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The influence of the interaction of the components on the differential probability of pair
production is studied.

In calculations of the probability of pair production,
allowance is never made for the interaction of the compo-
nents of the pairs. Some authors (Heitler1) are of the opin-
ion that it is impossible to solve this problem in the frame-
work of hole theory.

Our method is based on the following remarks:
1. The interaction of the components has a significant

influence on the differential probability only when the com-
ponents have a small relative velocity in the final state.
Therefore, such interaction can be treated in the center-of-
mass system of the electron and positron as a simple Cou-
lomb interaction e2/r.

2. This interaction cannot be repeated as a perturbation
but must be taken into account in the calculation of the ei-
genfunctions of the electron-positron system, as can be seen
from the correction factor (8) which we obtain for the prob-
ability, the electron charge occurring in this expression in an
essentially transcendental manner.

II.

We use below a system of units in which fi = c = m
(mass of the electron) = 1.

The remaining notation is as follows: e = 137 ~1/2 is the
electron charge, E + , E __ and p + , p _ are the energy and
momenta of the positron and electron in the laboratory coor-
dinate system, k + and k _ are the momenta of the positron
and electron in the coordinate system in which k+ ~k_
(center-of-mass system), and v is the relative velocity of the
electron and the positron. It is readily seen that

(D

Here, i? is the angle between the electron and the positron;
the approximate expression for v corresponds to the case
v^p/E (i.e., p+ ^р„ ).

The wave function describing the electron and the posi-
tron is Фр + р (q), where q denotes the arguments of the
wave function; in the usual formulation of hole theory, this is
the set of coordinates of the electrons of all occupied levels.

We use a system of eigenfunctions that go over into
plane waves at the infinity of the coordinate space of the
electron and positron. The indices p'+ and p'_ are the mo-
menta corresponding to these plane waves (the momenta at
infinity); Ф0 (q) is the wave function that describes the vacu-
um; Fis the transition matrix element, and К is the matrix
element calculated without allowance for the interaction of
the components. Quite generally, we use the tilde to denote
the values of quantities calculated without allowance for the

interaction of the components, in contrast to the "exact"
values.

The required correction factor for the differential prob-
ability da is

r=dw/dw= |V/V|2. (2)

III.

In perturbation theory calculations, the Hamiltonian is
represented as a sum of two terms: H = H0 + Hl. The first
term is used to calculate the eigenfunctions Я0Ф = Е0У>,
and the second is used to calculate the matrix element. For
first-order processes,

V+P-_d<7- < 3 >
(The following section is devoted to processes of higher or-
der.) We shall assume that the interaction Wof the compo-
nents is included in H:

H = H + W

The eigenfunctions Ф of the operator H are linear com-
binations of the eigenfunctions *P of the operator H0. We
have

Wp p. =/d3

P+d
3p_(p4/>_|c|P'+P'_)4'p p (4)

(for brevity, the spin variables are omitted here and below).
In Eq. (4), с is some unitary singular matrix very close to a S
matrix. Indeed, in the limiting case e-»0,

с -* с = <5(P+ - P+')<5(P- - P_').

The exact form of с will be found later.
Substituting (4) and (3) and reversing the order of in-

tegration over q and p, we obtain

V.P'_=/d3p+d3p-(p+p-Hp;p-)^P+p_- (5)
Because of the 5-like nature of c, we can take Kin front of the
integral sign and write

/= V/V=fd3p+d3p_-c. (6)

Further, we can go over to the center-of-mass system of
the electron and the positron:

etc

(k+kjcjk+'kj) = %ЯГ(р+Р_Ир+'р_').

Here,A(p + ,p_ ) andA'(p'+ ,p'_ ) are the Jacobiansofthe
transformation, and the factor VAA ' ensures that the unitar-
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ity of the matrix с is conserved:

/dVc'c = c5(P+' - p+")<5(P_' - p_"

/d6k(k|c£|k')(k|c Ik") = <5(k+' - k

In calculating / [Eq. (6) ], we can assume that А '
cause of the 5-like nature of c) and write

/ = /A-1c/ld
6p = Jc(td

6k.

Finally, we can make the Fourier transformation

(be-

Here, cx is the wave function in the coordinate space of the
electron and positron, which satisfies (in the nonrelativistic
approximation) the Schrodinger equation

-0/2)(A+ - (<?lr)

We introduce relative coordinates in the usual manner
and solve the resulting equation with reduced mass \ by

separating the variables in parabolic coordinates (cf. Bethe's
solution to the problem of electron scattering2 ). We obtain
(normalization to volume d 3k'+ Xd 3k'_ )

+' - k_')(x+ - x.)

\F(it, l , j

Here, Fis the hypergeometric function, e = e2/v, where v is
the relative velocity of the electron and the positron in the
final state ( 1 ) , and x + and x _ are radius vectors.

On the basis of (7),

\F(ie, 1, /o [2ле/(1 -

(8)

Finally, on the basis of (2),

Г = J2 = 2зге/(1 - е'2**).

IV.

The generalization of this derivation to processes of sec-
ond (and higher) order is not difficult. The matrix element
is calculated in the form of a sum ( or integral, for generality )
over so-called intermediate states p'. Instead of (3) for first-
order processes, we obtain for second-order processes

V = JdV+dVl{/^w1 îd<?H/4'*tf14'p,d<?}A;-1

> (9)

where Д,- is the change in the energy in the intermediate state
compared with the initial state. The final function
*p< = *P'+ P - (<?) occurs in this formula linearly. The in-
teraction of the components of the pair in the final state is
taken into account in exactly the same way as in the case of
first-order processes, and again leads to (8).

We now consider the influence of the interaction of the
components in the intermediate state on the differential
probability. Even without calculation it is clear that the
point at which the relative velocity v' in the intermediate
state vanishes cannot be a singular point for the correction
factor Т (in contrast to the point of vanishing of и in the final
state, which is such a singular point). The point is that the
relative velocity if in the intermediate state is not a relativis-

tically invariant quantity. Iff' = 0 in one frame of reference,
then it will be nonzero in other frames of reference.

We shall show by a typical example that the interaction
in the intermediate state is in fact unimportant. Let us con-
sider pair production by a photon in the field of a nucleus,
i.e., the term of the matrix element V due to the chain

РУ -* P+ + PL -* P+ + P_ + q,

where pr is the momentum of the photon, and q is the mo-
mentum transferred to the nucleus. Here v1 = 0 for
p + = pr/2, and it is obvious that this condition is relativis-
tically noninvariant.

Substituting (4) in (9), we obtain

V = JdpVdpLAr1 {/ ^(p1 1 cl p')<3(pV + pL - Py)dp1}

2 -p+)dp2}.

Taking the slowly varying factors in front of the integral
sign, we obtain V= VJ, where V=V\ V2/TLj, and

!_ - Py)

X (P'MP'XPVIP*)- (10)

Because of momentum conservation, the matrix с contains a
<5-like factor, which it is expedient to split off. We set
P + +P- =Pa>p'+ + P1- = p^, etc. We have

(11)

(12)

where the new matrix d is also unitary:

/dpL(pLl</|p!_Xpil«np-) = <j(PL -pi).
Substituting ( 1 1 ) in ( 10), we find

J = Jdp'_dpL(pL I d | P'J(Pi I d* I P'),

which is equal to unity by virtue of (12). Thus, in the ap-
proximation in which the entire theory is constructed ( V
and Д taken in front of the integral sign), the interaction in
the intermediate state is indeed unimportant, which agrees
with the invariance requirements.

V.

Hitherto we have ignored spin and relativistic effects.
Do they influence our results? Equation ( 5 ) remains exactly
the same, but the form of the matrix с is changed somewhat,
and in the summation over the spin variables it is necessary
to take into account the dependence of ^on the spins. How-
ever, this last circumstance is unimportant, since the spin is
conserved in the Coulomb interaction of slow particles, so
that У can be taken in front of the sign of the summation over
the spins.

Equations (6) and (7) do not hold, since ( 00 1 cx | ) be-
comes infinite. Instead of taking Fin front of the integral in
(5), we can on the basis of a well-known theorem make a
Fourier transformation of Fand c:

(13)

Here Vx is some 5-like function smeared over the region
of space responsible for the pair production. (In the case of
pair production as a result of a nuclear transition with for-
bidden emission of photons, the initial angular momentum
of the nucleus is J = 0; Vx corresponds to the oscillations of
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the Coulomb potential, and Vx =£0 within the nucleus. See
Sakharov,3 and also Oppenheimer,4 and Yukawa and Sa-
kata.5)

The function cx in (13) has a "weak" pole with degree
of order 137~2 (by analogy with the function of a single
electron in a Coulomb field). Since Fis smeared over a re-
gion of order of the radius R of the nucleus or more, and cx

differs from its nonrelativistic value in regions of order of the
electron radius r0 <^R, we can in the calculation of (13) use
instead of the exact values of cx its nonrelativistic value at
the coordinate origin. We again arrive at (7).

VI.

We note that the region of quantitative applicability of
Eq. (8) is limited to medium Z (the charge of the nucleus)
and relativistic velocities of the electrons and positrons on
account of the "Born" treatment of the Coulomb field of the
nucleus. In contrast, the relative velocity of the components

may be arbitrarily small, since to treat the interaction we
have not used the Born approximation (in contrast to Ref. 6,
in which Rudnitskii studied annihilation; of course, our re-
sults also apply to annihilation).

This paper forms part of my dissertation. I am pleased
to express my gratitude to my supervisor Professor I. E.
Tamm.
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