Formation energy of a waveguide as a measure of its cutoff frequency
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It turns out that the cutoff frequency of a waveguide, multiplied by Planck’s constant, and the rest
mass of a photon in the waveguide, multiplied by the velocity of light squared, are equal to the
work performed in opposition to the radiation-pressure forces of zero-point vacuum fluctuations

during the formation of the waveguide from free space.

1. The analogy between the dispersion relation for a
waveguide mode,

0? = ol + (cky)? )

and the relativistic expression for the Hamiltonian of a free
particle,

E? = (mye®)? + (cp)? (2)

has been pointed out by various investigators a number of
times over the course of many years (Ref. 1, for example).
Here w and k,, are the frequency and propagation constant of
a wave in the waveguide, for the mode of index » and cutoff
frequency w,,; E and p are the total energy and momentum of
the particle, whose rest mass is m,; and c is the velocity of
light. Here quantities are being associated with each other
in pairs: the frequency with the total energy, the cutoff fre-
quency with the rest mass, and the propagation constant
with the momentum.

Pursuing this analogy, De Broglie wrote' that every-
thing proceeds as if the photon had an intrinsic mass deter-
mined by the shape of the waveguide and by the particular
eigenvalue under consideration. He wrote that a photon
might have a number of intrinsic masses in a given wave-
guide. Unfortunately, he went on to write that he was going
to put aside all these considerations, which were distracting
him from his subject.

One senses in this analogy a heuristic content®> which
might in fact bring us closer to an understanding of the es-
sence of the matter.

Formally, of course, the cutoff frequency w,, for a mode
is found as an eigenvalue of the wave equation under the
boundary conditions imposed by the cross-sectional shape of
the waveguide.

A graphic kinematic representation of the cutoff fre-
quency is usually constructed in terms of an interference of
partial waves (which would be plane waves in the simple
case of a rectangular cross section) whose superposition
creates the field of the mode which satisfies the boundary
conditions. As the wave frequency w approaches the cutoff
value w,, the wave vector of the partial wave also approaches
the direction normal to the longitudinal axis of the wave-
guide. At w = w,,, this wave vector is in fact directed strictly
along this normal, and the propagation of the longitudinal
traveling wave is cut off (k, = 0).

However, there is further meaning in the concept of a
waveguide cutoff frequency w,, as we will see below: The
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energy corresponding to the cutoff frequency (#w, ) is nu-
merically equal to the least amount of work (w,) which
would be performed in forming a waveguide of finite cross
section from unbounded free space:

ho, = w,, (3)

The rest mass of a photon in the waveguide is

w

3 - (4)

m,=-—a

2. To demonstrate the meaning of these statements, we
consider the very simple example of a plane electromagnetic
waveguide formed by two unbounded parallel metal planes
separated by a vacuum gap of thickness a. The field insuch a
waveguide may be thought of as a superposition of two par-
tial plane waves, reflected from the metal bounding planes at
angles of incidence §. The boundary conditions are satisfied
as a result of an interference of the partial waves if

cos0, ——n_ (5
[0}
where
o= 2% (n=0,1,2,..}) (6)

are the cutoff frequencies of the modes of the two possible
polarizations: TE, (n=1,2,...) and TM,, (n =0, 1, 2,...);
(the TM, mode is discussed separately below).

What transformations does the electromagnetic field of
the mode undergo as the gap thickness a is varied, i.e., as the
metal planes are moved toward each other or away from
each other at constant velocities + ¢ff with respect to the
symmetry plane of the waveguide? It follows from the Lor-
entz transformations that upon each reflection of a partial
wave at the waveguide boundary there are changes in both
the wave frequency @ (this is the Doppler effect) and the
angle of incidence (or reflection) 6:

wrel'zwim:(l_'_ﬂcos einC)Z(l_ﬂ2)~l’ (7)
cosaref= Cosainc+2ﬁ(l+ﬂ2)_l (8
28(1 —B* " 'cos 8 ™ + 1 )

[£20 as the metal planes are moved toward each other (or
away from each other)].

Are these changes in frequency and angle of incidence
compatible with waveguide conditions (5) and (6)? In other
words, does the waveguide interference structure of the field
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remain the same as the reflecting surfaces are moved? Work-
ing from (7) and (8), one can show that, over one cycle of
the propagation of the partial wave from one reflecting sur-
face to the other, the gap thickness g acquires an increment
1 4+ 2f cos 6 + p2

Aa:—-Zaf} (1+3ﬁ)cosﬁ+ﬁ(3+ﬁ’) 1 (9)
and the changes in the frequency  and the angle of inci-
dence @ are given by

Bo = op 2001 BCE0D) | (10)
A cos 8 = 2B sin® 8(1 + 2P cos & + ByL. (11)

The total changes in the frequency « and the angle & as
the result of multiple reflections as the gap thickness changes
from a, to a can be found by going over from finite differ-
ences to a system of differential equations,

d0 __ sinB cos 4 3f 4+ 3ptcos O+ B*

@ = (T~ 2Bcos0 L P~ (12)
do o 2c0os84B(14 cos?B)cosB 4 3B+ 3B2cos O+ B°
de = 2a 1T—p 1+ 2BcosO I B2

(13)

and by integrating these equations.

The zeroth approximation in 3 of the integrals of sys-
tem (12), (13) corresponds to the first-order Doppler effect
upon a slow movement of the reflecting planes (8<1). In
this approximation we find

tg6=—::tg60, (14)

sin @y __

_ ay cos 0,
O=® g =

02 cosd ' (15)
where w, and 8, are the initial values of the frequency and
the angle at a =a,,.

We can draw several conclusions at this point. As -0,
the frequency w and the angle of incidence 8 do not remain
constant (as one might expect at first glance). Their instan-
taneous values are determined unambiguously by the wave-
guide gap a. If waveguide condition (5) holds in the initial
position (@ = a, ), then it also holds at arbitrary instanta-
neous values of . We thus find an affirmative answer to the
question of whether the interference structure of the wave-
guide field remains the same as the reflecting surfaces form-
ing the waveguide are slowly moved: The radiation frequen-
cy and the angle of incidence & continuously adjust to
accommodate the waveguide conditions by virtue of the Lor-
entz transformations. If the displacement velocity £ is not
small, condition (5) does not remain satisfied for the instan-
taneous values of w and 8, and the steady-state interference
structure is disrupted. Here we find a separate and interest-
ing problem: the scattering of the photons of one mode of a
uniform waveguide into another mode, with indices n, cutoff
frequencies @, , and photon masses m, different from their
initial values.

3. When the angle @ is eliminated from Egs. (14), (15),
we find a linear equation for the squared frequencies in a
waveguide with moving reflecting surfaces:

®? — 0fF = 0§ — @5 = const, (16)
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where @, is the cutoff frequency for mode » at @ = a,. This
equation means that the propagation constant k, remains
constant. This point is also obvious from kinematic consid-
erations concerning an unbounded uniform waveguide. We
thus find expressions for the phase velocity
(v,/o=v,,/w, =const) and the group velocity
(4,0 = u,ow, = const), where v,, and u,, are the initial
values of these velocities, at a = q,,.

An important particular case is that in which the initial
waveguide has an infinite transverse dimension (@, — o),
i.e., the case of free space. In this case we have w,, —0 ac-
cording to (6), and the two initial partial waves merge to
form a single plane wave, whose wave vector is parallel to the
longitudinal axis of the waveguide:

0! = of + 0k (17)

When a field is compressed from unbounded free spaceinto a
waveguide of finite cross section, the waveguide turns out to
be filled with a field whose frequency w is the sum of the
squares of the initial frequency w, and the instantaneous
cutoff frequency o,,.

Let us assume that the initial field is a purely static field,
with an initial frequency @, = 0. In this limit, a wave field
with a nonvanishing frequency equal to the cutoff value,

© = @, (18)

arises in the waveguide. In other words, the static field of free
space serves as a generator with respect to the wave field of a
cutoff waveguide of finite cross section.

When events proceed in the opposite direction, from a
finite waveguide to free space, we would of course observe a
degradation of the wave field to the point that it becomes a
static field.

4. It is fairly obvious that the energy of the electromag-
netic field which arises in a waveguide with moving reflect-
ing surfaces originates from the work performed in opposi-
tion to the radiation-pressure forces acting on these surfaces.

The total radiation-pressure force is

F =" coss, (19)
where W is the energy of the waveguide field, and the work
performed on changing the gap thickness a is

w
AW = — - cos?0Aa. (20)

Alternatively, we could use (5), (6), and (16) and go over
from finite differences to a differential equation:

daw Wla

T T T T (@ (oo 1] 2D
a solution of this equation is
w _ Wno
> = e (22)

where W, is the initial value of the electromagnetic energy
of the waveguide mode, at a = q,.

It has been shown here that the cutoff frequency o, is
determined as the frequency @ of the field which arises dur-
ing the compression of an unbounded initial waveguide with
a zero initial frequency. In other words, according to (18)
and (22), we have
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0= 0 = 2 —W. (23)

Here we need to resolve the indeterminate form W,,/w,.

Our first step in this direction must be to alter classical
electrodynamics and—an important point—invoke the lan-
guage of quantum mechanics. The field energy of the mode
of the initial waveguide (i.e., of unbounded space) is

Wno=h(l)o(fn07+";"+ ';—'>v (24)

where f,, is the photon filling number of the mode, and the
one (1 =1/2 + 1/2) embodies the contribution from the
zero-point vacuum fluctuations of the two possible propaga-
tion directions in the waveguide. The ratio in question is thus
given by

S =+ 1) 29

g

and the energy corresponding to the cutoff frequency of the
finite waveguide is

hm"=—Tm)uL+—1——Ewn. (26)
Here w, is the work per photon of the field of the initial
waveguide, found with allowance for vacuum fluctuations,
which are also responsible for the Casimir effect.

The energy corresponding to the cutoff frequency w,, of
a waveguide of finite cross section is thus numerically equal
to the work performed in order to form this waveguide from
unbounded free space, in opposition to the radiation-pres-
sure force of a single photon of the given mode. Here we have
no need for real initial photons: All that is necessary for the
process to occur is the energy fiw, = (fiwy/2) + (fiw,/2)
(always present) of the zero-point vacuum fluctuations,
which furthermore have a zero frequency. The process
amounts to a raking together (compression) of an initial
static fluctuational field from the entire free space and the
raising of the frequency of this field from zero to w,,.

The thermodynamics of the compression process, in the
course of which the performance of work is accompanied by
achange in the entropy of the electromagnetic field, deserves
separate study.

5. The TM, mode of a plane waveguide, which has a
zero cutoff frequency, w, = 0, at any value of the gap thick-
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ness a, requires a special discussion. In complete accordance
with the arguments above, and in confirmation of them, a
simple circumstance is responsible here: The polarization of
the TM, mode is such that the electric vector is always per-
pendicular to the reflecting plane, so no radiation pressure
acts on this plane. As a result, both the work w, and the
cutoff frequency w, (n = 0) are zero.

We should also mention that the approach developed
above could be taken in order to decipher the meaning of the
concept of the resonant frequencies of a resonator.

6. In summary, it turns out that the concept of a cutoff
frequency of a waveguide, which can be determined exhaus-
tively within the framework of classical electrodynamics, re-
quires a switch to quantum-mechanical terminology as soon
as we take up the question of the evolution of the entities
“free space” and ‘‘a waveguide of finite cross section.” Here
we are essentially seeing the uncertainty relation at work.

The cutoff frequency @, in (3) and the rest massof a
photon in the waveguide, m, in (4), ultimately come from
the very simplest form of electromagnetic matter: the static
fluctuational field of vacuum.

The raking together of this static field, devoid of wave
characteristics, from unbounded free space imparts wave
properties and a finite mass-energy to this field.

This entire analysis has used a simple plane model, but
this model will still convey the basic characteristics of wave-
guides with a cross section of arbitrary complexity. One
might thus expect that a more general analysis would not
result in any significant corrections to the conclusions
drawn here. Furthermore, these results could apparently be
extended to a long list of problems involving eigenvalues
differing in physical nature.

Finally, going back to the analogy with which we start-
ed this paper, we might venture to pursue it under the as-
sumption that the rest masses of particles originate from
work performed in compressing the matter which makes up
these particles.
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