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Transport equations are studied for two types of media exhibiting properties of local
nonequilibrium: media with thermal memory and media with a discretestructure. A hyperbolic
transport equation that is a special case of these local-nonequilibrium equations is used for the
analysis of traveling waves having high velocities. These waves have certain important properties:
there can be a temperature discontinuity at the wave front; there exist thermal shock waves; the
temperature at the wave front exceeds the equilibrium adiabatic value; there exist stationary
autowave regimes in addition to those corresponding to the classical local-equilibrium case, and
the velocities of these regimes are bounded by the velocity of propagation of a thermal signal. The
approach developed here may be useful for the study of transport processes for short times or high
fluxes in systems near critical points, in heterogeneous systems, and in other extremal situations.

INTRODUCTION

In recent years interest has increased in the study of
various kinds of systems exhibiting local nonequilibrium
properties and the transport processes in them (transport of
energy, mass, momentum, or their analogs). This interest is
related, on the one hand, to the natural evolution of
science—from systems in equilibrium as a whole to systems
in local equilibrium, and then to systems with local nonequi-
librium. On the other hand, the intensification of technologi-
cal processes, the use of materials with complicated struc-
tures (polymers, liquid crystals, capillary-porous and other
disperse systems), as well as the widespread use of laser tech-
nology and the possibility of reaching ultrahigh or ultralow
temperatures and pressures explain from the practical point
of view the interest in systems in extremal, locally nonequi-
librium conditions.

The study of such systems can be based on various ver-
sions of local-nonequilibrium thermodynamics,'” kinet-
ics,*'? molecular dynamics,'*'* and phenomenological and
other methods (see the literature cited in Refs. 3-5, 28, 29,
44, 45, and 52). Experimentally, the effects of local nonequi-
librium are observed most often at low temperatures,>>!° in
the irradiation of matter with ultrashort pulses of ener-
gy,'**® in shock waves,’>?! and disperse systems,??-26 since
it is in these cases that the time for the relaxation of the
system into local equilibrium is commensurate with the
characteristic time of the process itself. In this paper two
models of local-nonequilibrium systems are examined—sys-
tems with memory and discrete systems, with the greatest
attention paid to the corresponding transport equations and
their various limiting cases. Later, on the basis of a hyperbo-
lic transport equation, which may be derived both from a
generalized transport equation for systems with memory
and from a discrete transport equation, an analysis will be
made of a number of general properties of travelling waves in
local-nonequilibrium systems, and specific examples will be
presented.
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1.LIMITS OF APPLICATION OF LOCAL-NONEQUILIBRIUM
THEORIES OF TRANSPORT PROCESSES

The classical theory of transport processes is based on
the approximation of local thermodynamic equilibrium and
a continuous medium. The approximation of local thermo-
dynamic equilibrium means that in each small element of the
medium there exists a state of local equilibrium for which the
local entropy is the same function of the macroscopic vari-
ables as for an equilibrium system. Local thermodynamic
equilibrium can be established in a system if the rate at which
its macroparameters change because of external influences,
that is, the rate of disruption of equilibrium, is much lower
than the rate at which equilibrium is established. Moreover,
the approximation of local thermodynamic equilibrium is
valid for times ¢, that exceed substantially the characteristic
time 7 required for the system to relax to local equilibri-
um.>>>? The approximation of a continuous medium, which
implies the absence of any internal structure in the medium,
means that in the integral representations of the conserva-
tion laws for this medium it is possible to take the limit as the
volume of integration goes to zero. This transition to the
limit makes it possible to obtain the equation for the conser-
vation of energy (mass, etc.) in differential form. From the
physical point of view this procedure is not correct, since the
medium always consists of discrete elements (atoms, mole-
cules, cells, separate entities, etc.) and has its own internal
discrete structure. However, if the characteristic macro-
scopic scale L of the system is much larger than the charac-
teristic dimension 4 of its microstructure, then it is possible
to neglect the discreteness of the material and study the sys-
tem in the approximation of a continuous medium. Thus, the
condition for the validity of the approximation of local ther-
modynamic equilibrium and of a continuous medium (that
is, spatial localization) can be written in the form

ty ~ W <_‘?a:f_>”1>r’ (1.1)
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where W is the transport potential (temperature, concentra-
tion, etc.) and x is the coordinate. In the propagation of a
travelling wave with a constant velocity ¥ the characteristic
dimension of its front is L = a/V, and the characteristic time
is £, = a/V?, where a is the transport coefficient (thermal
diffusivity, diffusion constant and so forth). Assuming that
the relaxation time 7 is related to the velocity of propagation
of the disturbance! by v = (a/7)"? (Refs. 3,4), and to
the characteristic microscopic length scale by 4 = 7v, one
finds that (1.1) and (1.2) are equivalent to the following in-
equality

v V.

(1.3)

Consequently, classical transport theory is valid if the
characteristic rate of the given process is much lower than
the speed of propagation of the disturbance in these media.?’
In this case the transport process is described by parabolic
partial differential equations with an infinitely large speed of
propagation of the disturbance from an instantaneous point
source,>*** which, from the physical point of view is not
tenable. However, for sufficiently slow processes, where an
infinite speed of propagation of the disturbance is under-
stood in the sense of inequality (1.3), this approximation
may be considered quite correct. Otherwise, i.e., for fast pro-
cesses where inequalities (1.1)-(1.3) do not hold, the classi-
callocal-equilibrium theory of the transport processes are no
longer valid, and methods involving local nonequilibrium
are required to describe these systems. This topic is the sub-
Jject of the following section.

2. TRANSPORT EQUATIONS IN LOCAL-NONEQUILIBRIUM
SYSTEMS

A variety of thermodynamic, kinetic, phenomenologi-
cal, and other methods can be used to describe local-non-
equilibrium systems.’”!?> Rational thermodynamics, giving
up the principle of local thermodynamic equilibrium, intro-
duces the concept of thermal memory.'? Media with inter-
nal degrees of freedom, high-speed media, and media with
memory have been analyzed within the framework of ration-
al thermodynamics. Extended irreversible thermodynam-
ics,® the wave theory of Gyarmati,®’ and a number of other
versions of local-nonequilibrium theories*~* have been based
on the assumption that the specific entropy is simultaneous-
ly a function of the equilibrium extensive parameters and of
their fluxes (“velocity variables™), which describe the iner-
tial properties of a system as local equilibrium is estab-
lished.?” The transport equations in local-nonequilibrium
media may also be derived from the Boltzmann equation, by
molecular kinetics methods, with the use of of random walk
theory and others methods. '~1%2829.44.45.52

In the study of local-nonequilibrium systems the ques-
tion arises as to the meaning of the temperature of a local-
nonequilibrium state. In classical thermodynamics the tem-
perature is defined only for a system in equilibrium or local
equilibrium. Various versions of nonequilibrium thermody-
namics introduce the concept of the local-nonequilibrium
entropy 7 and internal energy E, thus giving a basis within
these theories for defining the local-nonequilibrium tem-
perature as T~ ' = dn/JE (Ref. 3). For high-velocity me-
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dia, where the state of the system depends on the rate of
change of the temperature, the absolute temperature can be
replaced by the thermodynamic temperature.? The thermo-
dynamic temperature is a function of the absolute tempera-
ture and its rate of change. These two temperatures coincide
when the rate of change of the absolute temperature is zero.
Therefore, the thermodynamic temperature can be repre-
sented as an expansion in a Taylor series in powers of the
absolute temperature and its rate of change.”? The amount
that the thermodynamic temperature deviates from the ab-
solute temperature is proportional to the rate of change of
the latter, and it characterizes the degree of local nonequilib-
rium of the system. This interpretation of the thermodynam-
ic temperature can also be used for media of other types. In
molecular dynamics the notion of the “kinetic” temperature
is introduced as a measure of the mean kinetic energy of the
molecules, which can be defined in terms of the local-non-
equilibrium distribution function.'>'* The results of molec-
ular dynamics calculations of the propagation of thermal
pulses in solids with the use of the kinetic temperature'*
shows a remarkable agreement with theoretical and experi-
mental data obtained on the basis of the ordinary ideas of the
absolute temperature.* Moreover, it has been shown'? that
for small deviations from local equilibrium, where the abso-
lute value of the difference between the local-nonequilibri-
um and local-equilibrium distribution functions is much less
than the latter, the energy of the system at each instant of
time and at each point of space is determined by the local-
equilibrium distribution function, and, consequently, the lo-
cal-equilibrium absolute temperature. The degree of non-
equilibrium of the system in this case has an effect only on
the heat flux, which in this case is not determined by the
Fourier law, but depends on the relaxation time of the sys-
tem to local thermodynamic equilibrium.

2.1. Transport equation in media with memory

If a system is not in local thermodynamic equilibrium,
the relation between the heat flux ¢ and the temperature
gradient, as well as between the internal energy of the system
and the temperature T has an integral form:***°

g=—\ K@) VT (t—2)ds,

0

(2.1)

o0

E=CoT + BT (t—2)ds,

0

(2.2)

where K(z) and B(z) are the relaxation functions of the heat
flux and the internal energy, respectively. Expressions (2.1)
and (2.2) take into account that far from local equilibrium
the heat flux and the internal energy do not depend just on
the instantaneous values of the temperature gradient and the
temperature, but are determined by the entire previous his-
tory of the heat transport process in the element of space
being considered. Such media are called “media with mem-
ory.”"? From expressions (2.1) and (2.2) and the law of
conservation of energy one can derive the transport equation
in a medium with memory:>>%3!

(WB(0) + Co) 2 - 1Cp T + § (vK'(2) + K (2) AT (¢ — 2) dz
0

=K OAT + § (B @) +p e T az 4w 4 < 20,
¢ (2.3)
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where 7 is a constant whose physical meaning will be defined
below, W(x,t) is the intensity of the energy sources distrib-
uted in the system, C is the specific heat, and p is the density.
The transport equation in an active medium with memory
(2.3) is of the hyperbolic type, which implies that the propa-
gation of heat in such systems is wavelike.*?® Equation
(2.3) contains both the intensity function Wof the distribut-
ed sources of energy, which corresponds to classical trans-
port theory, and also its time derivative dW /a1, the latter a
consequence of the inertial nature of the heat transport pro-
cess in local-nonequilibrium systems. Let us consider the
case where the integrand on the left-hand side of (2.3) van-
ishes:

1K' (2) + K (2) = 0.
The relaxation function for the heat flux now has an expo-
nential form

K (z) = K (0) exp<_ T) . (2.4)
It follows from (2.4) that 7 can be regarded as the character-
istic time of relaxation of the system to local equilibrium.
Substituting (2.4) into (2.1) we obtain

g4 T = 1K (0)VT.

For 7K(0) = A this relation is equivalent to the Maxwell-
Cattaneo equation:>*8

qg-+ ‘t%% = —)¥VT.

(2.5)
The Maxwell-Cattaneo equation (2.5), which relates the
heat flux to the temperature gradient in a medium with ther-
mal relaxation, is a generalization of the classical Fourier
law ¢ = — AVT, which is valid under the assumption of lo-
cal equilibrium, i.e.,, for 7 =0. The physical meaning of
expression (2.5) is that heat transport in local-nonequilibri-
um media has inertial properties: such a system does not
react to a thermal influence (nor does the heat flux respond
toa change in the temperature gradient) just at the instant of
time ¢, as in the classical local-equilibrium case, but later,
after a relaxation time 7:

g+ 1) = —=AVT (2). (2.6)

Expanding the left-hand side of (2.6) in a Taylor series in
powers of 7 we obtain in the zero-order approximation the
classical Fourier law, and in the first-order approximation
the Maxwell-Cattaneo equation (2.5).

From the law of conservation of energy and the
Maxwell-Cattaneo equation follows the equation of heat
transport of the ‘“telegraph” type** with distributed
sources.>?'*
>T

a2

+Cp T —iar W 2L

Cot =

2.7)
The transport equation (2.7) is a hyperbolic equation with a
finite velocity of propagation, v = (a/7) "2, of the thermal
signal (a thermal wave), where a = A /Cp. It combines the
properties of a wave equation that describes the propagation
of undamped waves of constant amplitude (the first term on
the left side of (2.7)) with a diffusion equation that corre-
sponds to the dissipative mode of energy transmission. It
follows from the solution of (2.7) in an inert medium
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(W = 0) that a thermal pulse propagates with constant ve-
locity », and its amplitude decays exponentially with
time.>>*>-37 Such a pulse is totally reflected from a thermally
insulated boundary,***® while if it is incident on the inter-
face between two media it is partially reflected and partially
transmitted into the other medium.?’ It should be expected
that in systems with relaxation a thermal pulse will also have
other wave properties, such as being refracted when incident
at an angle on the boundary of two media, where the refrac-
tiveindex would be n = v, /v,, where v, and v, are the veloc-
ities of propagation of the thermal pulse in these media.

In a similar way one can derive an equation for the heat
flux in a medium with relaxation, and like (2.7) this equa-
tion will be hyperbolic with a finite velocity of propagation
of the thermal signal:

a%q aq - 1 .
Tz & 5 = @ divg-—aV¥.

(2.8)

The processes that propagate in the form of traveling
waves (autowaves, phase-transition waves, detonation
waves, fracture waves etc.) are usually studied with the use
of the self-similar variable x — x — V?, where Vis the velocity
of propagation of the traveling wave.”**' In this case Egs.
(2.7) and (2.8) reduce to the ordinary differential equa-
tions>>*

R Ve d2T a7 aw
l.<1—v—2>¢7—Cde—x+W+rVW:0, (2.9)

a(1_ ‘”)ﬂ—vq= w.

i (2.10)
For 7—0, when v— « Egs. (2.9) and (2.10) reduce to the
classical transport equation for traveling waves in local-
equilibrium systems, while for 7> 0 they have significant
characteristic features. First, (2.9) contains the derivative
of the source function with respect to the coordinate, which
can be regarded as a positive source of heat, or more accu-
rately, as a ““pseudosource,” with an intensity that depends
not only on the form of the heat source function W, but also
on the magnitude (and direction) of the velocity ¥ of the
wave. Second, the amount and direction of the heat trans-
mitted by diffusion in the wave (see the first term in (2.9)
and in (2.10) ) depend on the relation between the velocity V'
of the traveling wave and the velocity v of the thermal sig-
nal.>**%¢ If ¥ <, then the diffusion of heat in the traveling
wave goes in the same direction as in the classical local-equi-
librium case, in the direction of motion of the wave, and thus
this diffusion heats the medium ahead of the wave front. As
V increases the diffusion of heat in the traveling wave de-
creases, and when ¥ = v the direction of the diffusion of heat
changes sign—the heat propagates in the direction opposite
to the motion of the wave. Therefore, for "> v the medium
ahead of the traveling wave front remains unheated.

Let us turn now to a discussion of the generalized trans-
port equation in a medium with thermal memory, (2.3). As
mentioned above, Eq. (2.3) is a hyperbolic equation, which
reflects the wave nature of the propagation of heat in local-
nonequilibrium media. In the limit, (2.3) reduces to well-
known special cases. If the relaxation function for the heat
flux is of the exponential form (2.4), which for 7K(0) = A
corresponds to the Maxwell-Cattaneo equation (2.5), and,
further, if 8(z) =0, then (2.4) is equivalent to the transport
equation of the telegraph type (2.7). It should be noted that
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in this case the values of 7 and K(0) are finite. If 7—0
and K(0) — o insuch a way that 7K (0) = A, then the relax-
ation function for the heat flux is
K(z) = At ~'exp( —z/7)-A8(z), where 8(z) is the
Dirac delta function. In this case the Maxwell-Cattaneo
equation (2.5) and the integral relation (2.1) reduce to the
classical Fourier law, while the generalized transport equa-
tion (2.3) reduces to the classical parabolic transport equa-
tion (with B(z)=0). This fact, in my opinion, argues in
favor of Eq. (2.3) over other types of transport equations in
media with memory, which do not give the well-known
simple limiting cases.?®?°

2.2. Media with a discrete structure

One of the variants of the local-nonequilibrium ap-
proach to the study of transport processes may be based on
the random-walk model.>**** This model assumes that the
transport process has a discrete space-time structure. For
simplicity we shall consider a one-dimensional medium
composed of particles carrying out random walks to the left
or to the right (Fig. 1). The distance 4 that a particle
(phonon) carries the energy in one transition is of a micro-
scopic scale that characterizes the discrete spatial structure
of the heat transport process. The time 27 between two con-
secutive transitions corresponds to the scale of the temporal
discreteness (below it will be shown that the quantity 7 can
be considered as the relaxation time of the system to local
equilibrium). Let us denote by P, the probability of the tran-
sition of a particle along the positive x direction, and by P,
the probability for a transition in the negative x direction,
with P, + P, = 1. If the probability that a particle at some
instantof time ¢ + 27 is located within some element x of the
medium is denoted by u(x, t + 27), then**

wlx, t+2t) = Pu(x—~ht)+Pou(x+ht. (211

Then, assuming that the local internal energy of the medium
is proportional to the number of particles (phonons) in a
given discrete element of the medium* and to the intensity
of the sources distributed in the medium,® we obtain from
Eq. (2.11)

T (z,t + 21)

— Py T (6 — i t) + PoT (24 Ry t) g—; W (2,1 + 7).
(2.12)

We shall consider a source intensity function W that is suffi-
ciently smooth so that

Fp 7
P A
1 i i
x-h x x+h

FIG. 1. A model of random walks. P, and P, are the probabilities of a
transition of a particle (energy transport) to the adjacent element of the
medium.
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t2t

S W (z, t)dt = 27W (x. ¢ + 1).

t
In this way, expression (2.12) becomes a heat transport
equation in a medium that is discrete in space and time, with
energy sources distributed in it. The structure of Eq. (2.12)
specifies a finite propagation velocity v = 4 /27 for thermal
perturbations. In a similar way one can obtain for such sys-
tems a relation between the heat flux and the temperature
(the analog of the Fourier law) in discrete form:

gt +7)=—2RT b ) =T (c—1 1)),

(2.13)
Here and henceforth it will be assumed that the medium is
isotropic; i.e., P, = P, = 1/2. In (2.12) and (2.13) the in-
tensity W of the heat source and the heat flux g are taken at
time ¢ + 7, halfway between two consecutive events of heat
exchange at times ¢ and ¢ + 27, in keeping with the integral
nature of these quantities.

In discrete media the transport equation (2.12) and the
relation between the heat flux and the temperature (2.13)
(the generalized Fourier law) are nonlocal; that is, they
specify the relation between the thermodynamic variables
not at a point, but in some region of space-time. The spatial
nonlocality is symmetrical—if # is replaced by — 4, the
form of these equations is unchanged. The temporal nonlo-
cality of these equations has no such symmetry, a reflection
of the irreversible nature of the relaxation processes. The
transport equation (2.12) and the relation between the heat
flux and the temperature (2.13) can be used for analyzing
local-nonequilibrium systems directly in discrete form. This
is particularly convenient for numerical calculations (since
(2.12) and (2.13) do not require translation to the language
of discrete mathematics) for the analysis of random dynam-
ics of various objects, for the study of systems with a complex
structure, and so forth.

In order to convert the equations that are in discrete
form, (2.12) and (2.13), into partial differential equations,
it is necessary to expand the functions 7, ¢, and W in Taylor
series in powers of 7 and 4. These expansions contain an
infinite number of terms with two small parameters. To ob-
tain equations with a finite number of terms one must specify
the limiting behavior, i.e., the relation between 7 and A as
7,h - 0. This limiting behavior is determined by the nature of
the processes occurring in the given system. The two most
typical cases will be considered.’

2.2.1. Diffusion form of limiting behavior

In the expansion of the discrete transport equation in
the random walk model Weyman** assumed that the trans-
port (diffusion) coefficient @ =h?%/7 remains finite as
7,h — 0. This form of limiting behavior will be called the ““dif-
fusion” form. It should be pointed out at once that the “dif-
fusion” form of limiting behavior implies that the velocity v
of propagation of perturbations is infinite, since
v=h/2r=2a/h— .

In the zero order approximation in 7 for the diffusion
form of limiting behavior the classical relations of local-
equilibrium thermodynamics follow from (2.12) and
(2.13)—the parabolic transport equation and the Fourier
law.

In the first approximation in 7 (2.12) and (2.13) yield’
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aT »r T a?t 04T T oW
v = e G oy oy G
(2.14)
ag oT lat 83T
g+ v =—hg — T o - (2.15)

Here the transport equation (2.14) and the analog of the
Fourier law (2.15), as in the classical approximation, are
parabolic partial differential equations with an infinite prop-
agation velocity of the perturbations. The subsequent ap-
proximations of the discrete equations (2.12) and (2.13),
containing terms of the expansion with higher powers of 7, in
accordance with the diffusion form of limiting behavior, will
also be parabolic differential equations with an infinite prop-
agation velocity of the perturbations (thermal signal).

2.2.2. Wave mode of limiting behavior

Let us now consider the case where the velocity of prop-
agation of perturbations, v = A /2, remains finite when #,
7—0. This form of limiting behavior will be called the
“wave”” form.

In the first approximation in 7 for the wave form of
limiting behavior we obtain from the discrete equations
(2.12) and (2.13)

oT 02T 92T w T 0w

- - = A,

TV ~ VT aE T o U e e (2.16)
a aT

g+ TG = — Covr——. (2.17)

The transport equation and the analog of the Fourier
law (2.17) are partial differential equations with a finite
speed of propagation of perturbations, which corresponds to
the wave form of limiting behavior. For A = Cpv’r Eq.
(2.16) coincides with the transport equation in a medium
with exponential relaxation (memory) of a heat flux (2.7),
and (2.17) coincides with the Maxwell-Cattaneo equation
(2.5). Subsequent approximations of the discrete equations
Eqgs. (2.12) and (2.13) for the case of the wave form of limit-
ing behavior will also yield partial differential equations
with a finite speed of propagation of a thermal signal.

In going from the discrete transport equations to their
approximations of various accuracy in the form of partial
differential equations it is necessary to specify the form of
the limiting behavior, i.e., the relation between the space and
time scales, and the internal structure of the system. The
limiting form determines the type of partial differential
equations and some of the fundamental properties of their
solutions. Strictly speaking, the wave-type limiting form is
more correct, since it gives a finite speed of propagation of
perturbations, which corresponds to the properties of the
random walk model and to the physical meaning of trans-
port processes. However, if the process is so slow that its
characteristic velocity is much less than the speed of propa-
gation of perturbations, then one can also use the diffusion-
type limiting form. The space-time nonlocality of the dis-
crete transport equation (2.12) and the discrete analog of
the Fourier law (2.13) have a clear physical meaning: the
energy (mass, etc.) in one region of space and at some in-
stant of time is transferred to another region of space and
arrives there at another instant of time. As mentioned above,
itis more convenient for an analysis of transport processes in
a number of cases to use Egs. (2.12) and (2.13) directly in
their discrete form.
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2.3. Two-component systems

The transport equation in media in local nonequilibri-
um, considered in the preceding sections, may be used for the
analysis of complex multicomponent systems consisting of
two or several interacting subsystems with different proper-
ties. In this case the mathematical model consists of the cor-
responding number of transport equations, written for each
separately selected subsystem, with allowance for the ex-
change of energy, mass, etc., between them. The type of
transport equation is determined by the relation between the
characteristic times of the processes and the relaxation times
to local equilibrium in the subsystems. Let us consider two
examples.

2.3.1. Two-temperature model

At the present time wide use is made of the two-tem-
perature model of the diffusion type, which is a system of two
parabolic heat-conduction equations.’****® These models
describe heat transport in systems with a complex structure
consisting of subsystems, each of which can be assigned its
own temperature. The introduction of the two-temperature
model is necessary if the time to establish equilibrium among
the subsystems is comparable to the characteristic time of
the transport process as a whole. Such conditions are real-
ized, for example, in the irradiation of metals with ultra-
short energy pulses, where at some stage of the process the
temperature of the electron gas can be considerably higher
than the temperature of the lattice.'2® In shock waves the
role of the subsystems with their own temperature is taken
by the various degrees of freedom of the molecules.?' In he-
terogeneous systems the gaseous and solid phases can have
different temperatures.”>***®* The two-temperature (or
multitemperature) model of transport processes may also be
applicable to other systems with a complex structure, con-
sisting of various subsystems between which the exchange of
energy (matter, etc.) is hindered.

Existing two-temperature models of the diffusion type
are valid under conditions such that the time to establish
equilibrium within each subsystem is much less than the
time to establish equilibrium between them.'® In the most
general case, where the relaxation within each subsystem is
taken into account, the two-temperature model will consist
of a system of hyperbolic transport equations

02T - oT
€™y ‘le + (/191'671
= MAT, —l—Wl—}—rl L4 g(T,—TY)
4gr, 2T (2.18)
82T aT
CopyTy ataa +C292T2
W,
=1 AT, + W, + 5,200 b g (T,—T)
4 gr, 2T (2.19)

where T, and T, are the temperatures of the subsystems, g is
the coefficient of heat transfer between them, and 7, and 7,
are the relaxation times to local equilibrium for systems
1 and 2, respectively. As mentioned above, it follows from
the solution of a hyperbolic equation that the thermal wave
(the thermal signal) propagates with a finite velocity
v = (a/1)'?, where a = A /Cp. In the two-component sys-
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tem (2.18)—(2.19) the thermal wave will propagate through
each of the subsystems with a velocity characteristic of that
subsystem: v, = (a,/7,)"*and v, = (a,/7,)"2

Let us consider the two-temperature model (2.18)-
(2.19) as applied to heat exchange between the electron gas
and the lattice as a metal surface is irradiated with ultra-
short energy pulses. For this situation it is usually assumed
that the energy of the laser pulse is absorbed only by the
electron gas, while the transfer of heat to the lattice can be
neglected.'*?° With these assumptions Eqs. (2.18)—(2.19)
take the form (here the index 1 refers to the electron gas,
index 2 to the lattice, and W denotes the intensity of the
energy absorbed by the electron gas):

a3 ale 6T1
e T
0 (Ts—T
=a1AT1+W—i-TlaTv:]'{"g(Ta—T1)+g71 (zat 2,
(2.20)

az 9T aT d(T1—Ts)
R i G O L e

(2.21)
It is assumed that the electrons in the metal, which play the
major role in the transport of heat, move with a velocity of
the order of the Fermi velocity vg,i.e., v, = (a,/7,) "> =vg,
whilev, = (a,/7,)"*=v,, where v, is the speed of sound in
the metal. It follows from (2.20) that the thermal wave
propagates through the electron gas with a velocity ve [see
the first term on the right in Eq. (2.20)]. This conclusion
agrees with the experimental results of Brorson et al.,'” who
studied heat transport in thin metal films. In general, heat is
transported in thick metal samples with the velocity v = v,
but because of dissipative effects [ see the second term on the
left of Eq. (2.20)] the amplitude of a thermal signal is ex-
ponentially damped, so that it is difficult to observe experi-
mentally. Although the presence of the time derivative of the
intensity of the radiation source, dW /d¢ in (2.20), does not
affect the total energy balance of the system, it does signifi-
cantly influence the shape of the pulse of energy absorbed by
the electron gas i.e., the shape becomes W + rdW /Jt. This
effect may lead at the initial instant of time to a discontin-
uous jump in the electron gas temperature that is more
abrupt than that calculated by the classical diffusion model.
A more detailed analysis of the system of equations (2.20)-
(2.21) or of the special cases of this system will permit a
more thorough study of the mechanism of interaction
between the electron gas and the lattice in metals and pro-
vide a reliable interpretation of existing experimental
results.

In the analysis of fast processes, whose characteristic
time is comparable to the time of relaxation to local equilib-
rium in the subsystems, the two-temperature model of the
hyperbolic type, (2.18)-(2.19) should be used. The solu-
tions of this model may differ not only quantitatively, but
also qualitatively from the solutions of the parabolic two-
temperature model.

2.3.2. Systems with heat conduction and diffusion

There exist a large number of systems in which energy
and mass can be transported simultaneously. If the process
occurs under conditions of local equilibrium, then parabolic
equations of heat conduction and diffusion can be used to
describe it. Otherwise, when the approximation of local
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equilibrium is not satisfied either for heat transport or mass
transport, i.e., when the characteristic time of the process is
comparable to the times 7, and 7, required for the tempera-
ture and concentration, respectively, to relax to their local-
equilibrium values, the mathematical model will consist of a
system of hyperbolic equations (Section 2):

92

T
- = MT +Wy(T,Y) 4 17 2

at '’
6W2
a

T
CP%T + Corr

Y 8%y .
p - +pTy 2o = DAY 4 W, (T, Y) +

where Y is the concentration, W, (7,Y) and W,(T,Y) are
the heat and mass sources, respectively, and D is the diffu-
sion coefficient. This system of equations determines both
the finite velocity of propagation of a heat wave (tempera-
ture perturbations), vy = (a/7;) "% and also the finite ve-
locity of propagation of a concentration wave (concentra-
tion perturbations), vy = (D /7). For the cases of gases,
for example, v;=~vy, and for capillary-porous media
vr>vy. 2 In the latter case, if the characteristic rate of the
transport process is comparable in order of magnitude to vy,
the effects of local nonequilibrium will have a significant
effect only on the mass transport, while the heat transport
will proceed under conditions of local equilibrium. In this
case the system of equations of heat and mass transport will
consist of the classical parabolic heat conduction equation
and a hyperbolic mass transport equation®??

Co 2L = 1aT + W (T, Y),

W,y
ot

Y aZY o 7 i
p‘;—t+pTY7ﬂ—=DA} TWz(T,Y)—;—TY

This system of equations may be useful for the analysis of
very intense heat and mass transport processes in capillary-
porous media, in heterogeneous catalysis, in chemical reac-
tions, in filtration combustion, and so forth.

3.GENERAL PROPERTIES OF TRAVELING WAVES IN
LOCAL-NONEQUILIBRIUM SYSTEMS

3.1. Conditions at the wave front

If relaxation processes are taken into account, the tem-
perature and heat fluxes in a traveling wave are described by
the law of conservation of energy and the Maxwell-Cattaneo
equation (2.5), which in the coordinate system attached to
the wave front, have the following form:

a7 4
CoV - =— 5+ W, (3.1)
aq _ or
W T i=— 5 (3.2)

where V'is the velocity of propagation of the traveling wave.
By integrating (3.1) and (3.2) within the limits of an infi-
nitely narrow zone that includes the wave front, one can
obtain the difference in the values of T and ¢ ahead of and
behind the front (i.e., the temperature and heat flux discon-
tinuities at the wave front); these differences will be denoted
by square brackets: [ 7] and [q].

3.1.1.

If the latent heat of the phase transition is zero at the
wave front and the thermophysical parameters of the system
are constant, then it follows from (3.1) and (3.2) that
[g] = [T] =0 for ¥V #v, where v = (a/7)'"* is the velocity

S. L. Sobolev 222




of propagation of a thermal signal in the relaxing medium.
The temperature gradient behaves in accordance with the
heat generation function W: if [ W] =0, then the tempera-
ture gradient is continuous, while if the heat generation
function at the wave front changes discontinuously, i.e., if
[ W1#0, then the temperature gradient also changes discon-
tinuously. In the latter case the wave front is a surface of
weak discontinuity. If v = V¥, then it follows from (3.1) and
(3.2) that {g] ~[T] ~ [ W], and if [ W]+0, the wave front
is a surface of strong discontinuity.

3.1.2

If the latent heat of the phase transition at the wave
front is nonzero, then it follows from (3.1) and (3.2) that
1

[T]=—7TVor=(1— i i

g1 =Q(1— )" -
The wave front in a relaxing medium with a phase transition
(or an infinitely narrow zone of heat generation) is thus a
surface of strong discontinuity. The jumps in the tempera-
ture and the heat flux at the wave front are proportional to
the heat of the phase transition and change sign for ¥ =u.
The presence of a jump in the temperature at the wave front
should be taken into account also in the analysis of the Stefan
problem for relaxing media: the classical condition of conti-
nuity of the temperature in the region of the phase transition
is not applicable in this situation.

3.1.3.

In some cases the wave front may be a boundary surface
between states of the medium with different thermophysical
properties.>***® For example, for the He I to He II phase
transition the thermal conductivity changes discontinuously
at the front.*>*! Then, from (3.1) and (3.2) we have

WV lg) = — (1), (3.3)

CoV IT] = — lqgl.

It then follows for a given value of ¥ that [T] ~ [A];i.e., the
wave front is a surface of strong discontinuity.

Taking into account the fact that the thermal conduc-
tivity in He II is much greater than in He 1,>! and using
relation (3.3), we obtain the approximation {7 ]~ {g°];
that is, the temperature jump at the He I-He IT phase transi-
tion front is proportional to the square of the heat flux den-
sity through the surface of the front, a conclusion that is in
qualitative agreement with experimental results.*

In a similar way one can show that the strong discon-
tinuity in the temperature field at the front of a traveling
wave in a relaxing medium can be caused by a discontin-
uous change in the relaxation time or the power-law temper-
ature dependence of the thermophysical parameters
(7, A, C).53%52

The relaxation processes in some cases thus lead to the
formation of strong or weak discontinuities at the front of a
traveling wave—thermal shock waves. We might expect
such discontinuities in the propagation of waves of switching
between the superconductor and the normal metal,*®°0->7:¢3
in waves of explosive crystallization of an amorphous mate-
rial,*' in waves of low-temperature chemical reactions,*® in
combustion waves,*>%3® in systems that are described by the
Stefan problem,***° and others.
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3.2. Distribution of temperature and heat fluxin traveling
waves

In relaxing media the temperature and the heat fluxina
traveling wave are described by Egs. (2.9) and (2.10),
which in dimensionless variables have the form

dze do do
(11— el

—9 gy to+eg-=0, 34

(1-—q>“‘)%—~cpf—w=0, (3.5)
where 8 = (T — T,)(T,, —T,) ~' is the dimensionless
temperature, T, and T, are the initial and scaled tempera-
ture, respectively, ¢ = ¥ /v is the dimensionless velocity of
propagation of the traveling waves, j = g¢/Cpv(T,, — Tj),
and @ = Wr/Cp(T,, — T,). The solutions of (3.4) and
(3.5) can be obtained by the Fourier transform method:*'**

o0

" (] — o
0(r) =37 | T B (3:6)
A | R exp (—iur) d (3.7)
](1)_E3 (‘1—({‘2) iu 49 }l'(u‘) t, .

o0

where

wu) = S o () exp {{uz) dor.

Expressions (3.6) and (3.7) give the distribution of the tem-
perature and of the heat flux in the wave for an arbitrary type
of source w if the latter is a function of only the coordinate x.
Models of this sort are widely used for describing the various
types of autowave phenomena,>***' individual examples of
which will be considered below. Transforming (3.6) and
(3.7) with the use of the convolution theorem, one can easily
show that if ¢>1 then 8(x) =0 and j(x) =0forx <0; i.e.,
the medium ahead of the wave front remains unheated. This
property of traveling waves is related to the finite velocity of
propagation of a thermal signal (thermal perturbation) and
is the reason for the upper limit (¢ < 1) of the propagation
velocities of autowaves of the processes.**>**” This fact will
be discussed in more detail below.

3.3. The mechanism of propagation of autowaves in relaxing
media

Autowaves are ordinarily considered to be stable wave
processes in nonlinear nonequilibrium systems that are self-
sustaining because of energy sources distributed in the sys-
tem.>***' The velocity of propagation of an autowave, as
well as its shape and amplitude, do not depend on the initial
conditions over a wide range of those initial conditions, but
are determined by the local properties of the medium itself.
An autowave mechanism for the propagation of any process
implies that there is a coupling (e.g., by diffusion) between
adjacent elements of the medium. This coupling provides for
a layer-by-layer initiation of the sources distributed in the
system, and thereby sustains the propagation of the
autowave process. This propagation mechanism distin-
guishes autowaves from other types of traveling waves such
as detonation waves, where the layer-by-layer initiation is
accomplished by the shock compression of the material. The
characteristic length scale of the coupling between adjacent
elements of the medium, required for the existence of the
autowave regime, will be denoted as / *. The value of /* is
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determined by the mechanism of initiation of the sources
distributed in the system and has a specific meaning for each
particular system. For example, in a wave of transition
between the normal and superconducting state of a
metal*®*° the quantity / * can be the smallest dimension of a
superconducting region surrounded by the normal zone, i.e.,
the coherence length. In gases, /* depends on the kinetic
features of the autowave process, but in any case it cannot be
smaller than the mean free path of a molecule.

In discrete media / * is bounded from below by the char-
acteristic length scale / of the medium (Sec. 2.2). It is clear
that autowaves for which the characteristic depth / of heat-
ing ahead of the wave front is less than / * cannot exist, since
in such a case there could be no coupling between adjacent
elements of the medium, as is necessary for sustaining the
autowave regime. It follows from this discussion that since
for @ >1 the medium ahead of the wave front remains un-
heated, i.e., / = 0 (see the previous section), and the spec-
trum of possible autowave velocities is bounded from above
by the velocity of propagation of the perturbations, ¢ = 1
(Refs. 5,56,57) It should be emphasized that this property is
characteristic only of autowave processes. Other types of
traveling waves, for example, detonation waves, phase
waves, or combustion waves can propagate with any ve-
locity.>3%52

4. STRUCTURE OF TRAVELING WAVES IN LOCAL-
NONEQUILIBRIUM SYSTEMS
4.1.Infinitely thin region of heat generation

In the propagation of phase-transition waves,”*! cer-

tain types of combustion waves,*® in the Stephan prob-
lem,**** and others, it is assumed that the zone of heat gen-
eration is infinitely thin, and thus can be written as a Dirac
delta function: w(x) = @8(x), where @ is a constant. From
(3.6) one can then find the temperature distribution in a
traveling wave in a relaxing medium with an infinitely thin

zone of heat generation®*°
_ )
g<(lz) - 11— (Ps) 71— 72) X (1 + YI(P)AeXp (le)% z < O’
X (1 + v29) exp (v,2). z>0,
4.1)
%
b0 = T—mm—w <> <O
©>1

X (14719) exp (v12) — (1 + v,9) exp (y,2), >0,
(4.2)

-

where

Ma=0(1+B)(1 —¢) 2 [¢* (1 + B (1 — o))"
_+_ 4B(1 _— (Pz)‘1]1/27

B = 1/1, is adimensionless criterion—the ratio of the relax-
ation time 7 to the characteristic time ¢, of heat transfer to
the surrounding medium.>*"5¢57 Curves of (4.1) and (4.2)
are shown in Fig. 2 (curves / and 2). The temperature in the
zone of heat generation, x = 0, in accordance with the gen-
eral conclusions of Sec. 3.1.2, changes discontinuously, i.e.,
the wave front is a surface of strong discontinuity. Near the
zone of heat generation the temperature §(x) can consider-
ably exceed the adiabatic temperature &, = 1 (Fig. 2). This
effect is due to the fact that for ¢ ~ 1 the system is in a local-
nonequilibrium state, whose temperature, maintained by the
distributed energy sources, can be higher than the equilibri-
um adiabatic temperature.3 ) In other words, when the ve-
locity ¥V of the wave is comparable to the velocity v of propa-
gation of thermal perturbations, the heat from the source
cannot travel very far, and therefore the temperature near it
can exceed the adiabatic temperature.

If @ > 1, the temperature ahead of the wave front is zero,
since the heat diffuses in the direction opposite to the motion
of the front, while behind the front the temperature steadily
relaxes to the adiabatic temperature for B = 0 or to the tem-
perature of the surrounding medium if B > 0. By virtue of the
structure of the wave for ¢ > 1 (Fig. 2b) we can consider it a
thermal shock wave.>*%** A similar result, i.e., the forma-
tion of a thermal shock wave in the motion of a point source
of heat, was obtained in the work of Refs. 42 and 43 in the
case of a two-dimensional temperature field.

For the case ¢ < 1 the characteristic dimension / of the
heated layer ahead of the wave front is determined by the
following relation [(4.1)]:

=1 (4.3)

It follows from (4.3) that /-0 as ¢ — 1. This result differs
fundamentally from the classical local-equilibrium case,
where /-0 only when ¢— 0.

The heat fluxdensity j(x) and the temperature gradient
d8 /dx are not mutually equal aside from a sign, as they are
for the classical Fourier law, but can be quite different
(Fig. 2).

NS

FIG. 2. Temperature 8(x) (curves ! and 2), heat flux j(x)
(curve 3), and temperature gradient d9 /dt (curve 4) in a
wave with an infinitely thin zone of heat generation. Curves
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1,3,4 are for the adiabatic case (B =0), curve 2: B> 0; a)
p<lib) p>1.
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4.2.TI-shaped source of heat generation

In a number of cases one may use a source function of
finite width x, and constant intensity @ to simulate the prop-
agation of traveling waves (Refs. 5, 53)

0<<ax < uy
<0, >z,

Substituting (4.4) into (3.6) one can easily obtain the tem-
perature distribution in a traveling wave with such a I1-
shaped heat generation function. Such distributions are
shown in Fig. 3. As in the previous case, the temperature in
the zone of heat generation (0 < £ < 1, where £ = x/x, is the
new dimensionless variable) and near it can considerably
exceed the adiabatic equilibrium temperature. For ¢ < 1 the
relaxation processes take place within and ahead of the zone
of heat generation (£<1), while behind the zone,
(&) =6, = 1. If > 1, then the medium ahead of the wave
front remains unheated, while behind the front the tempera-
ture relaxes to the adiabatic value, i.e., 8(£) -0, as £— o
(Fig. 3b).%

Figure 4 shows curves of the heat flux j(£) and the tem-
perature gradient d6 /d. The discontinuous change in the
temperature gradient at the points £ = O and £ = 1 is due to
relaxation processes in the system and to the form of the heat
generation function (4.4) The heat flux in this case remains
continuous (Fig. 4). For ¢ = 1 not only the gradient, but
also the temperature and the heat flux at the wave front

® (r) = W = const,
2

(4.4)

N

ry

N

FIG. 4. Heat flux j(£) and temperature gradientd8 /d§ foro = 3. a:@p < 1;
b:g> 1.
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FIG. 3. Distribution of the temperature, #(£) in a wave for various
values of the dimensionless velocity of ¢ of propagation of the wave for
@ = 3.a) Curve /: ¢ = 0.8; curve 2: ¢ = 0.95; curve 3: ¢ = 0.98; curve
4:9=1.b) Curve : o= LLcurve 2: o = 1.05; curve 3: ¢ = 1.02;
curve f: 9= 1.

change discontinuously. In the wave there is no heat diffu-
sion, which, for @ # 1, smooths out the variations of the tem-
perature and the heat flux.

4.3. Heat generation step function
Let us consider a source of heat generation of the fol-
lowing form:

x>0,
z<0.

®(r) = U = const,

=0, (4.5)

This step function of heat generation is used for the analysis
of the propagation of switching waves of homogeneous sta-
tionary states of a system, for example, a superconductor/
normal metal transition wave,*>*® a semiconductor/metal
transition wave,*® a wave of transition between the diffusion
and kinetic regimes in heterogeneous catalysis,’® and others.
Substituting (4.5) into (3.6) we obtain the temperature dis-
tribution in a switching wave with allowance for relaxation

processes:>>"36:57
0 (x) = B#%, exp (y,2). x <0,
o<1

= 1 — Bu, exp (y,2), x>0, (4.6)
B(x) =0, x <0,
=1

=1, x>0, (4.7)
B(x) =0, =<0,
9>1

=1+ Bx, exp (v;z) — By exp (v12), * >0, (4.8)
where

%2 =0 (1 + ¢vy0) (1 — 9% (v1 — ¥v2) Y12l

Curves of 6(x) representing expressions (4.6)~(4.8) are
shown in Fig. 5. For x —» + oo the temperature of the system
is determined by its homogeneous stable states with 8, =1

-

.

17 x

FIG. 5. Temperature 6(x) in a switching wave for various values of ¢:
DHe<l; ) p> 1.
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FIG. 6. Temperature 8(x) in a switching wave with a phase transition
(p<l, o <0).

and 6, = 0. As in the previous cases, the heated layer ahead
of the wave front exists only for ¢ <1 (curve 7 in Fig. 5),
while if ¢ > 1, then #(x) =0 for x <0 (curve 2 in Fig. 5).
For ¢ = 1 there is no diffusion of heat in the wave, and the
temperature of the wave is determined by the balance
between the heat input from the heat sources and the heat
output into the surrounding medium. If the heat output
obeys Newton’s law a(T — T,), as assumed previously, and
if the heat source function is a step function (4.5), then the
temperature behaves in a corresponding way: it changes dis-
continuously at the wave front (4.7).

If there is a phase transition at a switching wave front,
for example, in a superconductor/normal metal wave,
then the heat source can be represented as a sum of a delta
function (Sec. 4.1) plus the source (4.4). Then the tempera-
ture distribution is also determined by the integral relation
(3.6). Figure 6 shows the curve of #(x) for ¢ < 1. The pres-
ence of a phase transition at the wave front causes a tempera-
ture jump at the front (Sec. 3.1.2 and 4.1). This effect, which
is due to the relaxation properties of the system, must be
taken into account in the determination of the velocity of
propagation of traveling waves. If ¢ > 1 there will also be a
temperature jump at the wave front, while ahead of the front
the medium remains unheated; therefore this wave can also
be considered a thermal shock wave.

As a result of the relaxation processes the temperature
field in traveling waves exhibits important properties that
are distinct from those of the classical case of local equilibri-
um. First, the temperature in and near the zone of heat gen-
eration can considerably exceed the equilibrium adiabatic
temperature. Second, if the velocity of a traveling wave is
higher than the velocity of propagation of perturbations (a
thermal signal), the medium ahead of the front remains un-
heated. Third, if there is an infinitely narrow heat source in
the wave (e.g., in the case of phase transitions), the tempera-
ture in the wave front changes discontinuously, i.e., the wave
front is a surface of strong discontinuity.

5.VELOCITY AND CRITICAL CONDITIONS FOR THE
PROPAGATION OF AUTOWAVES INLOCAL-
NONEQUILIBRIUMMEDIA

5.1. Combustion waves

In the approximation of an infinitely thin zone of chem-
ical reaction the velocity of a combustion wave is determined
by the temperature T * of the front in the following way:*®

; £

V =Aexp<——2—m>, (5.1)

where A is a constant, E * is the activation energy, and R is
the universal gas constant. In turn, the temperature in the
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g 7y

FIG. 7. Left-hand side (curves /-4) and right-hand side (curve 3) of Eq.
(5.2) as functionsof ¢. 1) B, =0;,2) B, >0,3) B, > B,;4) B, > B,.

reaction zone depends on the velocity of the wave (formula
(4.1)). Therefore, the steady-state velocity of propagation
of a combustion wave is determined by the following tran-

scendental equation:>*°

@ (1 L v19) exp (— wi*)
(1 —9®) (yi—12)

MAEE

where 8, = E*/(2R(T, — T;,)) and 4 = A4 /v. Graphs of
the left-hand side of Eq. (5.2) (curves /-4) and of the right
hand side (curve 5) are shown in Fig. 7. The horizontal
coordinates of their intersection points are equal to the ve-
locities @ of the autowave regimes of combustion. As men-
tioned previously, these velocities are bounded from above
by the velocity of propagation of thermal perturbations,
@ = 1. It follows from Eq. (5.2) that the parameter B, which
is equal to the ratio of the relaxation time to the characteris-
tic time of heat transfer into the surrounding medium, deter-
mines not only the velocity @ of the wave, but also the num-
ber of autowave regimes. For B = B, = 0 (curve / of Fig. 6),
where there is no heat loss into the surrounding medium,
there can be three autowave regimes of combustion, with
different propagation velocities. For B =B, >0 (curve 2),
there are four, for B = B; > B, (curve 3) there are two, and
for B = B, > B, (curve 4), there is no autowave regime. The
solutions with the lower velocities (one on curve I and two
on curve 2) correspond to the classical solutions of the para-
bolic equation,®® when the relaxation processes can be ne-
glected. The autowave regimes with high velocities are pos-
sible only in media with relaxation. Thus relaxation effects
lead to the existence of additional autowave regimes. More-
over, autowave regimes can exist in relaxing media under
conditions where there are no classical (local-equilibrium)
solutions at all {curve 3 of Fig. 7). In this case the equilibri-
um temperature ahead of the wave front, which is deter-
mined by the initial heat content of the system, does not
reach values necessary for chemical reaction of combustion
to take place, and consequently there will be no layer-by-
layer initiation of distributed sources. Therefore the classical
autowave regimes with ¢ € 1, where the temperature in the
reaction zone does not exceed the adiabatic (equilibrium)
value, will not propagate. However, at high wave velocities
(@~1) the local-nonequilibrium temperature at the wave
front is considerably above the equilibrium temperature

(5.2)
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(Fig. 2) and can be high enough to activate the combustion
reaction so as to sustain the autowave mode of propagation
of the wave. The analogous effect, i.e., the existence of
autowaves in relaxing systems, where classical local-equilib-
rium solutions do not exist, evidently is also possible for oth-
er types of autowave processes.

On curve 2 the regime with the lowest velocity is unsta-
ble;*® its velocity increases with an increase in the heat loss.
From this discussion one should expect that of the pair of
relaxation solutions {curves /-3 in Fig. 7) the regime with
the lower velocity should be unstable. However, this issue
requires further study.

It is possible by the same means to take into account the
effect of relaxation processes on autowave regimes of propa-
gation of phase transitions of various kinds, for example, the
front of explosive crystallization of amorphous material.*!
To do so one must use, instead of (5.1), the corresponding
macrokinetic equation.

This section has examined the effect of local nonequilib-
rium on autowave regimes of combustion in terms of the
transport processes. At the same time, the high temperatures
and temperature gradients at the combustion wave front can
cause the chemical reactions to proceed under nonequilibri-
um conditions, i.e., conditions of kinetic nonequilibrium.*®
In the general case, it is necessary to take into account both
of these effects, both for combustion waves, and for other
types of waves that propagate in relaxing media.

5.2. Superconductor/normal metal transition waves

Some of the most common types of autowave processes
are waves of switching between homogeneous states in bista-
ble systems.>**>*%5% Switching waves describe supercon-
ductor/normal metal (S/N) transitions,***° transitions
between kinetic and diffusion regimes in heterogeneous ca-
talysis,>, as well as wave processes in thermoelectric sys-
tems® and neuristors.®” The last of these can be used to
make logic circuits, delay lines, memory elements for com-
puter technology, etc.>®* In addition, neuristors that are
made on the basis of superconducting systems simulate
nerve fibers.®>** Interest in component elements whose op-
eration is based on the switching of homogeneous states of a
bistable system in the autowave regime is due to their “bio-
similarity”” and their simplicity and high speed of operation.
For example, the velocity of a transition wave can reach
10° cm/s.>%%> The theory of propagation of switching waves
based on the classical parabolic transport equations*® is in-
applicable for these velocities.>® Instead it is necessary to use
transport equations that take into account relaxation of the
system to local equilibrium (Sec. 2). This treatment will
consider S/N transition waves in relaxing media,>*"*5%7 al-
though the generality of the mathematical model allows the
results to be extended to other types of switching waves.
5.2.1. The intensity of heat generation in a S/N transition
wave can be represented by a step function (4.5) (Refs.
40,50,63). In this case the velocity of propagation of the S/N
transition wave obeys the following equation:*?%5¢%

g% — B (1 + 719) exp (— vite) =7 (q),

T I m—om (5.3)

where @ *, the temperature of the intermediate unstable state
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FIG. 8. Temperature at a switching wave front for various values of B.
NB<1;2)B=1;3)B>1

of the system (0 <8 * < 1), determines the transition from
one stable state to the other, and EO is the dimensionless
coherence length. The right-hand side of (5.3), denoted by
t{@), is the temperature at the wave front. Curves of f{¢) for
various values of the parameter B are shown in Fig. 8. If
B <1 (curve I of Fig. 8), then f(¢) is a monotonically de-
creasing function. Then there is only one point of intersec-
tion of f(g) with the line 8 * = const, and, consequently, a
single autowave regime of the S/N transition. For B> 1 the
curve f(@) has a local minimum f_;, and maximum f_,,
(curve 3, Fig. 8). If 0*> f,_,, or 8* <f,. , then as in the
previous case the S/N transition in the autowave regime is
possible with only one velocity. If £,..,, <8 * < f,.., there are
three points of intersection of f{p) with 8 * = const. They
correspond to autowaves regimes with different velocities of
propagation ¢, <@, <@; (Fig. 8). The nonuniqueness of
the autowave regimes of switching waves for B> 1 is due to
relaxation processes in the system. The bifurcation value of
the parameter B, which determines the rearrangement of the
qualitative structure of the solution, is unity. At that value,
Souin = Sfmax (curve 2, Fig. 8). The velocity of propagation of
the S/N transitions, as in all other types of autowaves, is
bounded by |@ | = 1 (Fig. 8). Inaddition to this general con-
straint, there is another, which is related to the properties of
the S/N transition. Since the depth of heating / of the system
ahead of the wave front goes to zero as |@ | - 1, and since / is
bounded from below by the minimum width of the transition
zone, that is, the coherence length &,, the velocity of
autowave regimes of the S/N transition will be limited by
@., < 1, the value of which is determined from the condition

Y1 (@er) Zo =1.

5.2.2. In some cases the latent heat of the S/N transition may
exert a considerable influence on the autowave regimes of its
propagation.® Ifit is assumed that the zone of the S/N tran-
sition is infinitely thin, its front will be a surface of strong
discontinuity (Fig. 6). In a more detailed analysis of S/N
waves it is necessary to take into account the fact that the
thickness of the S/N transition zone cannot be less than the
coherence length £,. Therefore, a change in the temperature
at the wave front, equal to the temperature jump for the case
of an infinitely thin S/N transition zone, takes place over a
distance of the order of &,. The velocity of propagation of the
S/N transition wave in this case is given by the relation:*
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g* — (L V1) exp (— 1)

=05 (v1 — 72) (Byi ' — Poy) = f1(p),

(5.4)

where w, is the dimensionless latent heat of the phase transi-
tion. As in the previous case, there exists a bifurcation value
B = B * of the parameter B such that for B < B * there is a
unique autowave regime, while for B> B * there are three
(Fig. 8). The value B = B * is given by the equality (5.4) and
the condition

flmin (B*) = f1max (B*)

From formula (5.4) it follows that for 8 * - 0 the veloc-
ity of the 8/N wave approaches the maximum possible value
@max» the value of which depends on, among other things,
the latent heat of the phase transition, w,, and is given by the
formula

B = ®1Pmax¥1 ((Pmax)'

The latent heat of the phase transition and its finite width is
the cause of the limiting velocities ¢, and ¢_,,,, whose val-
ues are less than the velocity of propagation of a thermal
wave, ¢ = 1. In the general case the velocity of a S/N wave
will be limited by the lower of the velocities corresponding to
these effects

I ¢ | < min (Per, Pmax )

If the intensity of heat generation in a S/N wave is not a step
function but has a piecewise linear form,* then the tempera-
ture distribution and the velocity of propagation of the
switching wave can be determined by the methods outlined
above. If the linear part of the heat generation function is
small, the expression for the velocity of the S/N wave is the
same as (5.2), where £, is understood to mean the dimen-
sionless width of this linear part.*®

Thus, the local nonequilibrium nature of a system has a
significant effect on autowave processes of various types.
First, it limits the spectrum of possible velocities of the
autowave regimes to the velocity of propagation of perturba-
tions (footnote 1). In each specific case there may be strong-
er limitations. Second, it leads to the formation of a surface
of strong or weak discontinuity at the wave front. Third, it
allows for the possibility of a superadiabatic temperature at
the wave front and for other autowave regimes of propaga-
tion in addition to those corresponding to the classical local-
equilibrium case.

CONCLUSIONS

The purpose of this paper was to show that the proper-
ties of traveling waves propagating with high velocities un-
der conditions of local nonequilibrium, where it is necessary
to take into account relaxation processes, differ considerably
from the properties of slow traveling waves that are de-
scribed by classical local-equilibrium transport equations.
Basic to this analysis are the various theoretical methods of
describing the dynamics of systems, which do not rest on the
principle of local equilibrium. Random-walk models and
models of media with memory are the clearest examples of
such methods. The necessity for such investigations is due
not only to their theoretical interest, but also to the ubiqui-
tous nature of local-nonequilibrium systems and their appli-
cation in practice.

Extremal conditions—low temperatures, high gradi-
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ents and fluxes, ultrashort energy pulses, high characteristic
velocities or short characteristic times of processes—are re-
sponsible for the local-nonequilibrium nature of various pro-
cesses.

Already the first results obtained with allowance for
relaxation effects show that traveling waves, propagating
under local-nonequilibrium conditions, have a number of
important special properties. At the wave front there can
exist surfaces of strong or weak discontinuity, while for wave
velocities greater than the velocity of propagation of pertur-
bations (a thermal signal), thermal shock waves are formed.
In and near the zone of heat generation the temperature may
be considerably above the equilibrium adiabatic tempera-
ture. In local-nonequilibrium systems, as compared to the
classical local-equilibrium case, there exist additional
autowave regimes of propagation of various processes, with
the velocities of all the autowaves being bounded from above
by the velocity of propagation of perturbations.

In my opinion, further investigations of transport pro-
cesses in extremal situations will not only take into detailed
account relaxation of the system to local equilibrium, i.e.,
temporal nonlocality, but will also allow for spatial nonloca-
lity, which is a characteristic feature of transport processes
in complex discrete systems. The relation between the space
and time scales of the system defines certain fundamental
properties of transport processes, such as the velocity of
propagation of perturbations corresponding to the transport
potential, and it determines the type of transport equation
(Sec. 2.2). It is to be expected that the use of nonlocal equa-
tions for the analysis of various physical, physicochemical,
biological, ecological, and other nonequilibrium systems
with a complex structure will in the near future lead to new
and interesting results.

D The velocity of propagation of a perturbation will be understood to
mean the velocity of propagation of perturbations of the transport po-
tential corresponding to the given process. In the case of heat transport
it is the propagation velocity of a thermal wave (thermal signal).**

2 In this sense local-nonequilibrium theories of transport processes can be
regarded as “relativistic” as compared to classical local-equilibrium
theories.

» The overall energy balance is, of course, conserved: the elevation of the
temperature near the zone of heat generation is compensated by a nar-
rower heated region ahead of it.

* Analogous phenomena of superequilibrium temperatures at a wave
front and the relaxation of the temperature to the equilibrium value
behind the front have been observed in filtration combustion***” and in
the accompanying motion of thermal waves in a catalyst layer.*® The
two-temperature model (Sec. 2 and 3) used in the work of Refs. 46-48
has been taken to apply to the different temperatures of the gaseous and
solid phases. The similitude of these effects affords a basis for applying
the relaxation model to similar kinds of systems where the relaxation
time is taken to mean the characteristic time of interphase heat ex-
change.??
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