if all the matrix elements of the transition are not exact-

ly equal.

3.THE DYNAMICS OF PACKETS OF HIGHLY EXCITED
STATES OF RYDBERG ATOMS

Because of the perfection of the technique of generating
short light pulses it is possible in the excitation of atoms to
employ an exciting pulse that is so short (or with a spectral
width so broad) that a linear superposition (a packet) of a
very large number of stationary states with different energies
is created, rather than the excitation of only a single station-
ary state, as in conventional optical spectroscopy. The evolu-
tion of this packet, as shown above for simple models, must
obey, at various stages, both classical and quantum mechani-
cal laws. The most striking manifestation of this behavior
will be observed in pulsed excitation of high-energy Rydberg
states of atoms. Possible means of observing the dynamics of
the wave packets that are created include detection of the
spontaneous emission of the excited atoms or their ioniza-
tion by a short optical pulse delayed in time relative to the
exciting pulse. In the stage of classical motion in an elongat-
ed Kepler orbit the emission by the atom consists of regular-
ly repeating peaks (with the period of the classical motion),
corresponding to the passage of the packet at the minimum
distance from the nucleus (or the atomic shell of a multi-
electron atom), where the acceleration of the electron is a
maximum. Decay of the packet corresponds to the forma-
tion of an irregular pseudochaotic pattern that accompanies
the falloff in intensity of the emission peaks. However, at
later times the regular periodic pattern of emission peaks
reappears, which corresponds to the revival of the localized
particle-like packet in a Kepler orbit.

Parker and Stroud!® made the first detailed numerical
calculation of the excitation of high-energy states of the hy-
drogen atom by short optical pulses and the time dependence
of the emission from the packet of stationary states formed in
this way. They calculated the excitation of an atom by a laser
pulse of duration 7« 10 ps into a group of states near the
level with the principal quantum number 7z = 85. The corre-
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FIG. 2. Intensity of spontaneous emission by a Rydberg atom excited by a
short laser pulse (from Ref. 16). The arrows indicate®'*? the fractional
revivals of various orders.

sponding period of classical motion is T, = 277°*#%/Ry =94
ps, which is an order of magnitude longer than the pulse
length, so it is possible in the excitation to prepare a packet
made up of many stationary states with various principal
quantum numbers # near 7. Since the atom is excited from
the ground state, the packet will contain states with small
values of the angular momentum, which in classical lan-
guage corresponds to particles moving in a highly elongated
Kepler orbit. The results of the numerical calculation'® are
plotted in Fig. 2, which shows that sharp emission spikes are
observed in the initial stage of evolution of the packet, and
these spikes repeat with a time spacing equal to the period of
classical motion in the Kepler orbit. After 35 periods of 7,
the pattern of the emission in the first stage is repeated,
which corresponds to a revival fraction of order 1/2
(T.., = 5.2 ns). An analogous variation of the probability
of an electronic Raman transition, induced by two consecu-
tive laser pulses, as a function of the delay time between
pulses was observed in the work reported in Refs. 19 and 22.
The detailed picture of the time dependence of the emission
reported in Ref. 16 was analyzed in detail in Refs. 31 and 32,
where it was shown that for revival fractions of high order,
shown in Fig. 2 by the arrows, the emission spikes corre-
spond to the passage at the minimum distance from the nu-
cleus by each of the fragments of the split packet. Therefore,
near the instants of time T, /4, T, /6, T, /8, etc, the emis-
sion spikes appear twice, three times, four times, etc, more
frequently than in the initial stage or at the stage T, /2,
where the packet is reconstructed with a shift in time of
T, /2. Su® has carried out a numerical investigation of the
time dependence of the intensity of the emission of a packet
consisting of vibrational states of a two-atom ion, and ob-
served analogous behavior of the breakup of the packet and
its subsequent revival.

The space-time structure of packets of Rydberg states
moving in Kepler orbits has been studied in Ref. 46. The
long-term evolution of packets of stationary hydrogen-atom
states ¥, ,, with various principal quantum numbers 7, the
maximum orbital quantum number for a given n, [ =n — 1
and the maximum projection m, = n — 1 of the angular mo-
mentum was investigated in that paper. The distribution of
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the populations of the levels in the packet was taken to be
Gaussian:

w(r,1) = En ¢V nn-1.n1(0) €xp (iRy/2Ain?) , (41)
- 1 _
¢, = (27:00) 172 exp [-—Fo(n - n)2-] ,
wn.n—l,n—l(r)
= Nnr‘("‘l) exp (—ﬁ) (sin 9)"Lexp [i(n — D)¢].

Here ay, is the Bohr radius and N, is a normalization con-
stant. The packet of states (41) is localized both in the radial
direction(r) and in the angular (&,¢) variables. The evolu-
tion of this packet was followed for the parameter values
n = 320 and o, = 2.5. The expansion of the energy of the
atom near n = 7 has the form (compare with formula (22)):

2
Ry _ _Ryl, _qdn  sfAn)
e 2’_12[1 25 +3(ﬁ) } (42)

An=n-—n.

An investigation of the time dependence of the packet (41)
demonstrates the sequential advent of the time scales that
follow from the expansion (42) (Fig. 3). In times
ts T, = 2mn*#/Ry the packet moves in a circular Kepler
orbit lying in the plane perpendicular to the axis of quantiza-
tion, undergoing dispersion because its Rydberg levels are
not equidistant. For times t = (my,/ny ) T,., (m, and n, are
relatively prime integers) it undergoes a succession of frac-
tional revivals in complete accordance with the scenario®'*?
described in Section 2. Thus, the long-term evolution of
wave packets of highly-excited Rydberg states of atoms in-
evitably exhibits both classical and quantum mechanical
properties, associated with the discrete nature and the une-
qual spacing of the atomic spectrum (the nonlinearity of the
atomic oscillator).

An interesting suggestion for compression (time
squeezing) of optical pulses, using the properties of the time
evolution of Rydberg wave packets, has been made by Noor-
dam et al.*” The phase-matching of the states in a linear
superposition of the form (24), as noted above, is disrupted
with time because the levels of the spectrum are not equally
spaced. Spatially, this means that during the oscillations, the
parts of the packet that are formed of states with the highest
energies lag the lower-energy parts because the classical pe-
riod increases with the energy. If the lower-energy parts of
the packet are excited with a certain time delay relative to
the excitation of the high-energy parts, then as time passes
these parts will come into phase, forming a packet that is
highly localized in space. This kind of excitation can be ob-
tained by frequency chirping of the exciting pulse (decreas-
ing the frequency (e.g., linearly) with time). It was shown
by Noordam et al.*” that as such a phased packet passes at
the minimum distance from the nucleus of the atom, it can
emit a pulse that is shorter than the excitation pulse. Thus,
unlike the conventional methods of light-pulse compres-
sion,'?* this method is based on the dispersion properties of
de Broglie waves in a single atom. Noordam et al.*’ also
discussed the possibility of using chirp of the eigenfrequen-
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FIG. 3. Evolution of the distribution of the probability distribution in the
x-y plane for the wave packet of an electron moving in a circular Kepler
orbit (from Ref. 46). The time ¢ is measured in units of T, /2.

cies of an atom by means of the dynamic Stark effect instead
of chirp of the frequency of the radiation exciting the atom.

It has also been proposed that the dynamics of the pack-
et of Rydberg states formed as a result of the action of a short
laser pulse on an atom might also be observed experimental-
ly in the dependence of the probability of the electronic Ra-
man transition induced by a second optical pulse as a func-
tion of the time delay of the second pulse relative to the
first,'®?? or from the analogous dependence of the delayed
photoionization signal.?®*>*} The semiclassical theory of
two-photon excitation and ionization of Rydberg states of
optical electrons in atoms has been developed in Refs. 18, 19,
22, 27, 28, and 41. The methods of quantum defect theory
have been used in these papers to study the interaction of a
Rydberg packet with the ion core, and interesting phenome-
na were observed as a result of the periodically repeating
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processes of elastic and inelastic scattering of the packet by
the core.

The effect of the formation of linear superpositions of
atomic states on the ionization of an atom in the strong field
of laser radiation has been analyzed theoretically in a num-
ber of publications.?¢*>**!'25 Parker and Stroud** have
studied the situation where two closely-lying atomic levels
are strongly shifted relative to each other because of reso-
nance absorption and stimulated emission of photons
through the continuum states. Because of these processes, in
a strong field a linear superposition of states is formed for
which the probability of a transition from these states to the
continuum is small because of destructive interference. In a
certain sense this result means that the atom is stabilized by
the strong field. This effect is related to the well-known ef-
fect (since the classical work of Fano'?® ) of the formation of
nondecaying states in the model of two discrete levels lying
on a background continuum and interacting with it. In es-
sence, the same origin is associated with the imprisonment of
the populations in three-level systems subjected to resonance
excitation by two laser fields.'*” There is a great deal of in-
terest in carrying over these results to the case of multi-level
quantum systems, in particular, Rydberg atoms. Dealing
with a real multilevel atomic spectrum and fields of arbitrary
strength entails considerable mathematical difficulties,
which certainly enhances the value of model calculations. In
Refs. 26, 42, and 43 a model assuming a quasi-equidistant
spectrum and a flat continuum was used to demonstrate the
possibility of stabilization of a multilevel atom through the
formation of packets of highly excited atomic states by a
strong field. Analytic results have been obtained™ in a study
of the formation of Rydberg wave packets by strong optical
pulses of a special shape. A detailed review of theoretical
methods of describing laser excitation of packets of station-
ary states in Rydberg atoms can be found in Ref. 48.

One of the first experiments in which a wave packet was
formed from Rydberg states of an atom is described in Ref.
25. By means of =~ 3 ps laser pulses, (3 + 1)-photon ioniza-
tion of xenon atoms was achieved (the energy of the three
photons reached to the region of the Rydberg states near the
ionization threshold for xenon). If the spectral width of the
excitation pulse, associated with the finite pulse length, is
less than the spacing between adjacent atomic levels, then
the ionization can be enhanced by virtue of an intermediate
resonance in the Rydberg region. If, on the other hand, the
spectral width of the pulse overlaps several levels, (which is
accompanied by the formation of a packet of stationary
states), then the region of the Rydberg levels exhibits the
properties of a continuum, and the resonance enhancement
of the ionization probability does not happen. In an experi-
ment Noordam et al.?* observed a changeover from the reso-
nance regime of ionization to a nonresonance regime as the
frequency of the laser radiation was increased while the spec-
tral width was maintained. The changeover of regimes was
related to the increased density of Rydberg levels near the
ionization threshold. Information on the preparation of a
packet of Rydberg states is only implicit in the results of Ref.
25, since the packet does not move during the short time of
the ionizing pulse, which is much shorter (in the nonreson-
ance regime) than the classical period of the Keplerian mo-
tion, and consequently its most characteristic dynamic prop-
erties are not revealed. A theoretical investigation of the
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near-threshold multi-photon ionization of atoms by short
laser pulses, corresponding to the conditions of the experi-
ment of Ref. 25, has been given in Ref. 38.

An electron wave packet localized in the angular vari-
ables was prepared for the first time in the work reported in
Ref. 23 by means of the method described in Refs. 17 and 21.
The packet was excited from the ground state of a sodium
atom into a group of Rydberg states of principal quantum
number » = 50, which were mixed with a circularly polar-
ized rf field with an amplitude of 0.3 V/cm and a frequency
of 65 MHz. The rf field was tuned near the 30-photon reso-
nance between the 50d state and the state with » = 50 and
orbital quantum number / = 32 (the level » = 50 in the sodi-
um atom is easily split into a group of states with different
values of /). During the pulsed optical excitation about ten of
the “dressed” rf states were populated. After the rf field was
turned off adiabatically (over a time of 5 us) a packet was
formed, localized in the angular variables (but not in the
radial direction) with an angular width of ~20°. The packet
at first was oriented along the electric vector of the rf field at
the time of excitation, and then it began to precess slowly.
Quantum mechanically, the reason for the precession was
that a packet of states of different values of /is not a station-
ary state because of the lifting of the orbital degeneracy of
the sodium levels. Yeazell and Stroud* interpreted this
non-stationary behavior classically as the precession of the
Kepler orbit due to the deviation of the potential acting on
the optical electron from Coulombic. Figure 4 shows the
distribution of the probability density for a packet localized
in the angular variables.”* The strong anisotropy in the an-
gular distribution of the electron density was detected by
means of ionization of the packet. The precession and disper-
sal of the packet were not observed under the conditions of
the experiment®® because these processes were too slow
(with a characteristic time of the order of milliseconds).

The radial localization of a Rydberg wave packet was
observed for the first time in the work of ten Wolde et al.** In
this experiment, 6-ps laser pulses with two-photon excita-
tion were used to prepare in the vicinity of the core of a
rubidium atom Rydberg states of the outer electron with
various principal quantum numbers in the region n = 42.
The packet was formed of only s and d states (with more d

5
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FIG. 4. Distribution of the probability density in the x-y plane for the
wave packet localized in the angular variables (from Ref. 23). The peak in
the distribution is located 5000 Bohr radii from the nucleus. The packet is
formed of states with large values of angular momentum (n = 50;
29<«<!<3;m, =1).
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states), which results in an angular delocalization of the
probability density. The packet was like a spherical cloud
with a radius that oscillated with the period of the Keplerian
motion T, = 270°#/Ry between the minimum and the
maximum distances from the atom core, as defined by the
classical turning points. Although indications of classical
dynamics appear in this evolution with time, a packet of this
sort is still far from being a particle moving in a Kepler orbit.
The presence of the packet near the core was detected from
the ionization signal induced by an additional probing pulse
delayed in time relative to the pulse creating the packet. The
probability of absorption of a photon is a maximum when the
electron is near the core. Therefore, the maximum ionization
signal occurs at a delay time that corresponds to the return of
the electron to the core after it has receded from the core to
the maximum distance. Ten Wolde et al. were able to observe
two similar returns of the packet. The experimentally deter-
mined recurrence time was 9.4 + 1.0 ps, which is in good
agreement with the theoretical value T, =10.2 ps (for
7i = 42). After two returns the packet decayed. The large
value of the dispersion is due to the considerable variations
in the energy spacings between the levels with different # in
the region of 1 =42 (@, ,,_ | — @, , ., < () ~*Ry/A).

In a similar experiment carried out with potassium
atoms,”> two-photon excitation was induced from the
ground state to a group of levels (mainly d-levels) with # in
the region of 7 = 89, which corresponds to T, = 107 ps. The
spectral width of the laser pulse encompassed several levels
(An = 5), so that very sharp peaks with the period of the
classical motion (Fig. 5) were observed in the delayed ioni-
zation signal. The decrease in the peak height, according to
Yeazell et al.>? is due to two causes: dispersal of the packet
resulting from the slight nonequidistance of the levels, and
fluctuations in the laser frequency from pulse to pulse.

The long-term behavior of the wave packet in a Ryd-
berg atom, the phenomenon of its decay and revival, was
recently studied in Ref 45. In that work a group of levels of
the potassium atom with 7 = 65 was populated by single-
photon excitation, and not by two-photon excitation as in
Ref. 33. In this way it was possible during the excitation to
avoid the shift of the atomic levels resulting from the high-
frequency Stark effect. The frequency chirp due to the Stark
effect has little effect on the behavior of the packet for short

lonization signal, arb. units
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FIG. 5. Experimental (points) and theoretical (solid curve) results for

the ionization signal from potassium atoms (from Ref. 33). The delay
time between the excitation and ionizing pulses is on the horizontal axis.
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FIG. 6. Ionization signal as a function of the delay time between the

excitation and ionizing pulses (from Ref. 45). a) Results of experi-
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ments with potassium atoms. The vertical dashed lines are separated
by intervals of time equal to the period of classical motion. b) Theoreti-
cal results.
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Delay time, ps

times, but it causes a substantial distortion of its long-term
evolution. As in the previous works, these experiments*’ in-
volved observation of a photoionization signal produced by a
delayed probe pulse. Figure 6 shows clearly five oscillations
corresponding to classical motion with n = 65, followed by
breakup of the packet because of dispersion. The experimen-
tal results are in good agreement with theoretical predictions
(Fig. 6b). After about 15 periods after the excitation the
delayed photoionization signal nearly completely recovers
its initial shape, which is an indication of revival of order 1/2
of the packet, asshown in Refs. 16, 31, and 32. The periods of
classical Keplerian motion of the electron are marked off on
the upper horizontal axis in Fig. 6. It follows from the ex-
perimental and calculated curves that the packet is regener-
ated with a shift of 1/2 a period relative to the position that a
classical electron moving for this length of time would have.
This result is clearly consistent with the scenario of frac-
tional revival, discussed above. The calculated curve in Fig.
6 shows in its middle part oscillations with twice the Kepler
frequency, which must correspond to the splitting of the
packet into two components (fractional revival of order
1/4). In the experiment of Ref. 45 this region of delay was
not sufficiently resolved, but in a recent and more careful
experiment'** showed with certainty the fractional revival
of this type.

The dispersal of a wave packet can be substantially re-
duced if the levels are almost equidistantly spaced. Ten
Wolde et al.** have reported the preparation of a long-lived
wave packet formed of a coherent superposition of ‘‘parabol-
ic” states of rubidium atoms in a dc electric field. Because of
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the field the rubidium levels of the hydrogenlike atom are
split by the Stark effect. For weak fields the Stark shift is
linear in the field and the level with the principal quantum
number # is split into a group of sublevels with energies

1

3
E,=- o Ry + 2 egagFnk;

where F is the electric field strength, k =n, — n,, and n,
and n, are the parabolic quantum numbers. The spacing be-
tween the sublevels is constant, which corresponds to beats
in the linear superposition of the parabolic states with a sin-
gle period T = 27#/3eyag Fn. During these beats the popu-
lations of the states with different / vary, and the angular
part of the wave function oscillates between a more or less
spherical distribution for small / and a distribution that is
highly elongated in the direction of the field for large
l~n — 1.Inthe experiment of Ref. 34, 7-ps laser pulses were
used for two-photon excitation of a group of levels with
n =23 in a rubidium atom placed in a dc electric field of
247.5 V/cm. The evolution of the packet of parabolic states
that was formed was observed by detecting the ionization
signal with a time-shifted laser probe pulse. During the beats
the ionization signal was a maximum when states with small
values of / had thelargest populations, and was minimum for
high population of the level with / = n — 1. Figure 7 shows
the dependence of the ionization signal on the delay time
between pulses. Up to ten oscillations are observed with a
period of 46 ps, which is in good agreement with the theoreti-
cal value of 45.8 ps.
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FIG. 7. Ionization signal from rubidium atoms in a constant electric field,

as a function of the delay time between the excitation and the jonizing
pulses (from Ref. 34).

The experiments with the Rydberg atoms have thus
made it possible to observe with good reliability the evolu-
tion of packets composed of highly excited states and ob-
serve indications of classical dynamics during this evolution.
However at the present time the “Rutherford atom” dis-
cussed in the introduction has still not been realized. The
packets that have been prepared are localized only in the
radial or in the angular variables, whereas a packet corre-
sponding to a classical particle must appear as a three-di-
mensional concentration of electron density, in which all the
characteristic dimensions are less than those of the classical
orbit.

4.LONG-TERM EVOLUTION OF PACKETS OF ELECTRON-
VIBRATIONAL STATES OF MOLECULES. LASER
FEMTOCHEMISTRY

Besides investigations of Rydberg wave packets in
atoms, a new field of molecular spectroscopy, stimulated by
the needs of chemistry, has been developed independently
and with great success, and has been called femtosecond la-
ser chemistry.***° The investigation of the dynamics of
chemical transformations in real time is a fundamental prob-
lem of chemistry. The characteristic time of molecular rear-
rangement is of the order of 10~ '? s or less. Therefore, only
methods of femtosecond spectroscopy have sufficient time
resolution to observe the individual states of the rearrange-
ment of the chemical bonds. Since the period of oscillation of
the nuclei of molecules is frequently hundreds of femtose-
conds, the excitation of molecules with femtosecond optical
pulses will create the conditions for formation of packets of
stationary states corresponding to individual vibrational lev-
els of the molecule. The evolution of these packets can, of
course, be associated with the motion of the nuclei along
classical trajectories during the chemical transformations of
the molecules.

Figure 8 shows one of the possible schemes for observ-
ing the nuclear motion during chemical transformations.*®
The adiabatic potential V¥, corresponds to the bound state of
a molecule, and the two repulsion terms ¥V, and V, corre-
spond to dissociated states of the molecule with different
degrees of excitation of one of the fragments. The initial
packet of states of the ¥, term is prepared by a short pump
pulse at the wavelength 4, . The repulsion that arises sets the
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FIG. 8. Potential curves of a molecular system excited by two optical
pulses separated by a delay time (from Ref. 49).

nucleus into motion according to the term ¥, thereby in-
creasing the internuclear distance. After some time delay the
molecule is acted on by a short probe pulse of wavelength 4,,
the absorption of which is accompanied by a transition to
term ¥, . In accordance with the Franck—Condon principle,
the absorption will be the greatest if after the delay time the
packet is in the region where ¥, (R) — V| (R) = 27fic/A,
(cisthespeed of light). For A, = A ¥ (probing the transition
state) this situation corresponds to a sharp peak in the de-
pendence of the absorption probability on the delay. How-
ever, if the second pulse is tuned to a transition into the free
reaction product (R— «, 4, =4 5), then, since any packet
sooner or later must be found in the region of large internu-
clear distances, the absorption signal flattens out to a plateau
with increased delay time. The degree of absorption of the
probe pulse can be determined, for instance, from the inte-
grated signal of subsequent luminescence from the spontane-
ous inverse transition V, - ¥, . The variation in the position
of the absorption peak as the wavelength is scanned by the
probe pulse affords the unique possibility of reconstructing
the dependence of the adiabatic potentials on the internu-
clear distance. The idea behind this experiment was realized
in the work of Dantus and his coworkers,*'**> who, by means
of the scheme described here observed the dissociation of
iodine cyanide (A, =307 nm, A5 =388.5 nm). The
wavelength of the probe pulse was scanned over 10 nm
towards the red. The experimental dependence of the ab-
sorption signal on the delay time was found to be in good
agreement with that expected (Fig. 9). The time of breakup
of the molecule, evaluated from the experiment, was about
205 + 30 fs. A theoretical investigation of the dynamics of
wave packets in the ICN molecule and the delayed absorp-
tion signals during its dissociation has also been reported in
Refs. 58-60 and 62.

By means of this technique it is possible not only to
monitor the transition stages of the formation and breaking
of chemical bonds, but also to observe in real time the vibra-
tional motion of a wave packet in the case where the term on
which the system is pumped is not a repulsive term. A strik-
ing example of this comes from femtosecond experi-
ments’>** on the dynamics of the predissociation of an excit-
ed Nal molecule into neutral fragments Na + 1. The
potential curves for this reaction are shown in Fig. 10. The
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FIG. 9. Absorption signal in experiments with ICN molecules (from
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Refs. 51and 52).a) A 5 = 385.5nm, b) 4 ¥ = 391.4, 390.4, 389.8, and
389.7 nm. The peak shifts to the right with decreasing wavelength.
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ground state of the Nal molecule is ionic. Since the energy
corresponding to Na* + I~ is greater than that for Na 4 I
when the atoms are widely separated, a quasicrossing of the
ionic and covalent terms occurs at R, ~6.93 A. The large
interaction between these terms in the neighborhood of R,
results in the formation of the adiabatic terms shown in Fig.
10 by the dashed lines, with the upper one being a bonding
term. A short laser pump pulse at a wavelength A, = 310nm
creates from the ground state of Nal a wave packet in the
covalent state, which begins to oscillate in the upper adiaba-
tic term. Each time it passes through the region of the quasi-
crossing the wave packet will make with a probability 0.1 a
Landau-Zener nonadiabatic transition to the lower adiaba-
tic term. As a result the wave function of the system in the
asymptotic region (R — « ) in the covalent term will consist
of a sequence of packets passing in succession. If the subse-
quent short laser probe pulse is tuned to resonance with the
D-absorption line of the free sodium atom (4 3° = 549 nm),
the dependence of the integrated signal of the inverse lumi-
nescence on the delay time between the pump and the probe
pulses has a staircase shape (the upper curvein Fig. 11). The
steps correspond to the appearance of more new packets in
the covalent term with the passage of time. If, however, the
second pulse is tuned out of resonance with the D-transition,
then the population of sodium atoms still locked in the tran-
sition state [Na...I] is probed, and the time dependence of
the signal is a periodic sequence of peaks (the lower curve of
Fig. 11). The authors of Refs. 53 and 54 have shown that the
repetition frequency of the peaks coincides with the frequen-
cy of classical oscillations in the upper adiabatic term at en-
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ergies determined by the wavelength of the pump pulse. The
falloff of the peak intensities is in accordance with the vari-
ation of the probability of the Landau—Zener transition as
the system passes through the region of the quasicrossing.
These experiments have stimulated a detailed theoretical in-
vestigation of nonstationary packet phenomena that occur
during this reaction,3*3461,64-69

Considerable success has been achieved in the observa-
tion of the long-term evolution of packets of vibrational
states of molecules in the work of Refs. 55 and 56, which was
focused on the pulsed optical excitation of iodine molecules

Energy, arb. units

o
[¢]]
Do

10 15
Internuclear distance A, A

FI1G. 10. Potential curves of the Nal molecule (from Refs. 53 and 54). The
bell-shaped curve to the left of the vertical axis shows the spectral width of
the excitation pulse. The motion of the packet, composed of vibrational
states, is shown in the form of a distribution of the probability density
moving along the horizontal axis.
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FIG. 11. Absorption signal in experiments with Nal molecules,asa
function of the delay time between the excitation and the probe
pulses (from Refs. 53 and 54). The explanation is in the text.

Delay time, ps

(1,). Figure 12 shows the ground term and two excited
terms of this molecule. The molecule was excited from the
ground state X to the term B at the wavelength A; = 620nm
by a short 50 fs pulse. A packet was created out of several
vibrational levels in the region of the vibronic quantum num-
ber v = 3 of this term. The presence of the packet was estab-
lished by a delayed pulse with a wavelength A ¥ with the
observation of, for example, the dependence of the lumines-
cence intensity at the wavelength A, on the delay time. The
results of the experiment are shown in Fig. 13, where one
sees a large number of oscillations of the detected signal,
corresponding to long-term oscillations of a particle-like
packet. Besides the oscillations with the classical period of
~300 fs, well-defined pulses in the envelope of the signal are
observed. The interpretation of these results is given in Ref.
56, and is based on the fact that the vibrational spectrum of
term B in the group of levels populated by the pump pulse at
A, are not equally spaced. In this case the detected signal
I(t) is represented in the form of a Fourier expansion

I(t) = E A05 w1, (43)
i

where the values of 4; depend on the parameters of the exci-
tation and the delayed laser pulses and of the three terms
that are involved in the experimental scheme. The frequency
o; depends only on the mutual arrangement of the vibra-
tional levels in the term B. It is obvious that in the case of a
spectrum with equal spacing we have o; = o, 20, 3o,...,
where @ is the frequency of the harmonics of the nuclear
vibrations. The inverse Fourier transformation of the mea-
sured signal in fact showed that there were several different
vibrational frequencies in the expansion (43) (Fig. 14). The
beats on the envelope of the signal are a consequence of this
multi-frequency character (the non-equidistance of the vi-
brational spectrum). We note that the time resolution in the
experiment of Ref. 56 was not sufficient to observe frequen-
cies at multiples of the frequency spacing between adjacent
energy levels, since the length of the readout pulse was not
short enough. The interesting possibility of solving the in-
verse problem of spectroscopy—reconstructing the adiaba-
tic potentials of molecules from the data of the time variation
I(t)—has been discussed in Refs. 56 and 59. For instance, by
taking the inverse Fourier transform of the signal I(z) it is
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possible to find the mutual positions of the vibrational levels
over an extremely broad energy region®® (of the order of the
energy width of the excitation pulse), which permits the so-
lution of the inverse problem with the use of well-known
methods.'?® A significant advantage of this “time-domain
Fourier spectroscopy’ over direct spectroscopic methods of
determining the vibrational spectrum in the term B is, for
example, that 7(¢) contains information on the interlevel
beats in the term B, independently of the positions of the
analogous levels in the other terms that are involved in the
experimental scheme. It is difficult to obtain independent
information by ordinary spectroscopic methods that investi-
gate the resonance transitions between pairs of levels that
belong to different terms. The advantages and disadvantages
of the spectroscopy described in this section, based on pulsed
excitation, and the study of the time dependence of the re-
sponses of the molecule have been discussed thoroughly in
Ref. 70.

50 T T T T T T

8g + b

50 + EANAANANNAN B

2 3 « 5,
Internuclear distance #, A

FIG. 12. Potential curves and the excitation scheme for the I, molecule
(from Ref. 55).
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FIG. 13. Dependence of the absorption signal on the delay time
between the excitation and probe pulses in experiments with I,
4 molecules (from Ref. 55).

Delay time, fs

The experiments with molecules, described above, thus
give an affirmative answer to the question posed in the intro-
duction as to whether it is possible to observe classical vibra-
tions of nuclei, and they also demonstrate the behavior of the
post-classical stages of the nuclear motion. The situation
with regard to the observation of these effects in molecules
is, for a variety of reasons, simpler than in the case of the
Rydberg atoms, discussed in Section 4. First, the presence of
asingle vibrational degree of freedom in a diatomic molecule
simplifies considerably the conditions of the excitation of
particle-like spatially localized packets. The only require-
ment is essentially that a large enough number of levels be
involved in the formation of the packet. This is achievable by
virtue of the spectral width of a short excitation pulse. This
discussion also pertains to multiatom molecules if one-di-
mensional bonds are optically excited in them. We recall
that the main obstacle to the solution of the analogous prob-
lem in hydrogen-like atoms is its three-dimensional nature.

Second, a feature of molecular vibrational spectra is the
presence of extremely broad energy regions containing a
large number of practically equidistant levels. This circum-
stance makes it possible to create packets that undergo peri-
odic oscillations for a long time without dispersing. These
groups of levels can be found far from the dissociation
threshold, which distinguishes molecules favorably in this
respect from Rydberg atoms, where the necessary levels lie
at the edge of the continuum.

".2(2)em", v=8-9 l—__ 73 7(2)em=1, u=7-8

S

M. 5@)em™ y=F-7

We note also that the general arguments in Section 2,
based on very simple assumptions about the energy spec-
trum, can be transferred unconditionally to one-dimensional
molecular wave packets. The experiments to which we have
referred also serve to illustrate these arguments, but of
course they do not exhaust all the aspects of laser femtoche-
mistry. The majority of theoretical works in this field con-
tain calculations that take into account the features of the
spectra of the specific molecules for various methods of exci-
tation. Calculations of this sort are necessary for a quantita-
tive analysis of experimental results and are dictated by the
large variety of molecular spectra. This also distinguishes
the situation with molecules from that of hydrogen-like
atoms, where the Rydberg states have a universal character.
Readers that are interested in specific calculations will find
them in the works cited above. A detailed discussion of these
calculations is beyond the scope of this review, which is de-
voted to the general aspects of the dynamics of wave packets.

5.PACKETS OF QUANTUM STATES OF THE
ELECTROMAGNETIC FIELD IN NONLINEAR-OPTICS
SYSTEMS. THE EVOLUTION OF PACKETS OF STATIONARY
STATESINASTRONGLY COUPLED “ATOM + FIELD”
SYSTEM

As we have noted above, the features of the long-term
evolution of packets of stationary states of nonlinear quan-
tum systems (with nonequidistant spectra) have a quite uni-

FIG. 14. Fourier transform of the absorption signal in experi-
ments with I, molecules (from Ref. 56). The arrows indicate the
vibrational frequencies that correspond to adjacent energy levels
with vibrational quantum numbers v.

Vibrational frequency, cm™!
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versal character, and show up in many details even in the
very simple case of a one-dimensional oscillator with a weak
anharmonicity. It therefore appears natural and reasonable
that these phenomena were first encountered in investiga-
tions of the states of the electromagnetic field generated by
nonlinear-optics media, where these states can be described
by a model of a weakly anharmonic oscillator. In connection
with this topic a number of publications®’-*"-**** have dealt
with the long-term behavior of packets of stationary states of
a field oscillator with the Hamiltonian

T RE TR TR (44)

where w is the frequency of the mode of the electromagnetic
field and a* and a are the creation and annihilation opera-
tors. The Hamiltonian (44) is used to describe propagation
of light through a nonlinear light guide, where the nonlinear
term, proportional to 4, is due to the Kerr nonlinearity of the
medium.'?® In Refs. 87 and 88 Milburn and Holmes studied
the time dependence of the so-called Q-function

e o', =1 r(;:fe;l)ia')-\a i,
where 6 (¢) is the density matrix of the system with the Ham-
iltonian (44) and |a) is a coherent state of the harmonic
oscillator. It was assumed that at the initial instant of time
the system was in the coherent state |a,). The quantity
Q(a,a*,t) represents the localization of the wave function of
the system in phase space. A direct numerical calculation
carried out in Ref. 87 showed that the initial localization Q is
a function that disperses with time, undergoing interference
beats, but then recovers its localization, forming regular spa-
tial structures (we note also the work of Ref. 92, in which
analogous behavior was observed for a nonlinear oscillator
subjected to an external periodic force). The physical rea-
sons for this behavior were discovered in Ref. 89, where it
was shown that in the evolution of the initial coherent state
in a system with the Hamiltonian (44) a linear superposition
is formed of two coherent states shifted from each other by 7
(one of them is retarded from the other by half an oscillation
period T = 27/w). In accordance with the analysis per-
formed in Refs. 31 and 32 (see also Section 2 of this review),
this corresponds to fractional revival of order 1/4. States of
this kind have been examined previously from a formal point
of view in Ref. 130, where they were called generalized co-
herent states. Yurke and Stoler®®®! suggested the use of an
effect that they observed for the generation of nonclassical
states of light that maintain their quantum mechanical prop-
erties for a macroscopically large average number of pho-
tons. A similar effect was also observed in the work of Me-
cozzi and Tombezi®*** in a study of quantum systems
simulating optical processes in media with a nonlinear bire-
fringence, and by Yurke ez a/.*® in their analysis of a quan-
tum mechanical model of a four-wave mixer. In Ref. 94
Tombezi et al. suggested the possibility of multipacket struc-
tures that form during the evolution of the initial state at
times ¢~ T, /2%, where k = 2,3,... although they were un-
able to give them an analytical description. The solution of
this problem is also a part of the universal scenario of frac-
tional revival.*'*?

To detect such macroscopic states of light that preserve
their essentially quantum mechanical properties (for this
reason they are sometimes called “optical Schrédinger
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cats’®*°!), Yurke and Stoler®*-*' proposed to use the phase-
sensitive technique of homodyne detection.’*'"!** In this
method of measurement the electromagnetic field that is
studied is mixed at the surface of the photodetector with a
powerful reference beam at the same frequency with a phase
¢ that is monitored by the experimenter and can be varied.
The statistical distribution of the total number of photoelec-
trons counted by the detector in a specified time reflects the
multipacket character of the state of the initial field in Fock
space. The quantum mechanical coherence between the
packet fractions shows up as interference beats in the statisti-
cal distribution of the total number of photon counts for
specific values of .8°1%4

The problem discussed in this review should also in-

clude investigations of the long-term evolution of packets
comprised of stationary states of a strongly coupled “atom
+ field” system (see. e.g., the review in Ref. 95). With the
use of a two-level (or a several-level ) model of the atom it is
not possible, of course, to follow the transition to a complete-
ly classical description of the resonance interaction of light
with matter. However, the features of the long-term evolu-
tion of packets, their destruction and revivals are in many
ways similar to those that have been discussed above, and
they have similar causes and manifestations.

The simplest completely quantum mechanical model of
the interaction of light with matter, the Jaynes—Cummings
model, describes the behavior of a single two-level atom that
is coupled to a single mode of the quantized electromagnetic
field.!*#1*% In the resonance approximation the Hamilto-
nian of the model has the form

H= % fwgoq + fil(o a + 6_a+) + fw(ata + %); (45)

where 0, and o are the Pauli matrices, a* and a are the
Bose creation and annihilation operators for quanta of the
field mode, and the frequency @ of the field is close to the
frequency w, of the atomic transition |A|<w,, o,
A = w, — w, and A is the coupling constant. For A = 0 the
eigenstates of the Hamiltonian (45) are |1,n) = {1)|n) and
|2,n) = |2)|n), where the vectors |1) and |2) describe an
atom in the ground and excited states, respectively, and |n)
is the n-photon state of the field oscillator. Since the Hamil-
ton (45) couples states of type |2, n) only to states
[1, n + 1), the eigenvectors, the energy spectrum, and the
time dependence of the wave function of the system can be
found exactly. If, for example, at time ¢ = O the state vector is

lp©@) = |1 a,|n), (46)
n=0
then in the simplest case of exact resonance (A = 0)

[w()) = E{ancos(Qnr) [ 1, nYexp(—inwi)

n=0
- ia"Hsin(Q"t)|2, nyexp[—i(n + Dwt}}, (47)
- /
Q, = Anl/2,

It follows from (47) that the population of the ground state
of the atom varies with time as

n () = Elan|zcos2§2nt. (48)
n=0
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We shall assume that the coefficients a, of the initial
field packet have maximum moduli for n = #> 1 and fall off
rapidly with distance from this central value by an amount
An; (1€An<n). As long as the cosines in expansion (48),
corresponding to transitions between the various compo-
nents of the packet, oscillate in phase, we can take this oscil-
lating function out from under the summation sign with the
average value n = 7, and using the normalization condition
3,la,|? =1 obtain

n, (1) = cos}(Q;1). (49)
Expression (49) describes the well-known Rabi beats!!>!!?
at the frequency 1, = A7'/? in the population of a two-level
system subjected to the action of a classical electromagnetic
field. The condition for the validity of this formula here is

dg

n

Tdn |, (Any <1, (50)
that is,
d -1
| <y (d_n” . An) . (51)

For an initial packet that has the form of a coherent state of
the field mode, ¢, ~4 ~' and does not depend on 7 (this is
correct only in the case of exact resonance®®” ).

For tR ¢, large phase shifts accumulate between the
various terms in (48) because (),is not constant, and as a
result the contributions of all these terms become averaged
over a background of a smooth distribution of a,. The Rabi
beats cease (the so-called collapse'*®), and the populations
of the states of the atom no longer depend on the time
(n, (t) = n, (t) = 1/2). The form of the envelope of the col-
lapsing Rabi beats in the case of exact resonance was studied
in Ref. 136, and for the case of detuning in Refs. 96 and 97.
The phenomenon of collapse, like the destruction of the
wave packet discussed above, is due to the dependence of 2,
onn

n

d

an iAn+...

It was first pointed out in Refs. 96 and 97 that for
t~T,, =m(dQ,/dn|;) ~'>t, additional phase shifts be-
tween the various contributions to the sum (48), due to Q,,
not being a constant, become multiples of 7. The initial time
variation of the beats in the population is approximately re-
covered (they are revived) and then they again collapse. Ap-
proximate revivals also occur for t = mT,,, (m=2,3,4,..;
Fig. 15). The form of the envelopes of the beats near each
revival, and also the pulsations that occur where these enve-
lopes begin to overlap, have been studied in detail in Refs. 97,
137, and 138. Similar behavior appears also in the time-de-
pendent dynamics of the average dipole moment of an atom.
In the case of two-photon resonance of an atom with a field
mode, the approximate periodicity of the revival becomes
exact.'* The revival of the Rabi pulsations in the Jaynes-
Cummings model is due to the discrete nature of the energy
of the quantized electromagnetic field and is a purely quan-
tum mechanical phenomenon. The collapse and revival of
the Rabi nutations were first observed in the experiments of
Rempe ez al.'* (see also the review of Ref. 141), in which a
beam of rubidium atoms in the 63p,,, state was transmitted
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FIG. 15. Long-term evolution of the atomic inversion

W(t) = n, () — n, (¢) (from Ref. 97) a) collapse; b) revival of the Rabi
beats.

through a high-Q superconducting microwave cavity. The
transition between the Rydberg states 63p,,, — 61d;,,, to
which the cavity was tuned, corresponded to the two-level
system of the Jaynes—Cummings model. The number of non-
equilibrium photons in the mode arising in the transition of
the atoms to the lower level is determined by the flux of
atoms through the cavity. The measurements were made for
various values of the flux while no more than one atom was
present in the cavity at one time. The time of interaction of
the atoms with the field (the transit time of an atom through
the cavity) was controlled by varying the velocity of the
atom beam. The population of the atoms in the upper state
after passing through the cavity was monitored by the ioni-
zation signal. For low fluxes Rabi beats were observed in the
time dependence of the atomic inversion. As the flux was
increased the beats smoothed out, and then they appeared
again, which was interpreted as collapse and revival.

The nontrivial time dynamics of the averaged quantities
(level population, average dipole moment of the atom) is
directly connected to the restructuring of the packet of states
of the field oscillator. Let us demonstrate this point by argu-
ments similar to those used in the analysis of fractional revi-
valin Section 2. We shall consider as an example the shape of
that part of the wave function of the field that corresponds to
an atom in state 1 after a time 7
1 o0
Iy, () = 5] 1) a,exp(~iQ,t — inwt)| n)
n=0

+ %| l)nzoanexp(ignt — inwi)|n) (53)
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(one can determine the intracavity field in this state by de-
tecting the atoms exiting from the cavity after an interaction
time ¢, and selecting only those events for which the atom is
in state 1). The probability of detecting an atom in the lower
energy state is, of course equal to |{i, (¢)|¥; (£)}|>. If we
take into account that at the initial instant of time the field is
in a coherent state and if the deviation of 2, from ; is
ignored, then we see that |, (¢)) is a superposition of two
coincident packets that are Gaussian in the “space’ of the
field oscillator and are oscillating in phase

(g ) = Hexp(— i1 jee exp( ~iwi))

1
+ icxp(z'Q,.lt)Ia exp(—iwf)).

If wekeep the terms in (52) that are of first order in (n — 1),
the resulting expression gives an effective renormalization of
the oscillation frequency of the packet w - + dQ1,/dn|;.
As a result, the initial in-phase packets in (53) move apart
and no longer overlap, so their interference is eliminated and
the population beats collapse. After a time T, the packets
again intersect, and the beats are regenerated. A similar rela-
tion between the phenomena of collapse and revival in the
Jaynes-Cummings model with the splitting of the field pack-
et was recently examined theoretically in Refs. 142 and 143
in studies of the long-term behavior of the Q-function of an
electromagnetic mode.

6. CONCLUSIONS

The study of the dynamics of packets composed of high-
ly excited stationary states of various quantum systems has
produced a number of extremely important results in recent
years. In experiments with pulsed laser excitation of atoms
and molecules it became possible to observe effects that be-
long to the boundary between quantum- and classical phys-
ics. It became practical to prepare localized wave packets
moving according to quasiclassical laws and describing al-
most classical oscillations of nuclei in molecules and Kepler-
ian motions of an electron in an atom. Essentially for the first
time since the development of the quantum mechanics of
atomic particles the correspondence principle and the
bounds of its applicability became a subject for direct experi-
mental investigation. It has been shown theoretically and
experimentally that the long-term “‘post-classical” evolu-
tion of wave packets follows a very universal course, with the
formation of macroscopic quantum structures that replace
one another with the passage of time. The mechanisms for
the formation of coherent packet structures in wave func-
tions of atomic particles prove to be closely tied to the mech-
anisms, related to the essentially quantum mechanical na-
ture of the electromagnetic field, for the generation of
nonclassical states of light in nonlinear-optics systems.
These advances as a whole open up new prospects for testing
the fundamental propositions of quantum mechanics by op-
tical methods. In addition, potential practical applications
of this set of phenomena have been found.

The investigations of packet dynamics in the aspect de-
scribed above are far from complete. It would, therefore, be
rash to make extensive predictions about their further devel-
opment. We note only certain problems. It would be of im-
portance to prepare a packet of Rydberg states of an atom,
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localized in both the radial and the angular variables, and
thus comprising a particle-like entity moving in a Kepler
orbit. This, of course, would at the same time be the first
realization of the Rutherford atom, a concept that played
such an important role in the formulation of quantum me-
chanics. Also of great importance are investigations of the
long-term evolution of packets from the point of view of the
relation between the phenomena of dynamic chaos in classi-
cal and quantum mechanical systems. Considering the uni-
versality of the laws of evolution of wave packets in quantum
mechanical systems with a discrete spectrum, it would be of
considerable interest to include in the list of investigated top-
ics semiconducting quantum-size-effect structures such as
quantum wells. The use of these microelectronics structures
with quantum mechanical properties presents still another
route for passing into this boundary region by way of the
physics of the so-called mesoscopic phenomena. This route
is in essence an alternative to that described in this review,
since the transition to the mesoscopic region is from the di-
rection of the macroscopic region.

We are grateful to N. B. Delone, who suggested this
review, and also to J. Eberly, H. Metiu, K. Stuart, A. Me-
cozzi, P. Tombezi, B. Yurke, and P. Zoller for kindly provid-
ing reprints of their latest publications, including those in
press.
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