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The effective Lagrange function of vacuum polarization is expressed in terms of the spectral
density of the eigenvalues of the wave equation and the related five-dimensional Green's function
introduced by Fock in his fifth-coordinate method. The method can be used for arbitrarily strong
external fields, but the interaction of the vacuum fields is neglected. The vacuum polarization by
the gravitational and electromagnetic fields is calculated.

(.INTRODUCTION

This paper augments methodologically and mathemat-
ically my papers (Refs. 1 and 2) in which I put forward a
conjecture about the Lagrangian of the gravitational and the
electromagnetic field (in the second case the basic idea is due
to Pomeranchuk and Landau, Fradkin, and Zel'dovich3).
In its simplest form, the conjecture states that the Lagrange
function of boson fields (gravitational, electromagnetic, and
meson) is generated by vacuum polarization effects of fer-
mions. In this work the term vacuum polarization is used in a
wider sense than usual—the Lagrange functions of free bo-
son fields and even the cosmological constant are attributed
to polarization.

In this paper, a method of calculating the effective po-
larization Lagrange function is developed on the basis of the
concept of the spectral density of the wave equation (Sec.
II). In Sec. Ill, the spectral density is related to the Green's
function defined in five-dimensional space (physical space
augmented by a fifth auxiliary coordinate). The auxiliary
fifth coordinate ("proper time") was first introduced by
Fock in 1937.9 This method was further developed by
Schwinger and others.10 Here, the general expression (25)
for the effective polarization Lagrange function is derived
differently.

In Sec. IV, the general method is applied to the gravita-
tional field. In a model theory a formal cutoff of divergent
integrals is used to find an expression for the gravitational
constant, which has the correct sign (G>0). In Sec. V, the
method is illustrated for the example of the electromagnetic
field, and the well-known expressions for the vacuum polar-
ization by the electromagnetic field are again obtained. The
signature of the metric tensor is (+ — — — ) , and gravita-
tional units, in which G — ft = с = 1, are used.

II. SPECTRAL DENSITY OF THE EIGENVALUES OF THE
WAVE EQUATION

Ref. 2 contains a sketch of the idea behind the new
method of calculating vacuum polarization. So as to make
the exposition comprehensive, some of this section [Eqs. (1)
to (5) ] repeats these ideas with some necessary refinements.

We consider the effect of vacuum polarization by an
external field ifi(x), which we assume fixed. The elementary
fields with which ф interacts will be denoted by q>i, (f-^,...,
<PJ,... . We.ignore the interaction of the fields <p with one
another. This is the main assumption of the paper, and is
equivalent to the restriction to single-loop diagrams. Be-
cause of this assumption, the paper does not have great phys-

ical significance but is rather methodological, or mathemat-
ical, in character. To illustrate the idea of Ref. 2 in the
simplest way possible, the cp's will be assumed to be neutral
scalar fields, and the field ф a given neutral tensor gik or
vector Л,- field; gik is the metric tensor of the gravitational
field and At the potential of the electromagnetic field.

Suppose that the field ^(jc) is defined in some four-
dimensional volume V. The total action of the fields q>t in this
volume is a functional 5(ф). We denote the value of the
functional for ф = 0 (vacuum value) by 5(0). Obviously,
S(if>)-S(Q) is the vacuum polarization effect due to the field
ф. By the conjecture, this difference is the effective action of
the field ф. The functional 3(ф) = 25} is the sum of the
functionals for the individual fields cps. We calculate one of
these terms (omitting for brevity the subscript j). We ex-
pand cp in a series in eigenfunctions of the wave equation (in
the simplest case, this is simply an expansion in a four-di-
mensional Fourier series):

= 0, (1)

<2>

Here the symbol D^ stands for the generalized d'Alember-
tian in the presence of the given field ф. If ф = 0, than
D0 = д 2/dt2 - д 2/дх2 - д 2/дх\ - д 2/дх\. If ф = A, is
the electromagnetic field, then V-»Vr t = V — ieA. If

— Sik> tnen E^ is the Beltrami operator
"

is an eigen-
function of the adjoint equation; Л, is an eigenvalue of the
wave equation, and every Л,- is a functional of ф. If ф = О,
Л,, = со2 — k2 — m2. We assume that the classical action for
the field cp is

С ^ Г» f> ' 4 /14•л=1 = 2,5:, S, = -«-A,. (3)
(. z

This accords with the classical equations of motion. We find
the action of the quantum fluctuations as the phase of the
functional integral in the case of variation of cp:

S = arsS(fy}eiS60 = 2 arg/ dz-
• -

^ £ sign Л..
4

(4)

The integral with respect to dz, is calculated by the change of
variables

iz = - л,, dz,

Generalizing (4) to the presence of spinor fields ф} and tak-
ing into account the statistical weight gjt we obtain the gen-
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eral expression

Here

[+1, ifq>j is a boson field

i | "~1> if<Pj is a fermion field .

(5)

(5a)

The factor C, takes into account the fact that for spinor fields
the contribution to the action has the opposite sign. In the
sum (5) we have formally introduced a convergence factor
of unknown physical origin. The "cutoff" weight function is

- s i g n A for-

or

sign гЛ = е~ 1л1/ло sign Л,

(5b)

(5c)

where A0 is the square of the cutoff mass. We assume A0 ~ 1
in gravitational units.

For the following discussion we consider not the partic-
ular form of the function sign r\, but a sum with arbitrary
function Ф(Л):

i

The sum 2Ф diverges, since in any interval (A,
A + flfA) there are infinitely many eigenvalues A,. For ex-
ample, in the case ф = 0, taking V to be a parallelepiped, we
find that the points &ю, kn, ka, ka form an infinite periodic
four-dimensional lattice. Between the two hyperboloids
A = const and A + dA = const there is an infinite volume
containing infinitely many sites of the lattice. The situation
is similar in the general case.

We now introduce the concept of "conditional conver-
gence" of the sum Ф. For simplicity, we restrict ourselves to
the case when the volume Fis topologically equivalent to a
four-dimensional cube. Deforming V continuously into a
cube L 4 and taking the limit as ^->0, we map the functions
<pi into functions of the form ехр(2тг//£,)
(n0x0 — nlxl — пгх2 — n3x3). We define an invariant of
the deformation process: /(/) = nl + n\ + nl + nl. The
sum 2Ф converges conditionally if the following limit exists:

lim
def
= 2н (7)

Other equivalent definitions are possible.
The sum (6) is conditionally convergent if the summa-

bility conditions

/dAO(A) = 0,

/dAAO(A) = 0,

(8)

(9)

are satisfied and the function Ф(Л) decreases sufficiently
rapidly as Л-» oo; the idea behind the proof of this assertion
is sketched in the next section.

We now define the spectral density /*(A) of the eigen-
values of the wave equation by requiring

lim {£ Ф. (eA.) -
e-»0 6 i _

= 0. (10)

The functions Фk satisfy certain conditions, which depend
on k. For k = 1, 2, we assume that Ф(гЛ)/£ does not tend to
infinity as 5-» 0.

By virtue of the conditions (8) and (9), the function
P(A) is not defined uniquely by (10), but only up to the
addition of an arbitrary linear function of A. The integral
S-^ Ф(Л)Р(Л) d\ does not change under the transforma-
tion

I -* P(A) + AA + B.

Representing the function P(A) as the series
Cn

ло
P(A) = : in | ; l | + C 2 +^ + _

(11)

(12)

where /1 = m2 + A, we determine the coefficients CQ, C,,
etc., successively from (10). These coefficients do not de-
pend on the form of the function Ф. The coefficients A0 and
A, are arbitrary in accordance with (11).

III. GREEN'S FUNCTION METHOD IN FIVE-DIMENSIONAL
SPACE

In Ref. 4, McKean and Singer considered the Helm-
holtz equation in n-dimensional Riemannian space with
definite metric (we change their notation slightly):

= 0. (13)

(14)

They show that the sum

can be calculated by means of a Green's function in an auxil-
iary space of n + 1 dimensions. Here, the Green's function
G(x0 ,Xi ,т) is a normalized singular solution of the equation

(15)AC

In Ref. 4 it is shown that

2(r) = }dx(g)l/2G(x, x, r), x = (16)

McKean and Singer point out that M. Kac was one of the
originators of the basic idea.

We apply here a similar method to find the density func-
tion P(\) in the case of real physical space, i.e., for the wave
equation (1). Denoting the auxiliary fifth variable by the
letter /, we write down by analogy with (15) an equation for
the five-dimensional Green's function:

n <5=»dG/a/. (17)

An equation of the type (17) was first introduced by Fock.9

The Green's function G depends on the nine variables t0, x0,
y0,z0 (abbreviated x0), t,, x i , у,, z, (abbreviated x l), and
/ = /, — /0. If q> has many components, G also depends on
the discrete numbers of the initial and final state with respect
to /, i.e., it is a matrix Gm<)mi (the use of the same notation for
the discrete variable and the field mass m should not cause
confusion). The Green's function defined by (17) satisfies
an integral relation similar to (16):
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2(0 = Хей/ = f(dx)(-g)"2SpGmr(X, x , f ) , X = Xl = *0,

(18)

where Л,- are the eigenvalues of the wave equation

Equation (18) is proved by representing the Green's
function as the conditionally convergent sum [see (7)
above]

= lim £ exp[- --

The function denned by (19) satisfies Eq. (17) and goes
over into the four-dimensional (5-function as /-» 0 on account
of the orthogonality relations

lim 2 6Ty/V,-(*i' m^(X(>, m0) = d(x0 - *,)<5
V00 '

Setting * ] = x0 = x and /и , = m0 in ( 1 9 ) , we integrate over
x and sum over m. We arrive at ( 1 8 ) , in which the sum over /
is also understood in the sense of ( 7 ) . The fact of conver-
gence of the sum accords with the fact that the function еш

satisfies the conditions (8) and (9) when 7^0. We now
show how these conditions are related to the convergence of
the sum (7) for arbitrary weight function Ф(Л). We set

° 1

It follows from (8) and (9) that/(0) = (df/dl)(0)
= 0, which allows convergence of the integral/ = Sdldx Tr
G(x,x,l)f(n in the neighborhood of 1 = 0 despite G(/)'s
havingasingularityat/=0ofthe form a / ( l \ l \ ) +0/\l\
[see (23 ) below] . The integral converges in this case if there
are additional but hardly restrictive conditions on the func-
tion Ф ( Л ) [ for example, if Ф ( Л ) is bounded in modulus and
decreases as Л -» + oo in such a way that its integral is abso-
lutely convergent ] .

It follows from (18) that

/ = /d/lim2exp{--f +а
./„-» / Jo

or, reversing the order of summation and integration,

lim 2 е~у/уоФ(Д.) = /.

ю '

G

°
and similarly for у and z. The normalization coefficients can
be determined from the conditions St^dtG,(t,t,l) = 1,
etc., separately for /> 0 and /<0.

We find

(22)

(23)

(19) Writing/0(A) and G(l) as series, we have

Gmm = sign /ЦГ2

31 +...},

= -А/л, etc.

This connection between a and Л follows from (21). It fol-
lows from (5) that the increment of the effective Lagrangian
due to the vacuum polarization of the particles of the field cp
in the presence of some external field if> is

Д Z, =
*

nC.
dAsign (24)

т -<*>

Applying to (24) and (20) the convolution theorem from
the theory of Fourier integrals, we represent AJ>^ as an inte-
gral with respect to the auxiliary variable /,

- SP GO)(

where Reg{l//} is the function "cut off" for |/ 1 ̂  1/Л0 [us-
ing (5c), we have Reg{l//} = l/l2 + Л0~

2]. Substituting
this, we find

7 ^ - Sp G0)

Thus, the sum (7) is reduced to the finite value /.
We now introduce the local spectral density pm (Д^с) of

the wave equation, which is related to the integral density
ЛЯ) by

(20)

( recall that Л = т2 + Л ) .
From (18) and (20),

/p(A, x, = Gmm(X, x, [). (21 )

We find the form of G in flat space for ф = 0. We have
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^ - Sp G0)}

С • °° н/
-J- S -j- {cos mjl (Im Sp G,., - Im Sp Gn)2 I/A, l ' *

- sin т?Же Sp G^}. (25)

IV. COSMOLOGICAL CONSTANT AND POLARIZATION OF
THE VACUUM BY THE GRAVITATIONAL FIELD

The Lagrange function J^Q of flat space for i/> = 0 is (up
to sign) Einstein's cosmological constant (compare this
with the formulation of the problem and the calculations of
ZePdovich5). If the summation conditions (8) and (9) are
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satisfied, then on the basis of (5),

Z о - Т I! gjCj 2 sign гЛ,.,.
I i '

+ 00

= j / dA 2 CjPoj(l)sign r(l - mf),
ж ]

(26)

wherep0 = gj[A In (|A |/Л0)]/16я-3.
Recall that C, = ± 1 for bosons (fermions). The sum-

mability condition (8) is satisfied automatically [since S
sign r(A) dA = 0], and the condition (9) leads to

(27)

The integral (26) subject to (27) can be calculated by an
equation of the type (25):

cos m?/
(28)

To logarithmic accuracy,

(29)

In reality, it is well known that &0 (up to sign it is Einstein's
cosmological constant) is either zero or extremely small. In
a model theory of noninteracting particles ^0 can vanish as
a result of the composition of the contributions of bosons and
fermions. In a more realistic theory with allowance for inter-
action and spontaneous symmetry breaking the vanishing of
J^o must be regarded as a physical condition imposed on the
constants in the unrenormalized Lagrangian.21

In curved Riemannian space (i.e., in a space in which
the Riemann tensor Rlklm is nonzero),/?(A), G(l), and У
are changed (polarization of the vacuum by the gravitation-
al field).

We represent the Green's function in the form

(30)

The coefficients Q, U, etc., are found in the Appendix for
scalar fields <pt.

Substituting into (25) and using G0j, = — igj sign
//161Г2/2, we obtain the first-order correction

•y

IJ 2 1Me/ 16л2/

The similar expression for the second-order correction is

GRj = Coy(l + iQRl -

R + УОЛ]/2

+ VjR* + ... ] °° d/ cos mfl
(32)

Calculation of the integrals in (31) and (32) to logarithmic
accuracy gives

232л2

AZ2/ =

nj

Л0

398

32тг2 m2'
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Ola)

(32a)

Equating 2^ A-S^y = — R/l6vG in accordance with the
conjecture, we find that the gravitational constant is

m

-1
(33)

Thus, in the model theory with formal cutoff at |Л| ~ Л0 we
have found the correct sign <7>0 with allowance for
QjCj>0. Equation (33) gives the correct numerical value of
G (equal to 1 in the chosen units) if the mass spectrum of the
elementary fields extends to т} ~ G ~ 1/2. The expression
(32a) diverges for particles with rest mass m, = 0 (neu-
trino, photon, graviton; the last case requires special treat-
ment).

The quadratic correction J^ for gravitons has been
considered by De Witt.6 He assumed that for particles of
zero mass the logarithmic divergence is cut off in the in-
frared limit at lengths that depend on the characteristic scale
L of the problem. Since our method does not require an ex-
pansion in a series in powers of the curvature tensor, it auto-
matically leads to a cutoff of the infrared divergence at
l~L\

Let us demonstrate this for the example of a scalar field
without the conformal term in the equation of motion. We
consider a space with the metric

ds2 = d*2 - dr2 - L2sh2 -£- (d82 + si

Applying the method described in the Appendix, we find
CWl
have

,0,/) = G0(Q,0,l)e-"/L\ Substituting into (25), we

/

32^^ J 2,4 • (34)

The coefficient in the expression with allowance for
U = 1/72 and 6/L 2 = R corresponds to Eq. (32a) with the
cutoff /m a x=L2,/m j n =

V. VACUUM POLARIZATION BY THE ELECTROMAGNETIC
FIELD

Another example of application of the general method
is the vacuum polarization by a given electromagnetic field.
We assume that the vectors E and H do not depend on the
coordinates. If either of the invariants J\ = E2 — H2 or
J2 = (EH)2 is nonzero, there exists a Lorentz transforma-
tion as a result of which E -» E0 , H -> H0 , so that E0 1 1 H0 ( and
to be specific we take them along the x axis). The vector
potential in this frame of reference has components
A, = -xE0/2, Ax = tE0/2, Ay = - zH0/2, Az =yH0/2.
We calculate Д -2s7 at the point ( О, О, О, О ). We consider first a
complex scalar field <p. The equation for the Green's func-
tion,

A A Ql • Л

has the solution Gx = G, (0,0,jc,f,/) G2 (0,0,;e,z,/). Substitut-
ing into (35),

+ /3(/)}sign /,
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we find
eEJ.

<5 = ln-
eH0leffn

Hence, the Green's function of the scalar complex field for
л:, = XQ = (0,0,0,0) is

c _ i sign I eEo
A ~

eff

(4л:)2 sh(eE0[) s
(36)

For a charged spinor field, Eq. (35) must be regarded as a
four-row equation with the substitution (2^ and ax are
Dirac matrices)

(36a)

The contribution of the spinor with mass т = т; on the
basis of (36a) and (25) is

nn0 0 1 т /тт\
- > (37)

ft

(cf. Ref. 8).
Expanding coth and cot in series31 and expressing the

polynomials in E0 and H0 in terms of the invariants /, and
J2 , we obtain for the expression in the square brackets in
(37)

45 45

After integration of (37),

^l n^ + "WMv 126(h:2m
- — т
2 8

(38)

The sum of the logarithmic terms for all charged parti-
cles must in accordance with the conjecture be
A-Sf, = (E2 - Н2)/8тг, and from this "sum rule" one can
find the fine structure constant e2 (Landau and Pomeran-
chuk3). The second term in (3 8) is the vacuum polarization
found by Weisskopf in 1936.7 The third term describes six-
photon processes.

VI. CONCLUSIONS

We have rederived the expressions of the proper-time
method of Fock and Schwinger based on the concept of the
spectral density of a wave equation. We have found an
expression for the polarization by the gravitational field of
the vacuum of scalar, spinor, and vector particles to terms
quadratic in the components of the curvature tensor; for
zero-mass particles we have obtained an expression that does
not use an expansion in powers of the curvature tensor and
does not contain an infrared divergence. The method has
also been illustrated by the example of the electromagnetic
field. The method can be readily generalized to any pro-

cesses that can be described by single-loop diagrams. For
example, the method is fully applicable to the calculation of
the effective density of the Lagrange function of boson fields
and also fermion fields with nonzero masses and charges,
and to the calculation of the radiative corrections to the
magnetic moment of particles with spin in an arbitrarily
strong external field (i.e., to the calculation of not only the
"intrinsic" magnetic moment, but also the polarizability),
to the calculation of the effective Lagrangian of vector fields
of the Yang-Mills type, etc. However, all these calculations
presuppose a restriction to single-loop diagrams if the meth-
od is used unmodified. How to extend the method to dia-
grams of more general form is not clear.

I thank the participants of the Theoretical Seminar of
the P. N. Lebedev Physics Institute for discussing a first
version of the work in June 1970, and also Ya. B. Zel'dovich
for numerous discussions of the basic ideas. His paper on the
cosmological constant5 and the Lagrangian of the electro-
magnetic field3 were important stimuli for this work. I
thank I. M. Gel'fand for discussion and for drawing my at-
tention to the work of McKean and Singer,4 and also giving
me a photocopy of Ref. 4.

APPENDIX

Following McKean and Singer's method, we find the
Green's function of n-dimensional Riemannian space with
definite metric for a scalar, a spinor, and a vector field.

We represent the Green's function of Eq. (15) in the
form

GR = QRr + [UR2 + VRikRik

WR iklm

Mm YOR ]r2 (Al)

The coefficients Q, U, etc., in this equation do not, according
to Ref. 4, depend on the dimensionality и of the space.
Therefore, all the coefficients except Y can be found by
studying the solutions for three spaces of different dimen-
sionality and constant curvature (for example, a sphere S2, a
hypersphere 53, and supersphere S4).

For each of these spaces one finds the eigenfunctions q>,,
determines g, and A,, and forms the sum

= GO(T)(!
1 „-A.r (A2)

The sums are calculated by means of the asymptotic series

.. (A3)

} and

or as a^/R <3),

We denote the coefficients for a sphere by a{2} and
similarly for the hypersphere and supersphere.

We find the coefficient Q as a\2)/R (2),
or as a[^/R (4) [using the values of the curvature R <2) = 2,
R (3) = 6, R (4) = 12, where here and below the radius of the
sphere is 1 ] . Of course, the result is the same. We find the
coefficients U, V, W from the three linear equations with
three unknowns

(equations for и = 2, 3, 4).
In Ref. 4 approximately the same method was used to

consider the scalar field without the additional term
— R<p /6 in the equation of motion.
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The method of Ref. 4 differs from ours in that 54is not
considered, but instead a relation between C/and Q is added
(U=Q2/2). For a scalar we readily find

•S22j+\ д/+1)

•S\J + I)2 •/(/ + 2)

S4^(/ + 1 )(/ + 2)(2/ + 3) -/(/ + 3).

The summation for S 3 is particularly simple, the difference
terms vanish identically, and G = G0e

T.

Author's Remark41

Unfortunately there are some errors in the paper. The
consideration of vector and spinor cases is incorrect. This
part of the paper is omitted in the present publication. The
values of coefficients б to Y for the scalar equation (without
the addition term — Rip /6) are

U W

1
6

1
72

1 '
180

1
90

1
30

The coefficient Y is determined by considering C?(0)
with metric having R ̂  const:

ds2 = dr2 + S(r) dtf .

Of greatest importance is the erroneous sign in the for-
mula (33) for the gravitational constant. This error origin-
ated in the author's incorrect passage from the euclidean to
the pseudoeuclidean case in the formula (30) (the sign in
front of the term /0. After correcting this error, one sees
that the increase of l/G has the sign opposite to that of C, Q,.
Thus we arrive at a considerable difficulty with the sign of
the gravitational constant in the theory of the zero Lagran-
gian.

1' Generally speaking, the equation for the scalar <p may contain an addi-
tional term ( — R(p/d, where Л is the trace of the Ricci tensor), which in
the case т = 0 makes the theory conformally invariant. For the discus-
sion of the basic ideas, these details are not important.

2) -2"0 = 0 in theories with supersymmetry and possibly in theories with
spontaneous breaking of supersymmetry (communication of V. I.
Ogievetskii).

3)This is done conveniently on the basis of the formulas coth
(2л) = J(coth x + 1/coth x), cot(2x) = J(cot x - I/cot x) by the
method of undetermined coefficients.

4) Written for this volume-EDS.
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