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Standard invariant perturbative methods are used to derive an expression for the radiation-
reaction force acting on a charged particle in quantum electrodynamics. When the average
change in the particle's momentum is found by taking an average over the states closest to the
classical state, the result is an expression whose classical limit is the same as the classical
expression for the radiation-reaction force.

1. INTRODUCTION

A charge in accelerated motion radiates electromagnet-
ic waves, and as a result it experiences another force: the
"radiation-reaction force" or "radiation-damping force."
When this force is taken into account, the equation describ-
ing the motion of a charge e (for definiteness, we will speak
in terms of an electron) in an external electric field E and an
external magnetic field H (both fields are given fields) takes
the following form in the nonrelativistic case:1'2

m"t = F0 + -^-e^r, F 0 =eE + e v x H (1)

(here and everywhere below, unless otherwise stipulated, we
are using a system of units in which the velocity of light is
one, с — 1, as is Planck's constant, и = 1).

Equation (1) can be used without the risk of obtaining
"self-accelerating" solutions (or of running into paradoxes
associated with a violation of causality) if the second term in
(1) is small in comparison with the first, which is the Lor-
entz force. Without going into that matter, which is ana-
lyzed in detail in Refs. 1-3, we would like to point out that if
the radiation-reaction force is small it can be dealt with in
(1) by perturbation theory. In a first approximation we find
mr = F0, and then

-—e2r — '6mr. (5)

m r = F 0 + 6F, 8¥=-£-

In the general relativistic case, Eq. (2) becomes1

m- ds = eF»vuv

(2)

(3)

where F>*v is the electromagnetic field tensor, им is the 4-
velocity of the particle, and s is the proper time.

Equation (1) can be derived in classical electrodynam-
ics by making use of the fact that a moving charge creates a
self-electromagnetic field Es, Hs. The equation of motion of
the charge in the external fields E, H then becomes

mi = e (E + Es) +>v X (H + Hs). (4)

Expressing Es and H,, in terms of r( f) with the help of
the classical expression for the retarded potentials, and go-
ing through several straightforward calculations including
an expansion in the retardation, we can put (4) in the
form2-4

We should stress that in deriving (5) it is necessary to
carry out an expansion in the retardation [specifically, in the
small parameter e2/(mc30] in (4). Generally speaking,
therefore, we cannot accept even expression (1) as an "abso-
lutely accurate" expression for the radiation-reaction force.

The appearance of a term Smr in (5) should be inter-
preted as the acquisition of an "additional" mass, of electro-
magnetic origin, by the particle. This additional mass is
8m~e2/r0c

2, where r0 is the "radius" of the particle at
which the divergent integrals must be cut off. It thus be-
comes necessary to renormalize the mass even in a classical
theory. This renormalization reduces to the declaration that
the observable mass of the particle is the sum т + 8m. It is
difficult to introduce 8m in a relativistically invariant fash-
ion. In the case of a point particle (/•„ = 0), 8m is a func-
tional of r(0- Taking the limit r0 -»0 actually forces one to
take a quantum-mechanical approach in order to examine
the motion of the particle in the given external electromag-
netic field (only rarely is that point mentioned). The reason
is that classical electrodynamics runs into logical contradic-
tions at r0~e2/(mc2) (at the classical radius of the elec-
tron), while quantum effects come into play at far greater
distances—at r of the order of the Compton wavelength
#/(mc), which is larger than the classical radius of the elec-
tron by a factor fo/e2~137. Consequently, essentially the
entire problem must be dealt with by quantum theory. We
should also mention that only in quantum theory can a re-
normalization be carried out systematically and unambigu-
ously. Attempts to carry out a renormalization in a classical
theory (Ref. 5, for example) run into some natural difficul-
ties: The renormalization of the mass depends on the nature
of the motion of the particle r(?), and in order to satisfy
Maxwell's equations one must introduce some additional
fictitious currents5 near the charge. These currents will de-
pend on r(f) . The procedure for carrying out the classical
renormalization becomes ambiguous. (There are other diffi-
culties. )

The arguments above naturally suggest the following
problem: Derive an expression for the radiation-reaction
force in (2) [or in (3), which is equivalent to (2) by virtue of
the Lorentz in variance of the theory] in quantum electrody-
namics (QED) with the help of a scattering S-matrix and
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then take the classical limit. Solving that problem is the pur-
pose of the present paper.

In contrast with some earlier studies,4'6 we will system-
atically go through the procedure of taking an average over
the states of the system which are closest to the classical state
(over coherent states, if we use the Furry picture in the ex-
ternal field). It has been found that the deviations from such
expectation values, i.e., fluctuations, are extremely influen-
tial. This circumstance resolves questions associated with
self-accelerating solutions of (1). A self-acceleration arises
in (1) during the time interval Af~eV(mc3), which is
smaller by a factor of e2/(fic) than ft/(me2), which is the
time scale of the quantum fluctuations.

The radiation-reaction force has been derived by per-
turbation theory in the problem as formulated here; the use
of a perturbation theory presupposes that this force is small
in comparison with the Lorentz force F0 in (1). Analysis of
the applicability of expressions (2) and (3) in the case
F0 = 0 and of the related problems of "self-accelerating"
solutions, the violation of causality, and the satisfaction of
momentum, energy, and angular-momentum conservation
lie outside the scope of the present discussion (these topics
are discussed at length in the literature, e.g., Refs. 2-4).

The literature reveals a number of previous attempts to
derive a radiation-reaction force in the form in (1) in QED
by nonperturbative methods (see, for example, Refs. 4 and 6
and the bibliography in Ref. 3). These attempts have been
conceptually close to the method used to derive Eq. (1) in
classical electrodynamics. When that approach is taken,
however, problems which arise in connection with the need
for a renormalization cannot be resolved correctly. The cor-
rect existing method for carrying out a renormalization in
QED is based on the use of an invariant perturbation theory
and the elimination of the divergences from the S-matrix
expanded in a power series in the interaction constant e. Just
how correctly (1) can be derived by nonperturbative meth-
ods in a quantum theory (or whether such a derivation is
possible at all) remains an open question. For this reason,
the entire discussion below is based on the use of an S-matrix.
We will simply point out the need to take account of quan-
tum fluctuations, so average equations over short time inter-
vals are meaningless.

2. GENERAL RELATIONS

We assume that the 4-potential of the external field in
which the electron is moving is given by

Ф» (t, r) = 5 d<7°dq<p>1 (<?v) exp (iqr — iq°t), (6)

and we assume that this potential is given and is not quan-
tized. In other words, we have a c-number [ the Greek letters
p., v,... take on the values 0,1,2, 3; we are using the 4-vector
qv = (q°,q); ф1* = (q>°,<p),...; and we are using a metricgMV

in which goo = 1, g0, = 0, g,j = - Su, where i,j,... take on
the values 1,2, 3 (огх,у,г);ап(18у is the Kronecker delta].

We assume that this field is small in comparison with
the value m2/e[ = m 2 c 3 ( e f i ) ] , at which we would need to
consider possible pair creation by the external field. In addi-
tion to the field <p M there is a quantized field A M; the interac-
tion with the latter field corresponds to the possible emission
and absorption of a photon by the electron, and it leads to
radiative corrections. The field operator A M is given by the

following expression ( in the three-dimensionally transverse
gauge used below) :

= °-
(7)

A (t, r) =
k, a

! [ckaekctexp(ikr— i \ k \ t )

+ Ckcteka exp ( — ikr + i | k | 1)],

Here the normalization volume V has been set equal to one;
the index a corresponds to various polarizations of the pho-
ton and takes on the values 1, 2; cka and c£a are operators
which annihilate and create a photon with a momentum k
and a polarization a; and the vector eka is a unit polarization
vector (k-eka = 0, |eka | = 1. ) Expression (7) has been nor-
malized to "one particle in the volume V= 1."

A corresponding expression can be written for the oper-
ators representing functions of the electron-positron field

"• П 1 /
<ра (t, Г) = > [OpoWpaa eXP (фг|— 'М)

pj P'

_j_ Qnrrli, г* PXD ( tni* ' /P f^l (8)

where the spinor index a takes on the values 1, 2, 3, 4 (and
will frequently be omitted below); a specifies the polariza-
tion state and takes on the values + 1/2; ep = (p2 + m2)1/2;
the operator a annihilates an electron; and the operator b +

creates a positron. The spinor amplitudes u(±) have been
normalized by the invariant condition u(±f\au

(^±a

= ±2m.
The time evolution of the system is described by an S-

matrix:

Ф = ,V (t,, О ] Ф

dt£(t),

(9)

(9')

where |Ф(?)) is the state vector at the time t, and the S-
matrix is a chronological exponential of the interaction La-
grangian, which is itself given by

(t) = жф (t) = — dr^ (t, AV- (t,
(10)

where У is the current 4-vector, and the notation : . . . :
means the normal product of the operators, in which all the
creation operators stand on the left of all the annihilation
operators. We will be making repeated use of formulas for
summing over polarization:

YP + m.

(ID

(12)

The force acting on the electrons is the time derivative
of the momentum of the electron. This momentum is given
by the expectation value of the operator

p = P — e<p— eA, (13)

where the first term is a generalized momentum, given by
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(e „

(14)

The quantity T*v in the last expression is the energy-mo-
mentum tensor of the electron-positron field. Substituting
(8) into (14), we find

-ЬроМ- (15)
i*v

To take the classical limit, we need to take an average
over the states which are the ones "closest to the classical
description of the electron." These states are wave packets

«Ф (Po; r0; a)> = с (p) | pa> = - ф) \ pa>,

с (p) ={4яХ)'/. exp [ -- \- (p — p.)» - i (p-Po) re]

(16)

[we have switched from a summation over momentum to an
integration in (16) ]. In the state |Ф(р0;г0;сг)), an electron
is characterized by a polarization cr, by the expectation value
of the momentum p0, and by the expectation value of the
coordinate r0. The state |pa) is a state with a momentum p
and a polarization a. There is an adjustable parameter A in
(16), which is a measure of the average spread of the mo-
mentum and the coordinate:

6r = r— [rc, 6 p = p —PO,

<(бр)2>=<Ф|(бр)2|Ф> = 2X (17)

The amplitudes c(p) in (16) are normalized by the condi-
tion

Uc(p)c(p) = l.
P

The wave packets in (16) minimize the expectation value
<(<5p)2>1/2<G5r)2>1/2, which takes on the following value
(for each of the three coordinates) in the case of (16):
<(<5рх)

2>1 / 2<(&с)2>1 / 2=1/2(=й/2). [We are dealing
with both the field tp M and the field A * by perturbation theo-
ry. If we were instead to take the external field tp M into ac-
count exactly while dealing with the field A ''by perturbation
theory [if we were to take that approach, we should have
used the Furry picture instead of the interaction picture to
construct the S-matrix), we would have to take an average
over coherent states of the electron in the external field <p *
instead of proceeding as in (16).]

In calculating the force (see the discussion below) act-
ing on the electron, we find that quadratic combinations
*c(p')c(p) and Ир^'Мр-J' appear in the equations. These
combinations serve as a density matrix of the initial state of
the electron. We accordingly introduce the matrices

(18)

(19)Mab (P, P') = "Г У, М°Ъ (P' P'; 0)'/ .

which serve as density matrices for a polarized state with a
polarization a and for an unpolarized state, respectively. Re-
writing the four-component spinors in terms of nonrelativis-
tic two-component spinors w,

(20)

where a are the Pauli matrices, and choosing a basis for w in
the form

HV _! =

we can write explicit expressions for matrices (18) and ( 19 ) .
We note that we have Л/(р,р) = — Лр

+/2.

3. THE FORCE ACTING ON THE ELECTRON IN FIRST-ORDER
PERTURBATION THEORY: THE LORENTZ FORCE AND THE
MAGNETIC MOMENT OF THE ELECTRON

We define the force F(?) acting on the electron as

F W = Ж <Ф (f ) ̂  — «P — *A)| Ф (Ф

= ̂ -<Ф0|6'+(Р-еф-еА)5|Ф0>, (21)

where the initial state | Ф0 > is chosen to be the wave packet in
(16).

In first order in the interaction constant e, we can ignore
the quantized field A, since in the vacuum kets ( "vacuum"
here means from the standpoint of the photon field) we have
(Фо)^ <Ф0|с|Ф0) = < Ф о | с + | Ф о > = 0 and therefore
(Ф0|А|Ф0) =0. The only possible non vanishing vacuum
expectation value would be that from the quadratic combi-
nation {Ф0 1 АА|Ф0 ), which is of higher order in e, since the
field A appears in the product eA in (10) and (21 ).

Taking only the field <p * into account, we find the fol-
lowing result from (21), within o(e):

(P-e<p)(l (22)

Differentiating with respect to the time in (22), and retain-
ing only the terms linear in e, we find

(23)

where [P, У\ = PJ^ — J?P is a commutator of operators.
The contribution from the term ( — e<p) in force (21 )

should be taken into consideration only in first order in e.
The reason is that since cp^ is a c-number it commutes with S,
so we have

- . <Ф0 | S+ (- e) <ps | Ф0> = - - <Ф„ | 5+S (- e) Ф | Ф„>

since the S-matrix is unitary: 5 + S = 1.
Substituting (6), (8), (15), and (16) into (23), we find

that the first term in (23) reduces to

= — ie jj d<?°dq<JV (q°, q) J£ с (p)c (p + q)

a/a Ч exp [I (epfq — ep — g») t] Tr (M (p, p + q) Y")
e'

(24)
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both in the case of an unpolarized M and in the case of a
polarized initial state |Ф0).

We now assume that the momentum transfer is small in
comparison with p and m. From (16) we then have
c(p)*c(p + q)=sc(p)c(p)e'*r°, within terms of the order of
q; l/£p£f + 4^l/E\; exp[j(£p + q - ef - q°)t ]
s;exp[/(qv-?0)?]; and Tr(Af(p,p + q)y")
= Tr(Jlf(p, p)r") = 2p" = 2(£p,p) = 2ep (l,v). Expres-
sion (24) thus becomes

f)— q°t]}

X(q>°(g° ,q ) —

аф° (t, г0 + у О
Эг

(25)

since in the process of taking the inverse Fourier transforms
in the spatial components of the quantity qp M(f,r) a multipli-
cation by /q corresponds to the differentiation operator д /дг
[and ( — iq°) correspondingly becomes d/dt].

The sum over momenta in (25) actually corresponds to
an average over the momenta in packet (16). Summing over
momenta in accordance with (16), we find

дт
4 (t, та + -vt)

дг
(26)

where v0 = РО/£РО is the expectation value of the velocity in

state (16).
The second term in (23 ) is (for brevity, we are omitting

the subscript 0 from r0 and v0 )

(27)

(28)

Collecting results (26) and (27), we have

¥ ( t ) = e {E (t, r0 + т,*) + TO X H (t, r0 + v0;

E = —^- —^, H = rot<p.

This result corresponds to the Lorentz force which acts on a
particle as it moves in an external electric field E and an
external magnetic field H.

We will now carry out a more accurate expansion of
expression (24) in the momentum transfer q, retaining
terms of order up to q2. For simplicity, we consider the addi-
tional force acting on the electron, ДР, in a frame of refer-
ence moving with the electron, i.e., in a frame in which we
have v0 = 0.

Before we expand expression (24) in q, there is a point
we need to note. In expression (24), we must expand in q
quantities which depend on (p + q) (e.g., £p + (I). At the
same time, it is not difficult to see that the characteristic
value 6p~A 1/2 is [according to (17) ] much greater than
q, so we run into difficulties in an expansion in q. The reason
is that the force acting on the particle is determined not by

the potentials q> M themselves but by their gradients. If the
particle is to "feel" these gradients, the characteristic spatial
"blurring" 8r~A l/2 of the particle must be much smaller
than the "characteristic distance over which the potentials
(p ^ vary," i.e., q~l. Since we have Sp-Sr~ 1, the condition
A l/2~8r4q~l is equivalent to A "}/2~Sp^>q. (Alongwith
that condition, we need to assume Sp^m in order to go over
to the classical limit; the latter assumption makes it possible
for the parameter A to fall in the interval m~2-^A<£q~2.)

We thus need to expand in powers of q quantities which
depend on ( p + q ) , in which the uncertainty in the first term
in the argument satisfies Sp > q. Straightforward arguments
show that the most convenient approach here is to expand
not "at the point p" but "at the point f = p + (q/2)," for
which expression (24) has a certain symmetry, depending
only on the combinations f + (q/2) and f — (q/2). Work-
ing from Eq. (16) (PO = 0), we have, for the first calculation
method,

e (p)*(p + q) = с (p) с (p)

and, for the second,

f — Л_

'. ехр [-Л (pq + -£)] , (29)

= с (f) (f) «.«v-e- (30)

[In the preceding expansion, a cruder estimate of this
expression, in the form c*c exp ( /qr0 ) , with the replacement
of the last factor in (29), (30) by one, would have been
sufficient for our purposes, since the question of a distinction
between (29) and (30) did not arise.] In expression (29),
we find p in the last factor. This situation presents certain
difficulties when we subsequently take an average over mo-
mentum [as we do in evaluating the sums 2pc(p)*c(p)
X . . . ] , while the last factor in (30) does not depend on f and
does not affect the procedure of taking an average over mo-
mentum f. Here and in the following section of this paper, we
will accordingly use the second expansion method, with
expression (30). According to the discussion above, it then
becomes possible first to carry out the average over f in ( 24 ) ,
rewritten in the new notation (in terms of f) . Taking that
average reduces to a replacement by (f) = 0 (we recall that
we are calculating ДР in the frame of reference which is
moving with the electron). We then expand the resulting
expression in q and retain terms of order up to q2. Going
through this procedure, we find

<Ф„ | i [P, £ф (t)] | Ф„> = — ie

-T7-qexp[J(e,/ 2 —eq/i — g » ) f ] T r ( A / ( 2-, -f Ы»

— ie d^dqcp,, (9°, q)

since

eq/2 = e_q/2 = m + 2m o(q).

At an accuracy level sufficient for our purposes we have
Tr(Mf) = 2m + o(q) (this result corresponds to the Lor-
entz force found earlier). For an unpolarized state M we
have Ti(My) = 0 + o(q), while for a polarized M with a
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S= 7 +

FIG. 1.

spin expectation value s we have Тг(Л/7) = — 2iqXs
+ o(q). We thus find (eijk is the Levi-Civita density)

' q) exp ('qr° — '

i.e., when we switch from /q to д/дг,

ДР = grad (jiH), H = rot<p, fi = -̂ -

( 32 )

(33)

This result shows that we have ДР = 0 in the unpolarized
state, while in the polarized state the electron has a magnetic
moment /u = e/ms = e/2m ( = efi/lmc in ordinary units).

We complete our discussion offeree (21 ) in first order
in e with a convenient graphical interpretation of the results.
We assume that a solid line (Fig. 1 ) corresponds to an elec-
tron, and a dashed line to an external field. Representing the
first term in ( 13) by a 1, representing the second term by a
vertical dashed line, and expanding the S-matrix in a series,
we can rewrite (23) as a sum of three terms (Fig. 2).

4. RADIATION-REACTION FORCE

Expanding the S-matrix in a series in the electromag-
netic interaction constant e (see^Fig. 1, where a wavy line
corresponds to a quantized field A *),

(34)

we can derive expressions for the following terms of the ex-
pansion of force (21 ) in a power series in e. [The quantized
field A" "is turned on" in (34) at the time r= — oo (in
other words, it always exists). For simplicity, we "turn on"
the external field <p* adiabatically, also at the time
/ = — oo . ] Terms corresponding to the radiation-reaction
force arise in third order me ( ~e3) and in higher orders.
The classical limit of the first two terms in the radiation-
reaction force ( ~e3 and e4) is given by expressions (2) and
(3). We therefore take up the problem of finding the first
term in (2), (3), which corresponds to the order e3, by
means of the methods developed above ( the e4 term could be
derived in a corresponding way).

Strictly speaking, before we analyze the expression for
the force acting on the electron which we find in third order
in e, we should analyze the term F(2) of the order of e2, which
is also present in the expansion of expression ( 2 1 ) . It is clear
at the outset that a term of this sort, of second order in e,

x 7 x 7 7 x 7 *

FIG. 2.

+ 7 X x 7

could arise only in a quantum theory (i.e., it must vanish in
the limit й->0). It becomes clear from dimensionality con-
siderations that this term may be of the form (in ordinary
units)

FW = const-
me* (35)

(и is an integer), where the last factor corresponds to a pos-
sible dependence of F<2) not on the fields E, H themselves but
on their time derivatives [ as in Eq. (2) ]. It is easy to see that
expression (35) tends toward zero as #-»0. An exact calcu-
lation leads to the following result: F(2) is strictly zero if the
particle does not satisfy a condition for a Cherenkov reso-
nance in the external field (more on this below).

Before we proceed, we would like to point out that by
virtue of the relativistic invariance of the S-matrix it is most
convenient to study the resulting expressions in a frame of
reference moving with the electron (as at the end of the pre-
ceding section of this paper). To do so does not restrict the
generality of our analysis, since the potential of the external
field, ф1*, is left totally arbitrary, and there is nothing to
restrict its gauge. Relativistic invariance is restored most
simply in the final result, after we have derived an expression
for the radiation-reaction force <5F in a frame of reference in
which the expectation value of the velocity in wave packet
(16) isv0 =0.

We might add that we know from the very form of (2)
that the expansion in the momentum transfer q11 must be
carried out to terms quadratic in q1*, while in deriving the
Lorentz force it was sufficient to use expressions linear in q*.
In addition, we will ignore terms in expansion (34) which
are of powers higher than the first in the external field <p *, in
accordance with the expected result, (2), (3).

We thus expand the S-matrix in (21), retain terms up to
order e3 inclusively, and collect the terms of third order in e
[as we mentioned in the preceding section of this paper,
since <p * is a c-number and commutes with the S matrix, we
do not have to consider the term ( — eq>) in the resultant
momentum of the electron ]. For clarity, we will discuss the
terms 6T which arise in the process in graphical terms.

We begin with the contribution 8 FP from the first term
(i.e., P) in (21). Terms of two types arise in third order in
8 Fp. The terms of the first type correspond to the case in

^Ч ХЧ

which S (or S + ) is represented in^(21) by a term of the
order of e3 in expansion (34), while S + (or, corresponding-
ly, vS) is represented by a 1. Figure 3 shows half of these
terms, for S~e3 and 5 + = 1 (uncoupled diagrams are being
eliminated).

The diagrams in Fig. 3 contain loops, which show that
we need to carry out a renormalization in calculating the
given contributions. Actually, it is not necessary to calculate
these terms explicitly, by substituting (6)-(10) into (34)
and then into (21). We see that in order to retain terms in
Fig. 3 beyond first order (Fig. 2) all we need to do is replace
the propagators of the electromagnetic and electron-posi-
tron fields and the vertex operator by the corresponding re-
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7 x 7
x 7

FIG. 3.

normalized expressions. Subtracting the divergences on the
mass shell, we find7'8 that the external electron lines in the
first and second diagrams in Fig. 2 do not require renormal-
ization, while in place of <рм, which corresponds to a line of
an external photon field in Fig. 2, and in place of the vertex
operator y* in (24) we should substitute, respectively,

4V (?) - 4V (?) + -ЕГ ,(<?)3^(?)<Рл(?Ь
II V V ILу V — ту-

(36)

(37)

where q — q^, q2 = In this order in e, with an ac-
curacy sufficient for our purposes at small values of \q2\

the polarization operator is & ̂ (q)

)[»Mv-(^?v/92)]. where 0>(q2)x -e2q4/
(15Я7И2); the photon propagator is ^^(q) = & (q2)

(ql>qv/q2), where @ ( q 2 )
the form factors are/(?2);=1 + (eV/Зтгт2)

• [1п(га/Я) - (3/8) ]; andg(g2) zze2/2ir (Я is an infinitely
small mass which we assign to the photon in order to regular-
ize the function/, which diverges in the infrared limit). Sub-
stituting this result in (24), and retaining terms with powers
no higher than the second in (24) after an expansion in q, we
find that there is no need to consider the radiation correc-
tions to^ (q) in (36). Wecanset/(92) = 1 in (37), retain-
ing only the radiation correction g(q2). After several
straightforward manipulations completely similar to those
in §3, we find that the contribution to SJ?P from (36), (37)
(i.e., ultimately from the diagrams in Fig. 3) for an unpolar-
ized state of the electron is zero, while for a polarized state
this correction leads to the appearance of a Schwinger cor-
rection to the magnetic moment of the electron. This mo-
ment becomes

eH

2m 2mc

The contributions of the second type which arise in 5FP

correspond to the circumstance that a term of the order ofe
comes from S + (or S) in (21), whitest term of the order of
e2 comes from S (or, correspondingly, S + ). These diagrams
do not contain loops (since we are carrying out a subtraction
on the mass shell, it is not necessary to take account of the
diagram of the type in Fig. 4, which corresponds to a mass
operator). Figure 5 shows some typical representatives of
this second type of contribution.

It is not difficult to see that such contributions to (21)

FIG. 4.

can be completely ignored. The reason is that both the state
<Ф0 5" + and the state S |Ф„ ) in (21 ) should correspond to
some real state of the electromagnetic and electron^positron
fields. One of the diagrams (that corresponding to S + or S)
in each of the contributions in Fig. 5 corresponds to a process
which is forbidden by 4-momentum conservation. The first
diagram in Fig. 5, for example, represents the emission of a
photon by a free electron.

In summary, incorporating the first term ( P ) in ( 1 3 ) in
third order made it necessary to carry out a renormalization.
After this renormalization, all the radiation corrections re-
duced to the anomalous magnetic moment of the electron.

It is not difficult to see why a radiation-reaction force
could not arise from the term P in (21 ). The reason is that
the radiation-reaction force describes an additional "recoil"
which an electron emitting a photon undergoes when it is in
an external field. In diagrams of the type in Fig. 3, however,
the photon is an intermediate, virtual photon, and it is not
present in the final state. In the diagrams of the type in Fig. 5,
in contrast, a real photon may be present in the final state
S |Ф0), but such processes are forbidden by 4-momentum
conservation. We turn now to the contributions S FA which
arise in S F because of the third term, — eA, in (21 ) (this
term is represented graphically by a wavy line). As in the
incorporation of the term P, contributions of two types — the
types shown in Figs. 6 and 7 — arise when we substitute ( 34)
into (21).

Processes corresponding to Fig. 6 are forbidden by 4-
momentum conservation, so a radiation-reaction force
could arise only from contributions of the type in Fig. 7, to
which we now turn.

We write out explicitly the result of substituting (34)
into (21), which corresponds to Fig. 7. The force which
arises in third order in e can be written S FA = S F, + S F2 ,
where

A (t)
t ) + £Ф (tt) &!&) A (*)) I Ф0>,

SF2 = e

(38)

(*i) + £A(*I) & W A (t)

+ A (t) ZA (t) £p (tj + 2, (ti) %A (t) A (0)] Ф„>.

(39)

5 * 7

FIG. 5.
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FIG. 6. FIG. 8.

Substituting the expressions for the Lagrangians into
(38) and (39), and omitting the lengthy intermediate calcu-
lations, we find (ignoring uncoupled diagrams of the type in
Fig. 8)

e* dg'dqcp, (go. q) £ c (p) g (p + q - k) 4" < ~ *V

p,k

X exp [ikr0 + i (ep+,_k— 8p —

X (

x l

Vk

• iA
- ep + A) i (ef+q.k - ep + A - <?„- Ю)

_g_i 0 );*e _ 8 _ f e _ g _ f 0 ) '[

iA

(Vq-k — Vq ~~ *'' < Vq-k - ep ~ * ~ 9o — '
— iA

' (Vq — ep — 9o —'°) < («p+q-k — sp + * — 9o — "

X
— Ik

i (V, + 8ptq_k + A) i (8p+q_fc - Ep + A - ?0 - ,

iA

г

L -
— iA

(40)

2

С V~l *: e* \ dg°dq9,, (g°, q) > с (p)c (p + q—k) •
J ts'

X exp [ikr0 + i (ep+q_k — ep — g°) i]

x f Tr(JI/(P,j

X Г 1 i __ 1 _ 1
U (Vk - ep +*> ' (Vq-k — 8p-k — «0 — '°) J

(41)

FIG. 7.

The first two terms S F, in (40) correspond to the case
in which the virtual particle in the diagram in Fig. 7 is an
electron. The last two terms correspond to a virtual positron.
In expression (41) for 5 F2 we have written out only the
electron contributions; the corresponding positron contri-
butions are represented by the ellipsis (since we will not be
needing S F2 below).

One can show that the parity of the integrands in (40)
and (41) has the consequence that the real parts of the ener-
gy denominators, Re \/(E — i 0) = SP (1/2?), make a van-
ishing contribution. It thus becomes necessary to take the
imaginary parts Im \/E— iO = -irS(E) into account [the
sign of the imaginary increment in the denominators in (40)
and (41) is chosen in accordance with causality]. It should
be noted in this connection that it is sufficient in practice to
write the imaginary increment to only the frequency of the
external field: q°-+q° + /0. Those denominators which do
not contain q° (e.g., £р_ъ — £p + k) never vanish (because
a free electron could not radiate a photon), so their imagi-
nary parts are zero.

Let us take a more detailed look at just which reson-
ances can describe the denominators in expressions (40) and
(41). Resonances of the type £ p _ k — ep + k = 0 are ruled
out by 4-momentum conservation, as we have already men-
tioned. To analyze the other possible resonances, it is most
convenient to use the frame of reference moving with the
electron. In this frame we have/» = Sp^m and q^m; as we
will show below, k is of the same order of magnitude as q°, so
we also have k^m. In a first approximation we thus write
e^xm for an arbitrary argument x (which takes on the val-
ues p, p — k, p + q, p + q — k). Resonances of the type
£p + 4-k — £

P + k — q° = Q thus reduce to the condition
k = q° in this approximation. From the physical standpoint,
this is a completely natural result: An electron oscillates in
the external field, which has a frequency q°, and it radiates a
photon in the process, with the same frequency k = q°. Re-
sonances of this sort arise in the denominators in expression
(40), and expression (40) does indeed describe the radi-
ation-reaction force (as we will see below).

Denominators of the type ef + q — ev — q° = 0, which
are present in both (40) and (41), lead to the Cherenkov
condition qv — q° = 0 when the particle is accelerated con-
tinuously by the external field (p *(q). In the case at hand we
are not interested in that process, which has no bearing on
the reaction of the radiation on a moving charge, so we elimi-
nate such resonances from consideration [it can be assumed
that the field^^doesnot satisfy the condition for a Cher-
enkov resonance].

The discussion above shows that a radiation-reaction
force is present only in expression (40). In (40), we now
take the classical limit, using Eq. (16) for c(p), expanding
(40) in powers of q, and retaining terms of up to second
order inclusively. As in §3, in a calculation of the magnetic
moment of the electron, we should carry out this expansion
after we make the substitution p — f — [ (q — k)/2], and we
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should then set f = 0 (we will be omitting the subscript 0
fromr0 below).

We begin with an analysis of expression (40) for an
unpolarized M from (19).

We consider separately the contributions from the sca-
lar potential <p° and the vector potential <p in (40). With
<p * = (f ° we have, at an accuracy level sufficient for our pur-
poses, Tr|Af( - (q - k)/2, (q-k)/2)/)A

o(k;q); Tr[M( - (q - k)/2,(q -

2Г°] = -2m4j + o(k;q); and £<q-k ) /2
= т + o(k;q) = £(k + q)/2. Consequently, the contribution

S Fiscal el), from the scalar potential, in the electron terms in
(40) is

o (go? q)

pi (vect.pos) i ((Л q)

X exp [/ (q — k)rn] б1 — - - exp (ikr0 — iqut)

_L .. .mi..—.. I

~ —~(—ic\~~' ^~ ^ти.—\~' f '

(42)

We carry out the summation over f as in §3, replacing
2k by jWk/(27T)3. Evaluating

^ dn(6i j— >V) = ̂ 6<;

(where | n | = 1, and the integration is over a unit sphere), we
find

[6 (k — q°)

(for both q°>0 and ?°<0). Also using 9, = — q', we find,
according to (42),

2es

~3m

0i q) exp (jqr<) _

(t, r)
dtfa

(43)

On the other hand, the contribution S Fl503' 'P08' from the pos-
itron terms vanishes in the case <p ^ = <p °, at the same accu-
racy level. The reason is that in place of the small k or q° in
the denominators in (40) we find quantities which are equal
to 2m + о (1), while the numerators, in the same approxi-
mation, are

Tr[^(—§-(q-k)' 4-(q-k))-

The contribution to (40) associated with the vector po-
tential qp is also conveniently broken up into electron and
positron components 8 F$vect el) and д p<™«-p«>. In the same
approximation as was used in the calculation of (42), we
find Тт[Мг,\-у}] = 4m28j,+o(l)=Ti[MYj\-Yi],

+ Yj] =0 + o(k;q). Hence £ FSvect el) = 0 and '

X exp (ikr0— iq
"• /

[ i-2mi ' (— i)-2mi J

п Г ikjjif, (k + g») (— ;А:);яа(А — g") "П
L (—О-2™' ;-2mt J j

(—i).2mi

g") "

dq°dq exp (tqr0 — iq°t) (<?°)2Ф* (<Л q)

Заф1 (tt r)
3m dt*

Combining (43) and (44), we find

«F — Jk— — (— -?51 ~~ 3m 1Г\ "аг
-£5L ^ —
~дГ)~ 3m

(44)

(45)

which is the same as the classical expression, (2), for the
radiation-reaction force.

Now that we have derived (45), we can restore the rela-
tivistic in variance of this expression for the reaction of radi-
ation on a moving charge. The relativistically invariant for-
mula corresponding to (45) is &FM = (2<?3/3m)
(дР^/дх*-)и„и*, where F^ = <9<pv/<5*" - д(р^/дх\ This
result is of course the same as the first term in (3).

It is not difficult to verify that when we use polarized
state (18) in place of unpolarized state (19) in analyzing the
radiation-reaction force in (40) we again find (43)-(45).
This is as it should be, since in this approximation—third
order in e, first order in the external field, and the maximum
order of the derivatives of the external field, namely the first
(in the quantum-mechanical approach, this situation corre-
sponds to expressions which are quadratic in the momentum
transfer) -the acquisition by a particle of a magnetic moment
in classical electrodynamics again fails to give rise to new
terms in the radiation-reaction force. The radiation-reaction
force acting on the particle is given in this approximation by
the same expression [the first term in (2) ] as for a charged
particle which has no magnetic moment.

Skipping over the detailed calculations, we note that the
next term in expansion (40) in powers of q would be small
with respect to (43)-(45) by a factor ~q2A-^l
[А~((8р)г)-1~{(8г)2)}. After inverse Fourier trans-
forms were taken, this term would lead to an additional term
const-(eVm)<(t5r)2)E on the right side of (45). Such a
term in (45) does indeed correspond to the first nonvanish-
ing term in the expansion of the radiation-reaction force in
powers of the "small parameter" (8r-d/dt) (separately in
each order in e ) . A similar result is found in classical electro-
dynamics, in a discussion of the radiation-reaction force in
the case of an extended charged particle with a "characteris-
tic radius" L. Under these conditions, the "ordinary"
expression (2/3)e*r on the right side of (5) would be re-
placed by the infinite series4 (2/3)e2(r- (2/3)Z,r
+ (1/3)L 2 ' f —...). This result is again an expansion in

powers of (Ld/dt). This series was summed in Ref. 4. The
equation describing the motion of the extended charged par-
ticle became a differential-difference equation.

5. CONCLUSION

This analysis shows that standard perturbative meth-
ods in QED can be used to derive an expression for the radi-
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FIG. 9.

ation-reaction force in third order in e—an expression corre-
sponding to the first term in (2), (3). In a corresponding
way, one can use the methods which have been developed to
derive an expression for the force acting on the electron in
the next order, e4 [this expression must of course correspond
to the last part of (2), (3)],and also radiation corrections of
higher orders.

Finally, we note that this entire discussion has been
based on spinor electrodynamics. Consequently, the validity
of result (45) has been proved only for particles with a spin
s = 1/2. We would naturally expect, however, that the clas-
sical limit of the expression for the radiation-reaction force
would not depend on the spin of the particle. The reason is
that for a scalar particle (with a spin s = 0) one can con-
struct a corresponding technique, which turns out to be simi-
lar to the methods presented above. The only distinction is
that the Lagrangian of the scalar field is quadratic in the 4-
momentum operator P^ = /<?M, while the Lagrangian of a
spinor field is linear in P^. When a gauge interaction with an
external electromagnetic field is taken into account, this cir-
cumstance leads to the appearance of a diagram with four
external lines coming into one vertex (two of these lines cor-
respond to the charged particle, and two to the electromag-
netic field, Ap or <pp), in addition to the diagrams in Fig. 1
which yield the expansion of the S-matrix. In studying the
radiation-reaction force, we should thus now consider, in
addition to the diagram in Fig. 7, one more diagram, which
contains one dashed line and one wavy line (Fig. 9). In the

same approximation which we used in the calculations
above, we can show that for a scalar particle the contribution
of the diagram in Fig. 7 reduces to (43), that the contribu-
tion of the new diagram in Fig. 9 is equal to expression (44),
and that their sum is therefore equal to (45). We thus find
that the classical limits of the expressions for the radiation-
reaction force acting on scalar and spinor particles are the
same.

We are deeply indebted to V. L. Ginzburg for interest in
this study, for critical comments, and for useful discussions
of this problem.
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