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A review is presented on the methods of the theory of singularities applied to the Landau
phenomenological theory of phase transitions. Constructive algorithms are presented that
eliminate arbitrariness in the choice of the Landau potential and make it possible to exclude from
consideration models with nonphysical results. The methods of singularity theory are illustrated

by application to several real thermodynamic systems.

1.INTRODUCTION

The basis of the phenomenological theory of phase tran-
sitions was developed in a series of papers by Landau.'™ In
those papers it was shown that in a high-symmetry phase of a
crystal the equilibrium charge density distribution p(r), in
accordance with Curie’s principle, is invariant under all the
transformations of the space group G, of the crystal. The
thermodynamic instability that arises in a phase transition
brings about a symmetry-breaking deviation

3p(r) = 2 Ny Pimy(D)dK, (1.1
ny

where k is the index of the irreducible star of the wave vec-
tors, 7,,, are the components of the order parameter, and
@, are the basis functions of the irreducible representa-
tions of the given star k. '

The presence of dp(r) determines the nonequilibrium
increment A® to the thermodynamic potential:

AD = Do, + Ip, P, T) — Doy, P, T).

Because the transformation properties of 7,,, and
@Punpey are identical, the nonequilibrium thermodynamic
potential A® (the Landau potential) can be considered a
function only of 7, , and invariant with respect to G,. The
equilibrium value 7,,, =7, is determined from the condi-
tion that the Landau potential be minimized with respect to
the order parameters:

sy = 88 4y o
Z

(1.2)

(1.3)

2
2 _ 9%(AD)
d“(Ad) = a1, dr]ldrljZO.

The most important results obtained by the Landau
theory are determined by the symmetry of the thermody-
namic system. Among these results are the conclusions of
Landau'™ that a second-order phase transition is a conse-
quence of the spontaneous reduction of symmetry and that
the behavior of the generalized susceptibility at the Curie
point (the “rule of two”) is general. To describe a single
isolated second-order phase transition Landau proposed to

use a potential of the form
® = a(T - T yn? + B(P, Tin*. (1.4)

In his paper,® Lifshitz answered the question: between
which Bravais lattices are second-order phase transitions
possible? Ginzburg® showed that the existence of a soft mode
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is necessary in a second-order phase transition. A more com-
plete allowance for symmetry in the sixth-order Landau po-
tential with a multicomponent order parameter allowed De-
vonshire’ to describe phase transitions and the observed
low-symmetry phases in the ferroelectric BaTiO,. Dzyalo-
shinskil predicted “weak” ferromagnetism, consisting of in-
duced magnetization arising as a result of a symmetry-
caused interaction with the antiferromagnetic order
parameter,® and piezomagnetic and magnetoelectric effects
linear in the field.>'® A phenomenon in which an induced
polarization appears, analogous to weak ferromagnetism,
was pointed out by Indenbom. "'

Further development and application of the theory en-
countered difficulties related to the multidimensionality and
the nonlinearity of the problems that arose, and as a result,
the theory lost some popularity. However, the potential of
the theory was far from exhausted. Most of the difficulties
were overcome with the use of the theory of group represen-
tation. The methods proposed in the work of Gufan'>"* and
Birman,'*'* and Michel’®!”? extended the class of systems
that could be constructively described by the phenomeno-
logical theory of phase transitions. The problem of describ-
ing phase transitions within the framework of this theory
breaks down naturally into two problems—the angular
problem and the radial problem.'* The angular problem in-
volves the determination of various system characteristics
that are determined only by the transformation properties of
the order parameter, but not by the specific form of the ther-
modynamic potential (calculation of the possible low-sym-
metry phases, determination of the number of domains in
each phase, etc.). The introduction of a number of new con-
cepts such as the space of the order parameter components
(¢ is the space) the group of the various matrices of the
representation (the L group), invariant subspaces (station-
ary vectors), and the complete rational basis of invariants

=Ty, an), k=12, ., m, (1.5)
where 7 is the dimension of the representation, and m is the
number of invariants in the basis, has made it possible to
obtain a geometrically exact and final solution of the angular
problem of the theory.!*'%1?

The solution of the radial problem involves finding the
equilibrium values of the order parameters, for which it is
necessary to know the specific form of the thermodynamic
potential. This, however cannot be done without resort to
model assumptions.

Since the Landau potential is invariant with respect to
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G, it must be a function of the basis invariants
Q = O, @), T, r I, 3,

where a is a continuous function of the external conditions.
Consequently, the system of equations (1.3) can be written

(1.6)

L

(1.7)
d2e = ¥ dndn,

This form of the potential and the methods discussed in
Refs. 20 and 21 reveal in the radial problem as well all the
consequences issuing from the symmetry of the order pa-
rameters.

The solution of the radial problem is also related to the
construction of the phase diagram, to the investigation of the
dependence of the generalized susceptibility y, = 87,/6E,
on the external conditions

1@ =v71@),

to the dynamics of the order parameters, which are deter-
mined by the equations of motion

Do, 3 =0,

where D is the differential operator, as well as to other topics.
Examples of Eq. (1.9) are the Landau-Khalatnikov equa-
tion,?? the Landau-Lifshitz equation,?® and others.

To solve the problems of the phenomenological theory
of phase transitions in its modern form it is thus necessary to
have information on the symmetry of the Landau potential
and on its nonlinearity. The symmetry of the Landau poten-
tial is determined by the transformation properties of the
order parameters and can be found from experimental data.
As shown above, there now exists an entire system of meth-
ods of discovering all the consequences of this symmetry.

On the other hand, the form of the Landau potential is
usually selected with a great deal of arbitrariness. Moreover,
within the framework of the scheme of the phenomenologi-
cal theory of phase transitions discussed above, it is impossi-
ble to analyze systematically how the properties of the model
depend on the choice of the nonlinearity of the Landau po-
tential. This arbitrariness can be avoided with the use of ca-
tastrophe theory (the theory of singularities ), the main ideas
of which were already used in the works of Landau,! #2423
although the rigorous foundations for this theory were ob-
tained considerably later.”*® The internal development of
the phenomenological theory of phase transitions has pre-
pared rich soil for the application of catastrophe theory.

Already the first significant work of R. Thom?° on the
theory of singularities led to a whole series of applied papers.
The authors of some of these papers, predominantly math-
ematicians, attempted primarily to show the effectiveness of
the methods of catastrophe theory to various fields of phys-
ics, including the phenomenological theory of phase transi-
tions.?”313 To do so they used very simple examples. In the
language of catastrophe theory, these papers reformulated
the theory of the critical point of a van der Waals gas,*® the
theory of the thermodynamic behavior of a uniaxial ferro-

(1.8)

(1.9)
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magnet in an external magnetic field,! the model of Bragg—
Williams ordering,? and others. The simplicity and clarity
of these theoretical structures are due to the fact that the
form of the Landau potential in these cases coincides exactly
with the elementary catastrophe structure.

The fact is that they compiled a fairly complete dictio-
nary for the mutual translation of the terms of the Landau
theory and catastrophe theory: The phenomenological coef-
ficients are the control parameters, the order parameter is
the internal parameter, the Landau potential is the miniver-
sal deformation of the normal form of the singularity, the
equation of state is the catastrophe manifold, the dimension
of the thermodynamic instability of the system is the co-rank
of the singularity, and so forth (the meaning of these con-
cepts will be clear presently).

The second group of investigators, mainly theoretical
physicists, pursued other goals. First was the use of catastro-
phe theory to place the Landau theory on a rigorous basis,
and second was the application of its methods for the de-
scription of experimentally observed phase transitions. The
first goal was partially attained. With the aid of the splitting
lemma (for more detail see section 2.3) it was shown®” that
the Landau potential can be considered as the asymptote of
the Gibbs partition function. In the solution of this problem
the question arose’®** as to whether catastrophe theory
gives results that cannot be obtained in the Landau theory.
However, it was shown by Griffiths*! that “catastrophe the-
ory (so far as we understand it) provides a phenomenologi-
cal theory of phase transitions with results...which are very
similar, if not identical, to those predicted by the Landau
theory...”.

Considerably more modest results were obtained in ef-
forts to attain the second goal. In spite of the large number of
papers in this direction, progress has been attained only in
the description of phase transitions in simple systems such as
gases, liquids, and binary mixtures.**** This lack of prog-
ress is due to the fact that in these papers the methods of
“elementary catastrophe theory” were used (see e.g., Refs.
26 and 27). However, in practice one mainly encounters si-
tuations that do not fit within the strict confines of this theo-
ry. Moreover, phase transitions in solid materials are accom-
panied, as a rule, by a change in the symmetry of the crystal.
To construct the Landau potential in such a case it is neces-
sary to use a variant of catastrophe theory that takes into
account the symmetry of the system. Attempts to take sym-
metry into account within elementary catastrophe theo-
ry>!4546 have led to erroneous results (for more detail see
section 5.1). An abstract theory of singularities that allowed
for symmetry was already in existence. However, since it was
scattered over a number of papers,*’-*! and expounded in a
form difficult to deal with, most investigators have preferred
to consider thermodynamic systems with trivial symmetry.

A systematic application of the theory of singularities
makes it possible to avoid most of the difficulties discussed
above. In this paper we shall present the basic methods and
algorithms of the theory of singularities, discussing also sys-
tems with symmetry, which will allow one to construct a
phenomenological model that is adequate to describe anom-
alies that arise in the physical properties in phase transitions
in any thermodynamic system.

No less important is another role that catastrophe theo-
ry plays in the Landau theory, and this role stems from the
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identity of the logic of the construction of these theories. At
the basis of catastrophe theory, as at the basis of the phenom-
enological theory of phase transitions, lie general principles
that permit answers to a number of general questions: is the
Landau potential expandable in a small parameter? what
role does the leading term in the expansion play? and others.

2.STRUCTURAL STABILITY
2.1. Some definitions from the theory of singularities

In this section we introduce some concepts of the theory
of singularities, necessary for further discussion.

Let us consider a potential function U that is smooth,
that is, infinitely differentiable, that depends on n variables
x = (x,,... ,x,,) and / parameters & = (a,,... ,@,; ). The set of
all U for fixed & is called the /-parameter family of functions.
A point where dU = 0/s called a critical point x,, of the func-
tion U. A critical point is called a nondegenerate, or a Morse
critical point, if at this point the Hessian is
det||d2U /dx,0x; |0, and is called degenerate or non-
Morse if det||d *U /dx,9x ; || = 0. If the rank of the Hessian
matrix ||d*U /dx,dx || at the degenerate critical point is 7,
then the number n — 7 is called the co-rank of the critical
point.

The multiplicity of the degeneracy of the point, x, is the
maximum number of nondegenerate critical points into
which it can be decomposed. The function f'is called quasi-
homogeneous of degree d with degrees of quasihomogeneity
Guoeer o i FATX e ,ATX,) = A0 F (X 5X,,).

Ifin some space there are two objects and it is possible to
specify their relative arrangement, then the most general ar-
rangement is called their transversality. Small variations in
their positions do not change qualitatively their mutual ar-
rangement. For example, intersecting straight lines on a
plane are transversal, while parallel lines are nontransversal
(Fig. 1a). In this treatment it is sufficient to use this defini-
tion of transversality, without making any claims to rigor.

fexex -
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FIG. 1. Aid to understanding transversality: a) @ is the angle between
straight lines; b) the positions of the extremal points are shown in the
complex plane; ¢) “small motions” of the family of functions.
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2.2. Structural stability and experimental reproducibility.
Accidental and typical degeneracies

The notion of structural stability, introduced by
Thom?*® for phenomenology, is one of the most important
concepts. It is analogous to the concept of robustness (insen-
sitivity to initial conditions) introduced previously for dy-
namical systems by Andronov and Pontryagin.****

Only those phenomena that have a sufficient degree of
reproducibility can belong to the class of physical phenome-
na, that is, when experiments performed under “almost
identical” conditions yield with some degree of accuracy,
the same result. In other words, if we examine an ensemble of
systems with as identical as possible values of the parameters
that determine the external conditions of the experiment,
then the properties of these systems within experimental ac-
curacy must coincide. These systems are called structurally
stable.

Since the physical phenomena that accompany a phase
transition must be structurally stable, the Landau potentials
that describe them also must have structural stability.

The measure of structural stability is the transversality
of an object, in particular, for the Landau potential, trans-
versality of the arrangement of its critical points. It is clear
that transversal objects are structurally stable. However, a
systematic modification of the arrangement of transversal
objects can ultimately lead to a qualitatively different—de-
generate—arrangement (Fig. 1a,b). At this critical value of
the parameter that describes the variation in their mutual
arrangement, they are non-transversal. Further change in
this parameter again leads to transversality.

Consequently, if an experiment is conducted at a fixed
value of this parameter, a nontransversal situation cannot be
observable. But if the result of an investigation is the depen-
dence of the properties of a system on this parameter, then a
nontransversal system will typically be observed at a value of
the parameter close to the critical value (Fig. 1c). In the case
of a multiparameter variation in a transversal object a situa-
tion with a higher degeneracy can arise (Fig. 2). For fixed

% lrf*s
I\
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¢=—114+ ] 2
Z zaz-r ;X

FIG. 2. Family of the cusp potential ® = a,x 4+ a,x* 4+ x*. The potentials
with a nontransversal arrangement of extrema are shown on the semicubic
parabola a? + a; = 0.
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FIG. 3. Landau potential for a second-order phase transition; an example
of a family of symmetric functions.

values of the external parameters only transversal objects
can be observed. It follows from this argument that a regular
point on a phase diagram corresponds to a morse potential;
i.e., a potential that has only nondegenerate critical points.
The Morse points merge at a phase stability boundary, form-
ing a degenerate critical point.

It should, however, be noted that the route from a
Morse-type Landau potential to a potential with a degener-
ate critical point can result in nonunique objects, since in
families with the same number of control parameters one can
encounter functions with different types of degenerate criti-
cal points. Therefore, the inverse route is the more correct,
since the type of degenerate critical point uniquely deter-
mines the way it decays into Morse critical points. In other
words, the type of degenerate critical point determines the
type of singularity of the Landau potential.

Degenerate critical points of the Landau potential can
arise for two reasons: First, as a nontransversal case in the
variation of the control parameters. These degenerate criti-
cal points, as mentioned above, must inevitably disperse
with small variations in the control parameters. Second, de-
generate critical points can be a consequence of the internal
nature of the thermodynamic system itself, that is, a conse-
quence of its symmetry. These degeneracies in a typical case
must be retained with small variations on the control param-
eters, since the Landau potential of such a system belongs to
a class of functions of a specific symmetry. Therefore, slight
motions of such systems must conserve their symmetry, that
is, these motions must be of a special form.

An example of the first type of degenerate critical point
is the Landau potential with a® + a3 and a,#0, a, <0,
shown in Fig. 2. Conversely, the potentials shown in Fig. 3
are examples of the second type. An accidental degeneracy,
not due to symmetry requirements, is always related to a
structural instability. Structurally unstable models in phen-
omenology have an attractive simplicity. They often admit
of analytic solutions, and therefore have great popularity.
However, these models always yield incorrect results. Ex-
amples of this sort of model are isostructural transitions
without a critical point, hysteresis-free first-order phase
transitions, and others.

2.3. Splitting iemma. Separation of thermodynamically
unstable subsystems

One of the principal results that lie at the foundation of
the theory of singularities and the phenomenological theory
of phase transitions is the splitting lemma. The meaning of
this lemma is the following: Since the Hessian of any smooth
function U(x,,... ,x, ) is nonzero in the vicinity of any non-
degenerate critical point, the differentiable replacements
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X = el.(yl,...,y") 2.1
can transform it to a nondegenerate quadratic form
n
U=3ap?, a=z1 (2.2)
i=1

At a degenerate critical point some eigenvalues of the
Hessian matrix are zero. The subspace spanned by the corre-
sponding eigenvectors (X, ;,...Xx,) is called a critical sub-
space, and it has dimension # — s, equal to the co-rank of the
critical point. The rest of the variables (x,,...,x, ) are called
Morse variables. The function U(x,,...x, for this substitu-
tion (2.1) can be written in the form

S
U=3ay}+ 80 ¥y =21, (2.3)
i=1
where g(y, , 1,...., ) is a function for whichdg =d?g = 0.

The singularity of U depends only of the form of g. Ad-
dition of any number of Morse variables does not change the
singularity of U. All functions with the same g(y, y,...,},,)
are called stably equivalent. We can, on the basis of the split-
ting lemma, prove rigorously the relation between the Lan-
dau potential and the incompletely integrated Gibbs parti-
tion function. If the energy E can be written in the form
(2.3) then one can integrate the infinite-dimensional parti-
tion function

Z = [exp(~BE(, -, ¥))dy

over the Morse variables y,,...,p, . Thus, the problem reduces
to the finite integral (usually of small dimension)

(2.4)

Z, = Z,(Ygppr oo Vp B)s (2.5)

which depends on the external conditions and on the param-
eters. Then the Landau potential is ® =1n Z, /3. In the
thermodynamic limit Z; can be written in asymptotic
form®** that is completely determined by the form of

g(ys+1"" ,yn)'

2.4. Differentlable equivalence. The action of the group of
DIff € on the space of Landau potentials

It was shown in the previous discussion that the Landau
potential can be considered an m-parameter family of
smooth functions of n critical variables that contains the
corresponding singularity. Below we represent some impor-
tant considerations that underlie a search for this family.

The requirement of structural stability allows us to ana-
lyze the Landau potential with an accuracy up to “small
motions”; that is, it is necessary to consider as equivalent all
the potentials in the neighborhood of a degenerate critical
point that are close to a given potential in the sense of a small
motion, since they lead to results that are experimentally
indistinguishable. Small motions can be generated by an in-
terchange of variables that differ only slightly from being
identical. Here the question arises: How wide must be the
class of transformations to which these interchanges be-
long?** It might appear at first sight that continuous inter-
changes might provide structural stability.

However, the smoothness of the interchange is subject
to some constraints imposed by the requirement of conserva-
tion of the singularity (determined by the degenerate critical
point). Indeed, it is the singularity that determines all the
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FIG. 4. Orbit of action of the group Diff ¢ in the space of smooth functions
(it consists of all functions that have the same degenerate critical points at
the origin.

properties of a Landau potential. The decomposition of the
singularity determines the phase diagram, the nature of the
dependence of the components of the generalized susceptibi-
lities on the external conditions, and other thermodynamic
characteristics. Consequently, the Landau potential must be
analyzed with an accuracy up to differentiable equivalence.
Then the small motions are diffeomorphisms, and their
smallness is provided by the first derivative, which is equal to
unity.

The group Diff £ of these diffeomorphisms operates on
the space of all smooth functions, and divides it into orbits.
All the functions that have the same critical point belong to
the same orbit (Fig. 4). In fact we shall specify a certain
representative f in an orbit. The elements of Diff £ can be
written in the form of vector fields v acting on &:

a
v= Eiv(xl, ey X")Et—i (2.6)

If we choose a diffeomorphism v that shifts f along an
orbit to a nearby point g,

vg=f (2.7)
in the form

v=yytu, yf=/ (2.8)
then g is expressed as

g=v0f+uf=f+uf=f+;¢i(x)aa—£i, (2.9)

where y; (x) are smooth functions.

The second term in (2.9) vanishes at a critical point,
and consequently does not change the type of critical point.

The difference between Landau potentials that belong
to the same orbit lies in the terms that vanish for order pa-
rameter values that describe thermodynamically stable
states. In other words, all these potentials lead to equations
of state that have the same solutions.

Since we are interested in Landau potentials to an accu-
racy up to diffeomorphisms, we can choose any representa-
tive of the orbit. For practical applications, the most conven-
ient one is that which has the most compact form. This
representative is called the normal form.

However, in order that the singularity may be found in
practice, it should be considered to be in a family of functions
that corresponds to the parametrization, that is, the parame-
trization that provides complete decomposition of this sin-
gularity into Morse critical points. The orbits on which the
Diff £ group acts are mutually arranged in such a way that
orbits of functions that abut an orbit of functions having a
degenerate critical point, are those with critical points that
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FIG. 5. Aid to understanding the deformation of the singularity of a Lan-
dau potential. a) Definition: 1) orbit of functions with a singularity; 2)
nonsingular orbits; 3) representatives of the deformation; 4) deformation
base. b) Example: normal form of a singularity and the representative of
the deformation.

arise in the decomposition of the degenerate critical point.
For example, in Fig. 1b, the function f = x*(£ = 0) belongs
to the orbit with a degenerate critical point. The orbits of the
function f= x?+ ex with nondegenerate critical points
(£#£0) abut it on both sides.

The family that includes all functions, those with a sin-
gularity and those with all of its decompositions, is called the
versal deformation of the singularity. The parameters of this
family form a space called the deformation base. The mini-
mum number of parameters necessary to obtain all of its
decompositions is called the co-dimension of the singularity.
If the co-dimension coincides with the dimension of the de-
formation base, then this deformation is called miniversal
(Fig. 5). When the dimension of the base is higher than the
co-dimension, the singularity evolves along extra param-
eters (this is discussed in more detail in Section 8). The de-
formation base includes a set of parameters for which the
singularity is not completely decomposed. The set of all pos-
sible sets (strata) determine the bifurcation diagram of the
singularity. At the phase stability boundaries, described
with the use of a Landau potential ®, the nondegenerate
critical points merge (d® = d*® = 0). Consequently, the
phase diagram of the system is preserved in the bifurcation
diagram of the singularity of the Landau potential (Fig. 6).

The bifurcation diagram of the singularity of the Lan-
dau potential means the dependence of its equilibrium values
on the coefficients of the deformation base. The phase dia-
gram is a projection of the bifurcation diagram of the singu-
larity on the space of coefficients.

The fact that the order parameter in the phenomenolog-
ical theory is always real imposes a number of constraints on
the bifurcation diagram of the Landau potential. However,
for the great majority of the discussions in this paper these
constraints are not important.

From this analysis it can be concluded that to find the
Landau potential it is first necessary to determine what de-
generate critical point of maximum multiplicity it can have
in the range of external conditions involved. Then from all
the potentials having such a singularity it is necessary to
choose the most compact, that is, it is necessary to reduce it
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FIG. 6. Relation between the phase diagram and the bifurcation diagram
of a singularity. An example of a thermodynamic potential in the neigh-
borhood of a critical point of the liquid-vapor type.

to normal form. A miniversal deformation of the normal
form of this singularity will be the desired form of the Lan-
dau potential that describes the phase transition in this re-
gion of conditions at a constant temperature.

3. ALGORITHM FOR REDUCING A SINGULARITY TO
NORMAL FORM

3.1. Normal forms. Algorithm for reducing the singularity of
the Landau potential to normal form

This section deals with constructive methods of reduc-
ing the Landau potential to normal form. At the present time
there are many such methods. The diversity of methods to
perform this operation is a result mainly of the varied com-
plexity of the problems and the taste of the investiga-
tors.’323657 The most general and systematic method in
our opinion is the one based on the spectral sequence ob-
tained by filtration of the Koszul complex.?® It is not possi-
ble in this article to give a detailed and rigorous account of
the spectral sequence method. Therefore, we shall briefly
discuss only its algorithm.

If, in the neighborhood of a degenerate critical point,
the form of the function that describes the properties of the
system is not known, but a number / of parameters that de-
pend on the external conditions are known, then this algo-
rithm permits an exact determination of a finite number of
normal forms, their form, and their miniversal deforma-
tions, one of which must be adequate to describe the proper-
ties of the system near this degenerate critical point.

The Landau potential ® for fixed external conditions is
given by a formal power series in the order parameters %:

® =Taay, .. apn®, 3.1
d

whered = (d,,...,d, ), d; = deg7,.

All the polynomials in the order parameter form a ring
R[7]. Ordinarily a Newton diagram is used for graphical
display: Monomials in the ring are imaged by points on an
exponent grid (Fig. 7a). Since all monomials are in the for-
mal series (3.1), the potential @ fills the entire grid. To con-
struct the family ® that contains the most degenerate critical
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FIG. 7. Diagram relevant to the algorithm for reducing the Landau poten-
tial to normal form f = y* + ax?? + bx’y + cx’y*. a) the arrow shows the
rotation of Newton’s ruler. b) Miniversal deformation of the normal form
of the singularity X', , (Ref. 28) of co-dimension 8. 1) diagonal; 2) modu-
lus; 3) base of deformation. The monomials x* and xy? are comparable to
the ideal Iy 5. ¢) Globally minimal (4) and nonglobally minimal (2) nor-
mal forms.

point, it is necessary that the first g coefficients go to zero (by
the implicit function theorem). It is obvious that the choice
of these coefficients for a sufficiently large / is not unique.
This indeterminacy is mainly what determines how many
different normal forms can lay claim to being the “true”
Landau potential.

In this step P is written as a superposition of quasiho-
mogeneous components:

B=fo+fi+f+.... (3.2)

To do so one specifies on the Newton diagram the mon-
omial of the minimum degree, lying on some coordinate axis
77. A (n— 1)-dimensional hyperplane is rotated around
this monomial in the (deg 7,, deg 77,) plane until it passes
through another monomial with nonzero coefficient (for ex-
ample 77'77?). Then a rotation is performed in the space
(17:7,7,) to the monomial 777293, and so on until the end.
As a result, the hyperplane (called Newton’s ruler) passes
through the monomials with nonzero coefficients

fo=amp+anmz+...+ anfllilflii 7]5[1. (3.3)

The polynomial f  is called a diagonal polynomial, and
it determines the partition of ® into quasihomogeneous
components. The latter are easy to find by moving the hyper-
plane parallel to the diagonal in the direction of increasing
powers of the monomials.

As was shown in the previous section, differentiable
equivalent Landau potentials are distinguished from one an-
other by terms that go to zero simultaneously with the equa-
tions of state, i.e., the terms that belong to the gradient ideal
I,3 of the Landau potential. The elements of the gradient
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ideal are polynomials that can be written as

ad
ER,-(r?)a—,,i, (3.4)
where R, (%) is an arbitrary polynomial.
Consequently, for the normal form of a potential having
a given singularity, one must select the representative of the
orbit of the action of the group of Diff £ that contains no
terms of form (3.4). To do so we introduce the algebra U of
all vector fields of the form

')
u= ERi(ﬁ')gn—i, ueU. (3.5)
i

To obtain the generators of the gradient ideal Iy, of a
polynomial f (%) it is sufficient to operate on fby the genera-
tors d /9y, of the algebra U. The miniversal deformation of
the normal form of fis the family of polynomials in which
enter all the monomials of the Q-local algebra of the singu-
larity £, which is determined by the factor of the ring of poly-
nomials R[ 7] over the gradient ideal Iy ,:

Q =R[7_I>]/1vf

For an infinite series this method is not constructive. In
this case one used successive approximations, which con-
verge very rapidly to the exact result. (It should be especially
noted that this method has nothing to do with iterations in
numerical calculations, which always given an approximate
result).

First one must find the gradient ideal of f ,, by operating
on it with all the fields of U:

(3.6)

oy
Iy, = R()=—. .
vy, 1G] o, (3.7)
This is the first approximation to Iy .
Then we find the gradient ideal Iy . To do so we oper-
ate on that part f , that did not enter into Iy, , with all the

fields of U that conserve f,, (that is, from the stationary
algebra of f):

5fy=0, sESfo. (3.8)

Theunion of Iy ; and Iy ,, gives the next approximation
to the gradient ideal Iy4 . The next step is obvious—to find
the gradient ideal Iy, ,,. One operates on the part f, not in-
cluded in the previous approximation Iyg with fields from
the stationary algebra .S Fotfyr i.e., so that

+£)=0, s€Ss,
sy +17) $ S 1+, (3.9)
and so on.

In the neighborhood of a critical point of finite multi-
plicity this process reduces after a few steps to the local alge-
bra of the singularity of the Landau potential

Q{f> =R[7-7>]/1v¢- (3.10)

3.2. Structure of the local algebra of a singularity

The normal form of the Landau potential ® consists of
the diagonal and all the monomials of higher degree of quasi-
homogeneity that enter into the local algebra Qg (Fig. 7b).
All the rest of the monomials constitute the deformation
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base. If some linear combination of p such monomials belong
to Iyg, then it is sufficient to include in the local algebra any
p — 1 of them. In this case the deformation of the normal
form @ is miniversal. The coefficients of the monomials of
the local algebra lying on and above the diagonal f, are
called the moduli. These coefficients, unlike those in the de-
formation base do not vary, and hence do not depend on the
external conditions. The number v of moduli is related to the
multiplicity p of the degenerate critical point and the co-
dimension ¢ by the equation

p=c+v+1 (3.11)

By means of this algorithm we obtain all the informa-
tion on the minjversal deformation of the normal form of the
singularity of .

3.3. Global minimality of the Landau potentials

To secure thermodynamic stability of an entire system
as a whole, the Landau potential cannot permit infinite fluc-
tuations of the order parameter, which lead to an infinite
gain in energy. To obtain thermodynamic stability requires
global minimality of the Landau potential,******¢ that is,
the Landau potential must always have its global minimum
at finite values of the order parameters. This imposes a limi-
tation on the class of functions to which the Landau poten-
tial can belong. In fact, all functions that belong to an orbit of
Diff ¢ must be globally minimal. Small motions v cannot
destroy this property.

The algorithm given above must be augmented with the
criterion for the selection of the globally minimal normal
forms of the Landau potential®® (the “minifunctions of
Vasil’ev®). For global minimality it is sufficient that the
Newton diagram of the function at a minimum point of finite
multiplicity satisfy two conditions: it intersects all the coor-
dinate axes, and all its vertices have integral coordinates
(Fig. 7¢).

3.4. Variable parameters and moduli

The use of the algorithm augmented in this way as dis-
cussed in the last section, has a number of practical advan-
tages. The most important one is that it permits one to go
beyond the elementary catastrophe theory of Thom,?”*° and
moreover, there is no need to be limited by the standard lists
of singularities given in the older works on mathemat-
ics, 2553960 The universal nature of the algorithm makes it
possible to obtain the normal form for a thermodynamic sys-
tem of any degree of complexity with any number of variable
parameters. Furthermore, one can in this way divide the co-
efficients of the Landau potential into two groups: those that
depend on the external conditions (the parameters of the
deformation base) and those that do not (the moduli).

These groups of parameters play an important role. The
bifurcation diagram in the space of deformation parameters
determines the phase diagram and the other characteristics
of a thermodynamic system. The moduli, however, deter-
mine the type of bifurcation diagram. For certain values of
the moduli the normal form is degenerate. These values di-
vide the space of moduli into parts. Different parts of this
space correspond to the normal forms of the same type, but
with qualitative differences in the bifurcation diagrams.

Variation of the moduli in the phenomenological theory
of phase transitions is not permitted, since it leads to the
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possibility of them taking on the segregated values. The cor-
responding normal forms then belong to another type.

Along with the advantages of this algorithm in the phe-
nomenological theory of phase transitions, there is an impor-
tant drawback. In this form it is applicable only to Landau
potentials with trivial symmetry, those that describe the lig-
uid-vapor type of phase transitions, transitions in binary
mixtures, and the like. However, most phase transitions in
solids are accompanied by changes in the symmetry of the
system. Consequently, the algorithm for reduction to the
normal form of the Landau potentials that describe these
transitions must take into account the transformation prop-
erties of the order parameter.

4.DETAILS OF THE ALGORITHM FOR THE REDUCTIONOF A
SINGULARITY TO THE NORMAL FORM, WITH ALLOWANCE
FORSYMMETRY

4.1. Symmetry of the Landau potential and the details of the
algorithm for the reduction of a singularity to normal form.
Equivalent Diffeomorphisms, vector fields on the manifold of
orbits

In the construction of the normal form of a function
with allowance for symmetry there is a temptation to pro-
ceed in the following way: first construct the normal form by
the method outlined in section 3.1, and then keep only those
terms that are invariant under the symmetry group of the
system.?!"**4 However, this way of constructing the normal
form is not applicable for many reasons. The normal form
found in this manner will be symmetric for functions of gen-
eral form. But it will not be the normal form for a symmetric
function. The symmetry of this normal form is accidental
and not characteristic, since any smooth replacement of
variables in the class of functions of a general form inevitably
will break the symmetry of the normal form. Consequently,
in the reduction to normal form of functions that are invar-
iant under the group G, the symmetry must not be broken.

The Landau potentials ® that belong to the same orbit
action of Diff £ must have the same symmetry. For this to
occur it is necessary first, that d be polynomials in the invar-
iants of the complete rational basis (1.5), and second, the
diffeomorphisms of Diff ¢ must be equivalent. In this case
the generators of the algebra of the vector fields must have
the form*®

n
d
u,=3VJl—, k=1,2,..,m, (4.1)
k &1 lkfml.

where J , are the basis invariants.

For L-groups generated by reflections®™®* all the basis-
invariants are algebraically independent. The number of
them coincides with the dimension of the representation 7 of
the space group Gy, i.e., m = n. Then the algebra of the vec-
tor fields, U, also has n independent generators. For L-
groups that are not generated by reflections, m — n algebrai-
cally dependent invariants are included in addition to the n
independent ones. In this case there are m — n relations,

FfJ}, wn ) =0, (4.2)

) i=4L2,..,m—n,
called syzygies, between the invariants of the basis.

The dimension of the corresponding algebra Uy is high-
er than the dimension of the representation, #, and the num-

ber of invariants, m.

Besides fields of the form (4.1) it is necessary to include
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FIG. 8. Description of symmetric singularities. a) space and manifold M
of orbits for the group L = C,,; M., is the image of the mapping 7:

J,=n +7%,J, =71 —3n,7%. b) Graph of the Landau potential in-
variant with respect to the group L = C,,,.

in U° all their commutators. The form of the complete ra-
tional basis of invariants (1.5) gives the mapping from the
space of the components of the order parameters ¢ in the
space of invariants, J, the image of which is called the mani-
fold M of orbits of the action of the L-group on £ (Refs.
16,17,63,64). The manifold M of orbits consists of submani-
folds (strata) of various dimensions corresponding to the
phases of different symmetry (Fig. 8a). The Landau poten-
tial is a family of functions that are defined on this manifold
(Fig. 8b). In this sense the description of symmetric singu-
larities is analogous to the description of boundary singulari-
ties.28’65'66

It is obvious that reduction to normal form on the mani-
fold M of orbits is more convenient than on £ space. Then the
generator (4.1) of the algebra U® can be written as*®

[i]
Vk-=iElVleVlJ[3]—l. (4.3)

Let us point out other distinctions between the symmet-
ric case and the nonsymmetric case. If the order parameter
that describes the phase transition transforms according to
an irreducible representation of the group G, then the mean-
ing of the term quasihomogeneous reduces to the meaning of
homogeneous, since the invariants are homogeneous in the
components of the order parameter. Quasihomogeneity ob-
tains only between irreducible components of a reducible
representation. The co-rank of the singularity of the Landau
potential is equal to the dimension of the order parameter.
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4.2. An example of a cubic ferroelastic

Let us illustrate the algorithm for the reduction to nor-
mal form of a Landau potential that describes the thermody-
namic behavior of a cubic ferroelastic. We consider a phase
transition in a crystal of class O, , which brings about sponta-
neous uniaxial strain. The matrices of the corresponding
two-dimensional representation of the group G, = O,, form
the group L = C,,. The components of the order parameter
(17,7,) are expressed in terms of the diagonal components
u;; of the strain tensor in the form of symmetric linear combi-
nations:

1
M =76y ~ Uy~ Uyy)s
(4.4)
1
2= 77 (e ~ )

The complete rational basis of invariants consists of two
polynomials

J] = 77% + 77%7
(4.5)
Iy =} = 3nyn3
The generators of the algebra of vector fields U v are
=y 9.
UL =G Y 2oy
(4.6)

) )
2 2

Us = — —— 27 _—
2 (;1 1;2)6171 172 072

The manifold M of orbits of the group L = C, is shown in
Fig. 8a. Then reduction of the Landau potential to normal
form will be carried out on this manifold. The generators of
U © are written as

=y 45 9

Vi=Jir o
(4.7)

o 29

V2=125j;+11612.

The expansion of the landau potential in a formal Tay-
lor series in powers of the invariants of the complete rational
basis of invariants has the form

- 2 2
Q=0 +aJ +bJta it + b5+ . (4.8)

If the experiment admits the possibility of varying four
external conditions, such as the temperature, the pressure,
the concentrations of two different admixtures, then by the
appropriate choice of parameters it is possible to set to zero
four coefficients of the terms of lowest degree in expansion
(4.8). As we have already noted, this choice may be nonuni-
que. Depending on the kind of choice, one can obtain normal
forms at different singularities. In this case the coefficients
a, by, c,, and a, go to zero. The partition into homogeneous
parts f o, f 1, /3,--- of the remaining “tail” of the series (4.8) is
shown in Fig. 9. The operation of the equivalent vector fields
(4.7) on the diagonal f, = J 3 + J 2 gives the generators of
the gradient ideal I, :

Vifo =33+ W€ Iy,
0
(4.9)
Vofy = 5I41, € Iy, .
Yo =312 € lyy,
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FIG. 9. Miniversal deformation of the normal form of the singularity of
the Landau potential invariant with respect to the group L = C;,. The
dashed lines indicate the quasihomogeneous components; the gradient
ideal is cross-hatched. 1) modulus; 2) deformation base.

The gradient ideal Iz consists of all polynomials of the
form

P=P (I, I3+ Ty + Py, T)IA,, (4.10)

where P, and P, are arbitrary polynomials invariant under
L=0C,,.

The local algebra Q = R( J 1,/ ,)/Jys of the singular-
ity of the Landau potential includes the terms (see Fig. 9).

Q=1{1,7,, 75 I3 7 05 13,73, g} + 1,73}, (4.11)

where g#£3/2.

Consequently, a miniversal deformation of a normal
form describing a phase transition in this ferroelastic with
variations of four external conditions is written as

= 2, 2, 3 4 2
O=al, +bJ,tat+cd Ly + TE+ T+ g+ T T3
(4.12)

We note that the linear combination gJ | +J ,J3, in
the local algebra lies above the diagonal f, (Fig. 9). By the
definition given in section 3.2, the coefficient g is a modulus
and does not depend on the external conditions.

5.CONSTRUCTION OF PHENEMOLOGICAL MODELS WITH A
MULTICOMPONENT ORDER PARAMETER

5.1. Structurally stable thermodynamic potentials describing
phase transitions with a muiticomponent order parameter: a)
The group L =C,,; b) the group L= 0,,, (cubic ferroelectrics
and ferromagnets; c) the group L = C, (gadolinium
molybdate)

a) Thegroup L = C,,. The group L = C,,, considered
in the last section, is very popular in the phenomenological
theory of phase transitions (see, e.g., Refs. 13, 18, 19). Such
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FIG. 10. Dependence of the bifurcation diagram (a) the
manifold of states (b) on the modulus b, for the potential
(5.1). 1) Phase stability boundary; 2) second-order phase
transition.

a two-dimensional representation is frequently encountered
in the description of phase transitions with wave vector k&
from various points of the Brillouin zone having very differ-
ent space group symmetries (see, e.g., Refs 67-71). How-
ever, some widely used Landau potentials with the group
L = C,, are incorrect from the point of view of the theory of
singularities. Let us see where we are led in an attempt to
describe phase transitions in the space of two varying exter-
nal conditions (such as the temperature and pressure) by
expanding ® to fourth degree in a series in the small order
parameter

®=a,J +bJ,+a,J (5.1)

The symmetry of the order parameter admits the exis-
tence of three low-symmetry phases: the phase (70), in
which 7, >0 and 7, = 0, the phase ( — 7), in which 7, <0
and 7,=0, and the regular phase (7,7,), in which
7, #1,#0. The form of the bifurcation diagram of potential
(5.1) as a function of the modulus &, is shown in Fig. 10a.
The manifold of states called in catastrophe theory the catas-
trophe manifold or the catastrophe surface??”*! (the de-
pendence of the values of the component 7, of the order
parameter on the phenomenological coefficients) is shown
in Fig. 10b.

The results found within the framework of this model
(5.1) are nonphysical. In fact, as the parameter &, is varied
the component 7, of the order parameter undergoes a finite
jump at the point &, = 0; even though the boundaries of the
phases (7,) and ( — 7,) coincide. These facts cannot be in-
terpreted as a first-order phase transition or as two second-
order transitions through an intermediate phase (7,7,).

It follows from the theory of singularities that this mod-
el is structurally unstable. Any small motion in the class of
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FAN \\
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\\\‘
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functions that are invariant under L = C,, results in a quali-
tative change in the results. As the theory of singularities
shows, when two external conditions are varied, the Landau
potential, which is invariant under L = C,,, goes over into
the form

O =aJ, +bJ,+ 12+ b2 (5.2)

where a, and b, are the variable parameters and &,7#0 is a
modulus. The phase diagram and the manifold of states of
model (5.2) are shown in Fig. 11a and 11b, respectively. On
the phase diagram there is a region of stability of the phase of
lowest symmetry (7,7,), which abuts the phase (70) and
the phase ( — 70) along a line of second-order phase transi-
tions. These results are structurally stable and are not al-
tered with small motions.

b) The group L = O, (cubic ferroelectrics and ferro-
magnetics). It is possible to adduce many more examples
similar to the ones considered. One of them could be the
Landau potential with the space group L = O, . The poten-
tial with these transformation properties for the order pa-
rameter usually describes phase transitions in the ferroelec-
trics of the type of BaTiO,,”>"® cubic ferromagnets of the
type RFe, of RCo,, where R is a rare-earth ion,”*”* and
other systems. The series expansion to the sixth degree that
is used for this is

D=alt +adi+a i+ b, +d I3+ e, 0\ T, (5.3)

where J, =7t + 75 + 75, J,=nim +mims +mi,
andJ ; = 52 772n3 have a form similar to the deformation of
the normal form of co-dimension two. The corresponding
phase diagram must be two-dimensional. An attempt to vary
the third parameter (a modulus) in model (5.3) leads to

unphysical, structurally unstable results. However, the

FIG. 11. Phase diagram (a) and manifold (b) for the
potential (5.2). 1) Second-order phase transition; 2)
first-order phase transition; 3) phase stability boundary.
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phase diagram in the space of the three external conditions
(temperature, pressure, and the concentration of an isomor-
phic admixture) is of practical interest for these compounds.
To describe the experiment one needs a normal form of the
singularity of the Landau potential with a co-dimension of
three and, consequently, a degree no less than eight.

c) The group L = C, (gadolinium molybdate). A still
higher degeneracy occurs in the variation of the modulus in
the Landau potential with the group L = C, (for example,
the primary order parameter that describes the phase transi-
tion in gadolinium molybdate has this symmetry’®”” ).

The group L = C, is not generated by reflections. The
basis of the invariants consists of three polynomials in the
components of the order parameter (n,=rsing, 7,

=rcos@):

I =1 J,=rYos 4p, J,=risindp. (5.4)
The invariants are related by the syzygy
Jt=7i+ 72 (5.5)

An expansion of ¢ in a series in powers of the invariants
(5.4) to the fourth degree
Q=aJ +bJ,+d ]+ 3 (5.6)
coincides in form with the deformation of the normal form K
of a singularity of co-dimension codim X = 1, in which a, is
a variable parameter and b, and d, are moduli. Variation of
both moduli led Galam and Hatch’® to the paradoxical con-
clusion that a) either there exists an isostructural phase
transition without a critical point of the liquid-vapor type,
with the attendant possibility that the critical point might be
circumvented, or b) some regions of the phase diagram are
forbidden because of the symmetry of the problem. How-
ever, a structurally stable model of a potential that is invar-
iant under the group L = C,, unlike (5.6), removes this con-
tradiction. Figure 12a,b shows the corresponding
dependence of the one-dimensional phase diagram of the
model (5.6) on the moduli b, and d, and the phase diagram
of a miniversal deformation of the normal form

D=aJ +bJ,+dJ,+J}+gl} (5.7)

wherea,, b,,and d|, are variable parameters and g is a modu-
lus. At each point of the line b; = d, = 0 of the model (5.6)
there coexist an infinite number of solutions of the equation
of state of the type (7,7,) (17,#0, 7,#0, 7,#7,). In the
stable model the “filament” b, = d, = 0 is split into a cone
with an astroid base, within which two isostructural low-
symmetry phases (7,7,) coexist. The isostructural phase

aQ,

transition takes place on the surface that joins the opposite
edges of the cone; these edges, in turn, are lines of critical
points of the liquid-vapor type.

In this way, the reduction of the thermodynamic poten-
tial ® to a structurally stable form eliminates the nonphysi-
cal results.

5.2. Models of the theory of static concentration waves and
their normal forms

The constructive use of the methods of the theory of
singularities with allowance for symmetry in the description
of phase transitions is not confined to the Landau theory.
These methods can also be used with success in some micro-
scopic theories of phase transitions—for example in the
Gorskii-Bragg~Williams (GBW) theory of the ordering of
alloys or in the theory of static concentration waves (SCW).
In Refs. 79-81 the authors have formulated the problem of
constructing the normal form of the singularity of a model
thermodynamic potential for a theory of the GBW- or SCW-
type in the neighborhood of a given critical point. This ap-
proach automatically includes a test of the potentials of the
theory of static concentration waves for structural stability,
and, consequently, a test of the physicalness of the results.
Moreover, with this approach one can convert the transcen-
dental equations of the theory to algebraic equations, which
considerably simplifies the applications—construction of
the phase diagram, the dependences of the components of
the order parameter on the external conditions, etc.

In particular, Gufan’® has examined the thermodynam-
ic potential of the theory of static concentration waves for
binary alloys:®!

F= % S V(R — R')n(R’) + TZ(n(R)In n(R)
R,R’

- (1 + n(R))In(1 — n(R))), (5.8)

2n(R)=cN=N,,
R

where c is the concentration of atoms of type 4.
After introducing symmetric coordinates 7, = 2, a; 'p«
and the normalization conditions

m
2p;= ,Ekaikﬂk= cm (5.9)
=1 b

and recognizing that in the factorization of a commuting
representation into irreducible representations each repre-
sentation appears only once, one can reduce the potential
(5.8) to

FIG. 12. a) “Phase diagram” of model (5.6); b) phase
diagram of the structurally stable model (5.7). 1) second-
order phase transition; 2) first-order phase transition; 3)
phase stability boundary; 4) isostructural phase transi-

507 Sov. Phys. Usp. 34 (6), June 1991

tion.

Kut'in et al. 507

o e



—— Zm-
f=nr¥
, 3 . w
=w,c+ w ¢ — w7+ Zlpin p;— (1 — pYin(l - Pl
i=1 i=1

(5.10)

where w; = W;/T, and W are the energy parameters of
the theory. The possibility of the decomposition of a solid
solution was not taken into account in Refs. 79-81, and con-
sequently the concentration ¢ is considered an external con-
dition and not a minimization parameter. For 7> 1 and ¢ #£0

or 1, there exists on the line

2w

it ei—o =0

a single degenerate critical point ¢ = 1/2, in the neighbor-
hood of which the potential (5.10) is expanded in a formal
series. The number of variable external conditions for each
model (5.10) is fixed. In addition to the concentration, only
the various w,; are involved. In other respects the algorithm
for reduction to normal form is no different in this case from
that put forth in section 4. 1. In Refs. 79-81 the normal forms
of the singularities of potentials of static concentration
waves were obtained for the cases of three and four sublat-
tices equivalent in paraphrase, and a structurally stable
model was constructed that describes the ordering of hydro-
gen in HfV,H,, a compound with the structure of the cubic
Laves phase.

6. LOCAL NATURE OF THE PHENOMENOLOGICAL THEORY
OF PHASE TRANSITIONS

6.1. Types of order parameters and the co-rank of the
singularity of the Landau potentlial

In the usual formulation of the problem the nonequilib-
rium probability density §p(r) is expanded in terms of the
basis functions of the irreducible representations of the space
group G, [see Eq. (1.1)]. The coefficient of any of the basis
functions in this expansion is understood as being the only
critical mode out of all of the generalized internal coordi-
nates that are condensed in the phase transition. The co-rank
of the singularity of the thermodynamic potential is taken to
be equal to the dimension of the irreducible representation
that induces the phase transition; that is, for these transi-
tions the Landau potential is a non-Morse function only over
one of the linear combinations comprised of all possible
physical quantities that transform by this irreducible repre-
sentation. As a result of the interaction with the linear com-
bination (usually called the proper order parameter), in-
duced deviations of other noncritical degrees of freedom
arise. If the transformation properties of these degrees of
freedom are the same as those of the proper order parameter,
then they are called pseudo-proper order parameters (see,
e.g., Refs. 83 and 84). Nonzero components of an order pa-
rameter of another symmetry can arise in the field of the
proper order parameter if there exist mixed invariants that
are linear in these components.®>'* The inclusion of nonin-
trinsic and pseudointrinsic order parameters leads to a sin-
gularity that is stably equivalent to the original singular-
ity.27,28

Actually, situations are frequently encountered where
the phase transitions occur as a result of the critical behavior
of several modes of the same symmetry. These order param-
eters have been called quasi-proper.®® It is not possible to
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distinguish the proper order parameter among the critical
modes, since they are all on an equal footing. In this situation
unusual effects can occur (for more detail, see section 8).
Here the singularity differs qualitatively from that which
can exist in the case of a single critical mode and has a co-
rank that is higher than the dimension of the corresponding
representation.

6.2. Local nature of the phenomenological theory of phase
transitions

In considering the Landau potential from the point of
view of the theory of singularities it is necessary to introduce
some important corrections to the now-traditional under-
standing of this concept.

Since the Landau potential is not known a priori, it is
frequently represented as a Taylor series that must converge
to some hypothetical “true” potential. Inclusion of the
successive terms of the expansion is regarded as an increase
in the accuracy of the approximation to the true value of the
potential. In such an analysis, as in perturbation theory, a
small order parameter is required.

Not only is an expansion in a small parameter not need-
ed in the theory of singularities, but there is no limitation at
all on the size of the order parameter. The number of vari-
able parameters in an experiment is in fact determined by the
maximum possible degree of singularity of the “true” ther-
modynamic potential. If this potential is given by a converg-
ing series, then with the apparatus of the theory of singulari-
ties smooth nonlinear interchanges of the order parameter
can convert it to a polynomial of finite degree. This polyno-
mial is equivalent to the “true” potential with an accuracy to
terms that vanish exactly along with the gradient of the po-
tential. An interchange of the variables that effect this reduc-
tion is expressed by some generally unknown, infinite series.

The potential that is obtained in this manner leads by
definition to results that coincide qualitatively with those of
the “true” potential.

The theory of singularities imposes a limit on the degree
of localization. That is, the Landau potential must describe a
phase transition in the region of external conditions that al-
lows merging of all the observable singularities in a single
point. In this case all that has been said previously is applica-
ble. If the region of external conditions is such that this can-
not be done, it is necessary to use the generalization to the
case of multisingularity presented in Ref. 87. Nevertheless,
the requirement of locality must be satisfied near each of the
remaining isolated singularities.

Thus, not only does the application of the theory of
singularities not require an expansion in a small parameter,
it also helps to avoid errors and *“‘paradoxes’ that arise in a
theory with a small order parameter.

In this same context we must understand the discarding
of unimportant terms in the expansion for the description of
anisolated second-order phase transition* with the use of the
potential (1.4). The result of the expansion (1.4) then coin-
cides with the normal form with a single variable parameter,
and therefore for a local description of a second-order phase
transition it is sufficient to use either of them. (Following
Ginzberg and his coworkers®®*® we shall assume that we can
almost always ignore a sharp increase in the probability of
fluctuations in the order parameter on the real temperature
scale.)
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Already a small increase in the number of variable ex-
ternal parameters with codim > 1 and in the dimension of the
representation that induces the phase transition (co-rank
higher than 1) will bring about results in the theory of singu-
larities that are quite different from those obtained in a theo-
ry with a small order parameter. Moreover, the phenomeno-
logical theory of second-order phase transitions has long ago
outgrown the problem of the description of an isolated sec-
ond-order phase transition. The object of study of the theory
has already become the description of the entire system of
phase transitions observed in some region of external condi-
tions.

7.PHASE TRANSITIONS WITH A QUASI-INTRINSIC ORDER
PARAMETER. MODEL OF AFERROELECTRIC OF THE KDP
TYPE

The preceding discussions of the co-rank of a singular-
ity must be augmented with an investigation of the thermo-
dynamic behavior of a system during a phase transition with
a quasi-proper order parameter. The structures of the admis-
sible low-symmetry phases in this case are the same as in a
phase transition describable by a single critical mode. None-
theless, there are differences in the thermodynamics of the
transition. In the first place, they are expressed in the ap-
pearance of isostructural phase transitions within the low-
symmetry phases, these phase transitions being accompa-
nied by anomalies in the dependences of the order
parameters and the generalized susceptibilities on the exter-
nal conditions. Some anomalies in these dependences, al-
though they are not very conspicuous, occur in the supercri-
tical region of isostructural phase transitions.

Below we use for illustration the model of a ferroelectric
crystal of the potassium dihydrogen phosphate (KDP)
group. The unit cell of KDP has been well described in Refs.
73 and 90. The lowering of the symmetry in KDP is given by
the representation 7, (k = 0) of the group 742m (D }2). The
component of the polarization vector P,, along the c-axis,
joining the K and P ions, as well as a number of other degrees
of freedom transform according to this representation.
Among these degrees of freedom is the symmetric x-coordi-
nate, which is responsible for the ordering of the protons in
the O-H-O bonds that join the two upper and the two lower
oxygen ions in the PO} ~ tetrahedron. Even though the po-
larization is due to a displacement of the heavy ions, KDP is
usually regarded as an order-disorder type of ferroelectric,
and the phonon degrees of freedom are accounted for in a
pseudointrinsic way.’'** In general, P, and x form a reduc-
ible order parameter, 7 = P, and £ = x, on which the Lan-
dau potential depends, and there are no real grounds not to
take into account the criticality of the two coordinates.

The matrices of the corresponding reducible represen-
tation 7 = 7, @ 75 form the group L = C,. In the complete
rational basis of invariants we find three functions

Jy=n% J,=E, Jy=7E, (7.1)
related by a syzygy of the form
=1, (7.2)

To obtain the Landau potential ® that gives a qualita-
tively correct description of experiment, it is necessary to
bring together all the observable singularities into a single
degenerate critical point and find the normal form of the
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corresponding singularity. The equivalent vector fields
(4.1) for the reduction of ¢ to normal form in the case
L = C, are written as

7]
Vl = 7]%,
a
V2 = 55{* (73)
a d
Vy= T3E + EW'
In addition to the fields (7.3), the commutator
d d
V4= [V2V3]=’]§E—§§ﬁ' (7.4)

also enters into the algebra U “.

As shown in Refs. 21 and 86, a miniversal deformation
of the normal form of fourth degree and co-dimension of
three

C=aJ +bJy+d I+ I+ TS+ gl (7.5)
besides describing a second-order phase transition from the
phase (00) (=0, £=0) into the phase (7£) (7+#0,
& #0), also describes an isostructural transition within the
low-symmetry phase. The phase diagram of model (7.5) is
depicted in Fig. 13. The order parameter undergoes a bend
on the thermodynamic path that passes through the super-
critical region of an isostructural phase transition, and on
the curve of the generalized susceptibility as a function of the
temperature there is an anomaly of the “‘plateau” type. A
similar anomaly is observed on the temperature dependence
of the dielectric permittivity of KDP. However, as is known
from experiment,” the ferroelectric phase transition in
KDP, with the admixture of a small amount of deuterium
becomes a first order transition, close to a second-order
phase transition. The thermodynamic path of a KDP crystal
in the temperature/deuterium-content space passes through
the tricritical point. To reveal this tricritical point on the
phase diagram, it is necessary that at least one of the coeffi-
cients of the invariants of fourth degree in the order param-
eter be variable. If we take the coefficient a, as the variable
parameter, with J 7 = 7%, then the diagonal f , has the form

fo= 10+ 7782,

The use of the algorithm given in section 4 gives, as a

(7.6)

FIG. 13. Phase diagram of model (7.5). 1) second-order phase transition;
2) phase stability boundaries; 3) isostructural phase transition; 4) lines of
critical points of the liquid-vapor type. Inside the cone OABCD two iso-
structural phases with symmetry (7,%,) coexist.
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FIG. 14. Miniversal deformation of the normal form of the singularity of a
Landau potential with a quasi-proper order parameter. The dashed lines
show the quasi-homogeneous components; the gradient ideal is cross-
hatched. 1) modulus; 2) deformation base; 3) diagonal f .

result of a miniversal deformation of the normal form (Fig.
14),

- 2
D=a + b, +dilIytadite Iy v I T, T+ g0
(7.7)

wherea,, b,,d,, a,, and ¢, are variable parametersand g, isa
modulus. The phase diagram of model (7.7) is five-dimen-
sional. Its typical three-dimensional and two-dimensional
cross sections are shown in Fig. 15. On the two-dimensional
cross section the line of second-order phase transitions
(00) — (7€) and the tricritical point B turn into a line of
first-order phase transitions. Within the phase (£), as in
model (7.5), passes a line of isostructural phase transitions,
which terminates at a tricritical point of the liquid-vapor
type. The thermodynamic path aa’, which corresponds to
KDP, intersects the line of (00) — (7£) phase transitions
near the tricritical point and passes through the subcritical

region of isostructural phase transitions. Figure 16 demon-
strates the dependence of the generalized susceptibility

Xy = Dy /1P, By

- (¢”’5')2]|¢i=0 (7.8)
on the temperature along the path aa’. Deuterization leads
toachange in the thermodynamic path from aa’ to 88'. The
new path intersects the line of first-order phase transitions
and passes far from the supercritical region of isostructural
phase transitions. The “plateau’ on the curve of the suscep-
tibility as a function of the temperature vanishes. A variation
in the third external condition, the hydrostatic pressure for
example, is equivalent to motion along the third coordinate
of the three-dimensional cross section of the complete phase
diagram. On the temperature-deuterization plane this shows
up in a separation of the critical point of the isostructural
phase transitions from the line of the ferroelectric phase
transition, and consequently, in an elongation of the “pla-
teau” of the susceptibility. This elongation has been ob-
served experimentally in KDP with an increase in the hydro-
static pressure.”

The thermodynamic behavior in the supercritical re-
gion of isostructural phase transitions induced by a quasi-
proper order parameter thus provides an explanation for the
presence and evolution of the “‘plateau’ on the temperature
dependence of £ in KDP. We note that this type of isostruc-
tural phase transition differs from that studied in Ref. 96.
The hysteresis of such a transition contracts as the high-
symmetry phase is approached. Below the critical point the
isostructural phase transition must be accompanied by a
jump from the state with large polarization and a proton
subsystem with a low degree of order to a state with a small
polarization and a high degree of hydrogen order. By analo-
gy with the structural phase transition that occurs with a
change of order parameter, this isostructural phase transi-
tion should be called a transition with a “quasi-change” in
the order parameter. Transitions of this type should be en-
countered frequently, for example in piezoelectrics,®® weak
ferromagnets,”” and multicomponent alloys.*®

Q FIG. 15. Typical cross sections of the phase diagram of
model (7.7). a) three-dimensional cross section; b)
two-dimensional cross section TSPQ. 1) second-order
phase transition; 2) first-order phase transition; 3 ) iso-
structural phase transition; 4) phase stability boun-
daries; OB is the line of tricritical points; AQO is the line
of critical points of the liquid-vapor type.
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FIG. 16. Temperature dependence of the dielectric permittivity of a KDP
crystal. The points represent experimental results; the line represents the
theory (calculation with the model) (7.7).

8.ARESTRUCTURING OF PHASE DIAGRAMS AND OF THE
CRITERIAFORNONLINEARITY OF THE LANDAU POTENTIAL

8.1. Restructuring of phase diagrams and of the criteria for
determining the co-dimensionality of the “true” singularity of
the thermodynamic potential

Up to this point in this paper we have posed the ques-
tion: What sort of singularities can the Landau potential
have for a fixed number of variable parameters that deter-
mine the external conditions? However, the problem of de-
termining the “true” Landau potential can be formulated in
another way.

In some region of the external conditions the type of
singularity of the Landau potential is determined by the de-
gree of “nonrigidity”” along the generalized internal coordi-
nates of the thermodynamically unstable subsystem of the
crystal. In other words, the thermodynamic system in gen-
eral has a specific singularity that depends only on its inter-
nal nature. Therefore, the following question seems valid:
which singularities of the Landau potential of this system
can be observed experimentally for various numbers of vari-
able parameters?

Let us consider the Landau potential of a system that
has a singularity X of co-dimension ¢. Depending on the
number / of variable parameters, one can in practice obtain
three qualitatively different cases.

If the number of experimentally variable external con-
ditionsis / < ¢, then at some points of the space of the variable
parameters one will typically find singularities of co-dimen-
sion /, entering into the decomposition of a singularity K due
to the internal nature of the system.

Thus, an /-dimensional phase diagram will contain in
some /-dimensional cross section the complete bifurcation
diagram of the singularity K.

When / = ¢, then at some point in the space of the vari-
able parameters, one should typically find the singularity K.

511 Sov. Phys. Usp. 34 (6), June 1991

Coe

The phase diagram contains this singularity in the complete
bifurcation diagram.

Finally, if /> ¢, the singularity K will evolve, or in other
words it will be seen, not at a single point, but on some
(I — ¢)-dimensional manifold 6. Singularities of co-dimen-
sion higher than ¢ will not be found, since they are not per-
mitted by the internal nature of the thermodynamic system.
The bifurcation diagram in this case will be a result of the
evolution of the bifurcation diagram of the singularity K
along 0. This results in an unusual phase diagram with a
number of external parameters not less than c.

However, an unresolved question remains: What sort of
typical cross sections of the bifurcation diagram occur in the
first and the third cases? The answer to this question is given
by the theory of the restructuring of phase diagrams,?®4>->*
the essence of which is presented below.

The topology of the nonsingular level of the Landau
potential with a completely decomposed singularity is de-
scribed by the monodromy group of the singularity, which is
a generalization of the permutation group (the Galois
group) of the roots of the polynomial in one variable

Mtax a2+ +a,=0. (8.1)
It is known from the theorem of Vieta that the coeffi-
cients of a polynomial can be expressed in terms of x;:

(8.2)

n n n
a =-2x, ay= Exl.x., vy @y =.I'Ixi,

i=1 i#f =1

at the center of gravity of the roots of @, = 0.

It is obvious that the a; are invariant with respect to
permutations of x;. The same is true of the coefficients of the
Landau potential, which are invariant with respect to per-
mutations of the solutions of the equations of state under the
operations of the monodromy group G,,, and consequently,
are the invariants of G,,. The coeflicient , in the monomial
of the highest quasi-homogeneous degree /,, by analogy with
a, in (8.1), will be the quadratic invariant a

=7 g; (xy,... ,X, ). The restructuring of the bifurcation dia-

gram can be described by some function ¢ of the variable
conditions, where ¢ preserves the singularity X. For this pur-
pose, the function # must be a Morse function (nonsingular)
and invariant under the monodromy group. However, since
the monodromy group operates in different ways on the so-
lutions of the equations of state (representing them) and on
the “extra” variable parameters r; (which are invariant un-
der this group) the nondegenerate quadratic form of both of
them is
p
t=agy+ 20.7.2

x5 op=* 1L

(8.3)

i=1

If / = ¢ and there are no “‘extra’ variable parameters,
then

t=a. (8.4)

The bifurcation diagram, and, consequently, the phase
diagrams are reconstructed with ¢ equal to a constant.
Therefore, in order to obtain a typical cross section of the
bifurcation diagram of the singularity X for L <c it is neces-
sary to reduce it transversally to a (¢ — /)-dimensional space
of the coefficients of the Landau potential with monomials of
the observed degree of quasi-homogeneity. This provides the
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structural stability of the phase diagrams that are obtained.

For !> ¢ quite unusual objects typically will be found on
the cross sections of dimension dim>¢ of the bifurcation dia-
gram. Points with the singularity K of the Landau potential
can be typically found on the c-dimensional cross section. In
the dimensionalities ¢ + 1, ¢ + 2,..., ¢+ — 1, the phase
diagram will contain, respectively, 1-, 2-, ..., and / — 1-di-
mensional spheres, hyperboloids, and paraboloids (or parts
of them), filled with points with the singularity K.

The fact that it is possible to have one or several points
with the singularity X of the Landau potential on phase dia-
grams of dimension / = ¢ makes it possible to formulate the
criteria of the limitation of its nonlinearity.

Let two points with a singularity of co-dimension d oc-
cur on a d-dimensional phase diagram. If, when one more
variable parameter is changed these points merge and disap-
pear, leaving a stratum of lower co-dimension, then the Lan-
dau potential has a singularity of maximum co-dimension 4.
It should be noted, however, that this criterion can be used
constructively only in a very small number of thermodynam-
ic systems. A serious limitation comes from the experimen-
tal possibilities that allow simultaneous control of only a
small number of variable external parameters. Therefore,
one can determine the singularity of a thermodynamic po-
tential due to its internal nature only for sufficiently “rigid”
systems. For these, the maximum co-dimension is usually
small, as, for example in some chalcogenides of the rare-
earth metals.

8.2. Restructuring of a phase diagram in the neighborhood of
acritical point of the liquid-vapor type

The SmS crystal undergoes an isostructural phase tran-
sition®® that terminates at 7~ 700 K at a critical point of the
liquid-vapor type, in the neighborhood of which the system
is well described by a cusp potential (a A, singularity).*>4¢
In addition to a high-temperature critical point at 7~ 500—
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FIG. 17. Phase diagrams of the compounds Sm, _ . R, S (Refs. 100, 101).
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FIG. 18. Phase diagram of the compound Cey o _ , La, Thy, . a) setof T-P-
x diagrams for various concentrations of lanthanum; b) schematic 7-P-x
diagram from Ref. 13.

600 K, there is also a low-temperature critical point'®*'®! at

T~90-170 K in the continuous series of solid solutions of
Sm, _,R,S (R =La, Gd, Y) with concentrations x~0.15
and at standard pressure. An increase in the pressure causes
a merging of the critical points, which disappear after joining
together (Fig. 17). It has been shown'?? that an increase in
the degree of nonlinearity of the thermodynamic potential
does not permit a description of such a phase diagram. How-
ever, regarding it as a restructuring of the phase diagram for
the cusp potential

<D=a1x+a2x2+x4, t=a2—12, (8.5)

one can describe the entire set of experiments in this region
of external conditions. The variable x has the meaning of an
effective volume. A similar situation is observed on the P-T—
x diagrams of the intermetallics Ceq g _ , Thy; R, (R =Th,

FIG. 19. Phase diagram of the potential (8.6) in the space of three exter-
nal conditions. a) t = a, + 7; b) t = a, — 7. 1) second-order phase tran-
sition; 2) first order phase transition; 3) phase stability lines.
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Er, La, Sc, Dy, Yb, Lu, Gd, Eu) (Ref. 103; Fig. 18a,b).
Other examples of thermodynamic systems for which one
can observe a multiplication of singularities are some liquid
mixtures, in particular guaiacol-glycerine with an admixture
of water, nicotine and water, and others,'% where the region
of stratification is limited in temperature by the two critical
points. As the pressure is changed this region contracts, the
critical points approach each other and merge, and there-
after the system is of a single phase.

It should be especially emphasized that restructuring of
phase diagrams is determined by a change along the coeffi-
cient of the leading term of the quasi-homogeneity, and not
of the term in the Landau potential quadratic in the order
parameters. For example, restructurings of a phase diagram
near a tricritical point in the space of the three external con-
ditions are described by the potential

<I>=alr]7'+azr]4+r]6, t=a2ir7' (8.6)

and are shown in Fig. 19.

9.CONCLUSIONS

Singularities of families of smooth functions show real
promise of occupying in the future a place in the Landau
theory analogous to the concept of the space group represen-
tations. The unification of the theory of representations with
the theory of singularities is an apparatus for exhibiting uni-
versality in the physics of phase transitions and by its means
it will be possible to account for the identical thermodynam-
ic behavior of very different systems, regardless of the phys-
ical nature of the order parameter.

In this paper we have come nowhere near to examining
all the methods of the theory of singularities whose applica-
tion to the phenomenology of phase transitions can be of
interest. This field of mathematics is still young, and is deve-
loping extremely rapidly. (One indication of this fast devel-
opment is the excellent review in Ref. 105, the material of
which is not reflected in this paper). Therefore, there are still
grounds to assume that the influence of this field of math-
ematics will be to extend the range of effective solutions of
problems in the theory of phase transitions.

The authors wish to express their deep thanks to V. L.
Arnol’d, V. V. Goryunov, and V. A. Vasil’ev for their inesti-
mable assistance in the work and to S. M. Chudinov for his
constant support and attention to this work.
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