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The current state of the theory of superfluidity in pulsars is presented. The superfluidity of
hadronic matter in neutron stars is considered. It is shown that strong interaction between the
neutron and proton condensates leads to a drag current of superconducting protons and to the
generation of a strong time-independent magnetic field (B = 1012 G) parallel to the axis of
rotation. The strength of this field depends on the microscopic parameters of the superfluid
hadrons. Models explaining the origin of glitches and postglitch relaxation are discussed. The
coupling time between the neutron superfluid and the rigid crust of the neutron star is calculated.

Pulsars are objects that emit stable periodic radio pulses
and are among the most remarkable entities in our Gal-
axy.1'2 They are effectively unique cosmic laboratories that
provide a testing ground for the interplay, application, and
verification of many ideas drawn from different branches of
physics, e.g., gravitation, nuclear physics, low-temperature
physics, and plasma physics. There are many important un-
answered questions despite the substantial advances in our
understanding of the physical processes in pulsars since the
discovery3 of pulsars in 1967 and their identification4 as
rotating neutron stars. It is now firmly established that pul-
sars are rapidly rotating neutron stars with a very strong
magnetic field.5 The radiation emitted by pulsars is highly
polarized (45-95% in the case of the pulsar PSR 0833),
which indicates that the radiating regions lie in a very strong
magnetic field. The strength of this field has been estimated
from experimental data on x-ray pulsars in binary systems.
In 1976, balloon observations6'7 of the spectrum of pulsar
HER-X-1 revealed the presence of a very narrow emission at
58 + 5 keV with intensity / = 3 X l O ~ 3 photons/cm2 s,
which was due to cyclotron emission8'9 by electrons travel-
ing in a magnetic field Hx 5 X 1012 Oe. In 1977, the presence
of the narrow line Er ̂  64 keV in the hard x-ray emission of
pulsar HER X-l (period 1.24 s) was confirmed by observa-
tions from the Ariel 5 satellite.10 The cyclotron line at
Er^\ 1-20 keV has also been observed'! in the spectrum of
the x-ray pulsar 4U0115 + 63. The magnetic field of this
pulsar was reported12 as being of the order of 1.2X 1012Oe.

A similar feature has also been seen at EY =; 80 keV in
the x-ray spectrum of the Crab nebula. Its intensity was
found to vary with a period of 33 ms, i.e., the rotational
period of pulsar PSR 0531 + 21 in the Crab nebula.13'14 Ob-
servational data are thus seen to suggest the presence of a
strong magnetic field in pulsars.

Another remarkable property of pulsars is the superflu-
idity of their interior, which has a significant influence on
the dynamics of their rotation.

The very earliest observations15 demonstrated the sur-
prising stability of the basic pulsation periods. They can be
predicted, in some cases, to better than 10" 12 over an inter-
val of several years, i.e., almost with the precision of atomic
frequency standards. It has therefore been suggested that

millisecond pulsars, with the highest stability of emission
periodicity, could serve as highly accurate providers of an
astronomic time scale.

The frequency derivative li of pulsars for which there is
an adequate supply of observational data is always negative,
i.e., the period p increases with time. This monotonic in-
crease in the period is called the secular variation and is due
to the loss of rotational energy and of angular momentum by
the neutron star.16"18 This secular variation was first discov-
ered for the Crab pulsar19 for which p = 4.2 X 10" 13 s/s.
The highest value of the derivative, i.e., p = 1.54X 10 ~ 12

s/s, was recorded for pulsar PSR 1508-59 which has p = 150
ms [20] and lies in the remnant of the shell-type supernova
MSH 15-52. The smallest derivative among those measured
so far, i.e., p = 3.2X 10 ~20 s/s, has been reported for the
millisecond pulsar PSR 1953 + 29 which hasp = 6.1 ms and
is part of a binary system. We note that the shortest known
period p = 1.557 ms, is that of the millisecond pulsar21 PSR
1937 + 21 in the Vulpecula constellation. Its frequency sta-
bility is of the order of the stability of the better atomic fre-
quency standards.22 Of the 464 known radio pulsars,23 PSR
1845-19 has the longest period, i.e.,/? = 4.308 s. We thus see
that the period derivatives range over eight orders of magni-
tude, which is much greater than the four orders of magni-
tude occupied by the observed periods.

The secular variation of the period has superimposed
upon it small but significant fluctuations that are probably
random and unpredictable. In addition, many pulsars exhib-
it a step-like increase (glitch) in angular velocity, followed
by slow relaxation. These period glitches are quite rare and,
so far, have been observed only for 11 pulsars,24'153 The lar-
gest glitch was observed in 1985 for pulsar PSR 0355 + 54.
The relative reduction in period was25 b.p/p = 4.4 X 10 ~ 6

This pulsar is also remarkable in that its period was found to
exhibit two glitches, the first being bf/p = 5.62 X 10 ~ 9 and
was the smaller.24 Eight large glitches were recorded for
pulsar PSR 0833-45 in the Vela constellation, for which, in
each case, the period fell by about 200 ns, which is very small
in comparison with the rate of regular increase in the period,
i.e., about 11 ns/day. The relative reduction Ap//> for this
pulsar is of the order of 2X 10 6 and is found to be con-
stant.26-28 Pulsars PSR 1641-45, PSR 1325-43, PSR
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2224 + 65, PSR 1737-30, and PSR 1823-13 had one large
glitch each.29'31 Three small glitches were recorded for the
Crab pulsar with kp/p ranging between 10 ~9 and 4 X 10 ~8

(Ref. 32). Pulsars PSR 0525 + 21, PSR 0823 + 26, and
PSR 1951 + 32 each showed one such glitch.33-154 In each of
these events the reduction in the period was accompanied by
an increase in the period derivative/). The increase then re-
laxed exponentially with a time constant ranging from a few
days to a year. These time constants cannot be explained in
terms of the normal viscosity of matter in neutron stars. The
glitches in the rotational period and their slow relaxation
suggest that neutron stars may have a superfluid component
that is weakly coupled to the remainder of the star.

Experiments on the time-dependent dynamics of slow-
ly-rotating superfluid He II lead to the same conclusion.34"36

They revealed a deep analogy between the behavior of a pul-
sar after a period glitch and the behavior of superfluid He II
when the rotation of its container was speeded up. Our aim
in this review is to present recent results on the superfluidity
and magnetic field of neutron stars.

Section 2 presents a description of the structure of neu-
tron stars and discusses the superfluidity of their hadronic
matter. Section 3 describes the drag of superfluid protons by
superfluid neutrons in the superfluid core of the neutron
star. Section 4 constitutes the main part of our review and is
devoted to the generation of magnetic fields in pulsars by
superfluid currents. Section 5 discusses an explanation of
period glitches in terms of the motion of a lattice of quan-
tized neutron vortex lines.

2. SUPERFLUIDITY OF HADRONIC MATTER

In 1932, L. D. Landau suggested for the first time that
superdense cores could be formed in massive stars that have
exhausted their internal energy reserves.37 W. Baade and F.
Zwicky38 then predicted the possible existence of neutron
stars in supernova remnants. Relativistic calculations on
such superdense stellar configurations consisting of a degen-
erate perfect gas of neutrons were first performed by J. Op-
penheimer and G. Volkoff.39 This led to the concept of neu-
tron stars consisting mostly of neutrons with mass of the
order of one solar mass M& and radius of the order of 10 km.
The mean density in the interior of such stars was predicted
to be of the order of the nuclear density, i.e., p0 = 2.8 X 1014

g/cm3.
After the discovery of many new types of baryons, the

theory of superdense stellar configurations was re-examined
and developed further by V. A. Ambartsumayan and G. S.
Saakyan.40'41 They found that, as the density rose, different
hyperons should successively appear and grow in number in
the degenerate gas. Superdense stellar configurations con-
sisting of a real baryon gas were discussed in Refs. 42 and 43.
These investigations showed that neutron stars had a maxi-
mum mass of approximately 2Mo. At present, the mass of
pulsar PSR 1913 + 16, which is part of a binary system, is
the most accurately known. It amounts to 1.43 MQ.

Our inadequate understanding of the structure of neu-
tron stars arises from the sensitivity of this structure to the
form of the equation of state of nuclear matter for densities in
excess of nuclear density p0 = 2.8X 1014 g/cm3. This equa-
tion has not as yet been adequately investigated. Difficulties
with understanding the equation of state at such densities are

due to uncertainties about the nucleon-nucleon interaction
and the complexity of calculations of ground-state energy in
many-particle theory.

2.1. Structure of neutron stars

The following picture of the internal structure of neu-
tron stars is now generally accepted.

(a) The crust of a neutron star consists of the inner
Aen-phase and the outer Ae-phase.5 The latter consists
mostly of 56Fe nuclei and a degenerate gas of free electrons.
Because of the electrostatic repulsion between them, iron
nuclei form a body-centered crystal lattice, thus creating the
solid outer crust of the neutron star. The density of matter in
the Ae-phase ranges from 104 to 4.3 X 1011 g/cm3.

The Aen-phase contains all the neutron-enriched nuclei
forming another crystal lattice and the degenerate gases of
free relativistic electrons and free neutrons.5 The density of
matter in the Aen-phase ranges from 4.3 X 1011 to 2.4 X Ю14

g/cm3. The total thickness of the crust is of the order of 1 km
(Ref. 44).

(b) The nuclei disintegrate at densities of the order of
the nuclear density /90г;2.8Х 1014, and the npe-phase is
formed. It consists of a homogeneous mixture of neutron,
proton, and electron fluids.5 The proton and electron densi-
ties are equal because of local neutrality, and amount to a
few per cent of the neutron density.

Hyperons and muons are produced in the central part of
the star at densities of the order of 1015 g/cm3. A hyperon
core is thus seen to appear at the center of the star and con-
tains hyperons, nucleons, muons, and electrons. For config-
urations with high central densities pc, most of the stellar
mass is localized in this core.5 The radius of the core is of the
order of 10 km.

(c) A. B. Migdal has shown45 that, when the density p
is high enough, the boson vacuum is restructured in the nu-
cleon medium, and this leads to a phase transition in which
the pion condensate is formed. The condensate produces a
significant softening of the equation of state of the neutron
star45'46 and thus affects such important integral parameters
of neutron stars as their mass, radius, and moment of inertia.
The appearance of the pion condensate is accompanied by a
substantial increase in the rate of cooling of the neutron star
produced in the supernova explosion.47^9 Several models
rely on the van der Waals equation of state, which leads to a
first-order phase transition, i.e., a density jump occurs in the
interior of the neutron star and may lead to the release of
energy of the order of the energy of the supernova explo-
sion.50-51

A core containing the pion condensate can thus appear
at the center of the star. The authors of Ref. 52 use the devel-
oped pion condensate model (DPCM),53 modified54 to al-
low for the electric charge, together with the Bethe-Johnson
equation of state55 in which the npe-phase ends at density
p, = 8.45X 1014 g/cm3 and the core containing the pion
condensate begins for density p2 = 1.28 X 1015 g/cm3. The
integral parameters of the neutron star with central density
pc = 3.45X 1015 g/cm3 are as follows: mass M= 1.41MQ,
stellar radius R = 9.31 km, and radius of the core containing
the pion condensate Rc = 6.2 km. For comparison, we re-
produce the integral parameters of an ordinary neutron star
described by the Bethe-Johnson equation of state for central
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density pc = Зх Ю15 g/cm3:Af = 1.65MQ and R = 9.6 km
(Ref. 56).

2.2. Superfluidity of nuclear matter

A new stage in the investigation of the internal structure
of neutron stars and the structure of atomic nuclei began
with the advent of the microscopic theory of superfluidity.57

N. N. Bogolyubov pointed out the possibility of superfluid
nuclear matter58 and A. Bohr, B. Mottelson, and D. Pines
considered superfluid states in atomic nuclei.59 The theory
of superconducting-type pair correlations was developed in-
dependently by S. T. Belyaev60 and by V. G. Solov'ev,61 and
was found to explain many nuclear properties.

The basic ideas and methods of the microscopic theory
of superconductivity were then used to analyze the internal
structure of neutron stars. A. B. Migdal investigated the
equation of state of the neutron fluid and was led to the possi-
bility of superfluidity in neutron stars.62 V. L. Ginzburg and
D. A. Kirzhnits63 used the analogy with rotating He II to
suggest the possibility of a certain configuration of vortex
lines in a rotating neutron superfluid. They also estimated
that the neutron energy gap in the 'So-state was of the order
of a few MeV. Similarly, the strong interaction between pro-
tons gives rise to Cooper pairs and to a charged proton con-
densate in the npe-phase.64 On the other hand, electrons
form a normal degenerate Fermi gas.

Studies of the superfluidity of hadronic matter became
more intensive following the discovery of pulsars and of the
angular velocity glitches. In particular, anisotropic pairing
of neutrons in the core of a neutron star67 was investigat-
ed65'66 by analogy with anisotropic pairing in superfluid
3He. The change in the character of pairing is due to the fact
that the 'S0 interaction between neutrons becomes repulsive
at nuclear densities, and singlet pairing is disrupted. How-
ever, the 3P2-

3F2 tensor interaction in this density range
leads to an effective attraction and to triplet pairing.68 The
effect of proton superconductivity on the magnetic-field
configuration and decay was examined in Refs. 69 and 70.
The coupling between the solid crust and the superfluid core
was studied in Refs. 71. The following picture has emerged
from these investigations:

(a) For densities in the range 4.6X 10n</?< 1.6X 1014

g/cm3, free neutrons in the Aen-phase form a superfluid
containing 'S0 pairs. The rotation of the star then ensures
that a structure consisting of quantized vortex lines parallel
to the axis of rotation appears in this fluid. The cores of the
vortex lines, in which the condensate function vanishes, can
become attached to the atomic nuclei in the crust (this is the
so-called pinning) or they can pass between the nuclei. The
maximum neutron gap is Д2тах = 1.7 MeV (Ref. 72).

(b) For densities 1.6X 1014<p< 1.4X 1015 g/cm3 in
the npe-phase, the neutron superfluid is more likely to con-
sist of 3P2 pairs, and a system of vortices is again formed. The
maximum neutron gap is Д2тах =0.15 MeV (Ref. 73).

(c) The proton fluid in the npe-phase becomes super-
conducting for densities in the range
2.4X Ю14 <p < 7.8 X Ю14 g/cm3. The protons pair off in the
'S0 -state and constitute a type II superconductor in which a
mixed-state vortex structure is established, i.e., the magnetic
field penetrates the interior in the form of quantized vortex
lines with flux Ф0 = 2X Ю~7 G-cm2. The maximum gap
is72 Al m a x = 0.3 MeV. The dependence of the proton gap on
the density is also calculated in Ref. 74.

Different authors have used different methods and dif-
ferent nucleon interaction potentials to calculate the gap Д
as a function of the density of matter. These potentials in-
cluded the Reid potential,75 the one-pion Gaussian ex-
change potential,76 the Omura potential,77 and so on. The
results reported by the different workers are qualitatively
very different. The reason for this is that theoretical studies
are still continuing with the view to improving the superfluid
parameter values of hadronic matter.78'79 Values of the func-
tion Д calculated by different workers are compared in the
figure.

In the publications cited above, the energy gap Д was
calculated at zero temperature. However, we know that Д
decreases with increasing temperature, and vanishes at a cer-
tain critical temperature Tc at which the medium goes over
to the normal state. The question of the existence of super-
fluid neutrons and protons in a neutron star is thus effective-
ly reduced to the comparison of the critical temperatures
with the temperature in the stellar interior. The critical tem-
perature Гс is usually estimated from the BCS formula
kB Tc = 0.57 Д. According to Refs. 72 and 73, for protons

70;
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FIG. 1. Superfluidity in the Aen- and npe-phases of a neutron star.
CCY-proton gap as a function of density.74 The other curves show the
neutron gap as a function of density: HGRR-Ref. 7, YC-Ref. 77, T72-
Ref. 68, T84-Ref. 78, CCKS-Ref. 79. The critical temperature Tc as a
function of density is also shown. The figure is based on Ref. 155.
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Гс, = 2Х Ю9 К and for neutrons Тл = 1010 К ('So-pair-
ing) and Тл = 9x Ю8 К (3P2-pairing). Standard cooling
calculations have shown that the internal temperature Г ap-
proaches Ю8 К after a few hundred years following the birth
of the star.80-82

The internal temperature of pulsars, including some
very young pulsars, is thus found to be lower than the char-
acteristic critical temperatures of neutron and proton super-
fluid condensates, which may be regarded as a convincing
argument in favor of the existence of both neutron and pro-
ton superfluidity in the nucleon-nuclear phase.

(d) Neutron stars with a "soft" equation of state have a
core consisting of a superconducting negative-pion conden-
sate.53 We shall show below that a strong magnetic field is
generated in the npe-phase. This situation gives rise to the
following question: is it possible for the magnetic field in-
duced in the npe-phase to penetrate the core of the neutron
star, which contains the superconducting pion condensate,
and, if the answer is in the affirmative, what is the structure
of the magnetic field in the star?

To answer this question, we must take into account the
pion-nucleon interaction in the meson tr-model, which leads
to the following important changes in the physical picture.83

First, the attractive P-wave pion-nucleon interaction trans-
forms the pion condensate into an inhomogeneous state with
characteristic momentum k?^0 and, second, in addition to
the negative-pion condensate there is also the condensate of
positive pions in the S-state in the form of a bound state of a
proton and a neutron hole. We note that the presence of the
positive-pion condensate gives rise to an additional electric
current.

The superconducting properties of the inhomogeneous
pion condensate were discussed in Ref. 83 in the cr-model.53

The critical field Hc for the destruction of the superconduc-
tivity of the pion condensate was found on the assumption
that it was a type I superconductor. The lower critical field
Hcl was estimated for a type II superconductor on the as-
sumption that the mixed state of the system had a vortex-line
structure.

The behavior of the inhomogeneous pion condensate in
a magnetic field near the condensation threshold was also
investigated in Ref. 84 in which the Lagrange function of the
system was expanded in terms of the amplitude of the con-
densate field. It was shown that the pion condensate was a
type II superconductor with <5> 1 in which the mixed state
had a laminar (layered) structure. However, this method
cannot be employed for densities much above the threshold
pion density/?,. We also note that the density range in which
this analysis is valid is not encountered in a neutron star
because of the density jump at negative-pion condensation.

We shall show later that, in the a-model, the negative-
pion condensate is a type II superconductor with a laminar
structure of the mixed state.

2.3. Vortex structure of the neutron fluid as a consequence of
rotation

An asymetric lattice of quantized vortex lines parallel
to the axis of rotation is formed in a rotating superfluid. This
lattice rotates as a whole around the axis of rotation, thus
simulating rigid rotation.85 Consequently such vortex lat-
tices are formed in the neutron superfluid in the Aen- and
npe-phases. Each neutron vortex line is characterized by a

circulation quantum given by63

ж*x-, = •2 m. (2.1)

where fi = 1.054X 10 ~27 erg-s is Planck's constant and тг

is the neutron mass. The radius of the normal neutron core of
each vortex is equal to the coherence length of the neutron
fluid and is given by

1 /4

i, (jJt 1 7* • 2 ^ т о ^

*2 2«</3 ~*Г' (2'2>

where/>2 is the total neutron mass density. The outer radius
ft of the neutron vortex and the vortex density N2 are given
by the following expressions:

1/2

; (2.3)

where fl is the angular velocity of the neutron star. The num-
ber of vortex lines is thus seen to be determined by the angu-
lar velocity. Consequently, the number of vortices should
decrease as rotation slows down. However, within a certain
interval of time, the number of vortices in the star may be
greater than the equilibrium value corresponding to the new
f t . A metastable state is then created in the vortex struc-
ture86 and corresponds to minimum local free energy. This
metastable state vanishes when the excess vortices decay and
transfer their angular momentum to the solid crust. This
spontaneous speeding up of the rotation of the freely rotating
vessel containing the superfluid liquid has actually been ob-
served experimentally.87

For the Crab pulsar, the equilibrium values are
J V 2 = 2 X 1 0 5 cm'2 and 6=10~ 3 cm (П = 191 s'1),
whereas for the millisecond pulsar PSR 1937 + 21, the val-
ues are 7 V ~ 2 = 4 x l 0 6 cm'2 and 6 = 2xl()-4 cm
(ft = 4x!03 s"1). The coherence length is |2 = 10~12cm.

The superfluid neutrons in the vortex rotate around the
normal core with velocity

v = • (2.4)

where r is the distance from the vortex center. The internal
energy per unit length (linear tension) of a vortex line is
given by85

E = (2.5)

Let us now determine the shape of a neutron vortex line
in a spherical neutron star.88 The symmetry of the problem
near the equatorial plane ensures that the vortex lines are
straight and perpendicular to this plane. By writing down
the free energy of an infinitesimally thin layer near the equa-
torial plane, and then minimizing it, we find the velocity
distribution in this plane. The velocity of the superfluid neu-
trons in a vortex is as before given by (2.4), and the internal
energy is given by (2.5). The set of vortex lines participates
as a whole in the rigid-body rotation.

We note that the internal energy (2.5) is a logarithmic
function of the ratio b /|"2. It is therefore independent of the
latitude of the star and can be regarded as constant. Next, the
requirement that vortex lines leaving the equatorial plane
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must remain in the same p, z plane (this follows from the
axial symmetry of the problem) ensures that the macroscop-
ic velocity of the vortices is given by v = П Xp at all points
(p is the distance from the axis of rotation).

We must now find the shape of a vortex linep(z) from
the condition for minimum total energy of the neutron fluid
per vortex line. The result is:88

where

(2.6)

(2.7)

and pmm is the coordinate of the intersection of the vortex
line with the equatorial plane. If we determine the constant
of integration in (2.6) from the boundary condition that the
vortex line must be perpendicular to the surface of the
sphere,89 andfind/?min from the condition/?' (z) =0, we find
that the displacement of the line, Д/? = p0 — pm[n, from a
straight line is given by88

(2.8)

where z0 and/o0 are the coordinates of the vortex line on the
surface of the sphere and Л, is the radius of the npe-phase.
Since e (Л) is a sufficiently small quantity, the neutron vorti-
ces in the npe-phase of the rotating star are always parallel to
the axis of rotation except for a small layer in the immediate
vicinity of the surface in which they become curved and run
outward in the perpendicular direction. The displacement
Др is zero for the vortex line crossing the axis of rotation and
is a maximum for the line located at a distance of the order of
R, from the axis of rotation (Aomax ~ 10 ~~ 3cm).

The rotation of a superfluid sphere was also investigat-
ed in Ref. 90 in which it was found that the lower critical
velocity is given by

Зй г. (2Rl\ ,-i
;r- In -с— - 1 •

4т2Л
2 L { $ 2 J J

(2.9)

The magnitude of Пс, for a sphere is greater by a factor of
about 1.5 than for a cylinder of the same radius. Typically,
for a neutron star R l = 10 km and |"2 = 10 ~~ 1 2 cm, so that if
we substitute these values in the above expression, we obtain

The width of the irrotational region containing no vor-
tices is given by:90

15 *> -О"1'*. (2.10)

For angular velocities fi = 1 s ~' and П = 191 s ', the
widths of the irrotational region are 8X 10 2 and 5X 10 ~3

cm, respectively. We therefore conclude that a well-devel-
oped neutron vortex structure corresponds to values of П
typical for pulsars.

3. DRAG EFFECT IN THE SUPERFLUID CORE OF A STAR

So far, the superfluid neutron condensate and the super-
fluid proton condensate in the electron-baryon plasma of the

npe-phase have been regarded as strictly noninteracting.
However, the strong interaction between protons and neu-
trons ensures that they transform into quasiparticles with
effective masses m* and m*. The motion of a neutron quasi-
particle is thus seen to transport not only the neutron mass,
but the proton mass as well. Cooper pairs of neutrons and of
protons are the bound states of Fermi quasiparticles whose
properties remain practically unaltered as superfluidity is
established. Consequently, the superfluid motion of neu-
trons must be accompanied by the transport of proton mass
(this is the so-called drag of superfluid protons by superfluid
neutrons). Since protons are charged, the superfluid motion
of neutrons gives rise to an electric current, i.e., the drag
current.91

We note that proton-neutron Cooper pairs are not pro-
duced because the difference between the chemical poten-
tials of neutrons and protons in the npe-phase is large.

3.1. Microscopic theory of superfluidity in a two-component
Fermi system

Systems in which there are two types of condensate and,
consequently, two types of superfluid motion, have been the
subject of intensive investigation in recent years. An exam-
ple of a system of this type is the solution of He3 in He4 below
the phase transition of He3 to the superfluid state. The equa-
tions of the three-velocity hydrodynamics, which describe
the properties of this solution, were obtained by I. M. Kha-
latnikov.92'93 A. F. Andreev and E. P. Bushkin94 have in
addition taken into account the drag of the He3 condensate
by the He4 condensate, and showed that each of the super-
fluid motions is accompanied by the transport of both com-
ponents of the solution.94

The npe-phase of the neutron star is another system
with two superfluid condensates. The microscopic theory of
superfluidity in a neutron-proton Fermi system with inter-
action between the components was constructed in Refs. 95
and 96. If we use the expression for the total Hamiltonian for
this system95 and the mathematical formalism of anomalous
Green functions,97-98 we obtain near the lower critical tem-
perature the solution of the set of equations for the tempera-
ture Green functions of protons and neutrons.95 This proce-
dure presupposes that the coupling constants in the total
Hamiltonian are small, since the graphical summation em-
ployed in this method does not take into account diagrams
that lead to third-order terms in the coupling constants in
these equations.

Next, using the standard method,99 we obtain the Ginz-
burg-Landau equations for the two-component superfluid
Fermi system96

. =J^_Je ?m'

=0,

;^Т-(А4-А') |У,!2,
cm

(3.1)
1

4m A I
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where m\ and m'2 are the proton and neutron masses renor-
malized by the interaction, j2 is the mass current density of
the superfluid neutrons, je is the superfluid proton current
density, A' is the effective vector potential due to the drag of
superfluid protons by superfluid neutrons,

itun[cM,
(3.2)

(3.3)

and A! is defined by

in which ,̂ and ^2 are the condensate wave functions of
protons and neutrons, given by

1/2

(3.4)

The coefficients a J andM, are proportional to the square of
the coupling constant. In the absence of interaction between
the components, we have aj = 0, Af, = 0, A, = 0, A' = 0,
the first pair of equations in (3.1) transforms into the Ginz-
burg-Landau equations for the resting superconductor,100

and the second pair is analogous in form to the Ginzburg-
Pitaevski! equations of the phenomenological theory of
superfluidity.101

If we define the superfluid velocities of protons and neu-
trons as follows:

e
nt.c 2m-, (3.5)

we can write the proton and the neutron mass current densi-
ties in the form

m,

J2=/>21V1 +

(3.6)

It is clear from these expressions that some of the superfluid
protons travel with the velocity of superfluid neutrons, and
this produces the electric drag current.91

If we take the drag effect into account, the kinetic ener-
gy density assumes the form96

1 7 7
rk = y'G°nvi + ^ / j j j V j V j + p22v2). (3.7)

This expression will be used later when we investigate the
generation of magnetic fields in pulsars.

The Ginzburg-Landau equations that we have ob-
tained for the two-component superfluid Fermi system
(3.1) are strictly valid only in a narrow range near the lower
critical temperature Tcl (the proton critical temperature).
We shall show later that the drag effect will also occur for
temperatures T->0.

3.2. Three-velocity magnetohydrodynamics of superfluid
solutions

The properties of the electron-baryon plasma in the
npe-phase for T->Q should satisfy the equations of three-
velocity magnetohydrodynamics with two superfluid and
one normal velocity.

The analysis of conservation laws given in Refs. 92 and

94 shows that the complete set of equations of three-velocity
magnetohydrodynamics has the following form in the ab-
sence of dissipation:102

Pl + div(o1vn + Pl) = 0, p2 + divOo2vn + p2) = 0,

/. + dU.k/dxk = 0, S + div(Svn) = 0,

VP. „p
= 0, v

(3.8)

curl v, = 0, curl v. = B;
* ' MtC

where/0,,/72, andpe are the proton, neutron, and electron
mass densities, V i , v2, and vn are the velocities of the two
superfluid and one normal motions, me, \e are the mass and
the velocity of the electrons (the latter is equal to the velocity
of normal motion vn), 5 and j are the entropy and momen-
tum per unit volume, and jLtt, /u,2, p,, p2 are the chemical
potentials and relative momenta of superfluid protons and
neutrons. It is assumed in (3.8) that m*~me 4,m where m*
is the effective mass of the electron.

The momentum flux tensor is given by102

ГГ.. г= (о. + jO-)u .V i + (Dt •IK * 1 "2' Ш njfe v^ij

(3.9)

where p= —e + ̂ lpl + fj.2p2 + /j,epe + TS is the pres-
sure. The electric and magnetic fields are given by the Max-
well equations that augment (3.8).

Following the method put forward in Ref. 94, and using
the basic conservation law with allowance for the magnetic
field and the laws of thermodynamics, it is readily shown
that the characteristic superfluid condensate quantities p,,,
pn,p22 are given by

m\(m\ ~
m. /и,

(3.10)

~ (ml ~ m\)n\n

where n l and «]n are the densities of the superfluid and nor-
mal protons, and m, and m* are, respectively, the "bare"
and effective proton masses. The quantities/?^ (a,J3 = 1,2)
are the analogs of the density of the superfluid part in two-
velocity hydrodynamics.

According to the BCS theory, the superfluid velocities
v, andv2 are microscopically expressed in terms of the phase
angles ф! and <p2 of the condensate wave functions of pro-
tons and neutrons, as follows:

fl
2m,

(3.11)

The fact that (3.11) contains the neutron mass m2, and not
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the effective mass of the Fermi excitation, ensures that the
superfluid motion of the neutrons is potential.

Let us suppose to begin with that v2 = vn = 0. Accord-
ing to the BCS theory, the mass current density of superfluid
protons is then given by

According to (3.12)-(3.19), we may write

ehn.

2т*
A = (3.12)

The mass current density of superfluid neutrons can be
shown to be given by the following expression if we use the
total mass current density given in Ref. 102:

A | n . = . (3.13)

It is thus clear that some of the superfluid neutrons will trav-
el with the velocity of the superfluid protons.

Next, let us put v, = \n =0. Using the method pro-
posed in Ref. 103, we then find that the energy f(p) of the
proton quasiparticle is given by the following expression in
the approximation that is linear in v2 (Ref. 104):

(3.14)

A' = A - -(m* - m,)v2.

The interaction between the proton and neutron conden-
sates thus ensures that the true vector potential A is replaced
with A'. The mass current density J! can therefore be readily
obtained from the London formula je = — (e2w,/mfc)A'.
We have

rtjV2 — A =p,2v2 - -
* *• tvt ft ' I £, fi m,c

•A.

(3.15)

Consequently, some of the superfluid protons will travel
with the neutron velocity v2.

The total mass current density operator is

where a+a, apa are the proton quasiparticle creation and
annihilation operators and a is the spin index. Transforming
this mass current operator, and using the explicit form of the
electric current density operator,102 we find that the total
mass current density is

where л, „ = л — л, and/>2 is the neutron mass density. The
mass current density of superfluid neutrons can now be
found from (3.15) and (3.17):

(3.18)

Finally, let us suppose that vt = v2 = A = 0. The problem
then reduces to the case examined in Ref. 94 for which the
mass current densities are given by

(3.19)

(3.20)

Consequently, in three-velocity magnetohydrodynamics,
the density of the superfluid part is replaced by the three
independent quantities pu, p22, /o12, the last of which de-
scribes the drag of both components of the solution by one of
the superfluid motions. This effect is thus found to exist
throughout the temperature range in which the neutron-pro-
ton liquid is superfluid.

The linearized set of magnetohydrodynamic equations,
given by (3.8), is found to have wave-type solutions. The
dispersion relations for these waves were obtained in Refs.
102 in which the velocities of the different acoustic oscilla-
tions were also calculated. It was shown that fourth sound
can propagate in the neutron-proton superfluid.

4. MAGNETIC-FIELD GENERATION IN PULSARS

The generally accepted mechanism for the generation
of the magnetic field in superdense stars is the contraction of
the star with the simultaneous conservation of the initial
magnetic flux.105'106 Conservation of the magnetic flux is
assured by the fact that the magnetic lines of force are "fro-
zen-in" because of the very high conductivity of the stellar
material. In the case of an isotropic contraction of an ordi-
nary star, the magnetic field is proportional to r 2 or p2/3

where r is the mean radius of the star and p is its density.
Hence, for an initial magnetic field B~ 1 G and initial value
r~3x 10'° cm, we find that B~ 108 G for /•„ ~3x Ю6 cm
andp0 ~ 1012 G/cm3 (Refs. 107 and 108). The initial field in
a magnetic star can reach 103 — 104 G, so that the field in a
neutron star can reach 1011 - 1012 G (Ref. 108). It is as-
sumed in all this that the stellar mass remains constant dur-
ing the contraction process, i.e., pr3 = const. However, this
mechanism ignores the dynamics of the contraction process.
The contraction or collapse of an ordinary star after a super-
nova explosion is unavoidably accompanied by the turbulent
motion of the material, and this leads to a sharp reduction in
the electric conductivity a of the stellar material109 and a
departure from the frozen-in character of the field. More-
over, some of the material may be ejected from the star dur-
ing the supernova explosion, together with the accompany-
ing magnetic field. These factors result in a substantial
reduction in the final magnetic field strength and may even
reduce it to zero. We must therefore consider other mecha-
nisms for the generation of magnetic fields in neutron stars
that are unrelated to the collapse phenomenon.

The ferromagnetism of neutrons was considered in
Refs. 110-112 as the source of the magnetic field. Thermo-
electric and thermomagnetic instabilities were used in Refs.
113 and 114 to obtain dipole magnetic fields of the order of
5~1012G.

We shall now consider superfluid proton currents as the
source of the magnetic field of a neutron star.115'116 This
mechanism relies on the drag of superfluid protons by super-
fluid neutrons, and gives rise to magnetic fields of the order
of.B~1012G.
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4.1. London equation for a superfluid solution

Consider the superfluid core of a rotating neutron star
in which the neutron superfluid forms a lattice of quantized
vortices, and the charged component, which is rigidly cou-
pled to the crust by the_magnetic field, executes rigid rota-
tion with velocity vn = ft X r.

Using the definition given by (3.6), we can write the
proton superfluid current density in the form

F=

т, (4.1)

where/?!, +/012 =/э, andp22 + p\2 = Рг inwhich/c»! andp2

are the proton and neutron mass densities, respectively, and
the densities/0 ,,,/>, 2,/j22 are given by (3.10).

We now define the drag coefficient as follows:
k = (mf — m\ )/m, = p\2/p\\ • Under the conditions pre-
vailing in the neutron star, k = —0.5. The current density
ju in (4.1) is the usual Meissner proton current and j,2 is
the drag current.

The magnetic field generated by the drag currents can
be determined from the Maxwell equation

curl H = j,2. (4.2)

The presence of the undragged superfluid protons ensures
that the magnetic field H is different from the magnetic in-
duction В which is determined by the equation

Air
curl В = -t-(jn + J12).

Substituting (4.1) in (4.3), and recalling that104

curlvi = - 7̂ 7 В + Х

(4.3)

curl v2 =

we obtain

В + Я 2 curl curl В = Ф0!,2<5(г - г,.) + Ф^-Нг - ry), (4.5)
i i

where the flux quanta Ф0 and Ф, and the magnetic-field
penetration depth /i are given by

(4.6)

Rotation can be_taken into account in (4.5) by substituting
В' = В + 2т,сП/е (Refs. 117 and 118).

In the above expressions, i, and i2 are unit vectors in the
direction of the proton and neutron vortex lines, r, and r,
are, respectively, the position vectors of the line centers, and
x^ = w/z/m, is the quantum of proton circulation. We thus
obtain the London equation with two different possible vor-
tex regions.

4.2. Free energy of a two-component system

To identify the vortex structures formed in the system,
e.g., purely neutron, purely proton, or both together, we
must establish which case is energetically the most favor-
able. We shall do this by writing down the free energy for the
system in the form

-/B2dK- MQ, (4.7)

where p"0 =p — pt — p2 is the density of the normal com-
ponent, p is the total density of the fluid and the angular
momentum of the liquid is given by

M = /[r(j+p(">vn)]dK, J = J !+J 2 ;

where the velocity
tion

is determined from the Maxwell equa-

(4.8)

Substituting for V j in (4.7), we obtain

(4.9)

wherep22 =Ргг —р\г/Р\\- The expression given by (4.9)
can be used to determine the average values of v2 and B. The
average of v2 (r) is related to the mean density N2 (r) of
neutron vortices and is determined by minimizing the free
energy

Fl=F+ fN2(r) F^dV, (4.10)

where Flf l is the energy of a single neutron vortex. The aver-
ages are evaluated for distances much greater than the di-
mensions of the neutron vortices.

On the other hand, the average of the vector B(r) de-
pends on the density Nl (r) of the proton vortices, and is
determined by minimizing the Gibbs potential:

(4.11)

where H(r) is the magnetic field strength produced by the
given drag currents. When Nl (r) is determined, the average
is evaluated over distances much greater than the dimen-
sions of the proton vortices. If b and Л are, respectively, the
dimensions of the neutron and proton vortices, then b is al-
ways much greater than A. This means that we can introduce
a mean density of proton vortices even within the dimen-
sions of a single neutron vortex.

4.3. Average v2 (r) or N2 (r)

Let us suppose that the star rotates with angular veloc-
ity ft. From (4.9) we find that

(4.12)

where £, is the proton coherence length. The first term is the
magnetic energy of the neutron vortex line per unit length.
The critical angular velocity ftcl can be found from (4.12).
The value obtained in this way is not significantly different
from that given by (2.9) in the absence of drag. It follows
that the conclusion drawn in Section 2, namely, that a rela-
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tively dense lattice of neutron vortex lines is present, remains
in force.

By minimizing Fl we obtain the simple solution
v2 (r ) = П X r. This means that the main component of the
npe-phase consists of neutrons in rigid rotation with angular
velocity ft and density N2 given by (2.3).

The interaction between neutrons and protons does not
therefore modify the average superfluid velocity of neutrons
or the density of the neutron vortex lattice as compared with
the case of a one-component rotating superfluid. If there are
no proton vortices, the magnetic induction can be found
from (4.5), and is given by

2m, с
(4.13)

Calculations then show that Я ~ 2 X 10 ~ 4 G.
The mean magnetic induction is thus seen to be almost

zero. Rotation produces a dense net of neutron vortices, and
the local magnetic field due to the drag currents associated
with a neutron vortex line is almost completely compensated
by the Meissner proton currents. However, this situation
occurs only when the local field around a neutron vortex is
less than the critical field /Ус, necessary for the creation of a
proton vortex. It will be clear later that this is not always the
case and that a superdense net of proton vortices may sur-
round the neutron line and lead to an increase in the mean
magnetic induction of the neutron star.

4.4. Average of B(r) or N, (r)

The strong local fields around a neutron vortex may be
responsible for the appearance of proton vortex lines that are
accompanied by a transition of some of the density of un-
dragged protons to the normal state. This field is due to the
proton drag current. By solving (4.2) near a neutron vortex,
we obtain

ф, , (ь•In - (4.14)

where r is the distance between the point of observation and
the center of the line. Proton vortices can arise within a circle
of radius r, which can be determined from the condition
H(r) = ЯС1. It is well known that

Яс1 = (4.15)

Substituting H = Hcl and r = r, in (4.14), we obtain

(4.16)

It is clear from this that the dimensions of the region in
which proton vortices are produced are quite sensitive to the
drag coefficient k. In this region, we have H>Hcl, and the
field H gives rise to the appearance of a set of such vortices
with flux Ф0. Consequently, the Gibbs free energy of the
proton vortex structure is a minimum in the equilibrium
state. Since the density of proton vortices in the region of
radius r, >A is sufficiently high, and the maximum field
strength at the center of the neutron vortex satisfies the con-
dition Hcl <#(£,) <Hc2, we can introduce the continuous

distribution density N} (r) of proton vortices for an individ-
ual neutron vortex. The Gibbs free energy of a system of
proton vortex lines can be written in the form

(4.17)

where

ф оГ Me = I—^ In —
4лЯ2 • I,

(4.18)

The Gibbs potential is measured from the value correspond-
ing to the absence of proton vortices vV, (r) = 0. By varying
(4. 17) with respect to Nl we obtain the equilibrium density

Ф

Once we know N{ (/-), we can find the mean induction В
evaluated over the entire npe-phase of the neutron star:

-2/3|*|

The magnetic moment of the neutron star turns out to
be

M =^"> 3
3

(4.21)

The coefficient 3/8я- appears because thejnagnetization of a
uniformally magnetized sphere is p. — 35 /Sir. Substituting
the usual values £, = 10"12 cm and Л = 10" " cm, we ob-
tain \B | ~ 1012 G and \B | ~ 1014 G in a neutron star and near
a neutron vortex, respectively. The magnetic moments are of
the order of 1030G-cm3.

4.5. Dipole field of a vortex lattice

We showed in Section 2.3 that, in a spherical star, the
neutron vortex lines in most of the npe-phase are parallel to
the axis of rotation, and that it is only in the immediate vicin-
ity of the surface that they become curved and run outward
in the perpendicular direction. However, this discussion did
not take into account the drag effect. When this is done, the
shape of the vortex is again given by (2.6), and the line dis-
placement Д/э is given by (2.8) except that the function
е(П) in (2.7) must be modified.119 However, this change
(which is due to the magnetic energy of the neutron vortex)
is quite small. Consequently, the above conclusion about the
shape of the vortices remains valid. The lines offeree of the
magnetic field and of the magnetic induction generated by
proton drag have the same form. Consequently the lines of
force cross the surface of the npe-phase in the radial direc-
tion. The dimensions of the region in which the magnetic
induction differs from zero is of the order oflO"4-10"5 cm
in the models that we have considered, which is much less
than the separation between the vortices and therefore less
than the characteristic dimensions of the star. This means
that, when we calculate the external magnetic field well
away from the surface of the npe-phase, we may consider
with good accuracy that the field on the surface is localized
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at points at which the neutron vortices touch the surface. Let
us denote the spherical coordinates of these points by <pj, #,
and <PJ, IT — 0j. In the limit in which r, </></?, , the radial
component of the induction due to vortices on the surface of
the sphere can be written in the form

an external magnetic field Я can be written in the form120

~ cosB \ =

-cos(0y-*))]; (4.22)

where the sum over <pj and 07- is evaluated within the ranges
0 < <PJ <J.ir, 0 < 6j <тг/2.

Using the completeness condition for the spherical
functions, we can write (4.22) in the form

(4.23)

The induction outside the star satisfies the Maxwell
equations in vacuum and can be written in the form
Bc = — grad •ф. The expression for the scalar potential
ф(г,в,ф) that corresponds to (4.23) is

4>(r, в, Ч>)

/ R
l+2

1=0 m=-t

(4.24)

The component Br (r,Q,q>) determined for r = R, is found to
be identical with (4.23). We now replace summation in
(4.24) with integration, and use the rule

2

У-*/-4 cos 0 dO. (4.25)
e.,f b

This expression is based on the assumption that the number
dN of neutron vortices running normally to the surface with-
in the solid angle dfl is dN = R \ cos в d f l / b г and that the
neutron vortex density is constant on the equatorial plane of
the star. Integrating in (4.24) taking (4.25), into account we
find that the scalar potential of the magnetic field is given
by119

Mr^-ev™*. (4.26)

where V= 4irR 3/3 is the volume of the star and // is its
specific magnetic moment (magnetization). We therefore
conclude that the stellar magnetic field is similar to that of a
dipole. This simple result relies on the assumption that the
vortex lines are perpendicular to the surface and that their
distribution density in the stellar interior is constant.

We must now consider the question whether the mag-
netic field induced in the npe-phase can penetrate the core of
the neutron star, which contains the superconducting pion
condensate. We shall do this by investigating the magnetic
structure of the pion condensate. The total energy density of
the superconducting state of the system in the cr-model53 in

+ m-n + %&я - [С«ЛС08 в)2 + (gAK sin 6>)2]1/2} + H2,

(4.27)

where n and т are, respectively, the nucleon density and
mass, /z,r and т„ are the chemical potential and mass of
negative pions,/,, = 0.675m „ is the pion decay constant, в is
the chiral rotation angle, gA = 1.3 6 is the axial weak interac-
tion constant, К = k — eA(r), and bfk is the constant mo-
mentum of the pion condensate. Here and henceforth we use
the system of units in which и = с = mw = 1,
e2/4ir = l/l 37. We note that the protons and neutrons in the
core pion condensate are in the normal state and occupy the
same Fermi sphere.

The superconducting pion current is given by120

Z~~2 / • 2 1/2

(4.28)

in which the first term is the pure meson contribution to the
current due to the negative-pion condensate and the second
is the "nucleon" contribution due to the positive-pion cur-
rent in the S state and the proton current. Substituting
в = 7T/2in (4.28), we obtain the following expression for the
current in the case of a developed condensate:

(4.29)

We note that, when в = тг/2, the charge density of the nu-
cleon subsystem in terms of the bare particles is — en/2
( Ref . 5 3 ) , so that the velocity of the charged nucleon matter

Next, using the Maxwell equation, the continuity equa-
tion, and the condition kiB, we obtain the London equa-
tion1

В + A2 curl curl В = 0, (4.30)

where Л„ = (1/e2/2)1/2 is the magnetic-field penetration
depth. We therefore conclude that the Meissner effect occurs
in the material of the core of the neutron star for klB. In this
k, В geometry, the external magnetic field penetrates the
core in the form of a laminar structure121 that constitutes
periodically distributed normal plane layers (parallel to the
k, В plane) of width £„ with superconducting regions locat-
ed between them.

To elucidate the origin of the above structure, we must
estimate the critical field Hc and the lower critical field Нл

for the creation of the line structure,122 as well as the lower
critical field H'a for the laminar structure. The first two are
given by83

•. ^ l l / 2

Н,(в = л/2) =

(4.31)
Яе,(в = я/2) = \ е/21п(п3/8е/2).

The lower critical field for the appearance of the laminar
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structure is given by120

„,„,__,,,_ *c<»—'2>
т 1/2

(4.32)

where 8 = п3/8е/7„ is the Ginzburg-Landau parameter of
the pion condensate in the case of the limiting condensate
field.

It is clear from (4.31) and (4.32) that the fields Hc and
Hcl increase with increasing n («>nc l): Hc rises linearly
and Hci logarithmically, whereas H 'cl decreases in inverse
proportion to л172. This means that, for high densities, the
magnetic field penetrates the core with the structure of the
laminar state.

Let us now consider the general case for which в = в0.
Using the continuity condition, the condition klB, and the
fact that much of the pion condensate is in the homogeneous
superconducting state with в = в0 and A ( r ) = 0, we obtain
the London equation120 with Л„ given by

-1/2

(4.33)

n _ 0
L {cos200 + sin2^4-

For a developed condensate, the second term in brackets
vanishes and A^ is given by the above expression. When
00 ->0, we have А„ -» oo , i.e., the medium undergoes a transi-
tion to the normal state.

The equilibrium angle в0 and the critical density /zcl for
the appearance of the condensate are given by the following
relations:83

c\
(4.34)

"cl

The general expressions for Яс, Яс1, and H'cl are given in
Ref. 20. Although these expressions also vary in the present
case, the dependence on the nucleon density for high densi-
ties я is the same as for a developed condensate.

We therefore conclude that, in the cr-model, the pion
condensate is a type II superconductor in which the mixed-
state laminar structure is always realized. We note that the
result reported in Ref. 84 and the above discussion are in
conflict with Ref. 83 in which there is an error in the estimat-
ed structure of the condensate.

5. GLITCHES IN THE ROTATIONAL PERIOD OF A PULSAR

As the volume of observational data has continued to
grow, it has became clear that large period glitches, followed
by slow relaxation, are a common feature of pulsars and,
despite the difference in their size, the glitches have a com-
mon origin. A qualitatively correct description of the
glitches can be achieved already within the framework of the
simple two-component model of a pulsar.123 The basic point
is that a pulsa/ consists of weakly-coupled normal and super-
conducting components.69 As it evolves, the neutron star
loses energy and angular momentum, so that its angular ve-

locity ft gradually decreases. If one of the components of the
star does not for some particular reason succeed in rearrang-
ing itself in accordance with the equilibrium state of the sys-
tem (which depends on fl), an unstable state arises in the
system. The moment of inertia /c of the normal component
of the neutron star can then undergo an abrupt change with a
consequent abrupt change (ДП)0 in the angular velocity:

A/.
(5.1)

The second component, i.e., the neutron superfluid, does not
initially undergo this change and retains its angular velocity.
The superfluid and normal components then begin to inter-
act through frictional forces and, gradually, after an interval
of time т, begin to rotate synchronously. Some friction is also
found to arise between electrons and normal neutrons within
the normal cores of vortices. The angular velocity of a pulsar
after a glitch is well described by the so-called glitch func-
tion^

0(0 = 00(0 (5.2)

where П0 (t) is the value of П at time t, obtained by extrapo-
lation on the assumption that (Afl) 0 = 0 and the param-
eters Q and т are deduced from a comparison with observa-
tions. The final change in the angular velocity is
(1 — Q) (Ail) о and is related to the total moment of inertia /
as follows:

A/, (AQ)0

•(i-Q)- (5-3)

It follows from (5.1) and (5.2) that Q is the ratio of the
moment of inertia of the superfluid component to the total
moment of inertia.

Whereas the above explanation of the behavior of a pul-
sar after a glitch is generally accepted, several hypotheses
have been put forward to explain the onset of instability that
leads to a glitch, and for the mechanisms responsible for the
transfer of angular momentum to the normal component.
These hypotheses include explanations based on magneto-
spheric instabilities,'24Л 25 instabilities in the motion of vorti-
ces,126 sudden releases of particles held in regions with
closed lines offeree,127 and abrupt increases in the internal
temperature of the star.128 They all encounter specific diffi-
culties, but are capable of explaining some of the known
facts. The theory of starquakes129 was initially rather attrac-
tive, and its essence may be summarized as follows. The
equilibrium shape of a neutron star corresponds to a particu-
lar flattening at the poles due to its rotation. As П decreases,
the equilibrium shape of the star changes, i.e., there is a re-
duction in its eccentricity. Since the solid envelope cannot
uniformly follow the change in the equilibrium configura-
tion, an instability sets in. When the mismatch between the
shape of the neutron star and its equilibrium configuration
reaches the critical value, the shell cracks and the abrupt
reduction in the moment of inertia of the star produces a step
change in its angular velocity. Unfortunately, this theory
can explain neither the large size of such steps nor the inter-
val between them for the Vela pulsar PSR 0833-45.

Another approach to the interpretation of pulsar
glitches involves the dynamics of vortex lines in superfluid
stellar regions. The essential point here is that a particular
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fraction of the superfluid may not be in the state of equilibri-
um and may rotate differentially relative to the remainder of
the star. This is due to the pinning of neutron vortices to
nuclei in the inner crust (Aen-phase) of the neutron star. 13°
The neutron superfluid in the core (npe-phase) of the star is
assumed to be rigidly coupled to the crust, and the only free
component of the star is the neutron superfluid in the Aen-
phase. It contains only a few per cent of the stellar moment of
inertia and is responsible for the long characteristic relaxa-
tion time. Since electrons in the npe-phase are rigidly cou-
pled to the crust, this necessarily implies that there is a simi-
lar coupling between electrons and the neutron superfluid in
the core of the star. This is examined in the next Section.

5.1. Relaxation of electrons on vortex lines in the npe-phase

The coupling of electrons to the neutron superfluid in
the npe-phase is due to the scattering of normal electrons by
the normal cores of neutron vortex lines. The characteristic
time for this scattering can be expressed in terms of the pa-
rameters of the superfluid neutrons as follows:71

2,94-105х2/3рД,
(5.4)

where x is the ratio of the electron to neutron densities, Д2 is
the energy gap in MeV, k2F is the neutron wave number
measured in fm ~ ',/> is the rotational period in seconds, and
T% is the reduced temperature, given by Ts = 10 ~ 8 T. The
strong dependence of rc on temperature and the energy gap
is due to the fact that the probability of a neutron excitation
that scatters the electrons is proportional to
exp( — &2/E2FkBT). The magnitude of rc ranges from a
few years at 7"8 = 0.1 to a few hours at Tg = 1 for density
p'0 =4.5xl01 4g/cm3.

The authors of Ref. 131 have investigated the relaxation
of normal electrons in the stellar core on neutron vortex lines
produced by 3P2 pairing of neutrons. Analysis of vortex so-
lutions132'133 of the Ginzburg-Landau equations has shown
that, in the 3P2 -state, the neutron vortex lines have a con-
stant magnetization M0 = - 1.2X 1011 G (Ref. 131). The
characteristic time for this scattering is

Tg~" (5.5)

The scattering time for electrons by neutron vortices with a
spontaneous magnetic moment depends on Д2 and T, i.e.,
rg ~ Д2~

l (T). The magnitude of rg for
p'0 = 4.5 X1014 g/cm3 is of the order of one year.

The scattering time rv for electrons on the magnetic
field of neutron vortices was calculated in Ref. 134. Such
fields arise as a result of the drag effect.97 The field of an
individual vortex is given by

Ф,
В + A2curl curl В = — • i - p), (5.6)

where 0(£2 — p) is the Heaviside function. This equation
allows for the fact that the normal core of a neutron vortex
that contributes significantly to scattering has a finite radius
£2 • The scattering time is given by134

„-i m, — m.

m, (5.7)

where the expression for the coefficient g(P) is given in Ref.
134 and the remaining coefficients are given by

1/2._ _ . . i m, '
/3 = i3^2

m\
;lml]

H
m2

Ил

(5.8)

where/9,4 = 10 14p. The magnitude of rv for a given density
/DO is of the order of one second. However, a dense bundle of
proton lines appears around each neutron line116 and, as will
be seen below, the bundle is coupled to the neutron lines by
the electromagnetic interaction. We therefore have to calcu-
late the electron scattering time reff on these proton vortices.

Since the core of a proton vortex line has a finite radius,
the scattering time is given by135

v 3/2 , 2 / 3 1 * 1

(1 + i A
(5.9)

where ke is the electron wave vector and k is the drag coeffi-
cient. Our calculations show that the scattering time reff is
much shorter than all other times, and depends significantly
on the density of the npe-phase, decreasing with increasing
density. For example, for/? = 2 X 1014 g/cm3, the character-
istic time is reff = 10" 14s whereas for p'0 = 4.5 X 1014g/cm3,
we have reff = 10 ~1 5 s. These results suggest that there is
very strong coupling between electrons and proton vortices.
The latter are coupled to neutron vortices by the electromag-
netic interaction.

Maxwell's equations can be shown to lead to the follow-
ing equation Jpr the magnetic-field perturbation <5B due to
the glitch (ДП)0 in the angular velocity at time t = 0:

(5.10)

It is clear from this expression that the the magnetic-field
perturbation propagates with the velocity of light. Since pro-
ton vortices are coupled to neutron vortices by the magnetic
field, the relaxation time of the velocity of a neutron vortex
relative to the ambient proton vortices is of the order of
rl /c~ 10 ~1 4 s, i.e., it is comparable with the relaxation time
of the electron velocity relative to proton vortices. Conse-
quently, the entire npe-phase may be regarded as undergoing
rigid-body rotation, since the longest relaxation time is of the
order R, /c ~ 10 ~ 4 s. Normal electrons, on the other hand,
couple the crust to the npe-phase with characteristic times of
the order of I s (Ref. 136).

We therefore conclude that the reason for the long re-
laxation times of the angular velocity of pulsars after a glitch
must be sought outside the core of the neutron star.

5.2. Dynamics of neutron vortices and pulsar glitches

As already noted, the most promising models capable of
explaining the large glitches in pulsar periods and their sub-
sequent slow relaxation are based on neutron vortex dynam-
ics. The slow relaxation is entirely due to a small part of the
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superfluid, namely, the neutron superfluid in the Aen-phase
of the neutron star.

The equations describing vortex lattice dynamics, and
the response of the lattice to a sudden change in the angular
velocity of the container, were obtained in Ref. 137. Without
going into details of the interaction between normal and su-
perfluid components, it was shown that the initial step in the
angular velocity of the normal part of the system was fol-
lowed by an exponential smoothing out of the initial distur-
bance.

Consider the equilibrium situation in which the star ro-
tates with angular velocity Пс. The angular velocity fls of
the superfluid is determined by the distribution of vortices
with constant density N2, given by (2.3).

A change in the angular velocity flc of the star is accom-
panied by the radial motion of vortices relative to the normal
component. This motion occurs so that the superfluid com-
ponent reaches the state in which it rotates synchronously
with the normal component, which is achieved by an in-
crease (if Пс > 0) or a reduction (fic < 0) in the vortex den-
sity. In the former case, the vortices move radially toward
the axis of rotation, whereas in the latter case they move
toward the stellar surface. The rate of change of the angular
velocity fls is related to the velocity vr of the vortices as
follows:138

(5.11)

where r is the distance from the axis of rotation of the star
and we assume that the number of vortices is conserved, i.e.,
dN2 /dt + div (N2 v r ) =0. The secular increase in the period
of the pulsar is thus seen to be accompanied by the radial
motion of vortices toward the surface of the neutron star.
This motion will thus slow down the rotation of the super-
fluid component in accordance with the reduction in the an-
gular velocity of the crust. However, the pinning of the neu-
tron vortices to nuclei is possible in the Aen-phase and may
prevent the slowing down of the superfluid component in
this phase which will rotate more rapidly than the normal
component. A velocity difference is thus established be-
tween superfluid and normal components, which leads to an
instability in the system. In particular, the energy and the
angular momentum of the differentially rotating superfluid
component are the sources of glitches in pulsar periods. The
pinning of neutron vortices to nuclei in the Aen-phase de-
pends on the parameters of the nuclei and the energy gap of
the neutron superfluid, inside and outside the nuclei. Since
the energy gap depends on the density of the material, and
lies in the range 0.1-1 MeV in the Aen-phase, the pinning
energy is also different for different parts of the star: in some
regions the vortex lines are rigidly pinned to the crust,
whereas elsewhere the pinning is much weaker or may be
absent altogether. The pinning of neutron vortices to the
nuclei is energetically favorable if this produces a reduction
in the energy necessary to establish their normal cores. In the
opposite case, it is energetically more favorable for the vorti-
ces to be located between the nuclei. Since the condensation
energy density is given by £K = — (3/8) Л^n 2 E 2 F \ where
и 2 is the neutron density and E2¥ is the Fermi energy, we can
write the pinning energy density per nucleus in the form139

where the subscripts 'out' and 'in' represent the local values
of Д2, « 2 > and E2f of superfluid neutrons outside and inside
nuclei, respectively, V is the volume occupied by the core of
a vortex, and RN is the nuclear radius. Despite the uncer-
tainty in the magnitude of the energy gap as a function of
density (the gap is an exponential function of the unknown
nucleon-nucleon interaction), these calculations show that
pinning is possible for densities in the range 1013 — 2X 1014

g/cm3 (Ref. 140).
A detailed study of the interaction between vortices and

nuclei in the Aen-phase, based on the Ginzburg-Landau
theory, was performed in Ref. 141. The superfluid properties
of nuclei were obtained by minimizing the free-energy func-
tional, and it was shown that the interaction between vorti-
ces and nuclei led to pinning for densities in excess of 1013

g/cm3.
By analogy with the behavior of type II superconduc-

tors in the resistive state with small potential differences, F.
Anderson and N. Itoh130 proposed the possibility of thermal
creep in the vortex structure. They assumed that quantum
tunneling of thermally activated neutron vortices across pin-
ning barriers was possible in the equilibrium state (in the
absence of a glitch), whereby vortices hopped randomly be-
tween pinning centers. The radial velocity of the vortex
structure is then given by

vr = w0exp (5.13)

where v0 is the velocity of the vortices in the absence of pin-
ning (v0 ~ 10 ~ 7 cm/s), Т is the temperature of the crust,
a = us — flc is the relative angular velocity of the super-
fluid in normal crust and u)cr = (fls — flc )max is the maxi-
mum relative velocity that can be supported by pinning
forces. The equation of motion of the vortices, given by
(5.11), thus assumes the form

kBT
(5.14)

We note that the characteristic relaxation time for thermal
creep is proportional to temperature and is given by

(5.15)

where П ̂  is the equilibrium value of flc, kB is the Boltz-
mann constant, and the subscript / labels the particular pin-
ning layer.

Glitches were interepreted by Anderson and Itoh as be-
ing due to the catastrophic detachment of a large number of
vortices, when the differential angular velocity reaches a cer-
tain critical value. These vortices transfer angular momen-
tum to the crust of the neutron star and thus accelerate its
rotation period. 13° The alternative explanation assumes that
the resultant stresses in regions with a large energy gap of the
neutron condensate are more likely to give rise to the crack-
ing of the crust than the detachment of vortex lines, and thus
shift the vortices without detachment.142 The moment of
internal forces transferred to the crust by the superfluid
when the angular rotation undergoes a step change (ДПС )0
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is given by

N(t) =W (А''<-«-"*<)]'
(5.16)

where /, is the moment of inertia of the / th pinning region
and /o/ is the characteristic glitch relaxation time. For re-
gions in which there is no vortex motion, the characteristic
glitch relaxation time is138

' (5Л7)

On the other hand, in regions in which vortices are brought
into motion as a result of a glitch, this time is given by

da,
IQJ 2*7*1 ue l 1 (5.18)

where <5fi, is the change in the angular velocity due to a
glitch and X/ is the number of moving vortices.

The post-glitch derivative of the angular velocity of a
pulsar is given by

(5.19)
Jc *c

Consequently, in this model, the change in the angular ve-
locity is an exponential function of the initial glitch (Afl c ) 0.
In the two-component model, the corresponding depend-
ence is linear. If the characteristic time is Г0, >r,, the time
dependence in (5.19) is similar to the Fermi distribution
function of statistical physics.

We therefore conclude that the differences between the
creep model138 and the simple two-component model123 are
as follows:

(a) the period glitches and the long relaxation times are
due to the pinned superfluid in the crust, which accounts for
only a few per cent of the neutron superfluid. This is deter-
mined by the observationally confirmed fact that
(Alic/ftc)0~/p//~10-2-10~3 for 14 glitches in seven
pulsars (/p is the moment of inertia of the pinned super-
fluid)

(b) this model is essentially nonlinear and describes the
response of the superfluid; vortex creep due to an angular
velocity glitch is an exponential function of the glitch (in
regions in which the vortices do not move) and of the change
in the superfluid velocity (in regions in which vortices con-
tinue to move during the glitch)

(c) the relaxation times are proportional to the internal
temperature of the neutron star, so that the observational
data can be used to determine this temperature in pulsars.

5.3. Comparison between the creep model and observational
data

The relaxation of the angular velocity of the Vela pulsar
PSR 0833-45 after the four glitches of 1969-1979 (Ref. 26)
can be explained in terms of vortex creep.143 The observa-
tional data26 are satisfactorily described by the following
equation of motion of the "normal" component:

~ N2 ~ (5.20)

where Neu = /Пм is the moment of external forces acting
on the pulsar, and Nt and N2 are the moments of internal

forces given by (5.16) and (5.17) with the corresponding
relaxation times r, and т2. These internal moments consti-
tute the average response of two different pinning layers in
which the vortices are stationary. The third region associat-
ed with the motion of vortices is represented by the moment
NA which, in the first approximation, is given by

(5.21)
чш

where/4 is the moment of inertia of the superfluid in pinning
layers (whenever the vortices become detached and are
pinned down again) and tOB is the delay time due to setting
A', in (5.18) equal to the total number of detaching vortices.

Good agreement with observational data can be ob-
tained by taking r, = 3 days and т2 = 60 days for each of the
four glitches of pulsar PSR 0833-45 in 1969-1979. The anal-
ysis performed in Refs. 143 shows that these two pinning
regions correspond, respectively, to superweak and weak
pinning, characterized by (asw)2x 10~1 7d-K~'s~2 and
(a w )~4xlO~ 1 6 d-K~ 2 s~ 2 . The internal temperature of
pulsar PSR 0833-45, determined from the observed relaxa-
tion times, is 1.5x Ю7 K. The observed relaxation of the
angular velocity of the Crab pulsar PSR 0531+21 can be
explained by taking the relaxation times to be r, =3 days
and т2 = 60 days. The former corresponds to the motion of
vortices across the superweak pinning region and the second
across the weak pinning region.144 A constant relative
change in the derivative of the angular velocity, namely,
ДПС/ПС = 2X 10^4, which persisted for 1500 days,145 was
observed after 1975. This constant relative variation is ex-
plained in the nonlinear creep model by the appearance of a
constant internal moment of force in regions with a vortex
excess. The relaxation time of this constant moment is
r'> 1500 days.144

The internal temperature of pulsar PSR 0531 + 21, de-
duced from an analysis of the relaxation times TI and т2, is
3.8 X Ю8 К. The surface temperatures of pulsars PSR 0833-
45 and PSR 0531 + 21 are found to be Tal = 3x 10s and
7^2 = 1.6X Ю6 К. These temperatures are lower than the
upper bounds deduced for these pulsars from observations
recorded by the Einstein x-ray observatory.146

For old pulsars that have already expended most of
their initial thermal-energy reserves, the main source of en-
ergy may be internal dissipation by vortex creep. The surface
temperature Ts can be obtained144 by equating the energy
dissipated per unit time to the thermal luminosity of the stel-
lar surface. If all the old pulsars have the same pinning layers
as PSR 0833-45 and PSR 0531 + 21, their temperature is
determined by energy dissipation, and the relaxation times
for superweak and weak pinning depend on the rate of
change of angular velocity as follows:144

r = 220sw

= 4,4-103

|Q_14r
3/4days,

|Q_14|-
3'4days,

(5.22)

(5.23)

where cacr is the average of <о„ evaluated over all the pinning
layers. The observational data for PSR 1929 + 10 can be
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analyzed to show that /p43<ycr <1.
The observed relaxation of the angular velocity of the

old pulsar PSR 0525 + 21 can be explained by taking
rl = 150 days and т2 = 3000 days (Ref. 144). The "fast"
relaxation time calculated from (5.22) is rsw~140 days,
which is in good agreement with the observed value of т, .
We note that the value of r, is in agreement with the assump-
tion that the main source of energy of this pulsar is dissipa-
tion due to vortex creep.

After the large glitch of pulsar PSR 0355 + 54 in 1985
(ДПЛ1 = 4.4 X 10 ~6), the observed relaxation can be de-
scribed as follows:25

ДОС(0 = [(ДОС)0 - ДП2 ] + ДЙ, • t + Д02

ДЙС(0 = ДЙ, + ДЙ2-ехр(-Г/г) = Д^! -

-*/г), (5.24)

ДО2ехр(-г/т)

(5.25)

where Д1\ (/) and ДГ1С (t) are the changes in these quanti-
ties relative to their values prior to the glitch.
ДП2/П2 = 4.2 X 10 ~9, ДП2/П = 0.039. Consequently, one
thousandth of the initial step ДП relaxes exponentially with
relaxation time r = 44 d. Moreover, there is a constant rela-
tive step ДП, (ДП,Л1 = 0.0059) that determines Ip/I in
the regions in which vortex creep ceases as a result of the
glitch.

In previous applications of creep theory, the superfluid
in the pinning region did not participate in the slowing down
of rotation during the characteristic times (delay times) giv-
en by (5.17) and (5.18). The values of these constants for
PSR 0355 + 54 are 4.9 у and 832 y, respectively.147 Conse-
quently, a constant step Д11, will be observed for 4.9 у after
the glitch.

The exponential term in (5.24) cannot be explained in
this way because it does not contain the delay times. Even a
77-day uncertainty in the precise date of the glitch is too
small to mask these much longer times. These particular
terms can be explained by a linear regime that is established
in the vortex creep model if r/ = ( \ f l m \r/4Cl0v0)
exp (E p /kB T) < 1. The nonlinear regime is established when
this condition is not met.

The derivative of the angular velocity is a linear func-
tion of the glitch (ДПС )0 and is given by147

(ДО )n
• - (5.26)

where /2 is the moment of inertia of the pinned superfluid in
the linear creep region, /2 <Ip^Ic, and т, is the correspond-
ing relaxation time given by

••ехр
kBT

(5.27)

The quantity ДЛ2 = (ДПс)0/2/7 can now be obtained
from (5.26). Analysis of observational data shows that the
moment ofinertiais/2//s9.5x 104 — 5.5X 10"3. This is in
agreement with the result /p /7 =0.0059 obtained for the
nonlinear creep regions. It is also in agreement with theoreti-
cal calculations of the moment of inertia of a pinned super-
fluid and with values obtained by analyzing observational
data for other pulsars. The analysis reported in Ref. 47

shows that the linear creep region corresponds to superweak
pinning with energy Ep = 0.05 MeV.

Consequently, the linear regime is established in some
pinning layers of pulsar PSR 0355 + 54, whereas the nonlin-
ear regime of vortex creep (the term containing ДП,) is
realized elsewhere.

Pinning and vortex-creep models rely on the presence of
a dissipative process that transfers the angular momentum
of the superfluid to the solid crust and determines the mini-
mum dynamic coupling time rd between this fluid and the
crust. Observations of the eighth glitch in pulsar PSR 0833-
45 suggest that rd should be less than 2 min.148Л49 The value
of rd due to the scattering of electrons by the electric charge
induced around neutron vortices is of the order of a few
months or even one year. I5° Still longer rd is obtained for the
scattering of electrons by the normal cores of neutron vorti-
ces in the Aen-phase.71 Much lower values of rd are ob-
tained for the dissipative process discussed in Ref. 151,
which arises because of the inhomogeneity of the order pa-
rameter in a neutron vortex.152 For pulsar PSR 0833 — 45,
this time is rd = 3.6X 10~2 s (Ref. 151), which is in good
agreement with observational data and confirms the model
in which pulsar glitches are interpreted in terms of the sud-
den liberation of a large number of pinned vortex lines in the
Aen-phase. Models based on the dynamics of neutron vorti-
ces are at present the only ones capable of providing a satis-
factory explanation of all the observational data on pulsar
glitches.

It is our pleasant duty to thank L. P. Pitaevskii for read-
ing our manuscript and for a number of valuable sugges-
tions.
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