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The resolvent method, one of the most powerful methods of solving nonstationary problems in
quantum mechanics, is presented. The use of this method has been hindered by its reputation for
excessive complexity. In the proposed form, the resolvent method is no more complex than
common perturbation theory. One of the attractive features of the method is the possibility of
widespread use of the theory of functions of a complex variable. The main ideas of the method,
which was initially developed for systems with a discrete spectrum, are generalized for systems
with a continuous spectrum. The radiation from atoms in a waveguide and in free space is

examined as examples of this method.

INTRODUCTION

At present, the number of problems confronting the
field which is called nonrelativistic quantum electrodynam-
ics (which studies the quantum processes of radiation by
nonrelativistic systems of electrons, by atoms, by molecules,
etc.) has greatly expanded. This is undoubtedly due to the
tempestuous development of various laser methods of re-
search. Among these problems one can isolate nonstationary
problems of quantum electrodynamics, for which the pro-
cess of development of the state of the system over time is
important. One of the methods of solving these problems is
the resolvent method, which is examined in this paper.

It is well known that the overwhelming number of prob-
lems in quantum electrodynamics are solved using perturba-
tion theory methods. The most well-known method is the
theory of transitions between discrete levels of quantum sys-
tems. The first orders of this theory of perturbations describe
the behavior of a system only over a small time interval that
is much smaller than the characteristic times of transitions.
A consideration of higher orders is too laborious. Thus, even
in the early stages of development of quantum electrody-
namics various alternative methods were proposed to de-
scribe the development of the state of a system in substantial
time segments. These methods include, for example, the
Wigner-Weisskopf method.’ This method was subsequently
developed and acquired the form of what is called attenu-
ation theory. However, the Wigner—Weisskopf method hasa
drawback: the solution is not sought in the method, but is
actually guessed on the basis of some physical consider-
ations; this approach is usually defined by the words “heu-
ristic method.” This same drawback is retained in attenu-
ation theory, although in a more veiled form.

Like other “heuristic” approaches, this method has the
drawback that it is not the first step of some consistent proce-
dure to obtain a solution in the form of an expansion in terms
of a small variable. Thus, it is difficult to evaluate the error of
this approach or to obtain, when necessary, corrections to
the approach.

In this paper, which is of a methodological character,
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we wish to draw the reader’s attention to the resolvent meth-
od, a method which greatly surpasses the Wigner-Weisskopf
method in capabilities, while retaining the consistent meth-
od of perturbation theory. Information about this method is
spread among various sources, and the only textbook pre-
sentation that we know of is not very successful.” Apparent-
ly, widespread use of this method is hindered by its reputa-
tion for excessive complexity. However, this method can
acquire a form which is no more complex than the usual
perturbation theory. We hope that this article will be a step
in this direction.

1. THE DISCRETE SPECTRUM

Let us first develop the resolvent method for quantum
mechanical systems with a full infinite set of discrete levels,
so that it can be later generalized to systems with a contin-
uous spectrum.

1.1. Evolution operator

An important element of the resolvent method is the
evolution operator, an operator which expresses the state
|W(2)) at an arbitrary time ¢ using the state |¥,) at the initial
moment in time

[¥ () =0 (1, ty) | ¥o. (1.1)

The trivial form of the evolution operator is

O (t, ty) = exp [—Lﬁ})(t—to)] ,

which can be easily verified by direct substitution of |¥(#))
into Schrddinger’s equation. We note that Eq. (1.2) is of a
formal character, which ir}\ itself usually does not permit one
to calculate the operator U in an explicit form. This is also
true of the next equation below, Eq. (1.3). In essence, the
entire content of the article below is devoted to the construc-
tion of a form of operator U suitable for practical use.

Another form of the evolution operator which will be
more important to us, is (assuming ¢, = 0)

(1.2)
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where integration is performed along contour C, which is
illustrated in Fig. 1. (The expression z — H should have been
written in the form zJ — H where 7 is an identity operator.
However, in the majority of cases the operator 7 can be omit-
ted without any loss of meaning.) We will show below, after
several comments, that this is actually the evolution opera-
tor. The operator

R(z) = — (1.4)

is called the reﬁolvent operator. Itis inverse in relation to the
operator z — H, that is,

z—H)R@E)=R@)(z—R)= (1.5)

where T is an identity operator (“unity” operator). As will
be obvious below, the operator R (z) is defined for all quanti-
ties z, including complex ones, as well as quantities which are
equal to the eigenvalues of the Hamiltonian H.

We note the relation of the resolvent operator to the
Green’s function. In a coordinate representation using the
expansion of the identity operator 7= f|x') =dx'(x'| we
obviously have

)T @)=Y (2,1) = (x| e T W)

= S(a: |0 @) 2"y dz’ <z’ | WoD,

that is,

¥ (2, 1) = de'G (z, t; ', 0) ¥ (', 0). (1.6)
Here the Green’s function

G(z, t;2',0) =<z U (1) |2 (1.7)

is the core of the evolution operator. In accordance with Eq.
(1.3), we then obtain

G(z,t;x’,0)=-ﬁ-sdze"'lf/’l(xll?(z)]z’); (1.8)
C

consequently, the Green’s function and the resolvent opera-

tor are equivalent in description completeness.

Below we will make great use of the concept of a func-
tion of an operator. As usual, the function is defined by its
series, and as a result the calculation of the function is re-
duced to the multiplication and addition of operators. The
procedure is especially simplified if one knows the complete
orthonormalized system of eigenvectors of the operator,
which is the argument of the function.

Indeed, let
.4|n> =An|n>, (193)
<n/ J n> = 6n’, ns (1.9b)
I=§,|n><n|, (1.9¢)
Im 21
4 hY
* > ! Rez
c
FIG. 1.
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where2 is the argument of some function f(.2 ) and |n) are
its eigenvectors (states). Multiplying Eq. (1.9¢) from the
left by A and using Eq. (1.9a), we obtain

A=§|n)An<n|.

Raising this expression to the second, third, etc., power, we
obtain, using Eq. (1.9b)

A2 = 3| n) Anln), =iy 42l

then for an arbitrary analytical function f(z) we obtain the
formula

f(A>=2(n>f<A,.><n|-

(1.10)

Now let |n) be eigenfunctions, : and E, be the eigenval-
ues of the Hamiltonian H (that i is, A H ); then, according

to Eq. (1.10) we have for fiz — H) = (z— H) ~!
R(z):»__-‘——‘z’ig‘n‘ : (1.11)

n

Let us substitute Eq. (1.11) into the right side of Eq. (1.3)

%Sdze-izﬁnﬁ(z)=2[n)(l—2:l—i§d : """)< b (1.12)
c n

because the pole z = E, always lies within the contour of
integration, the expression in square brackets is equal to

~ /% and then according to Eq. (1.10) the right side of
Eq. (1.12) is equal to

2" n> e—iEnt/h <nj

and, consequently, the correctness of expression (1.3) is
shown for the resolvent operator.

= e—iﬁt/nzl nd(n|=eBtin =7 (1)

1.2. Perturbation theory for the evolution operator

If the eigenstates and the corresponding eigenvalues of
the Hamiltonian are known, then Eqgs. (1.1) and (1.3), to-
gether with Eq. (1.11), solve the problem posed above of the
development of a state over time. However, usually the
Hamiltonian consists of unperturbed and perturbed parts

and only the eigenstates and corresponding eigenvalues of
the unperturbed Hamiltonian are known. In this case one
can use perturbation theory.

However, before we develop this theory, let us note one
essential circumstance. Up until now operators have been
used which act in a Hilbert space of states of some quantum
system. These operators were abstract in the sense that they
had no relation to any specific reference system (basis).
Hereinafter we will use a reference system of states formed
by the eigenstates of the unperturbed Hamiltonian HO of the
studied quantum system. The operators may then be given in
the form of matrices, ket-vectors of states in the form of
vector columns, and bravectors in the form of vector lines;
the transition from the abstract operators and states to this
specific representation is described by the equalities
={(m|¥>, Y

Omn:<mloln>1 II,.m :<1P.|n>v

where (m| and |n) are the bra- and ket-eigenstates of the
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unperturbed Hamiltonian ﬁo. It is assumed that these states
form a full orthonormalized system, that is, they satisfy Eqgs.
(1.9b) and (1.9c). When two or more eigenvectors belong-
ing to one quantity £, become degenerate, it is also assumed
that they are orthogonal to each other and to all the remain-
ing eigenvectors. When these assumptions are made, the op-
erator equations (1.1), (1.2), (1.3), (1.5), (1.11), and
(1.12) remain in effect, that is, in these equations the opera-
tors may be replaced by the corresponding matrices of the
specific representation. In particular, the operator matrix
which is the inverse of some given operator O is simply a
matrix which is inverse to matrix || 0,,,, ||.

Hereinafter we will not differentiate the operator and
its corresponding matrix in the notation, bearing in mind
that this matrix belongs to a reference system formed by the
eigenstates of the unperturbed Hamiltonian H,,.

Thus, operator z — H, in matrix form, is equal to

z—Hy —Vp — Voa — Vs
—Vy z—Hny —Vig —Vyg

z—H=||—Ve —Va z—Hy —Vy - (1.14)
—Vey —Va  —Vs z2—Hg

~
The matrix which is inverse to Z — H, is constructed using
known rules for the construction of inverse matrices

Doy Dy Doz Dy

Dy Dyg Dig Dys . . .
(z—H) 21 =A"1Dy Dy Dsy Ds . . .|,

Dyy Dg D3y Dzz . . .

(1.15)

where A is the determinant of matrix z — IAL and D, is the
algebraic complement to elements (z — H),; of this matrix
(we point out that the order of subscriptsin Dy is the reverse
of the order of subscripts in the element (z — H),;, to which
D, is an algebraic complement).

Because the determinant A enters into the denominator
of Eq. (1.15), the matrix (z— H) ' is defined only for
those values of z when A #0. The determinant A can be given
in the form of a product

A= ].—.[(Z_Em)'

where E,, are the eigenvalues of the full Hamiltonian H
Consequently, the complex variable z may acquire any val-
ue, in addition to the eigenvalues of the Hamiltonian H. We
note that the eigenvalues E,, do not depend on the represen-
tation; thus, not only the matrix (1.15), but also the resol-
vent operator in general, Eq. (1.4), are defined for all values
of z in addition to the eigenvalues E,, as was noted in the
previous section.

The algebraic complements D, as is well known, are
also determinants, but of order lower by a unit than A ; they
are obtained from A by canceling the k th row and jth column
and multiplying the resultant determinant by ( — 1)* /. As
we will see, for any matrix element of the resolvent the poles
are the same, since they are defined by the zeroes of the de-
terminant A; they are usually spoken of as resolvent poles.
However, the residues in these poles for different matrix ele-
ments may be different, since they depend on D,, . For exam-
ple, the zeroes of some D;, may be close to some resolvent
poles; then the contribution of these poles to the total ampli-
tude will be small.
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We note that all the eigenvalues E,, of the full Hamilto-
nian are real. Thus, the resolvent is a single-valued function
of z and has only poles lying on the real axis, and this is a
characteristic feature of a discrete spectrum.

The matrix element of the resolvent operator

Dy

Ry =— (1.16)

is the ratio of the algebraic complement D, to the determi-
nant A. It should be noted that the numerator and denomi-
nator of R, are expanded below into perturbation theory
series which are independent of each other. These expan-
sions can and even should be made with a different accuracy,
since their results affect different aspects of the process un-
der study. The roots of the denominator define the indices of
the exponentials in the residues, while the numerator yields
only pre-exponential factors. Consequently, in order for the
time interval (in which the obtained solution is close to the
exact one) to be larger, one must determine the roots of the
denominator with greater accuracy. Frequently, sufficient
accuracy is obtained if the roots of the denominator are cal-
culated in the second order of perturbation theory, while the
algebraic complements are calculated in the first or even the
zero order of perturbation theory.

Before we turn to a search for the aforementioned series
of perturbation theory, we note that it is sufficient to find
such a series only for the determinant A. Indeed, expansion
of A in terms of the elements of any line has the form (#is the
number of the line)

A = Det(z— H) = 2 (2 — B)nmDumn
m

and D, does not contain the matrix element (z — H )am (In
writing the determinant D,,, the element (z — H Ynm 18 left
out).

Thus, we have the expression

_ dDet{(z—H) _

9A (2)
-0,

= D
9—H),,

s (1.17)

Thus, if A(z) is known as a function of its matrix elements,
D, can be obtained from A(z) by differentiation. We note
thatsince H,, = H°, + V..., Eq. (1.17) canbe writtenina
more convenient form

A (z)
Dyin = — 57— (1.18)
Then, taking Eq. (1.4) into consideration, we have
. 1 A (z) d1n A (z)
Ry =— A@) 9V, o, (1.19)

Thus, in the evolution operator U(¢) the matrix determinant
(z — H), which is given in the form of a function of its ele-
ments, is a key quantity, one which completely defines the
process of the development of a state over time. Our next
task is to represent A(z) in the form of a power series in
terms of V;; after this, Eq. (1.19) will permit us to find R,
as well.

We deduce the auxiliary expression linking the matrix
determinant with the trace of its logarithm:

Det A = exp (Sp In 4). (1.20)

The matrix (operator) In 4 is defined by the general equa-
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tion (1.10). It can be easily calculated in a basis consisting of
the eigenfunctions of the operator 4 (to do this such a basis
should exist; if 4 is a Hermitian operator, then it always
exists). To prove Eq. (1.20) we note that the determinant
and trace of the matrix do not depend on the selection of the
basis, they are invariants of the matrix. Thus, if Eq. (1.20)
holds true in some basis, then it holds true in other bases. Let
us examine a basis in which 4 is diagonal. In this case Det A
= Il Ay, where 4, =A,, are diagonal elements of A in this
basis. According to Eq. (1.10) the matrix In 4 isalso diag-
onal, and its matrix elements are equal to In 4,.. Then,

Splnd=J)In 4, u exp(Spln 4) =[] 4, = Det 4.
k k

Thus, it has been established that Eq. (1.20) holds true.
Further, for the purposes of perturbation theory, it is
more convenient to write the operator A4 in the form

Ad=1I—8,

and the logarithm of Ai in the form of a power serles B.1tis
obvious that the matrix B is diagonal if the matrix Ais diag-
onal, and it follows from the last equation that

Ak—’:'l-—Bk.

If the moduli of all B, are less than unity, then one can write
a Taylor series for the logarithm

o

1nA,,=1n(1—B,)=—2 Tb_

N=1

(Bo)~. (1.21)

Since (B, W= (ﬁ M)« is a diagonal element of the matrix
B "™, we have the equation

1nA=ln(I—-B)=—Z g, (1.22)

L N

N=
which, due to its matrix nature, is satisfied in any basis, and
dlagonalA and B are not obligatory (however, the condition
that the moduli of all eigenvalues of B be less than unity is
retained).

Now let us turn to the search for the perturbation theo-
ry series for A(z) = Det (z — H). Writing H as the sum of
the unperturbed Hamiltonian H, and perturbation ¥, we
write the operator z — H in the form

2—H=z—Hy—V =0a—H)[I —(z— Hp)? V] (1.23)

The determinant of the matrix of this operator is obviously

equal to

A (z) = Det (z — H) = Det (z — Ho) Det [I — (z — Hy)* V).
(1.24)

If the eigenvalues of the unperturbed Hamiltonian are

known, that is, 1fHo|n) = E?|n), then

Dy (2) = Det (z — Ro) = 1] (z — EY). (1.25)

We use Egs. (1.20) and (1.22) to calculate the second factor
in Eq. (1.24), setting
A=1—@z—HA)V, B=(z—Hy)™V.

Then
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Det [ — (z— Ho)y ] =exp(— —+-Sp B%).  (1.26)
N=1
We introduce the notation
Sy =SpB" =Sp[(z—H)1PT". (127)
Then for Det (z — f]) = A(z) we obtain
8@ =Dy@exp(— Y] 3 ). (128)
The matrix elements of the operator B= (z— flo) ~Pina

basis formed by the eigenstates of the unperturbed Hamilto-
nian can be easily calculated; placing the 1dent1ty operator
1= 3. |k Y (k| between the operators (z — H,;) ~'and ¥ we
have

Bip = (2 — B0 [my= 3" (| (e — Ho)* | k) <k |V |m)
k

= Z_‘ (z— Ex) ™ 6pV i =

(1.29)
Then we find

5, =SpB= LB,,_y .

=0

(1.30)

For (B?),,,, using Eq. (1.29) we obtain

0

>y v Vem
(Bz)lm=L k____km

0
= z—EY z—EY

k
S, —Sph*= VieV et
P ; CoE)e—ED

In exactly the same way we obtain

v
3 ”t kj !m
(B%m = 2 C—E)(z— B (£
v, V.V

— Ik’ ki Jl
Ss kZ (z— BY) (2— EY) (z — EY

then

(1.31)

(1.32)

From these formulas the manner in which S, is constructed
for any A is clear.

Now we can turn to Eq. (1.19) and use it to write an
expression for the matrix element of resolvent R, . There are
two paths one can take. In the first, one can use the formula

dlnA(z

Ry —=— "‘a’VL
Substituting Eq. (1.28) into it and taking into consideration
that D, (z) does not depend on ¥, we obtain

b N Wy "

From Egs. (1.30)—(1.32) it is clear that S}, is a polynomial
of degree Nin V. Taking this into consideration we conclude
that the last formula yields an expansion of the resolvent in
powers of the perturbation, that is, a Born expansion.
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The second method is associated with the use of Eq.
(1.19) in the form

Ry — 1 9A(2)

- (1.33)

into which we substitute the expression for A (z) expanded in
terms of powers of V. Expanding the exponential in Eq.
(1.18) into a series and grouping terms of the same order in
V, we obtain

B(2) =Dy (z) [1— 8, + 5 (S1—S,)

1
— 37 (81— 38,8, + 25,)

1
+ 7 (S1— 6838, + 85,85 + 381 —65,) + .. ] )

(1.34)

Then, substituting this into Eqgs. (1.25), (1.30)-(1.32), we
obtain an expansion of the denominator of the resolvent

AR =[[z—E)— } Ak —E
1:[2 1) Zkl IZI(Z 1)

" .
+TIZ Ay H (—E)—..., (1.35)
P 15k, J
where
A =Vir By =ViaVyy— VsV .- (1.36)

are the principal minors of the perturbation matrix ?’, thatis,
the determinants of the matrices obtained from matrix ¥ by
crossing out several lines and columns symmetrical to them
(the subscripts to A indicate which lines and columns of
matrix V form the given principal minor); the products and
sums in this expansion are taken using all possible values of
the subscripts from zero to infinity, excluding those values
which are specially noted. The prime on the sum sign indi-
cates that the subscripts over which the summation is car-
ried out must necessarily be different. The denominator in
Eq. (1.35) can be written in the form

Ay;

zﬂ A 1Y
A(z)=H(Z———E1)|:1_ z—zk +_:2Tk;(2—Ek)(z"‘Ej)
1 »

k

Ay Besm T
— 3! Z‘ (z—Ek)(z—E].)(z——Em) R
k.l m

(1.37)

if one also uses the identity
{(G—E)(z—E,) ... (z—E)I?
= [(z — E,) (E, — E))
B, —ED)I '+ ...+ (z—E)(E,—E)...
X(E, —E)I?
co. +z—E,)(E,—E,) ... (Esq— E)IT,

(1.38)
then A(z) acquires the form
s@=1le—E)t—F@) (1.39)
where
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F(z)= §Ak (z— By, (1.40)
Aik
A== N ey
1=k
1 ! Aimk
+—‘ —E E. —F T e e (1.41)

are coefficients which do not depend on z. Thus, the poles of
A(z) lie at points z = E, . At least in general form the coeffi-
cients 4, (thatis, the residues at the poles of A(z)) are all of
the first order of smallness in terms of the perturbation ¥,
although in some special cases individual A, and other mi-
nors can, due to certain circumstances, become especially
small or even equal to zero.

The function 1 — F(z) can be conveniently studied if
one assumes that the interaction V goes to zero. Then the
function F(z) will be equal to zero virtually everywhere, ex-
cept for the small (of the order of V) regions around the
poles E, . Consequently, the zeroes of the function 1 — F(z)
also lie near these poles, as can be seen in Fig. 2. The reestab-
lishment of ¥ to a normal, finite (although small) value will
shift the zeroes of A(z) somewhat, but they remain in the
small neighborhood (of the order of ¥) of E,, and do not
change in number. A more complete study of the denomina-
tor of 1 — F(z) in the general form is hardly possible. In-
deed, it actually includes information about all possible pro-
cesses in the studied system for all possible initial conditions.
In particular, as applied to radiation problems, which will be
examined below, a full study of 1 — F(z) would indicate full
knowledge of all possible processes of spontaneous and in-
duced radiation, absorption, scattering, etc. In a general
form this is hardly possible.

According to Egs. (1.19) and (1.39), R, the matrix
element of the resolvent operator, is equal to
OF (2)[0Vy

Bov=——Fqy

(1.42)

The structure of the functions dF(z)/3V,, is approximately
the same as for the function F(z). They have poles at the
same points E, as does the function F(z). Because of this, in
particular, the poles of dF(z)/dV,, are not poles of the inte-
grand as a whole. But the residues at these poles are of a
different order in terms of perturbation. The poles of the
numerator are next to the zeroes of the denominator, and so
the value of the residue affects the amplitude of the corre-
sponding contribution of the resolvent operator to the ma-
trix element.

F(z)] A i n 'i

T

|

Ny

m———— T

FIG. 2.
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Differentiation of F(z) with respect to ¥,, includes dif-
ferentiation of the minors A, , with respect to ¥,,,. If k or n
do not coincide with the subscripts of the minor, the deriva-
tive will be equal to zero. If both subscripts of ¥ coincide
with some subscripts of the minor, then the derivative will be
equal to the algebraic complement of this minor to ¥, mul-
tiplied by V,.. Analogously, differentiation of the minor
with respect to ¥, yields a minor of dimension lower by a
unit (with deleted subscript n), if # coincides with some
subscript of the minor. If there is no #n among the subscripts
of the minor, then its derivative with respect to ¥, is zero.
Taking this into consideration, it is easy to give an estimate
of the higher terms of the derivative of F(z)

OF (z) an

— 6F(z) 1
[ (E,—E_ )(z—E)) ’

6Vﬂn z-—En

(1.43)

These estimates show that in calculation of, for example, the
diagonal element U, , (¢), the zeroes of the denominator z;
closest to E, are the most important ones because they are
multiplied by a large quantity

OF (2/0V up fos,» (1.43a)

Additional possibilities of classifying the singularities of the
elements of the evolution operator appear after a transition
to a continuous spectrum (see section 2). Here we note that
the very possibility of a qualitative survey of these singulari-
ties is a strong feature of the resolvent method.

Expansion of Eq. (1.42) may also be examined as a
Pade approximation® of the matrix elements of the resolvent.
We also note an analogy between the expansion of Eq.
(1.42) and the Fredholm expansions in the theory of inte-
gral equations. This analogy may be converted into a one-to-
one correspondence if for individual elements of Eq. (1.41)
one introduces the same Feynman diagrams as is done in
Matthews and Walker’s book* for the Fredholm expansions.
It is known that Fredholm expansions, in contrast to a Neu-
mann series, converge everywhere. Thus, the expansion of
Eq. (1.42) is preferable to a Born expansion.

2. CONTINUOUS SPECTRUM. RADIATION PROBLEMS

As already mentioned, some dynamic systems, in par-
ticular, an electromagnetic field in free space, have a contin-
uous spectrum. The presentation below will be dedicated
exclusively to the electromagnetic field, its interaction with
atoms, molecules, ions, and, in general, with quantum ob-
jects.

The continuous spectrum is frequently examined as a
limiting case of a discrete spectrum. For the spectrum of an
electromagnetic field to become discrete, the field must be

imagined to be in some large resonator, where there are also
some radiating objects. Then one can use the formulas de-
rived above for a discrete spectrum, followed by letting the
volume of the resonator go to infinity. The resultant limits,
in particular for the matrix elements in Eq. (1.42), yield
appropriate expressions for the continuous spectrum.

One should not think that the continuous spectrum
leads only to complications; in terms of calculation it is even
simplified, since many sums are replaced by integrals. To
evaluate the latter, as will be seen below, one can use the
theory of functions of a complex variable.

First we will examine one of the simplest examples of a
radiation problem, the radiation of a two-level atom in a
waveguide. In this example one can trace well the limiting
transition from a discrete spectrum to a continuous one and
understand all its special features.

Then we will construct a theory of the intrinsic width of
a spectral line of spontaneous radiation which is free of the
inconsistency which is inherent in the Wigner-Weisskopf
theory and the attenuation theory.

2.1. Quantization of electromagnetic waves in a waveguide

We shall assume that in the examined waveguide, in the
range which interests us, only one basic type of wave is prop-
agated. If we take as an example a waveguide with a rectan-
gular cross section (Fig. 3), then the critical frequencies of
the waves of the fundamental type and of the next subse-
quent type differ only slightly, in all by only a factor of two.
However, in microwave technology, there are approaches in
which the critical frequency of the waves of the fundamental
type can be substantially reduced. For example, if the wave-
guide is taken to be of the type shown in Fig. 3b, and the
transverse dimensions are much less than the wavelength,
then the critical frequency of the fundamental wave can be
made much lower than the transition frequency of the radi-
ating system, and the critical frequencies of the higher waves
will be much greater than the transition frequency. The
waveguide even retains its macroscopic character, since even
in optics the wavelength of the radiation exceeds atomic di-
mensions by four orders of magnitude. For simplicity we will
omit dispersion and absorption of the material from which
the waveguide is made.

We will describe the fundamental TE-type wave in the
waveguide using a vector potential

A =G (a*e™ 4 ae ™) g (x, y), (2.1)

~ wherea ™ and a are operators for the creation and annihila-

tion of photons in the examined wave. Since the vector po-
tential in the gauge div 4 = 0 should satisfy the equation

FIG. 3.
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AA - A =0 (2.2)

(k =w/c =2m/A), then for a polarization vector e(x, y) le,
we obtain the equation
A+ (B —%)e =0, (2.3)
for the condition div, € = 0. Moreover, the vector € (like the
vector potential 4) should satisfy the boundary condition

Emng == O

(2.4)

at the surface of the waveguide. This problem has a solution
only for the discrete set of positive values of the parentheses
in Eq. (2.3).° The smallest of these quantities will be denoted
by x2. The field € corresponding to this value of »2 describes
the transverse distribution of the fundamental TE-type wave
in the waveguide. We have, consequently, the equation
B o= x® g, (2.5)
which defines the dependence of the frequency @ = ck of the
fundamental wave on the propagation parameter
% = 277/A yav., Which is inversely proportional to the wave-
guide wavelength. The condition » = O defines the critical
frequency of the wave
O = C%ec. (2.6)
Since Eq. (2.3) is linear with respect to the vector &, this
vector may be subjected to the condition
( dse2 = s, (2.7)
where the integration is carried out along the cross section of
the waveguide; it is also assumed that the average value of
the square of the vector € over the cross section of the wave-
guide is equal to unity. Then the normalization constant in
the vector potential G is determined from the condition that
the total energy of the wave be equal to fiwa * «,

2nhc? \1/2
G _< wSL ) :

(2.8)

As has already been stated, in order to study radiation start-
ing with a discrete spectrum, one must limit the volume oc-
cupied by the field. We shall assume that the length of the
examined waveguide is finite and equal to L, and the field at
the ends of the waveguide will be subject to periodic bound-
ary conditions. Then the propagation parameter acquires
the following values

Ho = 2 1, (2.9)
where 1 is an integer which takes on the values n = 0,1,2,- - -.
Obviously, the adjacent quantities x,, differ by Ax = 27/L,
that is, we have the equation

e A =1, (2.10)

The imposition of periodic boundary conditions con-
verts the waveguide into a resonator with a discrete spec-
trum, and this will be discussed below (section 2.3); how-
ever, considering that the length L will go to infinity, it
makes sense to retain the term waveguide. Considering all
that has been said, we conclude that the field in the wave-
guide is described by a vector potential
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2mhic?

X/ Y2 gy ~ix,z
A(x,y,Z)zgﬂ-}fk w;SL) (a7 + ae 7). (2.1D)

This exhausts the basic information on the propagation of
quantized waves in a waveguide which will be needed later.

2.2. The decay of the excited state of an atom in a waveguide

We turn now to the problem which interests us, the
radiation from an atom. We will assume that in the initial
moment the atom is in the excited state |b ) and there are no
photons, that is, all the fundamental waves or oscillators are
in the ground vacuum state |0). All the remaining states of
the atom are assumed to be at a higher energy than |6 ). The
interaction Hamiltonian

V=—_""pA

mc

(2.12)

links the initial state |b,0) with a set of states {«,j| in which
the atom is in the ground state, and there is one photon in the
Jjth oscillator. One can calculate various characteristics of
the process of radiation; we will discuss the decay law de-
fined by the square of the modulus of the diagonal matrix
element of the evolution operator (see Egs. (1.3) and
(1.37))

1 ¢ ;
Uso, bo = 57 5 dze=#t/* Rpo, bo-
&

(2.13)

As was shown in section 1.2, when one calculates the diag-
onal matrix element the largest amplitude is found in the
residues at pole E,, and its neighbors (which are separated
from it by a distance of the order of V). It is easy to under-
stand that in the examined case all such poles will be taken
into account if, in addition to the pole at E,, poles E,; will
also be retained in F(z) which correspond in energy to the
states |a, ), in which the atom is in the ground state and the
Jjth oscillator has one photon. Thus, the function 1 — F(z)
should be written in the form

A A .
1 — =1_ b0 . aj ,
F(3) = Z‘ = (2.14)
where
| Vb0, a3 Ve 5P
Abo= J EbD_EuJ T Aaf—— EbO_Eai ,(215)
Ebo=Eb, Eaj=Ea+hmj' (2'16)
Thus, Eq. (2.14) acquires the form
_ | Vbo, aj P
1—F.(z)—1—2 RS G—E) (2.17)
7
According to Eq. (1.43)
oF(z) 1
Voo vo . 2—Epy ° (2.18)

The expansions of Egs. (2.15) and (2.16) consider only
those terms which make the main contribution to the evolu-
tion operator, and it is these terms which are considered
heuristically in the Wigner-Weisskopf method. In the resol-
vent method, when necessary, these expansions can be re-
fined, and even all the series can be written out completely
(Sec. 1.2, Egs. (1.39)-(1.41)).

Thus, in the examined case we obtain
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v 2 -1
Uso, o (t) = —§ dze-tt/h [(z —E)— ). |z ff,ﬁl:;,l } !
J

(2.19)

where E, is set to zero.

In the interaction Hamiltonian ¥ there is an operator
for the momentum of the atomic electron. The diagonal ele-
ments of this operator, which corresponds to transitions
without a change in energy, are equal to zero; thus, for a two-
level atom it has the form

§=1by<a|+|ay<d].

For simplicity it is assumed that the parameter p,, is real and
directed along € at the location of the atom and its modulus is
equal to mQr, where 7 is the modulus of the matrix element
of the coordinates for the transition b —a, and (Q is the fre-
quency of the transition (£, — E,)/#. Then, taking into
consideration Egs. (2.12), (2.11), and (2.16), we obtain

P = Pof, (2.20)

V= —g 3L V2 aje "+ ae”"r) 6, 2.21)
where
2
g =en0(2na LV (a=7). (2.22)

Consequently, for a matrix element linking the states |b, 0)
and (a, j| in a dipole approximation in which the change in
field within the atom is ignored, we obtain the expression

. L \-1/2
Va, 58,0 =Xa,j|V]50) = -é’(“)i'c_)

In the limiting transition L — «, the sum in the inte-
grand of Eq. (2.19), considering Eq. (2.10), changes to the
integral

S‘\ 1V, ool

z—-—hm

(2.23)

_ ¢ L g%/oL
= S dx_2? =

z—ho ’

(2.24)

0

as we see, the dependence of the integral on the length of the
waveguide L drops out, and the limiting value of the integral
for L —» o is obtained automatically
_ e 1
I.—‘_ZE_de o (2 — Ao)

0

(2.24)’

This integral describes the interaction of the atom with the
oscillators. The contribution of each oscillator, which is pro-
portional to |V, ¢ |%, decreases as L increases, but the num-
ber of oscillators per unit interval x increases, so the total
interaction remains finite.

Let us consider the dependence of w on x (Eq. (2.5)

x=c1(0 —opt/?, o;=cKe, dx=dv-0[c(o?*— ol
(2.25)
and let us introduce the dimensionless frequencies
@ d
V=—g‘; VC'::_Q%’ d'\’:'—s;i, g-"hﬁy (2.26)

where £ is the frequency of transition of the atom; then the
integral in Eq. (2.24) acquires the form

I = g? S( dv

a91/2
2nkQ 3 c_v)(vz_vc) /2

(2.27)

In evaluating this integral one must consider the fact that £ is
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not a real number, because it lies on contour C (see Fig. 1).
The integral in Eq. (2.27) is evaluated using standard meth-
ods

=& (O (kS e o (e S
2nAQ (2 — vg )1/2 (t— vc)112 —(C+ vc)llz .

(2.28)

One can verify that the logarithmic expression, when v, #0,
does not go to zero or infinity for any finite {; consequently,
the branching points of the logarithm play no role. The
branching points of the roots are significant; the correct
choice of the sheet of the Riemann surface for roots is deter-
mined by a condition which proceeds from the form of the
integral in Eq. (2.27), and for real { < v, the integral should
be real, negative, and its modulus should decrease when
£ — — oo. An investigation shows that Eq. (2.28) has only
one branching point at { = v, and a cut for real { > v,. Es-
tablishing these circumstances from Eq. (2.28) is a rather
cumbersome matter, but they follow relatively easily from
the form of the integral in Eq. (2.27); indeed, this integral is
a Cauchy type integral, and it is known® that the Riemann
surfaces of these integrals, have a cut along the integration
contour, and the ends of this contour are branching points of
the integral, which is examined as a function of the complex
variable .

Actually, the integral in Eq. (2.27) has no singularities
forreal§ < v, and for complex §if Im & #0. Consequently, it
is an analytical function of { over the entire plane, with the
exception of the cut from £ = v, t0 £ — oo along the real axis.

At the upper edge of the cut (Im £10) the integral ac-
quires the following value (Re {—v,)

(MR SO M m] _
(& + )2~ (C — we)?

~ & 1
1= 2nAQ (cz_.\,g)l/z [n

(2.29)

if in this expression the sign of i is reversed, one obtains the
value of the integral at the lower edge of the cut (Im £ 10).
Equation (2.29) is a special case of the Sokhotskii—Plemel
formulas® for Cauchy type integrals. In many radiation
problems, in particular in the one we are examining, the inte-
gral I may be analytically continued beyond the cut. This
makes it possible to make broad use of the theory of func-
tions of a complex variable in the calculations.

For real { < v, the integral acquires the following value:

g —2 vc+c 1/2 _ ‘
I =5 _”—(vg—-g’)l’z arctg <_—VC—C ) Ve << Ves
(2.30)
g —1 n QL1+ v+ (1] —v )
TR (I p— 2 (1L v — (1T =)
L < — Vo (2.31)

Let us return to an examination of the matrix element of the
evolution operator of Eq. (2.13); we write it in the form

Usa, w0 (8) = —FS dge-t944F1 (2) (2.32)

and recall that integration is performed along contour C (see
Fig. 1).
As established above, the integral /, along with the inte-
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grand in Eq. (2.32), has a cut from v, to « along the real
axis. This cut lies within the contour C. Separating the inte-
gration in Eq. (2.32) into upper (u) and lower (d) parts of
the C contour, we obtain

o

o0 . k3
1 . e—ut/h 1 e—-zzt/h
U, 20 (t) = 33 SdZTm T Im S A
hoe bo hog bo

The denominators A% and A%, according to Eq. (2.29),

can be written in the form
AW =z— Ey—AE, (2) £ iT (),

where
Lt ho )2 + (2 — hio )2
(z + ho V2 — (2 — ho )2
(22 — 3?12

2
AE, (z) = 54—

r@)=——->t o
(Z) - 4 (z” _ hgm(z:)l/z .
Consequently, the matrix element U, ,, (¢) can be written
in the form

oo

Ubo, 1o (t) = _;Ii S dz

nog

T (2) e—izt/h
[s—E, — AE, )P+ T3 (2)

3 (2.33)

in this form the spectral structure of the matrix element is
clearly revealed. In particular it is obvious that the decay law
is not strictly exponential; if AE, and ', did not depend on z,
and the lower limit was equal to — o, the decay law would
be strictly exponential. As we will see later, however, the
deviation of the decay law from exponentiality is small.
The integration contour C may be deformed in different
ways on the Riemann surface of the integral expression; be-
cause of this the matrix element U,, ,, (#) may be written in
various forms. One of the methods of deformation is as fol-
lows. The function F({) does not have zeroes in the lower
half-plane and the exponent e~ ' falls rapidly as
Im {— — o (#>0), soby shifting the lower part of the con-
tour C downward (Fig. 4) one can verify that the integral
along this portion of the contour is equal to zero. An attempt
to shift the upper part of the contour C in the same way is not
successful, because for Re {> v, the contour will move to
another sheet of the Riemann surface of the function F({)
(Fig. 5); this function, as well as the integral / contained in
it, it has a branching point at { = v,_.. The upper part of con-
tour C can be deformed only to a contour consisting of two
parts (Fig. 6); contour C', which encloses the zero of the
function F(¢), that is, the pole of the integrand in Eq.
(2.13), and contour C ”, which encloses the branching point
of function F({) at { = v,. It should be stressed that the pole

/ c
Im§=0 — — Im §=0
lc Sk
y y
FIG. 4.
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Img=0

FIG. 5.

of the integrand in Eq. (2.33) [or the zero of F({)] lies on
another sheet of the Riemann surface, and not on the one
containing the lower part of contour C; thus the lower part of
contour C can be shifted downward without “grazing” the
poleat{ =¢,.

It is easy to show that function F(£) has a zero which
lies somewhat below the real axis if this function is written in
the form

2 ,
FO ==Y~ gapar G

&

(€ + v+ (¢ — )2
1 i

x[ SR (2:34)
We will examine the second term in this expression as a per-
turbation; then the unperturbed value of £, at which
F({) =0, is equal to unity, and in the first order of perturba-
tion the value of { can be sought in the form

where A and ¢
are small quantities. We substitute this value of £ into the
equation F({) = 0; one can then replace the term in paren-

theses, which is a perturbation, with the unperturbed quanti-
ty £, that is, unity:

. L )2 4 (1 — v
A _ R ( c c i —
g + iy « _vg)llz |: 1+ vc)1/2_ (1 _.vc)llz it 07
. B i (2.35)
T T(Rr e S (2.36)
Then we obtain
Al =~ —Rlinwv,, 9= —aR. (2.37)

We note that  is negative, that is, the root of F({) lies below
the real axis. However, this root lies on a sheet of the Rie-
mann surface of function F(¢{), which is the one containing
the lower part of contour C since to find it the expression
F({) for the upper edge of the cut was used; it was analytical-
ly continued beyond the cut. In this case, because perturba-
tion theory is used, the analytical continuation involves the
assumption that the perturbation in Eq. (2.33) is the same as

Img
Rel

c” ¢ Qg=gr-

FIG. 6.
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on the upper edge, that is, it is assumed that the perturbation
is virtually unchanged when ¢ is shifted downward by the
small quantity y.

For estimates we set

€2
ke

S~A=10"%cMm?2,

~ 1072, r2==10718cMm2,

vex 1078, 1,

then
R = 0,510, At = 3,5.10%, y = —1,6-10°19,

Aswill be seen below, the integral along the C * contour,
which encloses the branching point, describes small devia-
tions of the decay law from exponentiality. However, these
deviations are small, much smaller than can be observed ex-
perimentally. The main contribution to U, ,, (?) yields a
residue at point { = £,

Uro,vo (t) = exp [yQt + i (1 + AY) Qtl, (2.38)

that is, the decay law for the excited state of the atom is
found to be exponential to a high degree of accuracy.

The problem of the decay of the excited state of an atom
in a waveguide is thereby solved. One should note an impor-
tant feature of this solution. The solution is presented for the
sake of this feature, which is that the resolvent is now repre-
sented by the function F ~*(£), which has more complicat-
ed singularities than in the case of a discrete spectrum; now
the resolvent is a multivalued function of § (or z), has a
branching point and poles which do not lie on the real axis.
In the following section the origin of these singularities will
be traced in more detail. '

2.3. Limiting transition from a discrete spectrumto a
continuous spectrum

Let us trace on an analyzed example how the more com-
plex properties of the resolvent arise, in particular, its multi-
valued nature in the transition from a discrete spectrum to a
continuous spectrum. To do this we again examine the de-
nominator of the integrand in Eq. (2.19) for the case where
the waveguide is assumed to be limited in length, and the
spectrum of the entire system, consequently, is discrete.

The denominator of the integrand in Eq. (2.19) is writ-
ten in the form

v L
RQY () = hQ [(c—i)—% ﬁg—g{p—)]
7 J

=hQ[(;_1)—DZml__W],
f] J

(2.39)

where D = RAL ~—'. Figure 6 gives graphs of the first and
second terms in square brackets in Eq. (2.19). The intersec-
tions of these graphs correspond to the roots of the function

Y(&)
Y (&) = 0. (2.40)

As we see, the roots of function Y(£) are situated exclusively
on the real axis, and the function Y (£) itself is single-valued.
Consequently, the integrand in Eq. (2.19) also is a single-
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valued function of § and has only poles, which are all located
on the real axis.

The Riemann surface of the function Y(§), as in any
single-valued function, has a single sheet; it retains its single
sheet nature at any stage of the limiting transition L — o,
that s, for any density of the spectrum of eigenfrequencies of
the waveguide and of the “picket fence” of the poles of the
integrand in Eq. (2.13) on the real axis. Above we saw that
for a waveguide of infinite length the function F(§), which is
the limiting value of Y(¢), is multivalued, and its Riemann
surface has multiple sheets; consequently, the multivalued
nature of F({) and the multiplicity of the sheets of its Rie-
mann surface arise discontinuously “at the end” of the limit-
ing transition L — «. Usually that sheet of the Riemann sur-
face of the function F({), which is obtained after the limiting
transition from the single sheet of the Riemann surface of the
function Y(¢) is called a physical sheet. Additional sheets,
which may be obtained after the limiting transition by ana-
lytically continuing the function F({) beyond the cut, are
called nonphysical sheets. Thus, one can say that nonphysi-
cal sheets of the Riemann surface arise abruptly in the limit-
ing transition; correspondingly, the pole on one of the non-
physical sheets also arises discontinuously when = ¢,,.

Abrupt changes in the process of the limiting transition
are exceptional in physics; usually there are special reasons
for such changes, and this is also true for the case we are
examining. We shall show that the physical quantities in the
case we are examining attain their limiting values without
abrupt jumps. The abrupt jump occurs only in the calcula-
tion, in the mathematical formalism.

And so, we turn again to the matrix element in Eq.
(2.19). The main contribution to it is made by residues at the
roots near { = 1. Indeed, the value of the residue is defined
by the derivative Y /d¢, which is taken in the appropriate
root of the denominator; the derivative Y /d¢ is the sum of
the derivatives of the first and second terms in Eq. (2.39).
The derivative of the first term is equal to unity; the deriva-
tive of the second term in the root of Y (&) goes to infinity as
the root moves away from § = 1, as can be seen in Fig. 7.
Consequently, the residues taken at the roots of Y({) that
are rather distant from § = 1, will be small, and will not
make a noticeable contribution to the result.

The first term in the sum in Eq. (2.39), the frequency
v;, changes only slightly as j changes in that region
v; ~& = 1, which makes the main contribution; thus, we will
set it equal to unity. The function ¥ (&) acquires the follow-
ing form

7
-1,D
¢ ’/EJ':”J' )

<

—_—

FIG. 7.
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1

E'_Vj

YO=¢—1—D )] (2.41)
J

Inthe region v; ~§ = 1 the resonant frequencies of the wave-
guide are virtually uniformly distributed, so one can assume

v=1+M(jh ), T=0410,42..., (242)
consequently, for Y({) we obtain the expression
Y@ =¢—0-03 [¢—n—r2(j+ )]
7

(2.43)

Combining the terms corresponding to j and —j— 1 in
pairs, we obtain

_ \> 2z —1)
YO=E—0)—D ) == prp ey
Jj=0

= (-—1)+ aR tg[aA1L (T — 1)], (2.44)

since’

oo

ul 2z
g = Lﬁ WO TR ==
Let us calculate the derivative of ¥(£). As indicated it
defines the value of the residue at the root of ¥(£) in the
integral in Eq. (2.19)
LA

=1+ m2RA L g [ah L (§ — 1)]

=1L RAIL {1 + tg2 [ 1L (L — 1))

since the second term is proportional to L, as L — o the first
unit in this expression can be ignored. Finally, then, we ob-
tain
i@Y{ L= mERAIL {4 + tg? [N — D]

@ 15=bn

= (RMTL[En—1)* + (nR)*], (2.45)

because in the roots, according to Eqs. (2.40) and (2.44)
there is the equality

tg [(mA7L (L — D) = — (@R (G — 1),
where 7 is the number of the root.

Consequently, after integration in Eq. (2.19) along the
contour C we obtain

te arg
Uso, bo () = ()~ ng_'io TV,

o0t

= RAL ) ) e

as we see, the spectrum of the matrix element U, ,, (¢) hasa
Lorentzian form. It is more accurate to say that the inte-
grand in the following integral has a Lorentzian form

(2.46)

o0

’ dn emiaLt
) g e

for which the sum in Eq. (2.46) is an integral sum. Conse-

177 Sov. Phys. Usp. 34 (2), February 1991

quently, the sum is approximately equal to the integral for
large L.

Let us turn again to Fig. 7 and examine the position of
the roots of Y (&), that is, the intersections of the two graphs
in this figure. If the root is far from { = 1, then it is close to
the corresponding resonance of the waveguide v;; this oc-
curs when |j|  7RA ~'L. Correspondingly, in these regions
the position of the roots is almost strictly equidistant. As the
roots approach { = 1 the distance between them gradually
decreases and reaches a minimum when the roots are close to
¢ = 1. Then it is easy to see that in the region

—aRML < j < nRAIL

one extra root appears compared with the number of wave-
guide resonances v; in this region; thus, the average distance
between roots in this region differs from the distance
between the roots outside of this region by approximately
A’Z
“Z2aRL*
which is a quantity of the second order of smallness in terms
of the parameter A /L. This leads to the thought that the
matrix element U, ,, can be calculated if it is assumed that
the roots &, are equidistant, and if small deviations from
equidistance are considered as a perturbation.
Thus, let the roots be equidistant

Lo=1Cn=1-+nkLY (2.47)

obviously, the zeroroot corresponds to §, = 1. Then we have

—+oo
_ . —iQ ALYyt
Gt = a0 31 Bl
. nRLe7 ' o exp [— 2minct/L]
T2k }_, (n)® = (W2RAMILYE (2.48)
One can verify that the sum is given by
= o—ina Tt
2. T
n=—oc
1 ¢ TU-T) 4 JT¢-T)
=T T o for 0 <27, (2.49)

— e

that is, it is an expansion into a Fourier series of a periodic
function which coincides in the period 27 with the catenary
(Fig. 8). Consequently, for U, ,, (¢) when 0<t<2T, we ob-
tain the expression

Una:3,0(t)

FIG. 8.
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iat e—T(t—T)+eP(t—T) Pty e—rt+erl~2I‘T

Ubo, vo &= F1o) AT _ - TT I Ye) 1 2T ’
(2.50)

where
I = L/2¢, T =aQR. (2.51)

In the limit T— o (L — ), for finite # we have

Uvo, bo t) = L e-Tt—iq,

T (2.52)

an exponential decay as obtained earlier.

Let us now give an estimate of those corrections to
which we are led by a small deviation in the position of the
roots of Y(£) from equidistance. Let us examine the differ-
ence between the exact and approximate expressions of Eq.
(2.46)

AU, 5o (t) = D (RO)™?

- . )
y Sj [ -0t B [t
Lo (€, — 12+ (nR)? (& —1y2 + (nRY2 |

(2.53)

We expand the pre-exponential factor in the first term into a
series in terms of small deviations of the roots from equidis-
tant distribution, and we confine ourselves to the first ap-
proximation

+oo )
R .03 (0) -1QAL ¢

AU, wo () = DY 31 ot e = =L
- (Qg?)—i)"—{—(nﬂ)ﬁ

n=—co

9,9t €@ —1) AL, 1
[(CO —1)2 + (nR)?P

(2.54)

The numerator of the first term can be reduced to the form
— 259 i (% QACnt) .
Since

max]Acﬂ]zR‘:‘( r )2,

nl

for finite ¢, the numerator of the first term is a quantity of the
order of (1 /L)?. Since the numerator of the second term is
proportional to a quantity of this same order of smallness
A¢, , both terms are quantities of the second order of small-
ness relative to the parameter A /L.

In the sumin Eq. (2.53) the number of significant terms
is approximately equal to

2nRATIL,

so this sum is of the order of A /L. Consequently, corrections
to the exponential law, Eq. (2.52), which are due to the
nonequidistance of the spectrum, decrease inversely propor-
tionally to L as the length of the waveguide increases.
Thus, the properties of the function F ~ (&) which lead
to exponential decay, such as the existence of nonphysical
sheets of the Riemann surface, a pole on this surface, etc.,
appear even before the end of the limiting transition L — oo,
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when the spectrum is already very dense, but is still, as ini-
tially, discrete, and the function ¥ ~!(¢{) is single-valued.
Indeed, as we see, in the process of the limiting transition the
decay law gradually approximates an exponential law, and
its spectrum becomes Lorentzian. A Lorentz spectrum
means that the pole lies next to the real axis. Figuratively
speaking, the “picket fence” of poles of the function
Y ~'(£), as it becomes more dense in the process of the
limiting transition L — o, becomes gradually transparent,
and behind it there appears a nonphysical sheet of the Rie-
mann surface of the function F~ ! (£) with the singularities
of this function lying on it.

One should also note that the pre-limit and post-limit
behavior of the matrix element U,,,, (#) are qualitatively
different. Before the transition to the limit U, ,, (¢) behaves
quasiperiodically, that is, in particular it approximately pe-
riodically repeats its initial value, which is equal to unity,
with any pre-assigned accuracy. This means that excitation
is quasiperiodically concentrated in the atom, in its excited
state. This quasi-periodic behavior of the system is a mani-
festation of the well-known Poincaré cycle for quantum sys-
tems. As the spectrum condenses the length of the Poincaré
cycle increases, and at the limit L = o becomes infinite: the
excitation never returns to the atom. In other words, when
L - o0, the “reversibility” present for any finite L disap-

~ pears. This is a characteristic of the continuous spectrum,

which distinguishes it qualitatively from a discrete spec-
trum. It is only natural, therefore, that the mathematical
descriptions of the pre-limit and post-limit behavior of
Upouo (1) differ greatly.

2.4.Decay of an excited state of an atomin free space

As already noted, an electromagnetic field in free space
has a continuous frequency spectrum, that is, waves of any
frequency may be present in its spectrum. Systems with a
continuous spectrum are examined in this paper as the limit-
ing case of systems with a discrete spectrum in which the
spectrum, depending on some parameter, becomes ever
more dense. Thus, we will assume that in radiation problems
the electromagnetic field and the radiating object (in this
case, the radiating atom) are located in some cavity (resona-
tor) of sufficiently large volume having resonant properties,
that is, having a discrete spectrum. Then using the expres-
sions for a discrete spectrum, we make the volume of the
cavity tend to infinity, changing it in this way to a contin-

" uous spectrum. The interaction of the field of each individ-

ual mode (resonance) with the atom decreases, since the
portion of this field in the volume of the atom decreases;
however, the number of modes with which the atom inter-
acts increases, so that the interaction with the field as a
whole remains finite.

The simplest resonator is one in the form of a cube, with
its own field subject to so-called periodic boundary condi-
tions. Such a resonator has been repeatedly described in the
literature in which radiation problems are examined® and, in
particular, in the description of the radiation of an absolute
blackbody.® Therefore we recall briefly only the basic facts
associated with the description of such a resonator.

The vector potential operator of the quantized electro-
magnetic field of a cubic cavity with side L has the form
(V=L?>)
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_ 2nke? N2 v ikr ik, r
A(r)—aZ(msv | (@™ + acte, st

where the subscript s enumerates the fundamental oscilla-
tions (or oscillators) of the cavity, the wave vectors of which
assume the values

2nl! ans Znns
k=171 }

(2.55)
for integer /,, m,, and n,. The frequency of the fundamental
waves is determined by the condition

2
0, = T (63 + mi - nlye.

(2.56)

The fundamental waves may differ from each other not only
in frequency and direction of the wave vector k, but also in
polarization. Two transverse and mutually orthogonal po-
larizations correspond to each frequency and wave vector
(Coulomb gauge).

e1,2k = 01

Summation over all these oscillators is also performed in Eq.
(2.54).

The operators for the creation and annihilation of pho-
tons a;* and a, obey the commutation relation

ee, = 0. (2.57)

[as; a:’] = O3

(2.58)

and the normalization constant in the vector potential is
chosen so that the energy of the field is equal to
Hy = Jho,aia,. (2.59)
The states of the atomic Hamiltonian H, will be as-
sumed to be known, and, without specifying them, we will
denote them as |g). Thus the stationary states of the unper-
turbed Hamiltonian of the full system, atom + electromag-
netic field, can be written in the form
D P n® L,

[7> =lginy’, nj”, nj (2.60)

where the first subscript letter, g; indicates the state of the
atom, and the integer n{*’ is equal to the number of photons
in the k th oscillator. The energy of such a state is equal to

E; :ng‘*'%”;'k)ﬁwk. (2.61)

The process of spontaneous radiation corresponds to
the initial state

|id>=186;0,0,0, ... =|b, 0, (2.62)

that is, in the initial time the atom is in an excited state |6 ),
and photons are absent in all the oscillators |0) = |0,0,0,...).
Perturbation in the Hamiltonian consists of two terms

H=v4+w. (2.63)

The first term defines the interaction of the quantum system
(in this case, the atom) with the electromagnetic field, and
has the form

e2?

V= 5 PAG) o+ e A 0

(2.64)

below the main role belongs to the first term of this sum, the
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second will be omitted (discussion of the role of the second
term of this sum may be found, for example, in Ref. 10).
The second term in the perturbation (2.63) is called a
renormalization counterterm and has the form
Wwo=-L

pm o (2.65)

that is, it has the same structure as the kinetic energy of the
electron. The inclusion of this term in Eq. (2.63) is the initial
stage of the process of mass renormalization. The need for
this process arises due to the fact that the interaction in Eq.
(2.64) of the atom with a transverse electromagnetic field
leads to large corrections to the energy of the states of the
atoms, which, however, have the structure of kinetic energy
and thus can be interpreted as a change in the mass of the
electron. This terminology is frequently used. The quantity
M, which is defined by the equation

1

=t (2.66)
is called the bare mass of the electron, and the mass m is the
true or observed mass of the electron. How u should be cho-
sen will be made clear later.

A full program of renormalizations includes also renor-
malization of the charge and may be consistently implemen-
ted only in the framework of relativistic quantum electrody-
namics. Here we will confine ourselves to only the initial
stage of mass renormalization in the framework of nonrela-
tivistic theory; fortunately, this requires borrowing of only
one parameter from relativistic theory, the cut-off parameter
or limit frequency up to which the electron interacts effec-
tively with the electromagnetic field. Bethe!! was the first to
perform such a nonrelativistic renormalization.

Now we have all the necessary information to study the
process of spontaneous radiation of an atom in free space.
The decay law for the state [Eq. (2.62)] is described by the
matrix element

Ubo, bo (t) = <b’ 0 I U (t) I b1 0>’ (267)
where U(¢) is the evolution operator of the system. For this
matrix element, according to Eq. (2.13), we have the expres-
sion

Uso, o0 (t) = g § dze" 4/ R, 1y (2) (2.68)
¢
where, according to Eq. (1.19),
dA[V
Rup, pp = — — 222 (2.69)

Let us first study the denominator of this expression, which
is equal, according to Eq. (1.35), to

A(z) =H(z—E?)——kakH (z— E))
4 Ik
1
+ 5 y ViVis—=VisVi) I G—ED+ ..
o7 1K, 3

(2.70)
As already stated, perturbation in the Hamiltonian consists
of two terms. It will be shown later that perturbation ¥ has
nondiagonal matrix elements which are proportional to the
interaction constant (equal to the square root of the fine
structure constant ¢’/#ic), and perturbation W has diagonal

V. P. Bykov and V. I. Tatarskir 179

| o -



matrix elements proportional to the square of the interaction
constant (1/u~e*/#ic). If in Eq. (2.70) we confine our-
selves to second-order terms in the interaction constant,
then the equation acquires the following form

A<z>=fl[<z—E?>—):(m

k

1 ViV ik o
+ ) - )H(z EY...

] I3k

where the first term is of zero order in the interaction con-
stant and the second, is the sum of two terms of second order
in this constant. Thus, the denominator in Eq. (2.69) can be
written in the form

A(z)._—IIAI(Z)_—:llliz—'L?_ ([ll ‘5_ s ljé;) )
; ; 7 zZ— i

For the numerator in R, ,0, according to Eq. (1.18),
we have the expression

9A (2) 0
Dbo,b0=_m= I{ [Z_Et
i7£b,
V..V,
—(vu+ X))
7 7

(2.72)

Consequently, the matrix element of Eq. (2.68) is found to
be equal to

1 e—izl/h
Ubo'bO(t)Z—ZﬂTSdz—Ebo—(z)—’ (2.73)
¢
where
- V. iV
Apop =2 — Epy— (Vbo. b0+ L—‘;“;’ E’g 2 ) L (2.74)
3

As we can see, all the factors in the denominator of Eq.
(2.71), except for one, cancel out the corresponding factors
‘of the numerator. It is necessary here to make two com-
ments. First, this cancellation is approximate, because the
numerator has, strictly speaking, other higher-order terms
of the interaction constant. If they were considered, then
they would not be cancelled and it would be necessary to
consider the poles of the integrand in Eq. (2.68) due to other
factors in A (z); however, the residues at these poles would
be small, because the main term in the numerator of Eq.
(2.72) is equal to zero due to the presence in it of the same
terms that are in the denominator. This justifies the cancella-
tion performed above.

Second, we note that the factor remaining after the can-
cellation, A,, (z) is characteristic specifically for the prob-
lem of spontaneous radiation; in another problem, for exam-
ple, in the study of induced radiation, the main role is played
by other factors in A(z).

Let us now turn to the evaluation and study of the de-
nominator of Eq. (2.74) in the integrand of Eq. (2.73). The
first term in parentheses in Eq. (2.74) is a diagonal matrix
element of the second term in the perturbation of Eq. (2.63).
Taking Eq. (2.65) into consideration, we obtain
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Vbo.b0=<b’0]W]b,0)=%<blp2lb); (2.75)

and we note that this matrix element does not depend on the
state of the field. The matrix element of the square of the
momentum is written in the form

<b|p21b>=§<blp|g><glp|b> =§1pbg|2

and for V0,0 We obtain the expression

1
Vbo,bo=-—2p E | Poe |2
g

To seek the second term in parentheses in Eq. (2.74)
one must know the nondiagonal matrix elements of the oper-
ator

(2.76)

°_ pA(r).

me

Ve=—

(2.77)

For a matrix element ¥V, ,; we obtain the expressions

. 2 /2 ik,r
Voo.ss = 5,01V g 1> =~ () (0™ gy
J
(2.78)

itis easy to see that these matrix elements are nonzero only in
the case when in the ket-state in one of the oscillators (in the
Jjth oscillator) contains one photon, because the interaction
is linear in the creation and annihilation operators of pho-
tons.

Let us discuss the question of dipole approximation. At
first glance it appears that in the sum

g1 ¥\ Voo, 51 ¢i, bo
2 Iy
&

ik,r -ik,r
neth ? ((pej)e ! )bg(e ! (Pej))gb
mV ol w;(z—E, —no;)

(2.79)

the exponential becomes significant when the frequency in-
creases, beginning with wavelengths comparable with the
Bohr radius (~10~% cm). In other words, it is assumed
that the dipole approximation in which the exponential in
Eq. (2.78) is replaced by unity, becomes unsuitable for
wavelengths shorter than the Bohr radius. However, with
respect to Eq. (2.79) this is not so.

Indeed, first, we note that in Eq. (2.79) only those val-
ues of g are significant for which the energies E, and E, are
close, because as E, increases with respect to E,, the matrix
elements of Eq. (2.78) decrease rather rapidly, since the |g)
states become ever more widely distributed. As a result E,
cannot take on values which are too large.

Second, the frequencies which correspond to wave-
lengths less than the Bohr radius are so high that #iw is ap-
proximately a factor of 10* larger than E_; in the denomina-
tor of Eq. (2.80) one can ignore the term E, compared to #iw;
consequently, the denominator becomes independent of the
subscript g and in the numerator we obtain the expression

0= g { ((pe;) eik’r)bg 2
- %} b (pey) e™ ™ | g <g | e ™" (pej) | b)-

Summation over g yields the identity operator, and for o we
obtain the expression
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o = (b (pe,) e™iTe ™I (pe;) | 6> = %(blpejlﬁ Cg|pe; |6
= %] (pe;)og I*-

Consequently, for all values of w, the exponential in Eq.
(2.79) can be omitted and this expression is found to be
equal to
neth \ (peJ )bg ‘2

mV jo.z—E,—ha) °
P ‘ )

S =

(2.80)

In this expression it is assumed that there is summation over
all the field oscillators, including those which do not differ in
their energy E J;, but differ only in the direction of propaga-
tion of the corresponding waves and in their polarizations.
Thus, summing the squares of the moduli in Eq. (2.78) over
polarizations and directions

262 2e2h
> IVbo,gfIZ%ma—IPbgl kdk = 55 | pg [P @ do

polariz.
direct.

Taking into account the fact that the energy of the state
EY isequalto EY; = E, + #iw;, we obtain for the sum S the
expression

®Omax

e wdo
= Indm lebgl Z—E —ho °

As already noted, the interaction of the electron with

the field is described by the matrix element in Eq. (2.78)

only to some limit frequency ®,,,, and then quickly de-

creases; thus, integration in Eq. (2.81) is done to frequency

sy - Bethe!! has shown that this frequency corresponds to
the Compton wavelength

(2.81)

mc?

(~ 1022 c71y; (2.82)

Omax =
at energies
BOmax = me?

the electron becomes a relativistic particle, so it is natural
that nonrelativistic expressions become unsuitable. The pa-
rameter @, is the only parameter which must be drawn
from consistent relativistic theory in order that reasonable
results should be obtained in the nonrelativistic theory.
Now, joining S and V4,0 wWe assume that in the latter

Omax

A 2 do. (2.83)
1%

As a result we obtain

Vbo, bo + S

=*— m“ Z“’bgl (

®max

du)—\— S dw-sTg—_?)
0

°§/~E

where a = ¢?/#ic is the fine structure constant, { = z/# and
Q, = E_/#. Joining the integrals in parentheses, we obtain

for this sum the expression
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LR

Voo, b0 + S
©max

= ylpbflzs—"gg) S do

an m% —Q,—w’

(2.84)

[

It is easy to see that the integral in Eq. (2.84) diverges
logarithmically as ., — o, while the integral in Eq.
(2.81), under the same conditions, diverges linearly, that is,
more strongly. This circumstance and also the assumption,
which was proven later, that in relativistic theory the inte-
gral in Eq. (2.84) will converge, were Bethe’s motive for
introducing the term W (Eq. (2.65)) into the perturbation
when u is defined by Eq. (2.83), which is the first step in
mass renormalization.

The properties of the integral in Eq. (2.84) play an im-
portant role, so we will present the basic relevant mathemat-
ical facts.

In mathematics, an integral of the form
b

1@ = doL2

o) (2.85)

a

is called a Cauchy integral.® This integral defines an analyti-
cal function of a complex variable £. The function does not
have any singularities and is single-valued over the entire
complex plane of this variable, and decreases and |§ |- .
As ¢ approaches the segment (a,b) from above or below
(Fig. 9) the function 7({) tends to define limiting values, for
which there exist very useful relations which are known as
the Sokhotskii-Plemel’ relations

b
F(o
m § a0 0L = inF (@) + gdm X 13
a&;‘:&b
Im§>0

where w, belongs to the segment (a,b) lying on the real axis,
and the integral on the right side is understood in the sense of
principal value. As § tends to the same value w, from below
(Im ¢ <0), the limiting value of the integral will be differ-
ent, the sign in front of the imaginary unity will be negative.

Thus, the function 7({) has a cut along the segment
(a,b), along which the integration is done. Strictly speaking,
to satisfy the Sokhotskii—Plemel’ relations it is necessary for
the function F(w) to satisfy a special condition;® however,
for all functions encountered in radiation problems, this
condition is more than satisfied. For many simple functions
F(w) the integral in Eq. (2.85) may be evaluated explicitly
(for example, for F(w) = 1, see also the case examined in
section 2); in such cases the function 7({) may be analytical-
ly continued beyond the cut. Consequently, the function
I(£) may be multivalued; the sheet of the Riemann surface
of this function in which it goes to zero when |{|— o is

1

\ a T\wg b Rel

FIG. 9.
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called the physical sheet, and the others are called nonphysi-
cal sheets.
Let us return to a study of the integral in Eq. (2.84)

Om

I (0) = S do !
0

0—(L— ) ° (2.87)
This integral, as a function of the complex variable £, has a
cut along the segment (£}, Q,; + ®,,), which lies on the real
axis. For real { <), this function is equal to

1g=1n(1_§_f";}g_)

and for £ which have a large modulus and are negative it
decreases approximately as

(2.88)

Iy Q) ~ giut_n_g

In the interval Q, <{ < £, + @,,, at the upper edge of the
cut (Im £ = + 0), this function is equal to

(E— — o).

I,0) = in + In (28— —1); (2.89)

its value at the lower edge differs from Eq. (2.89) only in the
sign of the imaginary unity. At § > Q, + @,, the function in
Eq. (2.87) is equal to

o) = n(1— 22

and for large ¢ its modulus decreases approximately as

(2.90)
By
IE (C) -~ T — gg

Thus, taking Eq. (2.89) into consideration, we obtain
for A, , in the interval 0 < z < fiw,, the following expression

| Py I .
Bag = 2— Epg— - Y 125z — B 0 (8, — E)
g

ho,
n _1}].
TS

We will now show that this expression goes to zero for some
value of z lying on the nonphysical sheet of the Riemann
surface A, , (z) near the value z = E, ;a. The desired value of
z will be assumed to be equal to

+1n (2.91)

2y = By AE, — iTy,| (2.92)

where AE, and I',, are small quantities subject to determina-
tion. We substitute this value of zinto A, and set it equal to
zero; thus, in the first term in A, , we retain the corrections
AE, and I',,; in the second term (of the second order in the
interaction constant) it is sufficient to assume that z, = E, ;.
Then, setting the real and imaginary parts individually equal
to zero, we obtain

a |Pbg|a ko
AE,,=—W\%J i (Es — Eg) In | - —1].
(2.93)
© | Py B, —Ep)
T, =.%2 _.i‘;".'#_ﬁ_ , (2.94)

g

in the latter equation summing is done only over states |g)
for which E, — E, >0, that is, those lying at a lower energy
than {b ), because for the remaining states I, ({) does not
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contain an imaginary part (see Eq. (2.88)).

The value of AE, defines the shift in the energy of state
|6,0) and is usually called a Lamb shift; proceeding from Eq.
(2.93), Bethe obtained the following approximate expres-
sion for the Lamb shift of level E,

2e85¥% (0) 2
AE, = — 32 lnlngij’a),

(2.95)

where ¥, (0) is the amplitude of the wave function at the
nucleus and

mc?

(ln IEg_'Eb I— )av
is the average value of the logarithm over all states |g). It
follows from this expression that in this approximation the
Lamb shift is nonzero only for S states in which the wave
function does not vanish at the nucleus.

For the 28 state of the hydrogen atom
306

Vis(0) = gors
and the average value of the logarithm, according to Bethe,
is equal to

1 —ﬂi’__) ~17,63;
(nlEg—"Ezsl av 763’

consequently, for the Lamb shift of the 2.5 state we obtain the
expression

7,63  elom
12n  c3k5

AEys = — (2.96)

On being expressed in frequency units, this Lamb shift is
found to be approximately equal to 1040 MHz, which is very
close to the experimental value.

The coefficient of attenuation 2I'/#% (it also has the
sense of the probability of transition per unit time) can be
written in the form

203
_ 4 eQbalrba|2 :iez Ity 2

0, (297)

where the following known expression is used
Poa =<b|p|a) = imQy, <b|t[a) = imQy,ty,

and it is assumed that below the state |b ) there lies only one
state, |a). The quantity #/2T is the decay half-life of the
excitation.

Thus, it has been established that the integrand in Eq.
(2.74) has a pole at some z = z,. We note that this pole lies
on a nonphysical sheet of the Riemann surface of the func-
tion A,, (2). Indeed, Im z, = — iT", <0, while to construct
the equation A, (z) =0 a value of I, (§) was used which
belongs to the upper edge of the cut; this means that the
function A, (z) is analytically continued beyond the cut,
that is, into a nonphysical sheet.

The pole at z = z, is not the only singularity of the inte-
grand in Eq. (2.74); it also has branching points at the same
points as in the integrals I, (z/#).

Returning to the matrix element in Eq. (2.73)

1 oA
Uso, b0 (t) = WS dze~t/MAgg, (2.98)

(&

we note first that the lower part of contour C may be shifted
downward in the complex plane, where, due to the presence
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of an exponential the integral expression decreases quickly;
consequently, the integral along the lower part of the C con-
tour simply equals zero. The upper part of the contour C can
be deformed only as shown in Fig. 10, since when it is shifted
downward it encounters branching points. It is moved
between these points along the nonphysical sheet of the Rie-
mann surface where it also encounters a pole at z = z,.

The main contribution to the matrix element U, (£)
is made by the residue at the pole when z = z,

oxp {—i[(Ey, + AE,)t] — Ty th~t}

Ubo, bo (t) = (aAbO/az)l=lb

(2.99)

As we see, this part of the matrix element describes the expo-
nential decay of excitation. The derivative

04, a , Ry,
( 52 )Z:zb — 3n Z [lﬂ + In (——‘——'Eb_ Eg -—1)

13
Ry,
+ ﬁmm - (Eb - Eg) ]

is close to unity. Without calculating it in detail, we note
only that in the second term, in addition to the small param-
eter a (the fine structure constant) there is a small param-
eter

| Ppg P
mec?

=1

I Pyg I
mac?

(2ra)?
7z

(~ 31079,

which is approximately equal to the square of the ratio of the
Bohr radius to the radiated wavelength. Then it is clear that
the contributions from the integrals along the contours C “
and C"” are small.

Theintegral along contour C " is a small deviation of the
decay law from exponentiality, which was first noted by L.
A. Khalfin'? and which has been discussed numerous times
in the literature.'® Although this part is small in comparison
to unity, at large ¢ it decreases slowly according to a power
law and becomes greater than the part of U’ which decreases
exponentially.

The integral along the contour C ” can be written in the
form of a difference

Uso, oo (t) = 5 '§d AR ¥ P (2.100)
b0, bo = Ton (\o P Agg ) ; Y Ag;)) ®) ) 1] .
where p is the modulus of { (p = —i{) on contour C”,

A§R (p) is the value of A{ (z) on the left side of the contour
C”,and A{7) (p) is the value of this function on the right side
of this contour. At large ¢ in these integrals it is sufficient to
consider values of A{) (o) and A7 (p) at small p. In this case
the difference

| Py I?

mic?

. 2
AR (0) — AR (o) = 5=

kp
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is proportional top, and as z— 0, the product A{7} (p) A}

tends to the constant E ;3, which is equal to

(p)

E;zo = Ebo

’ pbg |2

a
+ 3n m2?

E, [me (By— Eg)+ In
Z=a

hopn, L1 )

the subscript a denotes the ground state of the atom, whose
energy is equal to zero.

Consequently, the part of the matrix element U}, ,,
(Eq. (2.73)) due to the contour C "

o lpba (2

- h‘a
U, bo(t) = 3% T mick

2.8 !
Izbot

(2.101)

actually decreases according to a power law at large ¢.

The contour C " goes around the branching point of the
term in A,, which corresponds to g = a. Other terms corre-
sponding to other g also have branching points at z=E,.
One such branching point at z = E, together with contour
C", which goes around it, is shown in Fig. 9. In the majority
of cases the integral along contour C” is small. It may be-
come significant when E,, is close to E,, that is, when levels
intersect; however, this case, although it may be easily exam-
ined using the resolvent method, is all the same a special case
and will not be examined in this article.

Integrals in A, are taken along a finite segment of the
real axis from E, to E, + fiw,,; consequently, as a function
of z they have branching points not only at the left end of the
integration segment, but also on its right end. One such
branching point and the integration contour which goes
aroundit, C”""’, are shownin Fig. 9. The integrals along these
contours are in virtually all cases negligibly small; what is
more significant is that a consideration of these integrals lies
beyond the limits of applicability of nonrelativistic theory.
Indeed, the right end of the integration segment corresponds
to those energies at which the movement of an electron be-
comes relativistic, and its description requires a full measure
of quantum electrodynamics. Fortunately, these corrections
to the optical problems which interest us in this article are
small.

Although in this section much attention has been devot-
ed to calculation of the Lamb shift (basically, this was done
to show that there is nothing complex in this problem), only
in rare cases is knowledge of this shift significant; in the
majority of optical problems, the Lamb shift can be assumed
to be equal to zero.

CONCLUSION

The problems examined in this paper on radiation in a
waveguide and in free space show that the resolvent method
is very effective for the solution of radiation problems, espe-
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cially when used in combination with the theory of functions
of a complex variable. It can be applied to the problem of the
intersection of levels taking attenuation into account, to the
problem of the discovery of new channels of decay, to the
investigation of induced radiation in complex cases, to the
problem of the interaction of radiating atoms, etc. In our
opinion the resolvent method is the most effective method of
solving nonstationary problems in quantum electrodynam-
ics selected from those based on perturbation theory.

One of the urgent tasks in the development of this meth-
odis theinclusion in it of a consistent renormalization proce-
dure.
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