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This review is devoted to an investigation of the pattern formation problem in mobile micro-
organism populations. This pattern formation is due to the nonlinear character of the processes
which control the behavior of an individual organism. Various examples of the pattern formation
{population waves, swarms, Rayleigh-Taylor cells, “‘green holes”, etc.) are reviewed in detail. It
is demonstrated that the stability of these patterns is due to the interaction between organism and
environment. The importance of investigating the transformation from random motion of
individual cells to determinate behavior of cellular collectives for progress in bioengineering is

discussed.

1.STATEMENT OF PROBLEM

The question—how is chaos in various systems of na-
ture spontaneously transformed into order?—is one of the
fundamental questions in physics and biophysics. Its an-
swer, as it seems to us, must be based not on a postulation of
the special properties of time,! but on a study of the general
laws governing self-consistency and inconsistency of cycli-
cal processes at various levels of structural organization of
matter.

It would seem intuitively clear that disorder cannot
transform itself into order and, consequently, we cannot as-
sure ourselves of the state of nonliving and living matter,
which we observe around us, by a brute-force -exhaustive
search. Banal statements, applied to evolutionary processes,
that a pile of stones cannot compose itself, for example, into
the Mother of God Cathedral in Paris or that the novel “War
and Peace” will never be written by a random search
through the letters of the alphabet are repeated many times
in various publications. Nevertheless, the evolution of living
and nonliving matter gives many examples that contradict
these statements. Consequently, there is a gap in our knowl-
edge which prevents us from comprehending a unified pic-
ture of the world.

Block-hierarchical principles of exhaustive search
show that the time necessary for the selection of patterns
that are stable to outside conditions can be reduced by sever-
al orders of magnitude through a parallel exhaustive search
by blocks.? However, in order to understand the search
mechanism we need an answer to the following questions:
What local properties must be imparted to various pattern
levels of the block element, self-selected into the whole of the
following level? How did these properties appear? To what
diverse consequences can interactions of these elements
lead?

It is necessary to find a compromise between the follow-
ing thesis and anti-thesis: “The medium controls the ob-
Jject—the object shapes the medium”, namely, to place the
connective “and” between them rather than the separating
word “or”. In other words, to close them—via feedback—in
the pattern level within the cycle that has been chosen for
study.

By observing various physical and biological systems,
one can see the hierarchy of the “object 2 external medium”
cycles and the hierarchy of the memory “devices”, ensuring
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the stability and mutability of the systems. Such devices have
different times to remember and to realize the stored infor-
mation. The renewal rate of blood—the most responsive ele-
ment of the human organism—is 15 X 107 erythrocytes/min,
2% 10° leucocytes/min, and 2.5 10°® thrombocytes/min;
the renewal rate of protein mycelia is even higher. On the
other hand, as is known, nerve tissue is not renewed structur-
ally: neurons essentially do not multiply. Their lifetime is the
life of the human, but if one considers the neuron content at
another pattern level—internal biochemical metabolism—
then one can witness extremely rapid changes.

We also observe cyclicity of the organization of pro-
cesses at the molecular level. Whereas before the 1970s it was
assumed that the genomes of organisms are stable, now it is
necessary to speak of a dynamic stability: a state that is stable
in some external conditions may be unstable in others.® In
DNA mobile genes have been observed—regions capable of
moving under the influence of a change in the ambient from
point to point in the genome of any biological systems—f{rom
bacteria to man. The structure of such jumping regions can
contain one or several genes. It has turned out that such
jumping genes are rather large in number. It is possible that
they provide for the mechanism of the second level of genetic
mutations, playing an important role in accelerating biologi-
cal evolution processes and the adaptability of living organ-
isms to the surrounding medium, in contrast to the first lev-
el-point mutations. Thus, in addition to the long-known
bisexual variant in nature, which accelerates the adaptation
of living organisms to environmental changes, there are
many other methods for the disordering and assembly of
genetic material.

In biology and demography, interchanges of genera-
tions are an interesting type of cycle, and the spatial wave
patterns produced by them are also of interest. Such waves
show up most clearly in time during the multiplication of a
synchronous culture of micro-organisms in a fermenter, and
in space during the transfer of cultures of plants or animals
from one region to another or during the development of
new territories by a population of people originally close in
age, etc.* The cyclical character of the multiplication of liv-
ing organisms lies, on the one hand, at the base of the mecha-
nism for the appearance of waves (for example, the division
cycle for various micro-organisms lasts 0.5-2 hours, for var-
ious human cells it is 10-100 hours, and the reproductive
period of a human population synchronous in time is 25-27
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years). On the other hand, outside conditions exert a signifi-
cant influence on the shape and evolution of the space-time
patterns formed in this case.

In order to analyze processes that are similar but ex-
tremely specific in nature, it is important to choose a subject
for experimental investigation that would correspond both
to the simplicity of its transformation and also to fast pattern
metamorphoses (on the time scale of human life)—in order
to be able, within a comparatively short length of time, to
draw conclusions about mechanisms of self-organization
and about the influence of the ambient on their space-time
characteristics. A fortuitous choice of test object may make
it possible to come close to an understanding of the general
regularities of behavior and may be able to give answers to
the questions posed above. These considerations caused us to
turn to the world of bacteria.

Of course, analogies are not the most reliable way of
understanding nature. The only advantage is that in the
search for answers to the global questions posed above
through a study of micro-organisms we are also solving prac-
tical problems at the same time. It is well known that knowl-
edge about the behavior of bacteria is important not only for
biology and medicine, but also for bioengineering® and bio-
technology.® Table I gives some examples of the use of mi-
cro-organisms in biotechnology.

TABLE I. Some biotechnological products and their producers.

Let us point out that the results presented below by no
means claim to be a general theory of synergism and in no
case can they replace the study of other real systems; it is our
belief, rather, that they can only supply, on the basis of anal-
ogies and mathematical modeling, additional information
and new ideas necessary for investigating other nonbacterial
systems.

Anyone can see that individual bacteria move chaoti-
cally. To do so it is sufficient to peer into a microscope at a
drop of a culture medium inoculated beforehand, for exam-
ple, with colon bacillus [Latin name—Escherichia (E. ) coli].
Using a sophisticated experimental technique, Berg was able
to demonstrate this quite rigorously.”®

Moreover, it is known that chaotically moving bacteria
can under certain conditions be distributed nonuniformly in
space, i.e., they can form spatial patterns that both vary with
time and remain unchanged (see, e.g., Ref. 9).

It is usually assumed that the appearance of such pat-
terns or self-organization in a system of chaotically moving
organisms is governed not by biological laws but by funda-
mental physical laws.'® Namely, the appearance of order in
the system can be caused both by its remoteness from ther-
modynamic equilibrium, and also by the nonlinearity of its
characteristics.!" What are the mechanisms for the specific
realization of these physical laws during pattern formation

Products Producers Products Producers
Microbe proteins: L-lysine, 5'-inosine ~ Corynebacterium
From paper wastes Candida utilis and 5’-guanyl acids  glutamicum
From aliphatic Saccharomycopsis
petroleum lipolytica
hydrocarbons
From methane or Methylophilus, Medicinal Penicillum
methanol methylotrophus preparations,
penicillin
Cephalosporins Cephalosporium
acremonium
Enzymes: Ampbhotericin B, Streptomyces
Amylases Aspergillus oryzae kanamycins,
Glucoamylase Aspergillus niger neomycins,
Cellulase Trichoderma reesii streptomycin,
tetracyclines, etc.
Invertase Saccharomyces Gramacidin S Bacillus brevis
cerevisiae [S-Soviet ]
Lactase Kluyveromyces Bacitracin Bacillud subtilis
fragilis
Lipase Saccharomycopsis Polymyxin B Bacillus polymyxa
lipotytica Rhizopus nigricans
Vitamins: Steroid Arthrobacter simplex
Riboflavin Eremothecium modifications Mycobacterium
ashbyi
Vitamin B,, Pseudomonas Immunoglobulins Hybridomes (obtained
denitrificans and monoclonal by cell
antibodies engineering methods)
Polysaccharides:
Dextran Leuconostoc
mesentroides
Xanthic resin Xanthomonas Interferon Lines of
campestris mammalian cells
(obtained
by cell
engineering methods)
Carotenoids
Beta-carotene Blakeslea trispora
Astaxanthin Phaffia rhodozyma Escherichia col.
Amino acids Insulin, human (recombination
and derivatives growth hormone, DNA by gene

of nucleotides

somatostatin
interferan

engineering methods)
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FIG. 1. Salmonella typhimurium bacteria during free steady swim-
H 17
ming.

in populations of mobile bacteria? This review is an attempt
to answer this question, which is not only specific, but is also
directly related to the general issues raised above.

2.LAWS OF MOTION FOR AN INDIVIDUAL BACTERIUM
2.1. Some features of this motion

By the end of the 19th century Cohn, Engelmann, and
Pfeffer*>*® had showed that bacteria in a culture medium
are able to change their direction of motion, in some cases,
avoiding company and in other cases striving to mingle.
However, a systematic investigation of the mobility and be-
havior of bacteria was begun only quite recently, and consid-
erable successes have been achieved in this area during the
past 20 years.

A distinguishing characteristic of many bacteria is the
presence of special mobile organella—filaments-—on them.
Peritrichous bacteria, having filaments randomly spread
over the entire surface of a body (these include the E. coli,
Salmonella (S.) typhimurium, Bacillus, etc. bacteria; Fig. 1),
actively move about, alternating periods of steady direction-
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FIG. 2. Random walk, typical of the Escherichia coli bacteria.''®

al swimming (or free drift) with periods of so-called tum-
bling. In the tumbling state the cells lose their orientation
and perform abrupt chaotic motions, resembling a tremor
and somersaulting. The periods of steady swimming usually
amount to 1-4 sec while the tumbling is about 0.1 sec in
duration (Fig. 2).%'**" In order to demonstrate such a type
of motion, Berg, from Harvard University, set up experi-
mentally a “Lagrangian coordinate system”. He built an
automated microscope, capable of tracking the motion of an
individual cell in three dimensions (Fig. 3).”8

In this microscope the image of the bacterium was fo-
cused onto the ends of six optical fibers, each of which was
connected to a photomultiplier. The fibers were mounted
pairwise. One pair tracked to the right and left sides of the
image, another to its front and back sides, while the third
pair of fibers tracked the upper and lower parts of the image
(above and below the focal plane). The signal difference
from each pair was amplified and was used to control the
geometrical position of the small chamber with the bacte-
rium swimming in it; the chamber was placed inside an elec-
tromechanical transducer. With the movement of the bacte-
rium, located at the focus of the microscope, the chamber
was displaced in the direction in which the amplitude of the
difference signals decreased; in this way the image of the
bacterium was always at the center of the microscope field of
view. Thus, the coordinate of the cell in the laboratory refer-
ence system did not change, and its motion was inferred
from the displacement of the chamber in which it was swim-
ming.

It turned out that the tumbling frequency for fixed am-
bient conditions does not change with time. After each tum-

FIG. 3. Automated system for tracking the motion of an indi-
vidual bacterium.?
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bling the direction of motion changes in a random fash-
ion !

As already pointed out, directional motion of many
bacteria is provided by filaments (or flagella). The fila-
ments, being the motive apparatus of bacteria, rotate, inter-
weaving themselves into a helical bundle behind the cell
body (Fig. 1). A hydrodynamic forceis created in this situa-
tion, pushing the cell forward.?*

2.2. Mechanics of micro-organism motion

In examining moving bacteria the investigator is justi-
fied in being interested in the question: what are the laws of
this motion? It turns out that bacteria in their “everyday
life”” adhere to Aristotelian mechanics rather than Newtoni-
an. In other words, their motion (between tumblings) is
completely determined by the velocity at a given moment
and does not depend on the changes in velocity in preceding
moments.'? In fact, for microorganisms (with a characteris-
tic size of ~ 1zm) the values of the Reynolds number (Re)
are many orders of magnitude smaller than in the world fa-
miliar to us, being'® about 10 ~*. It is easy to show that for
such Re values the path, traversed by a micro-object by vir-
tue of inertia, amounts to ~0.1 A, and the slowing time
(from an initial velocity of 20 um/sec, typical for bacteria,'*
to a complete standstill) is about 0.3 usec. It is only during
this time interval (so small!) when the bacterium is moving
by virtue of inertia that it “remembers” how it was moving
earlier.

Itis interesting that the dependence of the velocity U of
the cell on the viscosity of the culture medium is not mono-
tonic:*>*' with a decrease in the viscosity the value of U
starts to increase sharply, but then it gradually decreases.
What does this mean? It was shown*? that

U = (E/ D)2 (dw/dn)!/2, (1

where E is the efficiency of the motor, D is the drag of the
medium (for spherical objects of radius 4 and for Re <1 the
result is D = 67uAd, where p is the dynamic viscosity), and
dw/dt is the power expended by the organism in the process
of moving in a viscous medium. According to Eq. (1) the
increase of U with an increase in viscosity can be explained
by an increase in E and (or) by an increase in dw/dt. There
are grounds for assuming*' that the velocity of bacteria de-
pends primarily on their efficiency (£ in Eq. (1)). In turn,
the quantity E depends on the geometrical parameters of the
spatial helix formed by the flagella during the directional
motion of bacteria (see Fig. 1).**** This means that the ve-
locity U must change because of conformational changes in
the bacterial filaments. Experiments have confirmed this
fact.*' The conformation of the filaments, however, depends
on the Reynolds number.*>*® Thus, the viscosity of the me-
dium controls the conformation of the flagellar helical wave,
namely, its amplitude » and wave number k. According to
Ref. 43, the value of E increases with an increase in viscosity,
reaches a maximum at nk = 1, and then decreases. In accor-
dance with Eq. (1) the velocity U also varies in a similar
fashion. Thus, the velocity of bacteria depends not only on
the properties of the medium but also on the parameter E,
also characterizing the internal processes occurring in the
cells and providing for their vital activity.

The motion of bacteria for Re €1 requires constant ex-
penditures of energy to maintain the motion (even with a
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FIG. 4. Change in direction of motion of bacterium as a result of tumbling
caused by untwisting of filament.®*

constant velocity—in complete accordance with Aristote-
lian physics). The source of this energy is the electrochemi-
cal proton gradient (Ai,, . ), applied across the membrane

separating the internal medium of the bacterium from the
surrounding medium."'*° The energy stored up in this fash-
ion is expended in the wavy motion of the bacterial flagella
(or filaments). The flagella, interwoven into a bundle, form
a left-handed helix (see, e.g., Ref. 47). When this bundle
rotates counterclockwise along its length (from the proxi-
mal to the distal part), a wave propagates. During the inter-
action of the wave with the viscous liquid, as already indicat-
ed above, forces arise pushing the cell forward.®**

The other mode of bacterial movement—tumbling—
arises when the bundle of filaments starts to rotate clock-
wise.*”-** In this situation the bundle unwinds (Fig. 4) and
the directional motion of the bacterium ceases; it is replaced
by a random change in cell orientation.

Nonperitrichial organisms use other principles to
change direction.?”***! For example, the bipolar Rhodospir-
illum rubrum or Spirillum volutans bacteria have two bun-
dles of flagella, located at opposite poles. The leading strand
bends backward and rotates around the body of the cell; the
other strand is a continuation of the cell and rotates about its
axis. The strands change rotation direction and orientation
with respect to the cell periodically, causing a reversal in its
motion.’">? The front strand causes translational motion,
rotating the cell; the cell, being a helix,?' is “‘screwed into”
the culture medium. The hydrodynamic laws of this motion
have been investigated.*>****

2.3. Mechanism and operating principle of the motor of
bacteria

According to electron microscope data the filaments
consist of three basic parts: the basal body, located within
the cell wall, the hamulus, and the outer helical thread asso-
ciated with it, which plays the role of a screw for the motion
of the bacteria (Fig. 5).22* The basal body in turn consists
of four rings, a rod passing through their centers, as well as a
cylinder connecting the two distal rings (see Fig. 5). It has
been shown that the individual rings, visible within the field
of view of an electron microscope, have a 16-fold symmetry
axis. It may be that each ring is constructed from 16 protein
subunits.

The basal body is connected to the thread of the flagella
by the hamulus having a length of about 90 nm (see Fig. 5).
The thread of the bacterial filament is a helical protein for-
mation with a length up to 20 xm and a diameter of 12-20
nm. The pitch of the helix?**" is about 2.5 um. It is assumed
that the hydrophobic bonds?®* play the primary role in
maintaining the structure of the thread.

One possible explanation of the operating mechanism
of the motor of the bacterial filament involves the fact that
the torque is generated by a stream of protons between the
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FIG. 5. Organization diagram of filament of E. co/i and some other bacte-
ria.”’ I-M-ring, 2-S-ring, 3-rod, 4-P-ring, 5—cylinder, 6-L-ring, 7-ha-
mulus, 8-filament thread.

M-ring of the basal body and the S-ring, attached to the rigid
structure of the cell wall.’®**! Glagolev and Skulachev sug-
gested that such a transfer of protons is possible from an
amino group located on the M-ring to a carboxyl acceptor
group, located in the cytoplasmic membrane (Fig. 6). Cal-
culations show that for one revolution of the motor a trans-
fer of about 300 protons is necessary.*°

It is interesting that the motors of individual flagella
operate independently of each other.’**>

2.4. Change in behavior of individual bacterium in response to
achange in external conditions

“A fish goes where it is deeper, and man—where it is
better,” this principle of the optimization of motion is usual-
ly satisfied not only by multicell organisms but also by bacte-
ria. The behavior of bacteria is evident phenomenologicaily
as a movement to a more favorable environment and away
from less favorable.®

Berg, Koshland, and their colleagues have shown that
the tumbling frequency (and, consequently, also the length
of steady swimming) changes in an attractant or repellent
gradient. If the bacteria happen to be swimming along an
attractant gradient (i.e., in the “correct” direction), tum-
bling is partially suppressed and becomes more infrequent.
In a repellent gradient the effect is the opposite.'**S*® By
varying the tumbling frequency, bacterium undergoing a

H* Outer Outer

&y

‘vl

random walk is nevertheless gradually displaced in the di-
rection of increase/decrease in the attactant/repellent con-
centration.

Oxygen, N-acetyl-D-glucosamine, D-galactose, D-glu-
cose, L-aspartate, L-serine, and certain other compounds
are attractants for colon bacillus (E. coli).’"***® Fatty
acids, alcohols, hydrophobic amino acids as well as many
other substances are repellents.'-¢*¢*

Not only chemical compounds but also physical factors
can serve as attractants or repellents for bacteria: light,
51657083 temperature,’”’'’® electric and magnetic
fields,’"”° and gravitation.’"**®2 Thus, for example,
high-intensity blue light initiates continuous tumbling of E.
colibacteria. It is assumed that this effect is due to the break-
up of flavin molecules, which is accompanied by an oxida-
tion of other hypothetical compounds controlling the behav-
jor of bacteria.*”***7** One other example is the fact that
varying electric fields can increase the mobility of £ colf
bacteria, but at the same time they can inhibit (by about
70%) their chemotaxis capacity.”

It is significant that all the effects, associated with the
action of attractants or repellents, occur not only in a spatial
but also in a temporal gradient, i.e., as a result of a variation
of concentration with time.’®*” This means that bacteria
have a memory.

2.5. Reception biophysics

In 1969 Adler established that bacteria sense attrac-
tants by means of a special set of tools called chemorecep-
tors.”® The receptors are located in the cell membrane.*
They are protein molecules, able to “measure” changes in
the concentration of certain substances and to transmit the
obtained information to the bacterial motor.%27-50:51.:63:68:85

The mechanism of bacterial chemoreception has not
been precisely established. It is known that the receptor
passes through the cell membrane. The outer part of the re-
ceptor (extending into the medium near the membrane, the
periplasm) is able to bond to the aspartate molecule.***’
With this bonding the conformation of the receptor may be
altered,?®*°° and as a result information as to whether the
receptor is “occupied” enters within the cell into the cyto-
plasm.

FIG. 6. Operating scheme of bacterial filament motor.”” 1-
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under the action of a proton-moving force a proton pene-
trates from the outer medium, charging the amino group of
M-ring subunit; II-interaction of charged amino group with
a carboxyl acceptor group leads to rotation of the M-ring;
III-proton is transferred to acceptor and arrives inside cell;
IV-mutual repulsion arises between carboxyl acceptor group
and amino group, having a weak negative charge, which
leads to a further rotation of the M-ring; V-site of subunit 2
of M-ring occupies subunit 3. It is assumed there are 15-17
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proton channels per one basal body and a corresponding
number of acceptor molecules.
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TABLE II. Set of some E. coli and D. typhimurium receptors.

Other substances which Characteristic of:

interact with the

Most active
chemoeffector for

Attractant (A) or

repellent (R)

given receptor same receptor E. Coli S. typhimurium

Glucitol + A
N-acetyl + A
glucosamine

D-fructose + A
D-galactose D-glucose, D-fucose + + A
D-glucose + A
Aspartate Glutamate + + A
Serine Cysteine, alanine, glycine + + A
Acetate Valerate, butyrate, + + R

propionate

Leucine Isoleucine, valine + + R
Phenol + R
Fumarate + A

Most receptors are highly specific with respect to one or
two chemical compounds, but less specific receptors are also
known. About fifteen receptors reacting to attractants are
known, and about ten are known that react to repel-
lents.**#491-9% Each type of bacterium responds to its own
set of attractants and repellents. For example, the Salmon-
ella typhimurium bacteria are sensitive to phenol while E.
coli are not.>* A set of several E. coli and S. typhimurium
receptors are given in Table II (taken from Ref. 84). The
behavior of bacteria depends on the number of bound recep-
tors.

It has been shown®® that in an attractant gradient the
time of steady swimming (in the interval between two tum-
blings) is given by the expression

T(u) = T(1 + byu), (2)

where u is the cosine of the angle between the direction of
motion and of the gradient, and ¥ is the reciprocal of the
distance along the direction of the gradient over which the
concentration of the attractant decreases by a factor of 1/e.
The constant b (in Eq. (2)) was measured experimentally
and was found to be equal to 12 mm (for a serine concentra-
tion of 1 mM).** It is clear from Eq. (2) that the parameter b
reflects the sensitivity of the chemotactic “set of tools” of
bacteria to the attractant gradient.

The answer to the following question is of interest: does
the absolute (dN /dt) or relative (dln N /dt) change in the
number of bound receptors control the behavior of bacteria?

It has been shown®’ that one or the other answer to this
question determines in a significant manner the character of
the dependence of the sensitivity b (see Eq. (2)) of E. coli
bacteria to a gradient of the attractant serine. This fact is
reflected in Fig. 7. It is seen that in one case (b depends on
dln N /dt) the sensitivity decreases monotonically with an
increase in the concentration gradient, while in the other
case (b depends on dN /d¢) the sensitivity b reaches a maxi-
mum and then falls off. Experimental data (also shown in
Fig. 7) indicate that the behavior of the bacteria is deter-
mined by the absolute change in the number of bound recep-
tors.

Following the authors of Ref. 96, we will describe the
receptor binding process by the function p(¢), which is equal
to 1 when the receptor is bound and zero the rest of the time.
The average value p depends on the dissociation constant X,
i.e., on the value of the concentration of bound molecules
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(measured in moles per liter) for which 7 = 0.5. Let us as-
sume C, ,, is this concentration, but measured as the number
of molecules per cm®. For the instantaneous concentration C

P=C(C+C L 3)

A change in the number of bound receptors, produces a
response—a change in the behavior of bacteria.”® Thus, the
response is proportional to dp/dt, where p is determined by
Eq. (3), and as a result, randomly walking bacteria are
steadily displaced toward the higher attractant concentra-
tion. Such control is most effective if the measurements of
the concentration C are made sufficiently rapidly: while the
displacement of the bacterium is significantly less than the
average length of steady swimming.®” The time required for
the chemotactic response in any case cannot exceed the in-
terval 7., which characterizes Brownian migration of the
cell. Let us assume 7 is the time required by the cell to “mea-
sure” the value of p, and Cisthe average concentration of the
attractant to be bound by the cell receptors. The root-mean-
square error of this measurement®® is:

AC,,/C = [2xTDCNSa(1 — p)/ (NS + na) |"V2,  (4)

where a is the radius of the sphere within which the bacte-
rium measures the attractant concentration, and N is the
number of receptors on a bacterium. It is clear that two
successive (within a time 27) measurements of the concen-
tration C can cause a change in the bacterial behavior only if
the difference in the measurement results exceeds the rms

18 |
d(inN)/dt
4
g0
&
)
2
5 5 -4 -3 -2 -
L9{ serine ]

FIG. 7. Dependence of sensitivity to the gradient of the parameter 5—from
Eq. (2)-dependence on concentration of attractant (serine).”® Theoreti-
cal curves (for the two models studied) are shown by solid lines and the
experimental curve is the dashed line.
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error, i.e.,
T/C-aC/at > V2AC,  /C. (5)

As shown in Ref. 96, it follows from Eqgs. (4) and (5) that

(6)

C = 1-1/3
T> l:-zraD NS “ia /ngz] /

NS +naC+ Cl/Z\C dt

Producing a temporal gradient of an attractant (L-glu-
tamate) by means of enzymes, Brown and Berg®® showed
that the steady swimming time is doubled on the average
(from 0.67to 1.34s) fordp/dt = 1.05x 10 ~*s ! (C = 1.61
mM, (1/C)dC /3t =435x10"°s"", C,,, =2.3 mM). If
a=08 um, D=9%x10"° cm?s and® NS/(NS

+ 7ra) = 0.5, then 27> 0.087 s. The time interval necessary
for detecting a time gradient equal to 1/10 of the value cited
above must be, according to Eq. (6), 10 = 4.64 times
longer which is about 0.4 sec.

Dahlquist and colleagues,”® experimenting with the use
of an artificially maintained spatial gradient of the attractant
L-serine, showed that the length of steady swimming (about
10 zm) is doubled if the distance over which the gradient is
maintained is about 14 cm. For C,, =1 mM,
(1/C)dC/3x =0.7 cm~', V=15 um/s, a=0.8 um,
D=10"° cm?%*s and” NS/(NS +ma)=0.5, then
2T>0.27 sec. A gradient of 1/10 of the value cited above can
be detected in ~ 1.2 s.

Mesibov and co-authors have published a paper,*®
where the threshold values are given for the attractants DL-
a-methyl aspartate and D-galactose, stimulating a chemo-
tactic response in E. coli bacteria. By using the data of this
paper as well as some interpolations, obtained by Adler,”!
Berg and Purcell found®” that for DL-a-methy] aspartate
2T > 0.6 s while for D-galactose 27> 1.4 s,

All of the above-given estimates show that the time re-
quired for bacteria to detect a change in the concentration of
an attractant is about 1s. Longer times are forbidden by the
effect of the random motion of the bacteria.’®°” The chemo-
tactic set of tools of bacteria takes this fact into account.

What is the mechanism of the short-term memory of
bacteria? Macnab and Koshland suggested that there is
some regulator (X) of the chemotactic response inside the

neous value of the quantity X = X fluctuates in accordance
with a Poisson distribution about some critical value
X =X_., then these fluctuations can govern the random
walk of the bacteria in the absence of an attractant or repel-
lent gradient in the external medium. For X, > X, tumbling
is suppressed. When X < X, tumbling becomes possible,
and as a result the bacterium changes its direction of motion
from time to time, executing a random walk.

Within the framework of this model it is easy to explain
the reason for the change in behavior of bacteria in the pres-
ence of a change in the attractant or repellent concentration
(Fig. 9). Namely, an increase in the attractant concentra-
tion causes an increase in the formation rate V; of the regula-
tor X, and in its dissociation rate V;. However, as shown in
Fig. 9a, V; increases faster than ¥. As a result, the amount
of the substance X in the cell increases temporarily. The ac-
tion of a repellent is also explained in a similar manner (Fig.
9b). The return of the concentration of X to its original level
makes it possible to explain the experimentally observed
adaptation of the behavior of bacteria to an increased
amount of attractant or repellent in the culture medi-
um.*7-8487.100-108 Thyg according to the model we have pre-
sented the quantity (X, — X, )controls the behavior of bac-
teria. Fluctuations of X and/or X (see Fig. 8) cause a
transformation of steady swimming into tumbling and vice
versa.

It is easy to calculate the probability that X > X, (or
X <X, ). Let us assume the initial concentration of X is
equal to X, (X, = X, ). The probability density of a devi-
ation of X from the value of X, will vary in time in accor-
dance with the following law:

P =k§1p"g"(t)’ 7N

where p, is the probability that random integral changes of
this number, which starts from zero, will augment this num-
ber to a value equal (to be specific) to 1 after exactly & steps,
while g, (¢) is the probability density function of passing
through £ steps in a time ¢. By a step we mean a change of X,
by unity. It can be shown'%*''? that

1 k

cell.*”#* A hypothetical scheme for the action of this (hypo- Py =7 s 1-27K, (8)
thetical) regulator is shown in Fig. 8. According to this k(k+1)/2
scheme the X-regulator controls the tumbling frequency. In and
the absence of a spatial or temporal gradient of the attractant
(or repellent) a constant average value of the quantity ) = (’M!"t"‘ 1o~ 2
X = X,, is maintained inside the bacteria. If the instanta- &) = T(k) ’ &)
Attractant > Time
Repellent FIG. 8. Schematic representation of the action of regulator (X) of
Enzvme 1 /\/./V\A/\/\/\ _ chemotactic response (Macnab-Koshland model).>"%* a—Attrac-
Y Enzyme 2 [ Xss~Xer , tant alters conformation of enzymes 1 and 2, activating them. En-
\\ /A X zyme 1 is activated rapidly while enzyme 2 is activated slowly.
Fast Slow 47%% 4~ /C7  These enzymes (1 and 2), respectively, control the synthesis and
A\ E ) ~——X,s;  decomposition of the substance X. The concentration of X increases
Er"f,y metr X nzyme 2 v with movement along the gradient, decreases with movement oppo-

’

Motion of filament

a
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4 q{&qa.uql./xss
~—__

A AT . < Xss

site to the gradient and remains constant when there is no gradient.

X, b-Instantaneous value of the quantity X = X,; varies in a random

manner with respect to some critical value X_,. When X, — X, <O
tumbling is produced. When X, — X, > 0, tumbling is suppressed.

Xer  The value of X, — X, can change as a result of fluctuations of X,,,

X., or of both of these quantities.
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FIG. 9. Mechanism for a change in behavior of bacteria in response to a
changein the attractant or repellent concentration (according to the Mac-
nab-Koshland model).** a-Increase in concentration of attractant
[Attr] (or decrease in concentration of repellent [Repell]) causes ¥; to
increase faster than ¥, which leads to a temporary increase in the concen-
tration X and, as a consequence, to a decrease in the tumbling frequency.
b-Decrease of concentration of attractant (orincrease in concentration of
repellent) causes ¥, to decrease faster than ¥ . This leads to a decrease in
the concentration of X and a temporary increase in the tumbling frequen-

cy.

where A = k; is the rate constant of the formation of the
substance X (see Fig. 14), and I' (k) is the gamma function.
Substitution of Egs. (8) and (9) into (7) leads (after some
manipulations) to the following relation:'!°

e, (201
t K

where I; is the modified Bessel function of Ist kind. The
function (10) differs from an exponential. The case where
X, #X,, also does not lead to an exponential behavior of
p(1)."'° However, the experimental data presented in Ref.
110 follow an exponential curve quite well. In particular, no
prolonged intervals of clockwise (as well as counterclock-
wise) rotation of the flagella, as predicted by the Macnab-
Koshland model described above, are observed in the experi-
ment. For large ¢ values the function (10) decreases with an
increase inas¢ ~ *?and it cannot be reduced to exponential
form.''® Accordingly, Berg and his colleagues proposed a
new model for regulating the transition from steady swim-
ming to tumbling and vice versa:''"’

k

r

———
—————

(]

p(f) = (10)

Steady swimming tumbling . (1

This model is characterized by two states, between which the
transition probability per unit time remains constant. Each
of the states (steady swimming or tumbling) is character-
ized by the exponential dependence on the interval length
and by the average lifetimes, equal to 1/k, and 1/k,, respec-
tively. The constants X, and £, in Eq. (11) give the probabili-
ties (per unit time) of transition from steady swimming to
tumbling and from tumbling to steady swimming. At the
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molecular level these constants can describe alternating con-
formations of certain protein. As experiments have shown, a
chemotactic signal shifts k£, and k, in opposite directions,
but &, changes more strongly than k,.''° In principle, the
model (11) does not rule out the formation of an intermedi-
ate product X (as in the Macnab-Koshland model; see Fig.
8), but the rotation direction of the flagella in this situation
cannot depend on the value of X, and, consequently, cannot
depend on the fluctuations of the concentration X of the che-
motactic response regulator.

It must be pointed out that the model (11) is apparently
not valid for all types of bacteria. Experimental data exist
indicating that the motion of halobacteria (in contrast to E.
coli bacteria) can be determined by the quantity??* X_, and,
consequently, can be described by the Macnab-Koshland
model.

The variation (in a time®® of ~ 1 sec) of the constants
k, and k, in Eq. (11) adequately describes the behavior of
the E. coli bacteria in response to a change in the concentra-
tion of attractants or repellents in the external medium. The
change in the transition frequencies from steady swimming
to tumbling and vice versa, specified by these constants, de-
pends, as indicated above, on the rate of change of the num-
ber of receptors bound by attractant or repellent molecules,
i.e., on the function dp/dt. This means that the bacteria must
be able to compare the quantity p at the present instant of
time to that in the recent past. In other words, the chemotac-
tic response (i.e., the signal specifying the value of the con-
stants &k, and k, and denoted below by the letter R) is pro-
portional to the difference (p — 4):

R =g(p - A), (12)

where g is a constant of proportionality and A4 in the adapta-
tion level; in turn, 4 varies in accordance with the equa-
ti onl 10,111

da/di=2-4 (13)

where 7 is the adaptation constant. The value of the adapta-
tion level 4 correlates with the methylation level (i.e., the
binding of the CH; group of the intramembrane methyl-
bonding chemotactic protein (the so-called MCP protein)).
The adaptation process of a cell is related to the growth pro-
cess of the methylation level, which in turn is triggered by
thebonding of an attractant molecule (see, e.g., the review in
Ref. 102). For A = p, according to Eq. (13),dA4 /dt = 0; i.e.,
the cell is completely adapted. The solution of Eq. (13) for
t>7ris

[t ¢t
A =% T' P ar. (14)
0

It follows from Eqgs. (12) and (14) that
t
R(t) = glp() = 7 J p(t') exp [(1'/7) — t1dr'}. (15)
0

The first term inside the curly bracketsin (15), p(¢), charac-
terizes the number of receptors bound at a given instant. The
second term in (15) is the average of the function p over all
past time with a weighting factor, which decreases exponen-
tially with time. This weighting factor is what describes the
memory of the bacteria. According to Eq. (15), information
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about the number of bound receptors is retained only over
times not much greater than the adaptation constant .

Thus, the memory of bacteria is attributable to the
adaptation of cells to the ambient medium; this adaptation is
based on the methylation processes of intramembrane MCP
proteins. The memory makes it possible for bacteria, using
the receptors, to compare the concentrations of attractants
or repellents at points located along the trajectories of the
bacteria. The information obtained by this comparison is
used to adjust the tumbling frequency.

2.6. Bacteria as individuais

In 1947 Luria and Latarjet''? discovered that it is im-
possible to annihilate completely a population of bacteria by
high doses of ultraviolet or x-radiation. From 10 ~2to 10 ~*
of the total number of cells survive. This does not rule out the
possibility that the surviving cells owe their resistance to the
fact that they are in a state of severely retarded growth. The
mechanism for this retardation is not clear up to this
point.'** It is clear, however, that the physiological state of
the surviving cells is different from the physiological state of
most of the cells of the population. In other words, bacterial
populations are heterogeneous in a certain sense. The cells
comprising these populations, it turns out, are endowed with
individual properties. These properties appear not only in a
differentiated survival of bacteria, but also in the difference
in their behavior in the same culture medium.''* The behav-
ior of cells was investigated in Ref. 114 by means of the at-
tachment of cell flagella to glass by means of an antibody,
and then the rotation direction of the cells was recorded (on
video tape). The experiments were based on the fact that
counterclockwise and clockwise rotation of the attached
cells (viewed along the axis passing through the attached
flagellum) are equivalent, respectively, to tumbling or
steady swimming of freely floating bacteria.*® It was found
that individual bacteria (S. typhimurium) are characterized
by their own specific time intervals of steady swimming both
in response to a-methyl aspartate ( causing prolonged clock-
wise rotation) and also in its absence. For different bacteria
these intervals can differ by a factor of two. Moreover, it was
established that the clockwise rotation time (equivalent to
the steady swimming time of a free cell ) in the absence of a-
methyl aspartate correlates linearly with the duration of the
steady swimming intervals in response to the presence of a-
methyl aspartate (which is an attractant) (Fig. 10); no such

Ry
Q
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N
S
T

o
>
T

1 1 -
g 100 200 390
Average length of time of steady
swimming in presence of attractant
{10 mM of a-methyl aspartate}, s

Average length of time of steady
swimming in absence of stimulus

FIG. 10. Linear correlation of the time intervals of steady swimming of a
free cell in the absence and in the presence of an attractant.''*
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correlation exists for the counterclockwise rotation time,
which corresponds to tumbling.''* Animpression is created
that the individuality in the behavior of bacteria is caused by
the chemotactic responses of the micro-organisms to attrac-
tants but not to repellents.’! Spudich and Koshland''* ex-
plained individual differences by a small number of mole-
cules regulating the rotation direction of the filament.
Variations of this small number of molecules, caused by ran-
dom factors in the course of individual development, can
cause differences between cells. Within the framework of the
model (11) this means that each cell has its own individual
set of values of the constants k, and k.

It is obvious that the greater the diversity of the
members of a population, the higher the probability for sur-
vival under extreme conditions and the greater adaptation
capabilities of the bacteria.

2.7.Chemotaxis and evolution

Chemotaxis apparently arises in the very early stages of
development.'°"''> Known experimental data indicate that
chemotaxis of bacteria and chemotaxis of specialized eucar-
yotic cells (from which multicell organisms are formed)
have much in common. It is certainly possible, for example,
that the hormonal systems of animals and man were devel-
oped in earlier existing systems, providing for the chemotac-
tic functions of single-cell organisms.'?' Therefore, studies
of chemotaxis (in particular, its role in pattern formation
processes) can bring us closer to an understanding of the
general laws governing the development of living systems.

3.PATTERN FORMATION IN BACTERIA POPULATIONS

3.1.Population waves as a cooperative chemotactic
response of bacteria

In the middle and late 1960s Adler and his co-workers
established that bacteria, locally inoculated into a culture
medium, can form propagating population waves (Fig.
11).5%118-121 1t wag shown that these waves are macroscopic
phenomena, produced by microeffects, namely, by a change
in the tumbling frequency of each of the bacteria in the pres-
enceof a change in the concentration of some attractant. The
local decrease in the concentration of an attractant is caused
by its consumption by the bacteria, and thus a gradient of

FIG. 11. Concentric bacterial population wave in Petrie dish.’'
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this concentration arises. Within the chaotic motion of the
bacteria a component appears that is directed along the gra-
dient. Moreover, the bacteria continue to multiply. As a re-
sult, a population wave is formed that is easily discernible by
the naked eye. This wave actually renders visible the bound-
ary between a region of reduced attractant concentration (as
an example, within the expanding annular front in Fig. 11)
and the region where the attractant concentration is still
high‘59,116,118—121

A mathematical model of the motion of this wave was
suggested by Keller and Segel'?*'?* in 1971. Let us assume
f(c) is the mean tumbling frequency during motion in a giv-
en direction, and ¢ is the mean concentration of the attrac-
tant (or substrate) consumable by the bacteria, and is a
function of the coordinate x. We will define the function
n(x) as the density of cells at the point x. The flux of bacteria
J(x) per unit time in the direction of increasing x is'*

-A
J(x) = }f[c(s + % aA) Ins lds —XI fle(s — —;— aA)Inslds. (16)
x=A x

Using the approximation that is often employed in theoreti-
cal studies of Brownian motion,'?* we write Eq. (16) in the
following form:

J(x) = A [—f(c(x))dn(x) /dx + (@ — 1)df/dc-n(x)dc/dx],
or

J(x) = —udn/dx + yndc/dx. (17)
In Eq. (17) the mobility is

#(c) = A%/ At = f(c)A?,

where At=1/f(c) is the mean time interval between two
successive tumblings, and the chemotactic coefficient is

x2(c) = (@ — 1)A%df/dc,

so that

x() = (@ — 1)du/de.
Since

onfat=-VJ,
where!?*

= —uVn + ynVe,

then (for the one-dimensional case)

dc

n _ @ n 3¢
xn 5

an
F TR Tt T (18)
The first term on the right side of (18) is the motion of the
bacteria in the absence of chemotaxis, while the second term
describes the chemotactic response of the bacteria.

The concentration of the culture substrate (which is an
attractant for bacteria) also changes (according to the Kel-
ler-Segel model’?® ) in accordance with the equation

dc 8%c
—_= - + D—;,

3 k(c)n )
where k(c) is the consumption rate of the substrate by a cell,
and D is the diffusion constant of the substrate. It is assumed
that the substrate concentration is quite high and does not

(19)
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limit its consumption rate, i.e., X is a constant in the Keller—
Segel model.'*

The solution of the system of differential equations
(18) and (19) can be obtained in analytical form with cer-
tain additional assumptions. Let us take

D=0. (20)
Then, using the substitution

n(x, ) =nl), cxH=cl), E=x-a, (21)
we obtain

ac' = kn, (22)

an' = (xnc')' —pun''. (23)

In the system of Eqs. (22) and (23) the differentiation is
with respect to the variable y. The system of Eqgs. (22) and
(23) was solved in Ref. 117 for the following obvious bound-
ary conditions:

n»0, n'->0, c>c, as £-> o, (24)
Integrating (23), we obtain
an = ync' — un' + const. (25)

With the boundary conditions (24) taken into consideration
the constant is equal to zero. The integration of Eq. (25)
yields

n = Qe ie~t, (26)
where g'=y, £ = (a/u)&. It is easy to obtain
dc/dE = Qka~1e8(CVHe~E, (27)

from Eqgs. (22) and (26). Since ¢ increases monotonically,
we can consider £ as a function of c. Then it follows from Eq.
(27) that

cﬂ
& = In{Qkua™2[f e~ 8PVrgp11y, (28)
¢

As shown in Ref. 123, the solution of Eq. (28) exists for
x(c) =84, 29)

where 8 is a constant and a< — 1.
By integrating Eq. (22) with Egs. (26) and (29) taken
into account, we obtain'**

¢ = [Qka~ 2B - )¢ + cL‘S 1mve-n, (30)
In Eq. (30) 6 = 6/u, @ = — 1. If we assume'?® that

Oka™2(8 — ) = cL73, (31)
Eq. (30) can be rewritten in the following form:

£ = (14 eHOD, (32)
The corresponding expression for n becomes

_n 1 ¢ —Ey-3/(3-1)

a2c°°(#k)_l —-3—:—1'3 (1 +e ) . (33)

As £~ — o, Egs. (32) and (33) will have finite solutions if
5> 1, or d>u.
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o-2

Direction in
which front
is moving FIG. 12. Dependence of the quantities ¢/c, (a) and n/Q,
(b), where Q, = a’c_ /uk, on £ (in units of u/a; a is the
J velocity of the population wave) for §/p = 4/3 (curve 1),
2 (2), 3 (3), and 5 (4).'2® It is seen that the weaker the
chemotactic response, the narrower the population wave.

3T g 3
b '3
Then 1
# ~ lim [‘;((’,2) —(r) (’,))], (35)
lime=0, Elim n=0. (34) t+oo
. , V, ~ tim [l <r,>] . (36)
The curves described by Egs. (32) and (33) are shown in o]

Fig. 12.

Since these solutions are obtained with the assumption
(20), it is interesting to evaluate to what extent this assump-
tion agrees with reality. For this purpose let us find the ratio
of the two terms on the right side of Eq. (19) with the substi-
tution (21) taken into account: (Dd %c/dE ?) /kn. As £ varies
from — o to o, this ratio varies from (D /,u)S/(E —Dto
D /u.'? 1t follows from this that condition (20) reflects rea-
lity if the diffusion constant D is small compared with . The
most actively diffusing attractant is oxygen, for which!?
D~5x10~2 cm?/h. This value is smaller than the value
4 = 0.25 cm?/h, obtained in Ref. 120. In this situation the
approximation (20) can obviously be used. However, ac-
cording to other estimates'”” u~5x10~° cm?/h. In this
case D /u = 10, so that the use of the approximation (20) is
unjustified and the system of Egs. (19)—(20) must be solved
by numerical methods.

The Keller-Segel model is a phenomenological one.
This means that there is no clear physical interpretation of
the functions  and y (Eq. (18)), and there is also a gap
between models for the behavior of individual bacteria and
for communities of bacteria.

In principle, one could attempt to describe the motion
of a cell population, starting from a detailed analysis of the
motion of the individual cells. Such an investigation proce-
dure—from microscopic events to macroscopic effects—
would possibly allow one to ascribe real physical meaning to
the functions and parameters describing the behavior of cell
populations (as an example, the chemotactically caused mo-
tion of a bacterial wave). Some of the experimental data
necessary to implement such a program have already been
gathered. For example, Berg and Brown'* carried out an
investigation of the motion of E. coli bacteria in response to a
chemotactic stimulus: the motion of individual leuco-
cytes,'?*1*! slime ameba,’?>'3%1"" muscle fibroblasts,'?’
and myxoplasms'*® was also investigated.

Piecewise-smooth curves, interrupted by abrupt
changes in the direction of motion (as in Fig. 2), are a good
approximation of the paths of motion of all of these cells. Let
us determine how these parameters, characterizing the ran-
dom walk of a single bacterium, are related to the parameters
that determine the motion of population waves, u and
V4 = yVC inthe system of Egs. (18) and (19). The param-
eters z and V4 can be related to the mean distances traversed
by the cells during a time ¢ by the following formulas:'2*
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If there is no drift due to the action of external factors,
then {r,) = 0 and, according to Egs. (35) and (36),

V=0, u ~}i’2[% <r3>}-

During the time ¢ the bacterium travels in the x direc-
tion (for example, along an attractant gradient) a distance

X, = él: fixl.(s)ds,

c=i{ 0

(37)

where
n
=31,
i=1

Let us take @, (s) as the angle between the instantaneous
velocity V(s) of the bacterium and the vector x. Then
n %
(x) = (2 g V(s) cos ¢(s) ds). (38)
i=1
If the velocity does not change between tumblings, then Eq.
(38) can be rewritten in the following form:

(x)=(Z Vg,cos ¢,

or141

<x;) = él:lf Vi cos ¢,‘P({V,‘};{T,'};{¢i})d{vi}d{ri}d{¢,'}- (39)

In Eq. (39) Pis the probability that the bacterium is moving
along the ith portion of the path with the velocity ¥, during
the time 7;, and the ith portion is oriented at the angle ¢, with
respect to the x axis. The function P can be specified if we
make the following assumptions: 1) the random walk of the
cells is a Markovian process; 2) the velocity does not depend
on the direction; 3) the distribution of the path segments
between two successive tumblings is exponential; 4) the ran-
dom walk process of the cells is in a steady state and 5) this
process is spatially isotropic. Then'*!

(x) = Tln_ n ? PV dV} cos ¢ d¢ O} r).(:p,V)e‘)‘(""V)’ dr, (40)
0 - 0

where A is the frequency of the tumblings. In accordance
with available experimental data®®” the mean value of 4 is
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proportional to the rate of change d /dt of the relative num-
ber of receptors bound by a chemoattractant (see also Fig.
7). This has provided a basis for assuming'*' that

In2y — adN/dt, if dN/dt >0,

(In4) = In 10 otherwise. (41)
In Eq. (41) (see Ref. 98)
dN K dc (42)

dt T K+ o2 dr

where K is the dissociation constant for the complex of at-
tractant with receptor. If de/dt = ¥ cos ¢ dc¢/dx, then it fol-
lows from Eqs. (41) and (42) that

o Agl+eVeose,  if |p|<n/2,
W=7, . (43)
0 if |¢| z=/2,
where
e = aKe dinc (44)

Lo(K + o dx ’

Then from Egs. (39) and (43) one can derive the following
expression:'*!

(xz) = %n(vz)v (435)
where
vH = VZP(V) dv,

and ¢ is defined by the formula (44).
With formulas (36) and (43) taken into consideration
it can be shown'*! that

1=nAgt + o(e), (46)

if £, as well as the total tumbling time 7, are small quantities.
Finally, it follows directly from (36), (44) and (45) that

~__( 2) Kc dlinc
(K+0? dx

(47)

If the time 7, is not small, then the value of ¥, will be deter-
mined by the following expression'*! instead of Eq. (47):
~_ V) Ke dinc

440 +Ag0) (K+ )t dx

(48)

The parameter u, defined by Eq. (35), can also be related to
the parameters characterizing the random walk of acell (see
Refs. 132 and 139-142):

o~ AV ~ (W2 + (49)

1 — (cos¢ )

Formulas (47)-(49) relate the macroscopic quantities
p and V; = yVe of Eq. (18) to the microscopic parameters
V, K, ¢, Ay, T, It is assumed here, of course, that the phe-
nomenological Eqs. (18) and (19) are correct. However,
how justified is this assumption?

In order to approach this question, one can attempt to
derive Eqgs. (18) and (19) from more fundamental kinetic
equations. Such an attempt was made by Zaval’ skii and his
colleagues.'**1%

According to their model, chemotaxis is described by
an equation of the form'*
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i(r‘—’j:l;t)— + VnVf(r, n, £) = —y(V, n, dc/ a1, VOf(r, n, 1)

+ 4—i[- Jy(V,n, ¢, dc/dt, Ve)B(n, n )f(r,n’, 1) dn’,  (50)
n

where fis the distribution density of the cells moving in the
direction n in the vicinity of the point r at time ¢; ¥ is the
tumbling frequency, S(n, n’) is the probability that a bacte-
rium, moving in the n direction before tumbling, will be
moving in the n’ direction after it. Following Zaval’skii,'**
we will assume that the interaction of receptors with the
substrate is described by the first-order equation (42),
where

=+ W (5D

In Eq. (51) ¥ = const is the velocity of motion of the bacte-
rium in a medium with a constant gradient of the chemoef-
fector concentration, with the direction of the gradient mak-
ing an angle with the x axis whose cosine is equal to v, and
de/dt is defined by Eq. (19). Substituting the formulation
(51) of the function dec/dt into Eq. (42), we obtain:

dN* KNy dc

—dt—=————(K+ c)z 1% Fx—, (52)

where N * is the absolute number of bound receptors and N,
is the total number of receptors for a given chemoeffector.
The derivation of (52) took into account that according to
available experimental data'*® Jc/dt<Vvdc/dx. The
changeover from Eq. (42) to (52) actually means a transi-
tion from “temporal’ reception to “spatial” reception.
According to the experimental data of Brown and
Berg,® the function ¥ from Eq. (50) has the following form:

y = ypexp(—adN*/di), (53)

where a is a proportionality coefficient depending on the
strain of bacteria and the type of receptor. With Eq. (52)
taken into consideration, formula (53) can be rewritten in
the following form:

¥ =yeexp(—Wy), (54)
where
o= MK o (55)
- (K+¢)?2 ox

In principle, the microscopic parameters entering into Eq.
(55) can be determined experimentally.

In order to plot the function B(n, n') from Eq. (50)
Zaval’skii'* used the results of the experiments of Berg and
Brown;'* he approximated the function B by a third-degree
polynomial:

Bm,n "y = 3x(1+ 4n,n 'y — (n,n 'Y — 4n,n 'Y,  (56)

where we denote the cosine of the angle between the vectors
nand n’' by (n,n’).

After substitution of the functions (54) and (56) into
Eq. (50) one can obtain in the diffusion approximation'**

a vV a
_a': —_ _3 ——ax I(V ax (1)")] = 0, (57)
where
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o Loy Lya, Loygs, 1y

wy = 5(\IJ+101P +2801P +151201P +...), (58)

1_ 1 Lyz, 1 e I we

w]—3(1+-6‘11 +12—0q} +m—q} +...)
+l(lp2+ily4+le6+ ) (59)
75 14 504 A

and n is the density of bacteria. It is interesting that Eq. (57)
with the coefficients (58) and (59) was obtained without
any limitations on the value of the substrate-chemoeffector
concentration gradients (according to Eq. (55) these gradi-
ents determine the function # in Egs. (58) and (59)). In
particular, if the function dc/dx is so small that <1, one
can ignore second-order terms in the expansions (58) and
(59) and then (57) can be reduced to the following form:'#°

an  5viom® v

ot 3y, 9x2 3 ox

m VW
NI TR

0. (60)

Equation (60) is identical in form to the phenomeno-
logical equation (18), but unlike (18), all functional param-
eters in (60) have a clearly defined physical meaning. How-
ever, an analysis of the experimental data of Adler,''®!!®
conducted by Zaval'skii,'"** showed that #>1 usually.
Therefore, the transition from Eq. (57) to (60) may turn out
to be invalid. This means that the coefficients 12 and y used in
Eq. (18) cannot be expressed by means of simple analytical
functions. Estimates carried out in Ref. 145 showed that the
coefficient © used to estimate the mobility of bacteria (for
example, from formula (49)) can in fact greatly exceed the
mobility values observed experimentally. This fact may ex-
plain the large differences between the estimates of u, ob-
tained in Refs. 120 and 127 (it must be pointed out that the
parameter u can be estimated theoretically only with diffi-
culty'#®). Thus, the kinetic Eq. (50) evidently models the
cooperative chemotactic response of bacteria (appearing in
the form of a propagation of population waves) more ade-
quately than the phenomenological formula (18).

The results of experimental and theoretical investiga-
tions presented above clearly demonstrate that chemotaxis
can lead to the appearance of strong spatial nonuniformities
in living systems (for example, in cell populations).

It is interesting, however, that chemotaxis of cells is not
a necessary condition for the appearance of population
waves. In the absence of chemotaxis such waves can arise as
the result of the dependence of the mobility of the bacteria on
the concentration of the substrate (for example, in the fol-
lowing form:

gl
Ho

dccy
21
(c+ (‘0)

where u, and ¢, are constants?®®) or as the result of bal-
anced growth and death of moving individuals in a random
manner.?*2%¢

Another interesting example of the collective behavior
of bacteria, giving rise to a patterning of their populations, is
the phenomenon of swarming.

3.2. Swarming of bacteria

This phenomenon was found for bacteria of the Proteus
genus'*’ and it appeared as a special type of motion of bacte-
ria called swarmers, exceeding (in the swarming state) usual
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FIG. 13. Swarming of Proteus mirabilis bacteria, after2h (a), 3h (b) 4 h
(c), 8h (d), 12 h (e) and 16 h (f) from time of inoculation,'°

bacteria by a factor of tens in length and by a factor of hun-
dreds in the number of filaments.'"* Swarmers perform a
collective radial movement (swarming) and after a certain
time, equal to the swarming period'®® ( ~1-3 hours), they
provide the origin for a new colony of normally dividing
cells, characterized by a normal length and number of fila-
ments. Then the swarming is resumed. As a result, the sur-
face of the culture medium is covered by annular popula-
tions, concentric about the point of inoculation (Fig. 13).

Several hypotheses have been suggested concerning the
mechanisms for the swarming of bacteria. The most wide-
spread is hypothesis of negative chemotaxis,'* according to
which the Proteus bacteria during their vital activity give off
toxic metabolism products, inhibiting cell division. Accord-
ing to the hypothesis this also causes the unusually large
length of the swarmers. The diffusion of the toxic agents
through agarized culture medium in which the cell popula-
tion is growing can cause in this case the formation of a
gradient of these toxic agents. Negative taxis initiates a mo-
tion of the swarmers opposite to the gradient, which contin-
ues until the concentration of the cell metabolism products
falls below some threshold value. The cell division and
growth are then resumed, which causes in turn an increase in
the concentration of the toxic agents given off by thecells. As
a result, the swarming process is repeated after a certain
time.

The “theory of positive taxis is no different in prin-
ciple from the “hypothesis of negative taxis”.'*! According
to the former theory, the concentration of the nutrient de-
creases in the growth region of the bacterial population,
leading to the formation of a gradient in this concentration.
Swarmers appear as a result of a lack of nutrients. Their
chemotactic response to an increase in concentration of the
culture substrate with distance from the growth zone results
in a directed motion, i.e., a swarming of bacteria. Then the
process is repeated.

Experimental results, however, have not confirmed ei-

93152
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ther of these hypotheses.'*' It was found that swarming of
bacteria is not related to chemotaxis.'** As a consequence of
this discovery, a new mechanism for this phenomenon was
suggested to expain the swarming of bacteria: namely, “a
genetic trigger”, operating in a self-oscillatory regime.'**
The swarming mechanism proposed in Ref. 154 relates the
synthesis of the protein flagelline, which comprises the fila-
ments, to the synthesis of some hypothetical protein P,, nec-
essary to complete the bacteria division processes. The hypo-
thetical scheme for the operation of the trigger is as follows:
the volatile product P, of the bacterial metabolism removes
the catabolitic repression with the synthesis of flagelline P,
and during the subsequent competition over the common
substrate S (intracellular amino acid pool) the synthesis of
P, falls off sharply. Switching of the trigger to the normal
synthesis of P; (the second stable state) is not attributable to
external conditions, but is determined by the intracellular
processes themselves, i.e., the swarming period is an intrin-
sic characteristic of the trigger. This picture does not contra-
dict existing experimental data.'’*'>* The motion of the
swarmers is a consequence of their ability to move over the
surface of a solid medium coated with a liquid film. Chemo-
taxis cannot be the cause of this motion because the metabo-
lism product P, is assumed to be volatile. A simple math-
ematical model of swarming was proposed in Ref. 154:

aP,
=7 =/i(Py Py, ) + V(D(P)VP), D~Pi(n>1),

opP,
—ai‘=f2(P1a P2, S), (61)

S
o =f3(Pl, P2, S).

Within the framework of the model (61) the motion of the
cluster of swarmers can be considered as the motion of fla-
gelline P, with a diffusion constant D(P, ). The D~ P7 de-
pendence reflects both the collective character of the swarm-
ing as well as the finite propagation speed of the
swarmers.'*® The observed pattern of Proteus populations
(see Fig. 13) can be interpreted in terms of the theory of
autowave processes'®'*¢1¢7 a5 the result of the motion of the
flagelline front, whose amplitude and propagation velocity
undergo relaxation oscillations in time. Unfortunately, it is
not possible to specify the form of the functions f,, f, and f;
in the Eqs. (61) in view of a lack of experimental data. Thus,
it is impossible, in particular, to exclude a priori the possibil-
ity of a relationship between swarming and the functional
interdependence of the motion of bacteria and their
growth, 168169

3.3. Aggregation of myxomycetes

The cooperative behavior of microorganisms has been
investigated in greatest detail for the Dictyostelium discoi-
deum myxomycetes.'>23¢157 The life cycle of this slime is
shown in Fig. 14. It is seen from Fig. 14 that Dictyostelium
discoideum can exist both in the form of individual amebas
(stage 1) and also in the form of a multicell organism (stage
6). Stage 1 is accompanied by active cell divisions and it
continues as long as the culture medium is rich in nutrients.
The collective form of the amebas sets in with depletion of
the nutrients. In this situation the individual cells become
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FIG. 14. Schematic representation of life cycle of the Dictyostellium dis-
coideum slime.'*® ]-free-living ameba, 2-aggregation, 3~migrating slime,
4—early culmination, 5—developed culmination, 6-formation of fertile
body, filled with spores, 7-spores.

centers of aggregation, collecting from the surrounding ter-
ritory (an area of ~ 1 cm?) about 10° cells at each such cen-
ter.'**!7® The aggregation occurs as a result of the chemo-
taxis of the individual amebas to an attractant, periodically
released by the aggregation centers, namely, to cyclic adeno-
sine monophosphoric acid (cAMP). If the concentration
difference of the cAMP at opposite sides of a cell exceeds
some threshold value ( ~ 10~ '> M), the cell begins to move
in the direction of increasing concentration.'** The distribu-
tion of the cAMP in the medium is established by the action
of the following processes: 1) synthesis in the cells; 2) diffu-
sion through the volume; 3) decomposition (due to the ac-
tion of a special enzyme).'**'>’

A mathematical model, describing the aggregation pro-
cess of myxomycetes, was proposed in Ref. 134. This model
in many respects is similar to the Keller-Segel model de-
scribed above.!?%12312% 1t js a system of two differential
equations:

?
3% = V(D,Va - D_Vp),
(62)

%pt- = V(Dpr) +f(p, a) - k(P, a)y

where a = a(r, t) and p = p(r, t) are the concentrations of
the amebas and cAMP molecules, respectively, D, and Dp
are their diffusion constants, and the coefficient D, charac-
terizes the strength of the chemotactic response of the indi-
vidual cells; f'is the synthesis rate of cAMP and £ is its de-
composition rate. A judicious choice of the functions fand k
is a separate problem'** and, of course, the available experi-
mental data'>>'3*13¢ must be taken into consideration. An
analysis of the model (62) showed that the chemotaxis effect
makes it possible to describe quite completely the aggrega-
tion process of individual amebas (see Refs. 134 and 157 for
more details).

3.4. Formation of population wave as result of magnetotaxis
of bacteria

At the beginning of the 1970s the young investigator
Blakmore accidentally discovered that some bacteria can
move along the lines of force of a magnetic field.””-'7""'"* It
turned out that magnetotaxis (i.e., the sensitivity to a mag-
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FIG. 15. Photograph of magnetotaxic bacteria.'”> Network of magneto-
somes is visible.

netic field), typical for these organisms, is caused by chains
of intracellular particles of magnetite (Fe,Q,);"”!"!-!78
such particles are called magnetosomes (Fig. 15). These
particle chains exhibit the properties of a magnetic dipole
and behave similarly to a compass needle in the earth’s mag-
netic field. As aresult, the cells are oriented along the lines of
force, and this is typical not only for living but also for dead
cells.'” The orientations of the cells prevent Brownian mo-
tion of the molecules of the culture medium in which the
bacteria are living. The degree of orientation of the cells is
characterized by the mean value of the cosine of the angle 6
between the direction of the magnetic moment M of the cell
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2

and the direction of the external magnetic field B:

f cos Bexp(—E_/kT) dV _

(cos B) = T exp(=EL/kT) 4V = L(a), (63)

where E,, = — MB cos 6, k is the Boltzmann constant, T'is
the temperature of the medium over the volume of which the
integration is performed. Here L(a) is the Langevin func-
tion: L(a) = cth(a) — (1/a), a = MB /kT. For a>10 we
have {cos @ ) ~ 1, i.e., the cells must be almost completely
oriented along the magnetic field. Measurements have
shown!”>17-181 that @ ~ 16. Thus, in contrast, for example,
to the E. coli bacteria magnetotactic bacteria move in a very
ordered manner.'”'"'”* It was found that such ordered be-
havior can give rise to population waves.

The formation process and the subsequent propagation
of these waves were first described in Refs. 182, 183. Two
such waves are shown in Fig. 16. They appear as a result of a
quasistatic hydrodynamic interaction between adjacent,
parallel-oriented bacteria. The force acting on a bacterium

i8184

F =F,+F*, (64)
where
F, = —6mual, (65)
&2
F* = 6nualv™ + o (Vo™ 1 (66)

In Eq. (64) F, is the usual Stokes drag force imposed by the
liquid, and is characterized by the dynamic viscosity u, ap-
plied to a body moving with velocity U (see Eq. (65), where
a is the characteristic size of the body). It is assumed here
that the Reynolds number is Re €1, which, as pointed out

FIG. 16. Photograph of population waves, formed by magnetotaxic bacte-
ria.’® The waves moved along the lines of force of the magnetic field.
Direction of motion is indicated by arrow.
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FIG. 17. Field of directions of the force F *, generated by the cell located
at center of figure.'®

above, is typical for the motion of bacteria. The quantity F *
is the auxiliary hydrodynamic force acting on one bacterium
by another closely situated bacterium (the distance between
cells must not exceed ~10a). In Eq. (66) v* and p* are,
respectively, the unperturbed velocity and pressure fields of
the liquid far from the interacting cells. As shown in Ref.
184, the force F* can be defined in the following manner:

2 v
Ft = Q%nyaU% (g) [3 cos(l, X) — l] , (67)

where % is the unit vector, & = U/|U|, (ii, %) is the angle
between the vectors (i and %, 7 is the distance from the cell,
I*=(1/2)(L + 1,), Lis the distance from the front edge to
the end of the flagellum propelling the bacterium, and /, is
the distance between the two extreme points of the helical
portion of this flagellum. The field of the directions of the
force F*, generated by a cell located at the center of the
figure, calculated from Eq. (67) is shown in Fig. 17. Itisseen
that the hydrodynamic interaction force causes a mutual at-
traction of parallel-oriented cells, swimming side by side. All
of the rest of the bacteria repel one another. This character of
interaction between the bacteria initiates population waves
similar to those depicted in Fig. 16.

3.5. Spatial patterns caused by bioconvection

As early as 1848 it was known that many swimming
micro-organisms can form spatial patterns on the surface of
the culture medium that resemble Bénard convection cells
(Fig. 18a)."8%1%% It was suggested that these structures arise
as a result of thermal instability. However, experiments did
not bear out this hypothesis.'®** The most probable mecha-
nism for their appearance is the Rayleigh-Taylor instabil-
ity,'®? i.e., an instability of the upper layers of the culture
medium as it fills with floating micro-organisms.®' The rea-
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son for the floating (negative geotaxis) is apparently the
positive taxis of the microbes to atmospheric oxygen, that is
to say, oxytaxis."®' As a result of the instability, downward-
directed flows of micro-organisms (Fig. 18b) are formed,
and bioconvection appears.

Actually, the upper layer of the culture medium en-
riched with micro-organisms can be considered as a liquid
whose density exceeds the density of the lower layers.®®
From the incompressibility of a liquid®® we obtain

0, 0,

L+ £+w£ . (68)
In Eq. (68) we will restrict ourselves to a two-dimensional
analysis, with p being the density of the liquid,  is the veloc-
ity of the micro-organisms in the x direction, and w is the
velocity in the z direction. We will assume that the force of
gravity acts along the z axis. We supplement Eq. (68) with
the equation of continuity

L+ 2 puy+ 2 ow =0. (69)

Then it follows from Eqs. (68) and (69) that

ou , ow
$+_a_z_—0' (70)

We introduce the following notations:
p'=p+p,
pr=p+p,
where p and p are, respectively, the pressure and density of

the liquid in the absence of bioconvection and p’ and p’ are
small perturbations. In this case

d
&= (71)

The linearized equations of motion in the x and z direc-
tions have the following form:®°

ou _ _op'

PE— axa (72)
w__w _ (73)
at ax :

Assuming that the dependences of p’, p’, # and w on x and ¢
have the form exp(nt + ikx), we obtain from Egs. (74),
(70), (72) and (73), respectively,

FIG. 18. Spatial patterns appearing as a result of bioconvection
in culture of micro-organisms (Tetrahymena pyriformis infu-
soria in this case).?! a—Top view, b-Side view.
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no' + w =, (75)
iku + w_ = 0, (76)
npu + ikp' =0, 77)
now+p,'+gp' =0. (78)

InEgs. (75)~(78) w, = dw/dz, p, = dp'/dz. It follows from
Eqgs. (76) and (77) that

, npw,
—p = k2 "
and from Egs. (75) and (78)

¥4

-p,) =npw - 0 Pz
Eliminating p’ from the last two equations, we obtain

w,, + Bw_ — wk(1 —Eg)=o, (79)
n

where 8 =p,/p, = const (this is true if, for example,
p(2) = po€®). The solution of Eq. (79) has the form®

w= e'kx+”’(Ae’"1z + Be'2),

where
my = 1/2-(-f+ [ B2+ 431 - gB/nH) 1%, (80)
my=1/2-{-f - (B + 4*(1 - gp/n) /3. (8D)

Ifw=0forz=0,then

w= Aeik"'+"’(e"'1z _ emzz).

It can be shown® that at the upper boundary of the liquid
(for z = d) a reasonable boundary condition is

w=0.
Then

expl(m, —mpd}=1,
or

(m; — my)d = 2iln, (82)
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where / is an integer. It follows from Egs. (80)-(82) that

nz _ gBkZdZ
k2d? + (1/4)824% + Pn?’

(83)

where / =1, 2, 3,... We exclude / =0 from consideration
since for / = 0 w = O for all values of z.

With the viscosity taken into consideration Eq. (83) is
replaced by the following equation (for / = 1):'*

Pr’d? -

2 2
+ Wk?n — _
TR T ¢ (14 + 2

’

where v is the kinematic viscosity. For k' = kd, B’ = B4,
n' =n/(Pg)"* v =v/d*(Bg) ' this equation assumes the
following form:

kl2
2 2o 2=0
K24 (1/4)8%+x

4+ Wi - (84)
For the parameter values d = 1 cm, f=15.9X10"°cm~/,
g = 10°cm/s*and v = 0.01 cm?/s, n’' (k') has a maximum®®
at k' = 4. This value of k&’ corresponds to a wavelength
A = 1.6 cm. The typical size of the cells appearing in the
surface layer in the presence of bioconvection is close to this
value of 1.2

3.6. Spatial patterns appearing as a result of gyrotaxis of
micro-organisms

Negative geotaxis, i.e., preferred motion of micro-or-
ganisms opposite to the direction of the force of gravity, can
also be caused by other factors besides oxytaxis.’®’ One of
these is associated with the noncoincidence of the center of
mass with the geometrical center of micro-organisms (such
as the Chlamydomonas or Dunaliella cells,’>'°>1%% ), This
noncoincidence can be caused by an asymmetric localization
of the cell organella. A conventional picture of a spheroidal
cellis depicted in Fig. 19a. The radius of such a cell is usually
3-5 um and its velocity'®® is v, <200 zm/s. The displace-
ment of the center of mass with respect to the center of the
sphere is given by the vector L (see Fig. 19a). The torque
caused by this displacement is equal to L X g = ¢mgL sin 6,
where g = — g2, = 2X#, £, @ and 2 are unit vectors. As is
known,'” a body immersed in a liquid fiow is subject a hy-
drodynamic torque resulting from the gradient of the liquid

FIG. 19. a-Idealized spherical cell in a liquid medi-
um moving with respect to it.'*® U, (#) is the rela-
tive velocity of the liquid. The flagella ( £) move
the cell in the direction 44 with a velocity v. The
gravitational force produces a torque, numerically
equal to mgL sin &, CM is the center of mass. b—
Focusing of freely swimming Chlamydomonas ni-
valis micro-organisms, caused by gyrotaxis.'*® In
the left cylinder, where the liquid flow was down-
ward, cells accumulated near the cylinder axis; in
the right cylinder, where the liquid flow was up-
ward, the cells moved out to the periphery.
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velocity u(f). The hydrodynamic and gravitational torques
add together, yielding

T = 8uad(5(VxU) ~ 0) + mLxg,

where w is the angular rotation velocity of the sphere, VX u
is the vorticity, and u is the viscosity. The influence of the
motion of the flagella is assumed to be negligibly small.!%¢
When u = u(r)Z (see Fig. 19a), the condition T = 0 yields

sin @ = ﬂ/vc(qu)P, (85)

where the gyrotactic scale is 8 = 4mua’v. /mgL. For a = 4
pm, v, =200 um/s and L = 0.03a, we have # = 0.05 cm.

If the downward vertical flow of liquid is bounded by a
cylinder of radius R, then

u(r) = —uy(1 - 2/RYz,

and therefore
v sin 6 = 2uB/R2
In the laboratory reference system the velocity of a cell is
¢ = —(usin 6)r + [ucos 8 — up(1 — 2/R})Iz. (86)

A principal conclusion from Eq. (86) is that even in the
absence of a liquid flow (#, = 0) the cells are oriented with
the flagella upward (as in the diagram shown in Fig. 19a); in
this situation they float (their style of swimming resembles
the breast stroke). The directed motion of the micro-organ-
isms against the force of gravity (negative geotaxis) in this
case is not due to the operation of any set of cell tools special-
ly adapted for this (which is necessary, for example, for che-
motaxis exhibited by the E. coli bacteria). The cells simply
continue to swim in the direction in which they are ortented
by virtue of their intrinsic asymmetry.

As a result of this directed motion the cells accumulate
in the upper layer of the culture medium. When their con-
centration exceeds some threshold value, bioconvection oc-
curs in accordance with the Rayleigh-Taylor mechanism. In
this situation spatial patterns appear similar to those®? de-
picted in Fig. 18. Thus, the cell structures characterizing the
distribution of micro-organisms in the upper layer of the
culture medium are caused necessarily by chemotaxis.

Under bioconvection conditions flows arise, not only of
micro-organisms, but also of the liquid that is their culture
medium. Let us assume the characteristic radius of such a
flow is R. Then in accordance with Egs. (85) and (86) the
cells will swim upward, opposite to the downward flow and
at the same time they will be constrained to central axis of
the downward flow. If the flow is upward, the signs of %, and
V X u are reversed. Consequently, as seen from Eq. (85), the
sign of sin @ is also reversed. This means that in the upward
direction the stream of cells must deviate from the axis and
accumulate around the periphery of the flow. Experiments
completely confirm these conclusions (see Fig. 19b).

Gyrotaxis is the directed motion of cells caused by a
compensation of the torques caused by outside forces. Such
motion, as shown in Fig. 19b, can cause a spatially inhomo-
geneous distribution of micro-organisms.

Let us consider more carefully the situation when the
liquid flow is downward (in Fig. 19b this situation is depict-
ed in the left cylinder). In this situation the swimming (with
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respect to the liquid) cells are constrained to the axis of the
cylinder. Because of the increase in cell concentration near
the axis of the cylinder the velocity of the flow increases in
the immediate vicinity of the axis. Since the quantity
(VXu),, also increases in this situation, sin § must also in-
crease in accordance with Eq. (85). It is clear from Fig. 19a
that this leads to an acceleration of the accumulation of cells
around the axis of the flow (in Fig. 19a the angle 6 is mea-
sured counterclockwise). Such an acceleration causes a
further increase in the flow velocity, and so forth. In this
situation the radius of the flow decreases and its boundaries
become sharper. Such a gyrotaxis-caused self-focusing of al-
gae cells is called a “green hole” (by obvious analogy to
“black holes”).??

Thus, swimming cells (as a result of Rayleigh-Taylor
type instabilities) can form downward flows of liquid and
cells, cell convection appears, and the downward flows are
transformed into “‘green holes”. These effects are caused by
gyrotaxis.

To conclude this section let us mention that the phe-
nomenon of gyrotaxis has been examined in greater detail in
Refs. 198-201.

3.7. Spatial patterns appearing as aresult of the interaction of
converging population waves formed by chemotactic
bacteria

It was shown above (Sect. 2.1) that mobile bacteria
(e.g., E. coli), planted in a semiliquid culture medium, can
form fronts characterized by an elevated density of microor-
ganisms.”®-116118-121 The migration of these fronts can be
considered as a propagation of an autowave and it can be
described by typical “reaction-diffusion” type autowave
equations.122,123.125,l27,139—14l,145,154,202

The simultaneous planting of bacteria at several points
of one Petrie dish leads to the interaction of the converging
fronts (also called chemotaxis rings).

The chemotaxis rings can suffer collisions, such as the
one shown in Fig. 20. Sometimes the population waves can
pass through each other.?®® In this situation, as was shown
in 1990 by Shakhbazyan, the bacteria can switch from the
consumption of one substrate (before the moment of colli-
sion) to the consumption of the other, and in this way the
waves penetrate through each other.

FIG. 20. Collision of chemotaxis rings.'" Three population waves are

Jeaving each inoculation point in succession. The first wave consists of
bacteria demonstrating positive taxis with respect to serine (and consum-
ing it), the second wave demonstrates taxis to aspartate, and the third to
threonine.
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However, chemotaxis rings do not always collide. In
some cases they slow down and stop as they approach each

other, without coming into direct contact.®?**?°¢ The

successive stages of this process are demonstrated in Fig. 21.
It is seen that the rings, coming together, are deformed (the
curvature of the front is reduced locally). Then the chemo-
taxis rings slow down and stop (without colliding). A spa-
tial pattern of four bacterial populations is formed, separat-
ed by a cross-shaped demarcation zone. This pattern is
preserved for a long time (more than 10 hours after colli-
sion).

It turned out that the type of structure—colliding (as in
Fig. 20, for example) or noncolliding (Fig. 21)—is deter-
mined by the expansion velocities of the chemotaxis rings.®
No collision of the waves occurs when their average velocity
does not exceed ~4 mm/h.

The assumption has been made that the appearance of
the noncolliding patterns is due to a shortage of the culture
substrate (which is an attractant at the same time) in front
of the slowly moving population waves.® In the narrow de-
marcation zones, separating the individual populations
(Fig. 21), this shortage can evidently play a key role in the
formation of the noncolliding structures. A mathematical
modeling that we carried out for the interaction processes of
converging population waves demonstrated the soundness
of this assumption.

A modified system of the Lapidus—Schiller system of

equations was used as the mathematical model:*®’
ab _ a%b a . 3f(s)
E—R(S)b"'Dbm— V'a_x‘(ba—x), (87)
3 _ )b+ 0. 25 (88)
ar s ax2’

where in contrast to the original model,*®” A (as in Ref. 208)
is not a constant: we assumed that A (s) = aR (s), a = const
(a<1). The quantity b is the concentration of bacteria and s
is the density of the substrate,

R(s) = Rys(s + s,)”', R, =const, s,=const,
(89)
f(s)=s(s+sp~ "

The initial conditions were specified in the following man-
ner:
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FIG. 21. Appearance of noncolliding pattern when chemo-
taxis rings converge.” a-Two expanding (from inoculation
points) chemotaxis rings. b, c—Retardation, deformation of
rings, formation of cross-shaped pattern as rings converge;
individual bacterial populations are separated by planar de-
marcation zones. d-Second chemotaxis rings cannot cross
demarcation zones. e-Growing (following the chemotaxis
rings) bacterial lawns also do not cross the demarcation
zones, which form a stationary structure; it is seen that typi-
cal stationary rings (not chemotaxis rings), formed by the
bacterial lawn, are ““torn”’ at this structure.

by for 0 = x <and(L-e)<x <L,

bix,t = 0) = 0 for rest of x coordinate values,

where L is the distance between the “backs”, i.e., the boun-
daries of the initial bacteria concentration regions facing
away from each other (& is the characteristic size of these
regions),

s(x, t=0)= Sor

The first term on the right side of Eq. (87) describes the
multiplication of bacteria, and the multiplication rate R de-
pends on the density of the culture substrate s at a given point
of the medium. The presence of this term is a major distinc-
tion between the mathematical model (87) and (88) and the
Keller-Segel model (18), (19). The second term on the
right side of Eq. (87) describes the random walk of the bac-
teria (D, is the diffusion constant assumed to be a constant),
and the third term is the gradient of the bacteria flux caused
by chemotaxis. Unlike in the Keller-Segel model'*?, this
flow in the Lapidus—Schiller model*®” depends not on the
gradient of the substrate, ds/dx, but on df/dx, where the
function f(s), given by Eq. (89), is the so-called sensitivity
function of the bacteria to a given substrate (which is simul-
taneously an attractant). This approach agrees better with
existing experimental data.’® The second equation of the
mathematical model being analyzed (Eq. (88)) describes the
change in the concentration of the attractant (or substrate);
here D, is the diffusion constant of the substrate. The one-
dimensional case is considered in Egs. (87) and (88) for
simplicity.

Computer experiments that we have performed have
shown that the noncolliding patterns arise in those cases
when the parameter ¥in Eq. (87) is not very large (V<1),
or, in other words, when the nonuniformities caused by che-
motaxis in the bacteria concentration (i.e., the population
waves) are not propagating too fast. This result agrees qual-
itatively with the data obtained in Ref. 9.

Figure 22 shows the successive stages of formation of
the noncolliding structure, along with the associated sub-
strate distributions. It is seen that in the concluding stage the
substrate concentration in the gap between the arrested pop-
ulation waves decreases to zero. Thus, the noncolliding pat-
tern can be formed as a result of the eating out of the sub-
strate in the space between the two converging population
waves (if the rate of their convergence is not too large).
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50 FIG. 22. Successive stages in formation of noncolliding
pattern. Each of the six stages shown in the upper graph

represent the s(x) dependence, those in the lower b(x).

3,0 3,0 3,0t
25F . 25F 2,5F /\
20 2,0 2,0 1
150 50\ Vs Fa 50\ 75 Fa 50
Lot 1,01 L0
85 0,05’\‘\ 1%\
1 1

0 50 o 50 o
35 35 35
30+ 30+t 3,0
35r N . 25y 25} '
20 2,0 2,0

o 50 0 o 50
151 75t 90| 35
7)0 - 7)0 - 7}0 -
0,5 g, 45
PN~ 1 P — | Z [ ]

This conclusion is also confirmed in natural experi-
ments, where the chemotaxis rings propagated and con-
verged in a synthetic culture medium. This medium con-
tained only one substrate (attractant), for example,
D-glucose. The results of these experiments are shown in
Fig. 23. Itis clearly seen that the concentration of D-glucose
in the demarcation zone formed by the two converging bac-
terial rings falls off sharply from its initial value. Whereas
the initial concentration of the attractant (in different ex-
periments) ranged from 0.67 to 1.46 uM/ml, in the demar-
cation zone it decreased to values of 0-0.16 uM/ml.

An interesting result is that the demarcation zones are
preserved for a period of 10 hours and they do not vanish as a
result of the intrinsic diffusion of the bacteria.® This is easily
explained by the dependence of the bacteria mobility on the
substrate concentration. As an example, it was assumed in
Ref. 231 that the mobility is

#olac)* for ¢ < 1/a,
H(c) =
,uo for ¢ > 1/(1,

where g and n are non-negative constants. It can be seen that

G76= 7,46 pM/ml
“V

0-0,45,uM/m|- ' ‘ oG216 uM/mi

FIG. 23. Decrease in concentration of D-glucose in culture medium dur-
ing formation of noncolliding population pattern. Arrows indicate the
sites where samples were taken to measure the concentration of D-glu-
cose: far from the converging waves (control sample), in the immediate
vicinity of front of leading wave, and in demarcation zone.
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p(c) can decrease considerably with a decrease in ¢. The
demarcation zones in this case are obviously stabilized.
Products of metabolism, inhibiting the mobility of bacteria,®
may play some role in the stabilization of these zones.

3.8. Spatial patterns associated with an instability of the
regular geometrical shape of chemotaxis rings

We have seen that bacterial population waves (if they
do not interact) usually have a regular geometrical shape,
such as that of a ring (as in Fig. 11). However, this shape is
not always stable during propagation of a population.

In some cases, as shown in our experiments,”® the reg-
ular shape of a chemotaxis ring is destroyed when it reaches
some critical radius (R_ ). In this situation bulges are
thrown out in the form of segments, separated from the
original bacterial population by gaps (Fig. 24). The number
of these bulges usually varies from three to five. In turn,
these segments often formed secondary bulges. The value of
R_, depends on the pH of the culture medium. Specifically,
R, decreases monotonically (by a factor of about two) with
an increase in pH from 4 to 8.

The mechanism for the formation of patterns such as
that shown in Fig. 24 is not yet clear. One can suppose that
the breakup of the geometrical shape of the chemotaxis rings
is caused by abuildup of a repellent or repellents, which are a
product of the vital activity of the bacteria. Bulges can be
formed when the repellent concentration reaches some

FIG. 24. Spatial bacterial pattern formed as a result of instability of regu-
lar geometrical shape of chemotaxis ring, formed by E. coli bacteria.
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threshold value; in this case the radius of the chemotaxis
rings reaches the value of R, . The formation of the bulges is
due to a drift of the bacteria opposite to the gradient of the
repellent from its region of maximum concentration, which
obviously coincide with the chemotaxis ring and character-
ized by an increased density of bacteria. The appearance of
bulges is determined (within the framework of this hypothe-
sis) by fluctuations of the repellent gradient. The width of
the gaps separating the segment-shaped bulges from the
original population (see Fig. 24) may depend on the maxi-
mum value of the repellent gradient, at which the directed
motion of bacteria opposite to this gradient vanishes.

3.9. Spatial patterns appearing as the result of an interaction
of bacteria and viruses

The name “virus” (from the Latin meaning poison)
was first used to designate various little-studied pathogenic
agents. Later, it was assigned to a group of pathogens discov-
ered in 1892 by Ivanovskii, which turned out to be able to
pass through bacterial filters.?! Viruses differ from micro-
organisms in the following respects: 1) they contain only one
type of nucleic acid—either DNA or RNA; 2) only nucleic
acid is required for their reproduction; 3) they are unable to
multiply outside a living cell (see, e.g., Refs. 21, 210). Thus,
viruses are not independent organisms, but utilize living
cells for their multiplication: their reproduction occurs in a
host cell. Cell mechanisms are needed both for replication of
the nucleic acid and also for synthesizing the protein mem-
brane of the virus. Growth of the virus leads to death of the
host cell. Outside the cell a virus exists in the form of a virus
particle (virion), which consists of the nucleic acid and pro-
tein membrane-capsid.

Viruses that are harmful to bacteria are called bacterio-
phages. Bacteriophages are identified from the formation of
so-called “sterile spots” or “blotches”, in a solid bacterial
lawn (Fig. 25). Cell lysis is accompanied by the evolution of
the newly formed virions in the culture medium.

It is clear from Fig. 25 that the morphology of the
blotches may be determined by the type of phage. In particu-
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lar, some bacteriophages produce blotches surrounded by a
halo (for example, the T3 phage; Fig. 25). A possible mecha-
nism for the formation of the halo was suggested in Ref. 212.
In that paper it was shown that the cells being dissolved can
form an enzyme, which blocks further lysis. In a region
where the concentration of this enzyme is sufficiently high,
the lysis is retarded and a halo is formed. Further formation
of the enzyme is also reduced in this case. This causes the
appearance of another ring-shaped lysis zone surrounding
the halo (as in the action of the T3 phage in Fig. 25); target-
like blotches appear. Sometimes they have a rather complex
multiring structure.

An analysis of this model showed, however, that it must
be supplemented.?'* That is, the formation of the target-like
blotches of sterility must include the transport of the ad-
sorbed phages by a stream of the cells being dissolved (dur-
ing the transport process), this stream appearing as a result
of a negative chemotaxis of these cells in the substances
formed in the culture medium in the zone of active lysis. An
appropriate mathematical model has been suggested by one
of the authors of this review ( Tsyganov). It is the system of
equations

9b/ 9t = ()b ~ nb + DVb + VQ(R)V(6VQ(h)), (90)

ap/ot = Nnb — kbp + DpV2p, 91)
ap,/ 9t = kbp ~ np, + VQ(R)V(p,VQ(#)), (92)
oh/ ot = anb + D,V?h, (93)
ds/ ot = —B(s)b. (94)

In Egs. (90)-(94) b is the bacteria concentration, p is the
density of virions, p, is the mean density of bacteriophages
adsorbed on the bacteria, 4 and s are, respectively, the con-
centration of the enzyme inhibitor of the lysis and the con-
centration of the substrate. Equation (90) describes the
change in bacteria concentration with time due to the follow-
ing processes: 1) multiplication (u is the specific rate of

FIG. 25. Blotches formed by six different types of
phages in continuous lawn of E. col bacteria.?!’
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FIG. 26. The function % (m) in the Tsyganov mathematical model (Egs.
(90)~(94).

growth of the number of bacteria); 2) lysis ((m), is the
specific lysis rate, where the multiplicity m = p, /b has the
form shown in Fig. 26); 3) diffusion (D, is the diffusion
constant) and 4) negative taxis of bacteria in the lysis zone;
here Q(h)=h/(h+ h;), where h, is a constant and
¥V = const determines the strength of the chemotactic re-
sponse of the bacteria. Equation (91) describes the change
in the concentrations of virions with time due to the follow-
ing processes: 1) the yield of virions from the dying cells (¥
is the average yield of virions in the lysis of one bacterium);
2) bonding of phages with cells (k is the binding constant)

and 3) diffusion of virions (D, is their diffusion constant).
Equation (92) describes the change in the concentration of
phages bound to cells still undissolved. It is assumed that the
cells, leaving the lysis zone (because of negative chemo-
taxis), carry bound bacteriophages with them—the source
of their future death. This process is described by the third
term on the right side of Eq. (92).

Equation (93) relates the change in the lysis enzyme-
inhibitor to the concentration of the cells being dissolved (&
is a constant) and to the diffusion of this enzyme (D, is the
diffusion constant). Finally, Eq. (94) describes the change
in the substrate concentration due to its consumption by the
bacteria (8 is the specific rate of consumption; it depends on
the substrate concentration in the same manner as the func-
tion A (b) in the modified Lapidus—Schiller model; see Eqs.
(87) and (88)). The Tsyganov model makes it possible to
analyze the formation process of the target-like sterility
blotches.?*?

Figure 27a shows an example of a computer experiment
performed on the basis of this model. The evolution of the
target-like blotches, recorded in the course of a natural ex-
periment (infection of an E. coli bacterial lawn by the T7

5 =0 T =100 T =2,l70

a 7/

g V
T=300 T =4,00 T =500
T =500 T =700 T =8,00
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FIG. 27. a-Numerical modeling of the formation of target-like pat-
terns, based on Eqgs. (90)~(94). b—Evolution of sterility blotches
(E. colibacteria and T7 bacteriophage). Spatial patterns are shown
together with the variation of their optical density in two mutually
perpendicular directions.
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FIG. 28. Result of the action of T7 bacteriophage on
the spatial patterns formed by the J621 and K-12
strains.?!’’ a-Pattern at moment of infection; 14—
points of infection. b—Pattern 2.5 hours after infection.

2 cm

phage), is shown in Fig. 27b. It is seen that the computer
experiment reproduces well the basic features of the forma-
tion process of these blotches.

Let us consider yet another way that spatial patterns are
formed during the interaction of phages with bacteria. It is
known that a phage infection is sometimes accompanied by
incomplete lysis. This may be due to the presence of phage-
resistant cells in the population.?'®*"* However, everiin the
absence of such cells conditions exist for which a spatially
distributed population of bacteria can survive despite a virus
infection.?'®*'” The result of the effect of the T7 phage on
spatial patterns, formed by two different strains of bacteria,
J621 and K-12, is demonstrated in Fig. 28. Figure 28a shows
the points at which the phage infection was applied. The
results of the infection are shown in Figs. 28b and 28¢. It is
seen that at the end of 5 hours the population of the J621
strain has essentially perished. At the same time the K-12
population is almost unaffected by lysis: the action of the
phage is restricted just to a region near the point of the initial
infection, not extending far along the chemotaxis front nor
into the depth of the expanding bacterial population (com-
pare Figs. 28b and 28¢). As a result the population of the K-
12 strain survives as a whole, resisting the bacteriophage
infection. What is the mechanism for this survival?

Itis known that phage lysis is possible in growing bacte-
rial populations.?’® Asshownin Ref. 217, the duration of the
growth phase of the J621 strain is much longer than it is for
K-12: 200 min after the beginning of measurements the
growth of the K-12 population is drastically slowed down,
whereas the population of the J621 strain continues to add to
its density. Therefore, with the infection of the K-12 bacte-
rial culture with the bacteriophage in the late stages of its
growth phase the culture is able to leave this phase before the
phage starts to affect it. There is no lysis in this case. On the
other hand, the J621 culture is growing and is subject to lysis
throughout the entire time of the experiment, i.e., when dif-
ferent bacterial populations are infected simultaneously, the
one in which the duration of the growth phase is shorter is
more resistant to lysis.

Since a local lysis occurs in the population of the K-12
strain only at the front near the point of infection, immedi-
ately behind the front this population is outside the growth
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c-Pattern 5 hours after infection.

phase. That is, the duration T of the growth phase and the
average rate (V) of expansion of the chemotaxis ring are
such that only a narrow ring adjacent to the front is subject
to lysis. In the case presented V~1.5 mm/h and 7~3 h;
consequently, the width A/ of this ring must be about 4.5
mm, which agrees with the experimental data (see Fig.
28).217 For 3621 ¥ ~5 mm/h (see Ref. 9 also) and T~ 5 h;
consequently, A/~25 mm which nearly coincides with the
radius of the annular front of the chemotaxis (see Fig. 28).

The dependence of the survival of a multicell system on
the life phase is not a specific feature of the interrelationships
of phages with bacteria. It is interesting to note that the idea
of the possible consequences of the infection of a man by a
phase-dependent virus was used in a fantasy novel by
Merle:?" the author suggested that a disease pathogen can
kill men in the reproductive period of their life. It is impor-
tant, however, that a phase-dependent character of the ac-
tion of a parasite on a host is also true in real situations. For
example, the early development stage of insects has a less-
developed protective response to endoparasites**® (other ex-
amples can be found in the monograph®' ).

3.10. Spatial patterns that appear as a result of the interaction
of converging bacterial population waves and that depend on
the sex of the bacteria

As far back as the mid-1940s it was shown that bacteria
can engage in their own unique kind of mating. Genetic ma-
terial is transferred from the donor (‘“‘male” strain) to the
recipient (‘‘female” strain). Sexual differences of bacteria
are caused by the so-called F factor (from the English word
fertility). Cells, not containing the F factor (F~ cells) can
function only as recipients. Donor cells have been given the
name Hfr (see, for example, Ref. 21).

It has been shown?>?* that both Hfr as well as F~ strains
of the S. typhimurium bacteria can form chemotaxis rings. It
was found that the spatial patterns, caused by the conver-
gence of Hfr and F~ annular fronts, have an interesting fea-
ture. As seen from Fig. 29, Hfr bacteria have formed in the
contact zone of two populations an arc-shaped wave, pene-
trating to some distance into the population of F~ cells. It is
suggested that positive chemotaxis of Hfr bacteria in some
hypothetical metabolite, evolved by the F~ cells, may be the
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basis of the mechanism for the appearance of such a spatial
pattern.??

3.11. Effect of the age heterogeneity of populations on the
spatial pattern

In certain cases the age heterogeneity of populations
exerts a key influence on their fate. We became convinced of
this while studying the survival of expanding bacteria popu-
lations in the presence of a local virus infection (see Sect.
3.9): it was found that survival is determined by the degree
of spatial heterogeneity of the cell collectives relative to the
growth phase.?'” Other effects may also be associated with
age heterogeneity, for example, the appearance of pulsations
in the spatial distribution of the number of dividing organ-
isms. In order to show this it is sufficient to add a diffusion
term to the equation of dynamics of the age makeup of a
population:?**

‘;’; + 2 o _a@n + div(D grad(n)), (95)
where ¢ is the time, 7is the age, n(¢, 7, x, y) is the age density
of the population, x and y are spatial variables, a(7) is the
mortality coefficient, and D is the diffusion constant of the
organisms. Equation (95) must satisfy the following condi-
tions:

n(t, 0, x,y) = }ob(r)n(t, 1, X, y)dr,
0

n(, 7, x, y) = ¢(z, x, ¥),

where b(7) is the birth rate coefficient and ¢ (7, x, y) is the
initial age distribution of the population in space.

Let us consider the development process of a popula-
tion initially synchronous and located at a single point:

¢P(T, X, y) = Noa(x’ y)d(r - To)’ (96)

where N, is the initial population count, and & is the Dirac
delta function. For D = const (see Eq. (95)) no spatially
nonuniform patterns appear.??* In order for them to appear
itis necessary to impose additional conditions (which follow
from the biological aspect of the problem). As an example,
one can assume that the mobility of species depends not only
on their count but also on their age. For the E. coli bacteria
such a dependence was successfully demonstrated experi-
mentally.?2>22¢ It was suggested in Ref. 224 that the diffu-
sion constant D increases with an increase in the population
of organisms, and their mobility is maintained constant only
within some interval of age, i.e., in a certain phase of devel-
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FIG. 29. Spatial patterns that appear as the result of the
action of converging chemotaxis waves and that depend
on the sex of the bacteria.??? /-point of inoculation of F~
strain of S. typhimurium bacteria, 2—point of inoculation
of Hfr-strain.

opment. With these assumptions the appearance of spatially
nonuniform distributions in population becomes possible.
Figure 30 shows an example of the development of an initial-
ly synchronous point population in space (i.e., satisfying
condition (96)). It was assumed here that

D=H(N - NYH(* - 1), (97)

where

N = [n(z, x, y)dr,
0

H is the Heaviside step function and N * and 7 * are the criti-
cal number of individuals and the critical age, respectively.
An interesting point is that the evolution of the spatial distri-
bution shown in Fig. 30 reproduces well the spatial nonuni-
formity in population and the growth of cities, where the
population density per unit ground area fluctuates from the
center to the periphery.?**

For the E. coli bacteria the dependence of the mobility
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FIG. 30. Spatial evolution of an initially synchronous point population in
the case where diffusion coefficient depends on the population count and
age of the organism.”**
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(or diffusion constant) on age is different from that which
was specified (usually arbitrarily) by Eq. (97). In this case
the bacteria remain mobile throvghout their entire life, but
the maximum mobility of each cell occurs approximately
midway through its life.?2>22® The chemotactic response of
each individual bacterium also changes.?’* Moreover, the
expansion rate of the bacterial chemotaxis rings quickly sta-
bilizes and then remains constant.'%*??” Thus, the time vari-
ability of taxis and of mobility of individual cells contrasts
sharply with the constancy of the velocity of motion of the
cell collectives—population waves.

4. CONCLUSIONS

It might appear that a detailed biophysical investiga-
tion of the behavior of individual micro-organisms and their
populations is of purely scientific interest and it is difficult to
find practical applications from these results. However, this
1s not so.

As already pointed out at the beginning of the paper
(see Table I), many types of fertilizers, vitamins, feed pro-
teins, and antibiotics are the products of micro-organisms.
The manufacture of technical devices and entire systems can
be a product of biotechnology. The use of micro-organisms
together with biomolecular complexes (proteins, enzymes,
etc.) will possibly play a distinctive role in the future in the
building of biological measuring devices.

Whereas in earlier years the primary problem to be
overcome was the reproduction of the operating principles
of living systems in engineering, today hybrid systems have
already been developed, including metal elements as well as
bioelements. The development of biological systems for
technical application has begun.>?

It is obvious from what has been said above that a mi-
cro-organism is a unique logic module—a “biochip” less
than 10 um in size combining in one *“‘case” a sensor, logic
and actuator (or search) mechanisms. Thanks to the devel-
opment of continuous methods, the growing of micro-organ-
isms is inexpensive, and their resources are essentially un-
limited. It is obvious that by understanding the individual
and collective life of micro-organisms one can attempt to
develop a unique technology for the production of logic
computer microdevices from them, based on parametric
(chemical or physical) effects, which will stimulate and di-
rect the self-organization process of micro-organisms in mi-
crodevices.

It is quite clear (although this is not easily verified for-
mally) that the patterns appearing in microbe populations
are open systems, existing far from thermodynamic equilib-
rium. It is also clear that such systems can maintain their
order only when the processes controlling their behavior are
essentially nonlinear (see Refs. 10and 11). In fact, for exam-
ple, the tumbling frequency, as shown in Refs. 97 and 145,
depends nonlinearly on the attractant gradient. This proper-
ty underlies the nonlinear character of the equations model-
ing the propagation of the bacterial waves of chemotaxis (see
Egs. (18), (57) and (87)). The mathematical models of gyr-
otaxis are also highly nonlinear.'®® On the basis of microbio-
logical modules one can attempt to develop analog wave de-
vices, capable of modeling nonlinear processes in systems
being developed.

We have seen that as a result of the nonlinear action of
the ambient or physical factors on micro-organisms, mobile
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FIG. 31. Cellular structure of a flame. '

or immobile spatial patterns appear: population waves (see
Figs. 11 and 16), swarming effects (see Fig. 13), Rayleigh—
Taylor cells (see Fig. 18), green holes (see Fig. 19), etc.
These structurally organized populations of organisms in
turn alter the ambient medium in such a manner as to main-
tain their existence. Thus, the chemotaxis rings induce an
attractant concentration gradient, which is a necessary con-
dition for the existence of such rings (see Sect. 3.1). Another
example: converging chemotaxis rings form a demarcation
zone (see Fig. 21). The drawing off of the culture substrate
from it (see Fig. 3) and the possible dependence of the mo-
bility of the bacteria on the substrate concentration contrib-
ute to the stabilization of this zone (see Sect. 3.7).

Thus, the genesis of the population waves and patterns
formed by micro-organisms is a result caused by the interac-
tion of the organisms and medium and a transition from a
random chaotic motion of the individual cells to a determin-
istic motion of cell collectives.

Such a transition—from random fluctuations to or-
dered wave motions and spatial patterns—is characteristic
not only of living systems but also of some comparatively
simple physical-chemical processes ( the classical example is
the formation of the cellular flame; Ref. 39; Fig. 31). An
investigation of analogies between nonliving and living sys-
tems can be of no small interest to researchers.

As already pointed out, micro-organisms are able to
convert energy of very different forms: chemical, light, me-
chanical, magnetic. They provide for the detection of a wide
spectrum of substances and in a number of cases they are
characterized by high sensitivity ( ~ 10 ~° M concentration
of the substances being detected®® ). By means of them it
may be possible to detect microimpurities of ions and com-
plex molecules in water and in multicomponent liquids. A
measuring system describable as a ‘‘bacterium on an optical
leash” can be based on the system already described by Berg
(see Fig. 3).

Bioengineering, established on a base of organic materi-
als including micro-organisms, is taking its first steps, but it
will not be surprising if in the very near future it comes into
widespread use together with traditional technical microsys-
tems. One of the goals of this review is to attract attention—
especially of young researchers—to this area of science,
which lies at the interface of physics, biophysics, biochemis-
try and engineering.
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