
Features of metastable states in liquid-vapor phase transitions
V.G. Boiko, Kh.-I. Mogel', V. M. Sysoev, and A. V. Chalyi

Institute of Surface Chemistry of the Academy of Sciences of the Ukrainian SSR
T. G. Shevchenko State University, Kiev
A. A. Bogomolets Medical Institute, Kiev
(Submitted 9 April 1990; resubmitted 8 October 1990)
Usp. Fiz. Nauk 161,77-111 (February 1991)

The current state of the physics of metastable liquid systems is reviewed. The experimental data
and results of theoretical calculations of the properties of liquids in the metastable region near the
binodal, including the critical point, are discussed. A classification of metastable states is
presented. The criteria for the possible depth of intrusion into the metastable region are discussed,
and their relation to the Ginzburg criterion known in the theory of critical phenomena is studied.
Especial attention is paid to the problem of the equation of state. A comparative analysis is
performed of the equations of state in the metastable region, both far from the critical point and in
its close vicinity. The results are discussed of studies devoted to investigating metastable systems
(liquids and liquid crystals) near the spinodal. The problem is discussed of the appearance and
development of fractal structures in the metastable region.

1. INTRODUCTION

The study of the physical properties of substances in a
metastable state pertains to the general problem of phase
transformations and is one of the most important and press-
ing problems in modern physics. Metastable states arise in
first-order phase transitions, examples of which are such
widespread phenomena as evaporation, condensation, or
crystallization. Examples of processes of another nature in
which metastable states can be realized are phase transitions
in nuclear matter and in a quark-gluon plasma, the infla-
tional expansion of the Universe at the early stages of its
evolution, and the condensation and decomposition of an
electron-hole liquid in semiconductors. Metastable states
arise in biological and chemically reacting systems far from
the state of thermodynamic equilibrium near the threshold
of self-organization. In dynamic systems described by Lor-
entz-type models, metastable chaotic states are also formed
for certain values of the parameters of the model. It has been
recently found that metastable states have an important role
in the onset of high-temperature superconductivity in com-
pounds of the 1-2-3 type, where the problem of labile oxygen
is important.

One of the fundamental properties of metastable states
is their finite lifetime. The decay of metastable states is
caused by the fluctuational formation and growth of nuclei
of a competing phase. Thus the thermophysical properties,
stability, and lifetime of metastable states are closely con-
nected with the nature of the fluctuation processes that lead
to development of the new phase.

In recent years interest has grown considerably in
studying the nature of metastable states and first-order
phase transitions. In many ways this has happened owing to
the overall progress that was achieved during the 70s in the
physics of second-order phase transitions. The latter science,
based on the fundamental ideas of scale invariance and the
renormalization group, and also on the results of a large
number of precision experiments, attained, following the
studies of A. Z. Patashinskii and V. L. Pokrovskii, and of C.
T. R. Wilson, a state of "respectability" (in the expression of
K. Domb). This appeared to mark the logical culmination of

the hundred-year cycle of development of this science. The
ideas and methods that have proved themselves so well in
creating the fluctuation theory of second-order phase transi-
tions are being used ever more intensively now for studying
the features of first-order phase transitions and the nature of
metastable states that arise here.

Up to now a very considerable experimental and theo-
retical material has been amassed on studies of superheated
and supercooled liquids, metastable polymeric and liquid-
crystalline systems, and also metallic alloys and amorphous
alloys.

The aim of this review is to discuss the properties of
liquids in the metastable region in the liquid-vapor phase
transition. This article studies the criteria of stability of
metastable states and their relationship to the Ginzburg cri-
terion known in the theory of critical phenomena. The possi-
bility is discussed of using the equation of state to describe
the thermophysical properties of liquids in different parts of
the metastable region. Near the binodal, where the symme-
try of the metastable liquid is analogous to the symmetry of a
stable liquid, one can extrapolate the equation of state from
the homogeneous liquid phase into the metastable region. In
the vicinity of the spinodal, where the symmetry of the sys-
tem is determined by fluctuations of the order parameter
that are strongly correlated at great distances, the features of
the thermodynamic quantities are described by using the
pseudocritical indices. In closing we discuss the fractal na-
ture of the nuclei of the new phase being formed.

2. DEVELOPMENT OF IDEAS ON THE NATURE OF
METASTABLE STATES OF MATTER

The beginning of the experimental studies of the very
possibility of existence of materials in a metastable state goes
back to the latter half of the 17th Century, when the experi-
ments of Ch. Huygens and R. Boyle first demonstrated that
water and mercury can be converted into a metastable state
having a negative pressure.1 This happened even before the
publication of I. Newton's "Principia" (1687), and also
long before the rise in physics of ideas of the equation of state
of condensed matter. Apparently this is the explanation of
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the fact that, although the results of the very first experi-
ments of Huygens and Boyle were still known as late as 1805
by T. Young and P.-S. Laplace, however, they were forgot-
ten for a rather prolonged time. The rediscovery of the possi-
ble existence of negative pressures in liquids then occurred
several times, beginning in 1846 (F. Donni), and later owing
to the studies of O. Reynolds published in 1882. Only after
the publication of the equation of state of van der Waals in
1873 was the possibility opened for interpreting negative
pressures in connection with the appearance of metastable
states of the liquid phase. The term "metastable" was pro-
posed by W. Ostwald in 1893 as a generalization for the
states described by the van der Waals isotherm that lie out-
side the region of absolute stability.

The first experimental studies of metastable superheat-
ed liquids pertain to the 70s of the 18th Century, when the
very possibility of superheating a liquid was demonstrated.2

Already at that time it was shown that carefully degassed
water at normal pressure can be brought to a temperature
greater than 200 °C without boiling. The statement was even
expressed that a completely pure liquid containing no dis-
solved gases cannot boil at all. The modern stage of the ex-
perimental study of the properties of superheated liquids be-
gins with the studies of K. L. Wismer published in 1922.3

However, even before this work, studies were begun on nu-
cleation phenomena in a supersaturated vapor by using the
Wilson chamber.4-5 These studies, which were substantially
refined later, were the foundation of an entire experimental
field on the study of nucleation that has developed until the
present.6"9 As regards the development of the theory on the
nature of metastable states, as the science of phase transi-
tions in materials has become established, this problem has
entered the "jurisdiction" of the physics of first-order phase
transitions, the foundations of which were laid in the classi-
cal studies of J. W. Gibbs, M. Vollmer, F. Becker, W. Dor-
ing, Ya. I. Frenkel', and Ya. B. Zel'dovich, '°-14 and also in
the studies of many other investigators. We should note that
a complete microscopical theory of first-order phase transi-
tions (analogous, e.g., to the corresponding theory of sec-
ond-order phase transitions and critical phenomena) has
not yet been created up to now.15

From the standpoint of theory, metastable states are
understood to be certain transitions or intermediate states of
matter that precede the appearance of a stable phase. Initial-
ly the thermodynamic stability of metastable states was
studied within the framework of the van der Waals-Maxwell
theory16'17 for the liquid-vapor phase transition. There are a
number of equivalent thermodynamic theories that contain
the possibility of describing metastable states in systems of
another physical nature (e.g., the Bragg-Williams theory18

for binary alloys). These, just like other analogous theories,
have used the concept of the self-consistent field (SCF),
which acts on the molecules or atoms of the system. A gen-
eral approach to thermodynamic phase transitions within
the framework of the SCF theory was developed by L. D.
Landau.19 One of the important results of Landau's theory
of phase transitions was the possibility of deriving equations
for the line of phase equilibrium (coexistence curve, or bino-
dal), and also for the spinodal.

Statistical physics lacks at present a consistent theory of
metastable states possessing the same level of rigor as the
Gibbs theory of equilibrium statistical ensembles. The fun-

damental difficulty here involves the fact that the methods of
equilibrium statistical thermodynamics must be applied to
phenomena that occur outside the region of complete ther-
modynamic stability, i.e., to phenomena that are in essence
dynamic and non-equilibrium. What we have said pertains
directly to the process of formation of a new phase.

Definite progress has been attained along the path of
development of quasithermodynamic approximations.8"12

By using the Einstein formula to calculate the probability of
spontaneous formation of nuclei of spherical form with defi-
nite values of the radius and surface tension coefficient, to-
gether with kinetic estimates for the number of colliding
molecules of the metastable phase with drop nuclei of the
new stable phase, it was possible to solve successfully a num-
ber of problems of the physics of metastable states involving
processes of evaporation, condensation, and crystallization.
This includes important problems on the magnitude of the
energy barrier of formation of spherical nuclei of critical
dimension and on the rate of growth of the new phase.8"12

At the same time we should note that up to now a num-
ber of new methods has been developed for solving problems
in the physics of metastable states. These methods are based
to a substantial degree on the fundamental ideas of statistical
thermodynamics and physical kinetics. We should include
among them first of all:

-the derivation by Ya. I. Frenkel' and Ya. B. Zel'dovich
of a kinetic equation of the Fokker-Planck-Kolmogorov
type for the distribution function of the nuclei with respect
to dimensions;13"14

-the creation by E. M. Lifshits and V. V. Slezov of a
theory of coalescence of nuclei, i.e., of the process of growth
of large nuclei owing to disappearance of small nuclei in the
late stage of phase transformation;20'21

-the application in the studies of F. M. Kuni and his
associates of the idea of a hierarchy of characteristic times
for correct solution of the Zel'dovich-FrenkeF equation for
the different stages of the nucleation process;22'24

-the obtaining of a set of rigorous results based on the
methods of introduction of contracted statistical ensembles
pertaining to the problem of substantiating the statistical
mechanics of metastable systems;25"27

-use of Monte Carlo methods and molecular dynamics
for computer simulation of metastable states and studying
the kinetics of first-order phase transitions.28"32

However, along with this we should note that taking
account of the effects involving the presence of fluctuations
of the order parameter correlated at large distances and
times is essential not only near the critical point, but also in
the neighborhood of the spinodal.33j44

It has been experimentally established45'46 that, as one
approaches points of the spinodal in a metastable system,
response functions increase, such as the isothermal com-
pressibility (susceptibility), the isobaric heat capacity, and
the coefficient of thermal expansion. Such a behavior of the
thermodynamic quantities in the metastable region is analo-
gous to critical phenomena and indicates that, for correct
description of the properties of metastable states lying near a
spinodal, one must also use the methods of scaling and re-
normalization groups, besides the classical approach based
on the Landau SCF theory.

In connection with what we have said above, the ques-
tion of how far the analogy extends between critical phenom-
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ena and phenomena near a spinodal is highly essential for a
correct description of processes throughout the metastable
region of a material. In particular, the problem of calculat-
ing the so-called pseudocritical indices that characterize the
features of the physical properties of a material near a spino-
dal, but far from the critical point, acquires a fundamental
significance. 47~55 Another question, no less important, is to
establish the conditions under which a transition (cross-
over) occurs from pseudocritical behavior of the system to
critical behavior, which corresponds to transition in the
metastable region from the neighborhood of the spinodal to
the critical point. Such a crossover was first studied in Refs.
54 and 55 for a metastable fluid within the framework of the
SCF theory.

Evidently one of the questions of principle in the phys-
ics of metastable states is the question of the magnitude of
the neighborhood of the binodal in which one can actually
observe metastable states and study their properties. It was
shown53 that the magnitude of the energy barrier for forma-
tion of nuclei, which determines the depth of possible incur-
sion into the region of metastable states is associated with the
Ginzburg number—a factor that takes account of the nonlo-
cal and nonlinear interaction of the fluctuations of the order
parameter.19'34 For systems in which the Ginzburg number
is small (the phase transitions in such systems are described
by the SCF theory), one should expect a real possibility of
reaching the close vicinity of the spinodal under real experi-
mental conditions. We should include among objects of this
type primarily systems having a large radius of interparticle
interaction: certain binary alloys and nematic liquid crys-
tals.

Among the typical experimental methods of observing
deeply metastable states and studying their properties, we
shall point out first of all the methods of light scattering and
slow-neutron scattering, and also ultrasound absorp-
tion.37>38l4°'57 The methods of computer simulation of three-
dimensional Ising systems with a large number of closest
neighbors also play an important role.31'57'58 These experi-
ments have observed the fast approach to zero of the recipro-
cal susceptibility as the spinodal is approached that is pre-
dicted by theory. Here the lifetimes of the metastable states
near the spinodal prove to be greater as the number of closest
neighbors for each lattice node increases, i.e., as the system
being studied approaches that described by the SCF theory.

As regards metastable states lying near the line of phase
equilibrium (the binodal), they can be rather fully studied
within the framework of the theory already mentioned above
of the type of the Becker-Boring and Frenkel'-Zel'dovich
theories. However, in studying the features of the relaxation
of metastable states near the spinodal, great difficulties arise.
In this situation, on the one hand, one must take account of
the features of the response function caused by the interac-
tion of the fluctuations of the order parameter, and on the
other hand—the complex nonlinear process that occurs on
this same background of appearance and growth of large-
scale heterophase fluctuations, i.e., nuclei of the new phase.

The formation of fluctuation clusters in the metastable
region, just like the growth of the new phase near the spino-
dal, is an example of processes characterized by the appear-
ance of structures of fractal nature. The study of fractals has
penetrated rather deeply into physics as a whole, while the
language of fractal geometry has proved very convenient and

useful for solving many problems in the physics of phase
transitions.59 The analysis conducted in Ref. 60 of the di-
mensionalities and codimensionalities of the structures
formed in the metastable region shows that the appearance
of compact spherical nuclei is improbable, since the struc-
ture of the nuclei that arise near the spinodal is typically
fractal. The description of the merger of fractal clusters in
the process of phase transformation is related in nontrivial
fashion with the ideas of transversality of the intersection of
manifolds and with catastrophe theory.61

Another, no less important aspect in the study of meta-
stable states and the properties of materials outside the re-
gion of complete thermodynamic stability is the need to
know the equation of state of the metastable system being
studied. Review papers have been devoted to the problem of
the equation of state in the metastable region9'26 (see also
Refs. 62 and 63). Here it is essential (primarily from the
standpoint of experimental studies) that the corresponding
equation of state enables a rather exact calculation of the
fundamental thermodynamic functions of the metastable
material.

3. CLASSIFICATION OF METASTABLE STATES

Let us examine the diagram of state of a one-component
system that undergoes a liquid-gas phase transition in the
coordinatesp (pressure) and/? (number density) (Fig. 1).
The metastable states in this diagram correspond to the re-
gion between the binodal AKB and the spinodal CKD, at the
points of which (dp/dp) T = 0, where Г is the temperature.
The region to the left of p = pc (pc is the critical density)
corresponds to supersaturated vapor, while the region to the
right of/o = pc corresponds to superheated liquid. The curve
CKD bounds the region of thermodynamically absolutely
unstable states: (dp/dp) T < 0. Separation of the system into
two phases occurs in this region by the mechanism of spino-
dal decomposition, which is an essentially nonlinear non-
equilibrium process. To analyze the stability of the system
with respect to fluctuations of the volume V, let us study the
function

A ррг p

FIG. 1. Isotherm SULNFQ of a liquid-gas system corresponding to a
temperature T< Tc, in the coordinates density (p) as a function of pres-
sure (p); Tc,pc,andpc are the critical values of the temperature, pressure,
and density, К is the critical point, AKB is the coexistence curve (bino-
dal ), CKD is the spinodal, p, is the density of the gas at the binodal, рг is
the density of the liquid at the binodal, and/) is the observed density in the
metastable state, />,p is the density at the spinodal on the side of the liquid
branch of the isotherm.
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/ (F) = / (F, N, p, T)

= 5-i (p, T, N) exp [-PV (fcfjTT'lZ (F, T, N),

(3.1)

Here S (p,T,N) is the partition function of the isobaric-iso-
thermal ensemble, £ B is the Boltzmann constant, Z( V, T,N)
is the partition function of the canonical ensemble, and N is
the number of molecules in the system. We note that V is a
possible value of the volume of the system, the observed
mean value of the volume is ( V } = — k B T(d In E/дР) TN ,
and <(AK)2) = <(F-<F» 2 )= - kBT(dl(V)

The function /( V) is the probability density of finding a
system of N molecules at the temperature Г and pressure/? in
a state of volume V. The schematic form of /( V) is shown in
Fig. 2. Since Z( V, T, N) = exp( - F( V, T, N)/kB T, where
F( V, T, N) is the free energy, then, upon assuming the vol-
ume fluctuations to be small <(AF)2>1 / 2/<F><^l, we ex-
pand the argument of the exponential
- (pV+F(V, Т, ЛО/&В T in (3.1) in powers of Л V up to

second-order terms. Consequently we obtain

exp -. (3.2)

where % is the isothermal compressibility. The form of the
function/(V) from (3.2) shows that the approximation of
small fluctuations in a smooth region of variation of the ther-
modynamic variables is justified, since the half-width D of
the/( F) curve (in units of AF) is

2,36(А:вГрх)1'2

D :

(3.3)

This implies that states with F= (F) for .#> 1 are most
probable, while the possible fluctuations are vanishingly
small.

It will be more convenient below in characterizing the
different regions of the diagram of state to plot the relation-
ship of - I n / ( V ) = F ( V , T,N) +pV to Finsteadof/( F).
We note that — ln/( F) does not coincide with the thermo-
dynamic Gibbs potential G, since we have

G (p, T , N ) = F «F (p, Т, ЛГ)>, Т, N) + p <F (p, Т, ЛГ».

-lnf(K)

©

-In/(I/)

©
V

V

©

\J@V

FIG. 3. (See explanation in text.)

A set of — ln/( F) dependences is shown schematically in
Fig. 3, while the corresponding points of the/? — p diagram
are shown in Fig. 4.

Diagrams 5 and 9 of Fig. 3 correspond to a metastable
state (the corresponding points are 5 and 9 in Fig. 4). Dia-
gram 7 of Fig. 3 (point 7 in Fig. 4) corresponds to an abso-

P

IZ(V,T,N]

V =<!/; V

FIG. 2. (See explanation in text.)
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FIG. 4. Phase diagram of metastable states corresponding to the cases
shown in Fig. 3.
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lutely unstable state. The stable states (e.g., diagrams 2 and
3 of Fig. 3) contain in the partition function H (p, T, N)
information on the extrema of the function — ln/( V) (or as
is the same, on the second maxima of / ( V ) ) lying at the
points V=V% and V= V9. However, in view of (3.3), the
statistical weight of the metastable states far from the critical
point is very small, since they are not realized in phase space
owing to the large value of the energy barrier Д3. In the case
in which one observes a metastable state (diagram 9 of Fig.
3), the magnitude of barrier Д9 can differ, depending on the
position of point 9; if it is close to the binodal (while diagram
9 of Fig. 3 resembles diagram 10 more than diagram 8 of Fig.
3), then the barrier diminishes, and in the limit we have
Д9-Д8 = 0.

As we approach the critical point, the extrema of the
function — ln/( V) approach one another, whereby the
magnitude of the energy barrier between the metastable and
stable states decreases. Actually, one can easily show that in
this case we have

|[ln/(F)|r=Vmai[

-ln/(F)|v=v 0
^min "max | 1 (34)

min

Here Fmin and Fmax are the values of the volume correspond-
ing to the minimum and maximum of the function
— ln/( V). Then at the points 2c and 3c (see Fig. 4) the

system already "senses" the existence of the extrema of the
function/(V), since, at large values of the isothermal com-
pressibility, D becomes of the order of unity, even for a mac-
roscopic value of the fluctuating volume V.

Thus the physical properties of metastable states de-
pend substantially on the magnitude of the contribution of
the fluctuation effects of different types to the thermody-
namic potentials of the system under study. Thus, for meta-
stable states in the close vicinity of a critical point, the deci-
sive contribution is that of the fluctuations of the
characteristic order parameter (p — pc) that are strongly
correlated at great distances. On the other hand, far from the
critical point, but near the spinodal, under certain condi-
tions the homophase fluctuations of the order parameter
(p — PSP ) that are associated with the closeness of the meta-
stable states to the stability boundary prove to be essential.
In the region close to the binodal and far from the critical
point, the fluctuational contributions to the thermodynamic

Л />

FIG. 5. Classification of metastable states (see explanation in text).

quantities are not decisive.65 In line with what we have pre-
sented above, in studying processes that occur in the meta-
stable region, it is convenient to divide this region into the
parts shown in Fig. 5.

Pan 7-nonfluctuational region.
Part 2-transitional (crossover) region from nonfluc-

tuational to fluctuational.
Parts 5-J-fluctuational regions with different types of

fluctuations.
Part J-region of critical fluctuations.
Part 4-region of homophase fluctuations involving the

closeness to the stability boundary (pseudocritical region).
Part 5-transition (crossover) region from pseudocriti-

cal to critical behavior.
Part б-region of spinodal decomposition.
We note that the constants of the relaxation equation of

the fluctuations of the characteristic order parameter
т]=(р- ( p ) ) / ( p ) , 9,,/dt = - (0,77 + a2rj2 + arf ) sat-
isfy the following relationships in the listed parts of the
metastable region:

ai>.(a2;a3) (part i)

3 (part 2)a2) >>

a2) <;

(a2; a3)

(Part3)

(part 4)

(partS)

4. METASTABLE STATES NEAR THE BINODAL

4.1. Criteria of stability

The possible existence of metastable states that are sta-
ble with respect to fluctuations of the density and the en-
tropy S leading to formation of a new phase during a time
commensurate with the time of experimental observation in-
volves the discontinuous character of a first-order phase
transition, namely, />|F, — F2| ̂ kBT, Sl—S2\^kB. Be-
cause of this, a phase transformation in a macroscopic region
of the volume being studied initiated by spontaneous fluctu-
ations is extremely improbable. For approximate estimates
of this probability, let us study the isothermal fluctuations in
a subsystem with the mean value of the volume F0, when the
probability distribution density of the fluctuation of the vol-
ume AF= F-F0 equals19 «v~exp[(AF)2(<3p/dF) r/
2kB T ], or, upon taking account of the normalization condi-
tions,

1/2
exP [~ a'ff ] ' (4Л)

Here we havex* = PX, Ди = Д F/ V0, while Д Fis the change
in volume in a fluctuation. Since in a first-order phase transi-
tion we usually have Д V~ F0, we can write the condition of
discontinuity of the transition in the form pVQ^>kBT. For
estimates of the order of magnitude of w v, we shall use as an
example the experimental data for water (H2O) from Ref. 9.
Then, for T = 300 °C and/? = 0.1 MPa, we have^-* ~ 10 ~ 3 ,
pV0(bv)2/2kB TX* ~ Ю28 m -3 • F0. We obtain as the magni-
tude of the preexponential coefficient the estimate
(p/2irVoX* kv T)1/2 ~ 1014 m - 1/2 • Vu

 1/2. The resulting esti-
mate for the probability density of volume fluctuation in this
sense acquires the form
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wv л; 10u-(4.3-io"M->)F. м-з/2.
(4.2)

That is, for macroscopic values of the volume V0 this quanti-
ty is vanishingly small.

Thus, the fluctuational creation of a new phase can oc-
cur with appreciable probability only in rather small regions
of the volume under study. However, in this case the term
that becomes essential in the expression for the work of for-
mation of a nucleus of the new phase becomes the one asso-
ciated with the surface energy of the phase boundary. Thus
nuclei with dimensions greater than the critical value
(R>R0) can grow further, while subcritical nuclei
(R <R0) disappear in time. In this regard, one can analyze
the criteria of stability of a metastable phase within the
framework of two approaches.

The first approach involves analyzing the probability w
of formation of a nucleus of the new phase having compact
form that is capable of further growth. Its volume is V~Rd,
while the area of its surface is A~R d~l, where R is the
characteristic linear dimension of the nucleus, and d is the
dimensionality of the space. In this case we have

( w° \~exp -j-j-I.
\ «в* /

(4.3)

where Wc is the height of the activation barrier, which de-
pends on the geometry of the surface of the nucleus being
formed (the ratio Wc/(kB T) = Gc is sometimes called the
Gibbs number). Thus, in the special case of spherical nuclei
with d = 3, we have

Wc = 16яо-=> [3 (p - р')2Г',
Iie = 2a | p - p' Г1-

(4.4)

Here a is the surface-tension coefficient, andp—p' is the
pressure difference between the point of observation and in-
side the nucleus. The corresponding change in the work of
formation ДФ of a nucleus as a function of its radius R is
shown in Fig. 6. Equation (4.3) gives rise to an expression
for the rate of nucleus formation in the steady-state case
/= л5ехр( — G), where В is the so-called kinetic coeffi-
cient (for a number of liquids B~ 1010 s ~' )9, while и ~ 1028

m ~3 is the number of molecules per unit volume of the liq-
uid. Then the mean time of expectation of appearance of a
viable nucleus of the new phase in the volume Kis TO = \/JV.
If we choose V~ 10 ~ 6 m3 and r0 ~ 1 s, then one can write the
criterion of stability of the metastable phase in this volume in
the form Gc £ 74, or

16ла3 [ЫВТ (p - (4.5)

We should note that, in a number of studies devoted to prob-
lems of nucleation from a supersaturated vapor,11'66 the in-
equality (4.5) corresponds to the criterion G0 — 60, since in
this case n ~ 1025 m ~3.

We note that the kinetic coefficient has been estimated
theoretically and its dependence of the thermophysical and
molecular parameters of the system has been investigated in
many studies devoted to problems of the kinetics of first-
order phase transitions.ll"14'67-68

The second approach to analyzing the criterion of sta-
bility of metastable states involves the treatment of the
mean-square density fluctuations in an isobaric-isothermal
ensemble69

FIG. 6. Dependence of the work of formation of a spherical nucleus of the
new phase ЛФ on its radius R.

(4.6)

Let us study the metastable states in a one-component
liquid system at fixed temperature. The corresponding sym-
bols are given in Fig. 1 . As we move along a certain noncriti-
cal isotherm SULNFQ at a temperature below the critical
temperature (T< Tc ), the system in the segment UN falls
into the region of metastable states. In this region ( U is a
point of the binodal) thermodynamic stability breaks down
with respect to fluctuational formation of nuclei of the new
phase (bubbles of vapor) having a volume of the order of, or
greater than, the volume vc of a critical nucleus. In order
that the system should still maintain thermodynamic stabil-
ity at some point L of the metastable region, the inequality
must be satisfied that

(p - Pl)
2-

Here {Д/J2) is the mean-square fluctuation of the density in a
volume of the order of vc calculated at the point L. Since we
have (Др2) = p2kBTx/vc, evidently, for metastable states
lying in the close vicinity of the binodal (where uc -»oo,
while x is not a singular quantity), the condition of thermo-
dynamic stability is well satisfied. Upon further motion
along the isotherm to a point of the spinodal (point N), we
find^1-» oo, while i>c declines.70 Therefore the condition of
stability breaks down. Evidently the equation kBTx/vc

~ [(/7, — /5)//5]2 determines the boundary of the attainable
superheating of the liquid (or the physical spinodal)—the
dotted curve KWin Fig. 1. To the right of the curve KW'm
the metastable region near the binodal when

Ав^ХР2 lvo (P — Pi)2]"1^! (4-7)

lies a region in which the density fluctuations are not essen-
tial in describing the thermodynamic properties of the sys-
tem, while to the left of the curve KW, for which

(4.8)

lies the fluctuational region. In the intermediate region, in
the vicinity of the curve KW itself, a crossover occurs in the
behavior of the system from a regime of classical nucleation
to a regime of spinodal nucleation, in which the decisive role
is played by strongly developed fluctuations of the order pa-
rameter.

Let us study the region corresponding to the inequality
(4.7). We shall introduce the dimensionless temperature
t = T/TC, the pressure П = p/pc, the density R = p/pc, the
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compressibility x* =PX> anc* the dimensionless parameter
e = (p2 —/0)/(/?2 — p\)> which defines the depth of intru-
sion along the isotherm into the region of metastable states.
Then we can rewrite the criterion (4.7) in the form

lvcU (Др)2(1 - (4.9)

Here z = kBTc/pcvc is the compressibility factor,
Др = (p2 — pi )/pc, while yc is the critical volume per mole-
cule (e.g., in the van der Waals theory vc equals twelve times
the volume of a single molecule). The inequality (4.9)
amounts to the Ginzburg criterion, which defines the bound-
ary of the nonfluctuational region for metastable states.

For proof, let us study the process of fluctuational for-
mation of a spherical nucleus of the new phase (e.g., vapor
bubbles). Here the radius of the critical nucleus in the ap-
proximation in which the quantities \p — ps and \p' — ps

are small (where ps is the pressure at the binodal) is

= 2crp2 [(ps -IP)(P2 - •'• (4.10)

If we study initially the thermodynamic states far from
the critical point, for which the density of the saturated va-
por is small (i.e., pt <^/t>2)> then we have71

a =
яр» (4.11)

Hereg (r) is the radial distribution function of the liq-
uid phase, and <p(r) is the pairwise intermolecular interac-
tion potential. Upon choosing tp(r) in the form of the three-
dimensional Katz potential,

ф (r) = 00, r <' D,
, exp (— vr)

= — av3 —*-;——r (4.12)

where D is the diameter of the rigid core of the molecule,
у ~ ' = R0 is the range of the attractive forces among the
molecules, and ay3/^ is the interaction constant, we
obtain60'69

о = • 32

(4.13)

To make an approximate estimate of the magnitudes of the
terms in the square brackets in Eq. (4.13), we can assume
that g(xR0) ss 1, which is true for large values of R0. Then
the magnitude of the first term is 24 + O(D/R0). For the
second term we shall approximately estimate the coefficient
of D /R0. If we use for this purpose the van der Waals equa-
tion (the intermolecular potential of (4.12) leads to an equa-
tion of state of this type as Л0-»<»), then we have
47rtt в TD 3/c = 16r /9. Thus, when D /R0 5 1, the main con-
tribution comes from the first term in square brackets in Eq.
(4.13). Within the framework of this same approximation,
the coefficient preceding the square brackets in (4.13)
equals ap2R0/32 = 3pcR

 2Л</32.
Then we have the following estimation formulas for the

surface-tension coefficient a and the radius Rc of a critical
nucleus:

2 (р
(4.14)

Let us calculate a for argon according to the expression that
we have derived. Thus, near the triple point we have
R 2 — 7.2, pc s;4.9 MPa. If we choose as R5 the value of the
amplitude of the correlation radius,72 then we have
Д0~ 1.6Х 10 - 10 m, and then ff~ 12.7X 10 ~ 3 N/m, where-
as experiment yields < т = 1 3 . 4 х Ю ~ 3 N/m. If
Я0ж3.4Х 10 ~ 10 m, which corresponds approximately to
the position of the first maximum of the radial distribution
function, then we have crx21X 10 ~ 3 N/m. The presented
estimates confirm the validity of the derived relationships
for a and Rc. Upon substituting (4.14) into the inequality
(4.9) in the approximation £< 1 andpi-^p2, we obtain the
criterion for the nonfluctuational region in the form

zvc (4.15)

where Д/> = (ps —p)/Pc- We note that the maximum values
of £ actually attainable experimentally are of the order of
10 ~2.

The left-hand side of the inequality (4.15) is the prod-
uct of factors of differing natures. The cofactor
(Д/?)3Д/сг^*/П/? 7 amounts to a quantity that determines
the position of the system in the thermodynamic plane. The
cofactor zv/\02R I depends only on the individual molecu-
lar properties of the system being studied. The compressibili-
ty factor for a large number of substances is equal on the
average to 3.7. For a large number of liquids (carbon diox-
ide, ethane, ethylene, methane, benzene, water, argon, etc.),
we have vc zs (4—5)y0, where v0 = (4/3)тгГд is the volume of
one molecule, and r0 is the corresponding radius of the mole-
cule. When we take account of the estimates presented
above, the inequality (4.15) is rewritten in the form

22-1(Г2 Gi [(Др)уДрг(ДЩ)-Ч2 < 1 + О (в), (4.16)

where Gi = (r0/R0)
6 is the Ginzburg number.34

Thus the applicability of the theories of the metastable
state that take no account of fluctuational effects is deter-
mined by both the individuality of the molecular parameters
of the material (G'K 1), and by the parameters characteriz-
ing the thermodynamic state of the system. If we move into
the region of metastable states along an isotherm, then the
factor determining the behavior of the system is the magni-
tude of the isothermal compressibility %, owing to the singu-
lar character of its density dependence as we approach the
spinodal.

Interestingly, the van der Waals model corresponds to
y-*Q (orR0-> oo ).ThenwehaveGi = 0, and the behavior of
the system throughout the metastable region up to the spino-
dal is described by the mean-field theory. For real systems
this theory will work all the better near the spinodal as the
Ginzburg number approaches zero. Such a situation corre-
sponds to long-range attractive forces between the mole-
cules, as occurs for large values of the dipole moment of the
molecules, as, e.g., in the case of liquid crystals, for which
Gi = O.2.35

Let us make estimates of the orders of magnitude on the
left-hand side of the inequality (4.16) in the case of water.
Far from the critical point for the isotherm with Т = 433 К
we find/0,//02~0.025. Then as we enter the metastable re-
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gion from the side of the liquid branch of the isotherm
/>s =0.62 MPa, for /> = 0.1 MPa we have ^*~10"4,
(Д/>)3~10-4, Д0/Д7~10-3, '~1> П-10-3, z = 4.35.
Here the inequality (4.16) acquires the form 10 ~1 7 Gi <^ 1. If
we take account of the fact that for water ra~R0, then evi-
dently, in the pressure range 0.1 MPa <p< 0.62 MPa, the
isothermal compression of water at T— 433 К can be de-
scribed by the standard methods of thermodynamic pertur-
bation theory without taking account of the fluctuational
corrections to the thermodynamic quantities and their de-
rivatives.

We note that the derivation of the criterion (4.16) does
not depend on whether we are treating a superheated liquid
or a supercooled (supersaturated) vapor. However, inter-
estingly, the criterion (4.16) is not symmetrical with respect
to these two cases when one performs the appropriate nu-
merical estimates. It turns out that the values of the quantity
o) = x*/R 7 for the liquid branch of the isotherm are smaller
by several orders of magnitude than for the gas branch of the
isotherm. Actually, if we choose water as the example, we
have: at T= 433 К for the liquid сог~ 10~6' for the vapor
<o,~1014, and cu/u^-lO20; for Г=533 К we have
<u2~10~5, u>,~109, and u>,/«2~1014; at T= 573 К we
haveu>2~ 10 ~5, u>, ~ 105, and <ы,Ла2~ 109. The values of the
thermodynamic quantities for making the presented esti-
mates were chosen near the binodal. Thus, while for the su-
perheated liquid the inequality (4.16) is satisfied with much
room to spare, for the supercooled vapor it can be satisfied
only for slight depths of intrusion (which corresponds to the
smallness of the quantity (A/>)3 or the closeness to unity of
the quantity p/ps). Thus, in studying the equation of state of
a supercooled vapor one must take account of the decisive
role of the fluctuational corrections immediately after pass-
ing through the binodal.

One can study the criteria of stability of metastable
states near the critical point analogously to how this was
done in Refs. 60 and 69. Upon using the universal expres-
sions for a, x*, and Д/? following their theory of scale in var-
iance, the universal relationships among the critical ampli-
tudes,72 as well as the law of corresponding states for a,73 we
can write the criterion for the nonfluctuational region in the
form

2,5-103e262 (4.17)

Here S is the index of the critical isotherm, and с is a dimen-
sionless quantity, which, according to the law of correspond-
ing states,73 is universal for a class of liquids having similar
intermolecular potentials. In this case the Ginzburg number
is

(4.18)

Here r0 is defined in the same way as when remote from the
critical point, while £„ is the amplitude of the correlation
radius Rcor:

R — £ TV (4 191Л СОГ — эО • V T . 1 ̂  у

Here т = (Гс — T )/Tc, while v is the critical index of the
correlation radius.

The corresponding numerical estimates performed60'69

for water allow us to write (4.17) in the form 10 V < 1. This
implies that, without taking account of fluctuations leading
to formation of the new phase, one can describe the thermo-
dynamic states in the metastable region near the critical
point only for small values of the depth of intrusion. In this
regard we note that, near the critical point, in describing the
thermodynamic properties of a substance, we must also take
account of the strongly developed interacting density fluctu-
ations.

4.2. Equation of state

At present the problem of the equation of state in the
metastable region within the framework of statistical ther-
modynamics remains open. One cannot even say with all
assurance that such an equation of state exists in the meta-
stable region. This situation involves the finiteness of the
lifetime of the metastable state, and as a consequence, the
impossibility of formulating the ergodic hypothesis in valid
fashion.26 Actually, the mean (observable) value of the dy-
namic variable ф (Г(?)) with respect to the time t (Г(Г) is
the point of phase space) is

= lim (4.20)

This is identifiable within the framework of the ergodic hy-
pothesis with the mean over an ensemble having the distribu-
tion function/(Г)

(Г)<1Г, (4.21)

and depends in the metastable region on the time of observa-
tion robs The adoption as a hypothesis of the equation
^ = {^) is based on the idea that, as the time robs -» oo, the
imaging point in phase space spends time in all regions of the
phase volume allowed by the external conditions. How
should we proceed if the lifetime of the metastable state, and
hence also robs, is a finite quantity? The natural conclusion
suggests itself that, in calculating the integral in (4.21), one
must exclude from the region of integration certain regions
of the phase volume that correspond to states with fluctu-
ations leading to formation of stable nuclei of the new phase.
Such attempts have been made in Ref. 74. However, it is not
known at present how to do this in correct fashion (as de-
pending on the magnitude of robs).

The situation in the equilibrium statistical mechanics of
stable states is not so dramatic, since the existence of the
thermodynamic limit associated with the equation of state

lim
N-wc

(N/V=p=const)

(4.22)

where Fis the free energy of the system of N particles in the
volume Fat the temperature T, has been proved rigorously
under requirements on the intermolecular interaction poten-
tial that are not too severe. The proof of the existence of the
limit in (4.22) that was given in Refs. 75 and 76 for stable
states gave rise to a new branch of mathematical physics—
mathematical statistical physics. Yet the problem of the cor-
responding proof (for metastable states) based on using the
theory of statistical ensembles remains open (in this regard
see the review of Ref. 26).

A number of studies along this line have been published
in recent years. 32>77-79 However, the authors of these studies
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had to sacrifice either the freedom of choice of the intermole-
cular interaction potential (essentially restricting the treat-
ment to the case г,/RQ = (Gi) 1 / 6 <^l), or to omit individual
parts of phase space, which, as was noted in Ref. 80, were
chosen rather arbitrarily.

In a certain sense this situation gives grounds for
amazement, since already A. F. Andreev65 proved that, al-
though the passage of an isotherm through the binodal line is
characterized by a singularity, it is so weak that it can hardly
ever by detected experimentally.

It is clear from what we have presented above that the
problem of the thermodynamic properties of metastable
states as calculated within the framework of statistical me-
chanics remains open and constitutes the content of an in-
complete chapter of mathematical statistical physics. The
interest in this problem is also heated up by the results of
machine experiments in an Ising model with a nonzero mag-
netic field.79 It turns out that in this case metastable states
are "observed" despite having Gi ~ 1 and rather large lattice
dimensions. Apparently this involves the fact that numerical
methods realize a calculation of ^by (4.20), rather than of
W by (4.21).

The very fact of realization of metastable states and the
reproducibility of the experimental results are evidence that
the equation of state in the metastable region exists, despite
the lack of justification for it within the contemporary
framework of statistical mechanics. Without expecting an
expansion of this framework, Refs. 9, 81-83 propose analyt-
ic parametrizations of the existing experimental thermophy-
sical data, whose role is difficult to overestimate. The results
of these pioneer studies are as yet of applied character. How-
ever, their use in the fields of science that "exploit" the equa-
tion of state (chemical thermodynamics, acoustics, physics
of combustion and explosion, etc.) is of great significance.
The situation here recalls the history of the equation of state
of real gases and condensed systems in ihe stable region,
which began in 1846 (the equation of state of Ritter84) and
the contemporary state of affairs in the field of thermody-
namics of nuclear material at high energy densities (the re-
gion of the "hadron matter-quark-gluon plasma" phase
transition), where semiempirical equations of state are used
to describe both the results of real and of "numerical" ex-
periments in lattices.85

Upon taking account of the results of Ref. 65, we can
apparently speak within the framework of statistical me-
chanics of deriving the equation of state in the region of
small fluctuations, where the system weakly "senses" the
existence of the competing phase. Let us study, following
Refs. 60 and 69, one of the possible approaches to the prob-
lem of the equation of state for small intrusions into the
metastable region corresponding to Part I (see Fig. 5).

4.3. The equation of state in the nonfluctuational region

In the nonfluctuational region the system on both sides
of the coexistence curve possesses an identical type of sym-
metry. Therefore the description of its thermodynamic
properties can be based on an identical approach, both for
stable and for metastable states. In studying the thermody-
namic properties of a substance in the vicinity of points of the
spinodal, the appearance of a new symmetry type is essen-
tial, as described by the renormalization group. Since in the
nonfluctuational region the system has a definite symmetry
with respect to a simple change of scale of the spatial vari-
ables r,' = qtf (without averaging the order parameter over
regions of dimensions of the order of the correlation radius),
we can use this simple scale transformation to construct a
thermodynamic theory of the perturbations. If we choose
the scale factor q in the form q = (V/V0)

1/3, where V0 is the
initial (reference) value of the volume, then the configura-
tional component of the partition function of the canonical
ensemble equals Q(N,T,V) = q™Qv(N,T,V0), where

Qv(N,T, V0)

\N

.. . $ drt . . . drN exp [- 2 q> <« I 'i - ч I

(4.23)

is the configurational component of the partition function of
the system of N particles in the volume F, but with the inter-
molecular interaction potential q>(qr). Since here the choice
of the magnitude of q satisfies q3 = F/F0, this means that
the change of volume A F = (F0 — F) / F0 in the scale trans-
formation enters into the potential function, since
A F = 1 — q3. Thus one can construct a thermodynamic the-
ory of the perturbations by using as the small parameter the
dimensionless quantity A F.86 Actually, if we turn to the ex-
perimental data in the metastable region,9 then, e.g., for wa-
ter in the pressure range of 10 MPa we have AF~0.02. In
essence the smallness of the parameter A Fover a broad pres-
sure range is made possible by the smallness of the isother-
mal compressibility^*, since we have &V~x*(p — p0)p0in
the nonfluctuational region, while д-* ~ 10 ~ 3 (in the case of
water at Т = 400 K-500 К).

The use in the theory of perturbations of the intermole-
cular potential (4.12) based on a simple scale transforma-
tion leads to an equation of state of the form in Refs. 87 and
88. The results of calculations based on this theory are given
in Tables I-III.

We should especially note the possibility of describing
the thermophysical properties of metastable heavy water on
the isotherms using the values of the constants of the equa-
tion of state found in the stable region of ordinary water.

TABLE I. Water, isotherm T= 260 °C,/>, = 4.694 MPa.

Po - p, MPa
(exp.)

6
7
8
9
9,9

У,Ю~3 mVkg
(exp.)

1,2771
1,2793
1,2816
1,2838
1,2859

-(ф/<?Пт,
103 Mpa-
kg/m3 (exp)

460,60
451,84
443,34
435,16
427,29

p0-p,MPa
(theory)

5,972
6,979
8,013
8,984
9,895

- (о!р/<?Пт,
103 MPa-
kg/m3 (theory)

461,56
453,47
445,39
437,30
430,02
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TABLE II. Water, isotherm Т = 300 "С, р, = 8.592 МРа.

Pa - р, МРа
(exp.)

2
3
о
6
7
8
9
9,9

V, Ю- } mVkg
(exp.)

1,4068
1,4115
1,4214
1,4267
1,4322
1,4380
1,4440
1,4497

- (др/dV)^,
103 Мра-
kg/m3 (exp)

216,72
208,99
193,28
185,43
177,21
169,61
161,43
153,97

Pa-p, МРа
(theory)

2,010
3,008
4,996
6,002
7,005
8,018
9,022
9,935

-(Эр/ЭУ)^,
103 MPa-
kg/m3 (theory)

216,26
208,24
192,22
184,21
176,20
168,19
160,19
152,98

This possibility arises because the parameters of the equa-
tion of state involve the intermolecular interaction potential,
have a quite concrete physical meaning, and hence, must be
the same for H2O and D2O. The proposed equation of state
differs by this property from the widely used empirical equa-
tions, whose constants are fixed to a number of reference
points.

The possibility of smooth extrapolation of thermody-
namic properties from the stable into the metastable region
is confirmed in the experimental study of the equation of
state for a number of other liquids.83 In particular, it was
shown that, upon passing through the saturation line, not
only do the isotherms remain continuous (Fig. 7), but also
the isochores (Fig. 8), the isobars, and the derivatives along
them. The conclusion that the continuations of the (р, Т )
isochores are close to straight lines, which arose from the
experimental data, is of interest. We note that these results
agree with the conclusions of Ref. 65 that the singularity of
the thermodynamic potential at the binodal is very weak and
cannot be detected experimentally.

4.4. Metastable states near the critical point

Near the critical point in part 3 (see Fig. 5), where the
spinodal approaches most closely to the region of stable
states, the thermodynamic properties of metastable liquids
must be determined with account taken of the presence of
critical fluctuations, which play the decisive role in the be-
havior of the stable phase. The equation of state of the scal-
ing theory of critical phenomena and its modifications satis-
fy these requirements. 89~97

Let us discuss in greater detail the analysis of the so-
called asymmetric equation of state,92'97 which allows one to
describe the thermodynamic properties of a substance not
only in the broad neighborhood of the critical point in the
one-phase region, but also in the region of metastable states
including the spinodal. The equation for the spinodal is
found in this case from the condition [<Э(Ди/<9( Др) ] т = О,
Where Дц =fj, — ц(рс,Т) and A/? = (р — рс)/рс are the de-
viations of the chemical potential and the density from their
values on the critical isochore. A universal crossover func-
tion for the free energy was obtained on the basis of the asym-
metric equation of state, which takes account of the fluctu-
ation behavior when r<Gi. The binodal and the spinodal
here are described by identical universal equations

(4.24)

Here A! is the critical index of Wegner, the coefficient В £
corresponds to the binodal, and В £" to the spinodal. Here it
was found that the ratio В ̂ }/В |0) is a universal constant.
On the spinodal we have^ ~' = 0, while the heat capacity at
constant volume Cv is always finite apart from the critical
point:

1 в Г 8 , т + Л < 5 >B(S>'

(4.25)

TABLE III. Argon, isotherm T= 125 K, p, = 1.5812 MPa.

Pa — p, MPa
(exp.)

3
3,5
4
4,4
5,5
7,5

V, 10 ~3 mVkg
(exp.)

0,8972
0,9018
0,9066
0,911
0,924
0,955

- (др/дУ)т,
103 Mpa-
kg/m3 (exp)

112,58
105,61
99,37
93,82
79,00
49,86

Po — p, MPa
(theory)

2,985
3,483
3,971
4,393
5,503
7,493

- (др/дУ)т,
103 MPa-
kg/m3 (theory)

111,39
104,78
99,16
92,87
78,31
51,85
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0,9 1,0 V 1,2 г.З K,«7"Jm3/kg

FIG. 7. Results of measuring the specific volume of carbon dioxide upon
entry into the metastable region (from Ref. 83). Heavy line-binodal; thin
lines-isotherms: (copy the rest from the legend in the original).

In the region where r<Gi, the critical indices and the
ratio B^/Bf^ are equal: a = 0.11, /3 = 0.325, Д, =0.5,
B^/B^ = \.2, while when Gi«r«l we have a = 0,
0 = 0.5, Д, = 0; В gVJJ <0) = Д.

The numerical calculations that have been performed
for the binodal, the spinodal, and the quantities % and Cy in
the metastability region of ordinary water agree well with
the experimental data.

We should stress that there are also rather well tested
empirical methods for determining the spinodal based on
extrapolating various thermal and caloric quantities. Fig-
ures 9 and 10 show the results of experimental determination
of the spinodal by various methods (extrapolation of the
difference between the heat capacities at constant pressure
and constant volume, extrapolation of the compressibility,
on the basis of the Fuert equation, and by other methods) in
the reduced coordinates П vs t and t vs Ф (Ф = V/VC ).83

A number of studies (see, e.g., Refs. 97 and 98) have
discovered and studied another line of singular points inside
the two-phase region—points of reversal at which Cy -> oo
(for T< Tc), while д^О (д- ~' -» oo). Figure 11 shows the
spinodal and the line of reversal for water97 (the spinodal is

T,K

JOO

280

260

240

Spinodal

-2 p, MPa

FIG. 8. Continuation of the isochores (thin lines) of carbon dioxide into
the metastable region (from Ref. 83). CP-critical point. Values of the
specific volumes in 10~3 mVkg: (copy the rest from the legend in the
original).

FIG. 9. Results of determining the spinodal83 in the coordinates t=T/Tc

and П = p/pc. Extrapolation of the differences between the isobaric and
isochoric heat capacities (curve 1-helium, curve 2-carbon dioxide, eth-
ane, nitrogen); equation of state for the metastable region (curve 3-
diethyl ether, n-hexane, argon); extrapolation of the compressibility
(curve 2-argon); extrapolation of the isobaric heat capacity (curve 2-
nitrogen).

calculated from the asymmetric scaling equation) . As we see
from Fig. 1 1 , the reversal curve lies inside the spinodal, while
the difference between them is insignificant, and for
т 5 10 ~ 3 they practically merge. However, despite the close-
ness of these curves, the behavior of the thermodynamic
quantities on them differs qualitatively.97 Thus, on the spin-
odal the heat capacity at constant volume is finite, but infi-
nite on the line of reversal, whereas the isothermal compress-
ibility on the spinodal is infinite, while it equals zero on the
line of reversal.

In recent years, to describe the thermophysical proper-
ties of substances in the metastable region, a number of stud-
ies have employed the hypothesis of the pseudospino-
dal 37,38,99,ioo The essence Of the hypothesis consists in the
idea that, to describe the features of the metastable phase
near the spinodal, one introduces new variables (instead of
the variables generally adopted in the critical region
т = ( Tc — Г)/ТС and До = \p — pc \/pc ), namely

т, = | Г - Г. (p) | T;1 (p), Дрв = | p _ p, 1 (T), (4.26)

CP

0,8 1,0 Ф

FIG. 10. Results of determining the spinodal83 in the coordinates
Ф= V/VC andr= Г/ГС. Explanation-see legend of Fig. 9.
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FIG. 11. Coexistence curve (heavy line), spinodal (thin line), and rever-
sal line (dotted line) for water (from Ref. 97).

while the spinodal is defined as the line of singular behavior
of the thermodynamic quantities. Here the character of their
variation on the lines p = const is the same as on the critical
isochore with replacement of Tc by Ts(p):

Я — A"s = Дз/г/Ч (4.27)

Here A x and ax are the corresponding amplitude and index
of the quantity л:. The 7^ (p) relationship is depicted by the
pseudospinodal curve. The hypothesis of the pseudospino-
dal was the basis for creating a new field of computational-
theoretical methods of studying the thermophysical proper-
ties of matter in the metastable region. Certain advances
have been attained along this line at present, which have led
to the development of economical and effective algorithms
for machine methods of calculating the thermodynamic
properties of technically important materials in the optimiz-
ation of power plants, and have also enabled a considerable
reduction in the expense of machine time for calculations of
the thermophysical characteristics of working liquids.96

5. METASTABLE STATES NEAR THE BOUNDARY OF
THERMODYNAMIC STABILITY (THE SPINODAL)

5.1. The SCF approximation

To describe the physical properties of metastable states
lying near the spinodal, we shall employ an approach analo-
gous to the theory of critical phenomena that is based on
expanding the thermodynamic potential of the metastable
system in a power series in the quantity 77 = (V — Fs p) / Fsp.
This expansion can be represented in the form

Вт? Crf
Ат|, (5.1)

Here Ф0 ( T ) is the regular part of the thermodynamic poten-
tial, A, B, and Care constants of the expansion, Л is a quanti-
ty that plays the role of an external field, and Fsp is the vol-
ume at a point of the spinodal. We note that expansions
analogous to (5.1) have been used in Refs. 49, 51, 58, and
101. Such expansions differ from those used in the theory of
second-order phase transitions in the presence of a term cu-
bic in 77.

We obtain from the condition of equilibrium
(дФ/дг))рТ = 0 the following equation of state of the meta-
stable substance:

А (Т) щ0+В (T) Tj3 + С (Т) rfi - h = 0. (5.2)

Here 770=AFis the equilibrium value of the pseudocritical
order parameter. When we choose the critical point (CP) as

the reference point on the spinodal, rj0 goes over into the
order parameter of the Landau theory.

The constants of the expansion in (5.2) can be deter-
mined by comparison with the corresponding expansion of
the pressure p(V,T) in a Taylor's series in powers of
(7--r s p )and(F-K s p ).

In the general case the value of the coefficients of the
expansion depends on the choice of the point on the spinodal
about which one performs the expansion. Thus, for two arbi-
trary points of reference (i = 1,2), the corresponding expan-
sion ofp( У,Т) will have the form

P = P,,. i + Di (T - Tsp, ,) + At (T - rsp, {) (V - Fsp,{)

(5.3)

Upon setting p=psp,2, T= rsp,2, F = Fsp_2, for / = 1 in
(5.3), we obtain three equations interrelated by the coeffi-
cients of this expansion:102 C, = C2 = C; A{=A2=A,
A = A + ( rsp,2 - FSP,, )A, Вг = В, = ЪС( Fsp>2 - Fsp,,)
(Fig. 12). If we use the CP as the reference point on the
spinodal, then (5.3) acquires the form

: + A'(rsr-Vc)](Tip~Tc)P = ftp +

+ A'(T-Tmr)(V-Vv)

+ 3C ( Ksp - Fc) (F - V,p )+ с (F — Vsp )«. ( 5.4)

In this expression the parameters Dc , A ', C, and F0 do not
depend on the concrete choice of the reference point. If
Fsp-*Fc,then (5.4) goes over into the expansion for the CP.
It is important to note that the structure of the coefficient for
( F — Fsp )

 2, which enables the possibility of a correct transi-
tion to the CP, is characteristic of those equations of state
that correspond to the statistical approximation of the SCF.
The form of the coefficient В in (5.3) for certain empirical
equations of state is given in Table IV.

We note that, since the parameters in (5.4) do not de-
pend on the reference point, then in principle we can deter-
mine them from experimental p-V-T measurements in the
region of absolutely stable states near the CP.

Pop-f

p

FIG. 12. p=p(V,T)- point in the metastable region: (/>„„,,, P"sp.,, Г,„,,)-
reference point on the spinodal ( / = 1,2). 5-binodal, S-spinodal; CP-
critical point; thin lines-isotherms.
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TABLE IV.

Equation of state Form of the coefficient В

RT a
van der Waals: p — у i, — —уг

Berthelot: p -
RT

Dieterici: p = y _ f e exp [ —

Flory-Huggins: (5.18)

5aVc(V,f-Vc)

Upon comparing Eqs. (5.1) and (5.4) with one an-
other, we obtain

-yc)](T-Ttf). (5.5)

Upon going over to the CP, we have h = h' = p — pc

-DC(T-TC), whereDc = (др/дТ) Vc (seeRef. 19).
We can also easily find from (5.1) an expression for the

metastable substance:

1
(5.6)

Here S0 is the regular part of the entropy (independent of 77).
Equations (5.4) and (5.6) give a description of the entire
thermodynamics of metastable states in the SCF approxima-
tion.

To determine the region of applicability of the discussed
thermodynamic description of the properties of metastable
states, it is expedient to study in the phase diagram the line of
constant isothermal compressibility V~l(dV/dp)T

In the Ornstein-Zernike theory (the approximation of
a free field of fluctuations) we have z~' ~ RI. Therefore the
quantity z can act as the parameter characterizing the "dis-
tance" to the spinodal in the thermodynamic plane.Upon
using the CP as the reference point, one can derive from the
equation of state (5.5) an expression for the line of constant
compressibility of the form Т — Tc = (z/A)
- (3C/A )(V- Fc )

2, or in the variables p and V,

P —PC

„__ T e v r _ K C , _JL(F_FC)"-2C(F-FC)3.

(5.5')

If z ~' is larger than some critical value, then it becomes
necessary to take account of fluctuation effects in describing
the properties of metastable states. The spinodal corre-
sponds to the condition z — 0. Therefore, by starting with
this criterion, one can separate the metastable region into
several parts, depending on whether the fluctuation effects
are essential or not in each of them (see Fig. 5).

5.2. Pseudocritical indices

By analogy with the theory of critical phenomena,
where the concept exists of critical indices, Refs. 47, 50, 53-

55, and 103 have introduced a system of pseudocritical in-
dices, i.e., universal parameters that characterize the fea-
tures of the physical properties of a metastable substance
near the spinodal, and which depend only on the dimension-
ality of the system, the type of symmetry of the Hamiltonian,
and the number of components of the order parameter. The
pseudocritical indices a*,(j*, y*, and v* are defined as the
exponents in the following relationships in the approach to
the limit (T< Тс) to the point on the spinodal along the line
of constant field A ' = const ̂  0:

Ch, ~ | т |-«*, AF ~ I т IB*,
y - l t l - v * R ~ i T l ' v * (5-7)A I *- I j -**cor I «• I *

Here we have т = (Т — Г5р) /Г8р, and С ~ v* is the heat ca-
pacity at constant field h '. The approach to the limit along
the line A = 0 defines another system of pseudocritical in-
dices, namely:

~ т
(5.8)

Here Ch = 0 is the heat capacity for a field equal to zero
(A = 0).

The pseudocritical index <5* is defined in the same way
in both systems, i.e.,

Др ~ | Д7 |e*, Т = const, Т < Tc. (5.9)

Here we have Д/> = | (p — pip )/psp \, whereps p is the pres-
sure on the spinodal that corresponds to the point at which
the isotherm intersects the spinodal.

Naturally, the approach to the limit as the indices a*,
P *, y*, and <5* approach the corresponding critical indices
occurs in the first system as h ' -»0, and in the second system
as h ->h', i.e., at the CP with T<TC. The transition from <5*
to 5 occurs as Tsp -»Tc, i.e., on the critical isotherm.

The fields h ' and h are interrelated by the equation

h = ft' - A (Fsp _ Fc) (T - Tsp ). (5.10)

Here h 's is the value of h ' on the spinodal. The lines of con-
stant field h ' and h — 0 are shown schematically in Figs. 13
and 14.

The numerical values of the pseudocritical indices are
determined within the framework of the SCF theory by com-
paring the thermodynamic relationships along the direc-
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FIG. 13./>Fdiagram ofafluid with lines of constant fieldA' = h'sf^O.
binodal, S-spinodal; the curves outside the binodal correspond to T>

tions being studied with (5.7), (5.8), and (5.9). Thus, for
systems of the type of metastable fluids one can obtain54'103

a* =/?* = Y* = 1/2, 8* = 2, y* = 1/4. The same results
were obtained in Refs. 50 and 53 for binary mixtures and in
Ref. 47 for magnetic substances.

Pseudocritical indices determined according to (5.8)
were found in Ref. 102: a* = 1, P* = 1, 7* = 1, 8* = 2,
v* = 1/2. These values coincide with those calculated in
Ref. 52 along the line of constant chemical potential for su-
percooled metastable liquids, and also with the critical in-
dices for a percolation problem on a Bethe lattice.104

It is also necessary to take account of the fluctuations of
the pseudocritical order parameter near the spinodal, analo-
gously to how this is done in a corresponding way in the
theory of critical phenomena. A number of experimental
studies (see, e.g., Refs. 37,96, and 105) performed on simple
liquids and binary mixtures have obtained "nonclassical"
values of the pseudocritical indices. The experiments were
performed along noncritical isochores. It turned out that
Y* = 1.21 and/? * = 0.34. These results indicate that taking
account of fluctuational effects must prove very important
for the numerical values of the pseudocritical indices. More-
over, the character of the singular behavior of the substance
along the critical and noncritical isochores proves to be the
same. In connection with what we have said above, the prob-
lem arises of calculating the corrections to the values of the
pseudocritical indices as calculated in the SCF approxima-

tion. We can determine the region of applicability of this
approximation by using the Ginzburg criterion. If the Ginz-
burg number Gi ̂  \т\ <£ 1, then a region of applicability of the
SCF theory always exists. By definition34 we have

T)"
_

Vlf (5.11)

Here (hr]2} is the mean-square fluctuation of the order pa-
rameter. Upon assuming that V~R ^or and taking account
of the fact that%~R cor in the Ornstein-Zernike approxima-
tion, we obtain

Gi ~ | т |<«-в>/4 (5Л2)

for the system of pseudocritical indices defined by ( 5.7 ) , and

Gi - | т |<d-«>/s (5.13)

FIG. \4.pV diagram of a fluid with lines of constant field A = 0;B-bino-
dal, S-spinodal.

for the system of indices of (5.8). We see from (5.12) and
(5.13) that, when d>6, Gi is always small, and hence, the
region of applicability of the SCF theory exists. When d — 3
the SCF theory (just as for the case of the CP) gives an
adequate description of the metastable fluid when the inter-
molecular interaction in it is substantially long-range. In this
case, since Gi~|V6, the smallness of Gi makes possible a
large magnitude of the amplitude of the correlation radius

&•
Let us turn to studying the fluctuational effects in a

metastable fluid near the spinodal.
The theory of the spinodal singularities of thermophysi-

cal quantities was constructed under the assumption of ther-
modynamic stability of metastable states with respect to
fluctuational variation of the order parameter Srj = 17 — rj0,
which can be treated as an external perturbation. In this
regard it seems important to study the problem of the behav-
ior of the relaxation time to the equilibrium state of the mag-
nitude of STJ near the spinodal.

The response of a metastable system to an external per-
turbation differs, depending on the character of the pertur-
bation and the properties of the metastable state itself. Large
perturbations remove the metastable system from a state of
local equilibrium, while leading to an irreversible process of
phase separation. However, if the external perturbation is
small enough, the metastable system can relax back to the
state of local thermodynamic equilibrium. In this case the
situation is that of relaxation about a state characterized by a
relative minimum of the thermodynamic potential.

References 107 and 108 studied the relaxation of a non-
conserved order parameter near the spinodal within the
framework of the Landau-Khalatnikov theory. Expressions
were obtained for the linear and nonlinear relaxation times
near the spinodal. It turns out that the linear relaxation time
is t, ~ 1 \т\ ~y/, where y, = 0.5, while in the nonlinear case tnl

has a logarithmic divergence at the spinodal, i.e., у„, = О.
The obtained values of y, and у„, agree with the known scal-
ing equation yl —ynl = P *. Here the dynamic critical index
is z = 2 near the spinodal, just as for the CP in the analogous
SCF approximation.

Yet if the order parameter is a conserved quantity, then
all the characteristic relaxation times, just like the transport
coefficients, acquire an identical form near the CP and near
the spinodal in the case in which they are expressed in terms
of RCOT. However, the corresponding dependence on the
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variables т and Д V will differ for the CP and the spinodal.
What we have said holds for optical and acoustic effects in-
volving the singular behavior of the correlation radius.

5.3. Features of metastable states in binary mixtures and
liquid crystals

5.3.1. Binary mixtures

Binary mixtures belong to the same universality class as
one-component liquids. Therefore one can use the corre-
sponding isomorphism to describe the thermodynamic
properties of metastable binary liquids. For simplicity we
shall assume that/? = const. Then the expansion of the ther-
modynamic potential near the spinodal will have the form
(5.1), with the difference that 77 = x — xsp, where x is the
mole fraction of one of the components, while the field is
Н = ц* -M* - (dn*/dT)x,sp(T - Tsp), where /** =/i2

— ̂ i is the difference in chemical potentials of the compo-
nents of the mixture. We can go over to a description of the
thermodynamics of metastable states in binary systems by
making the substitutions in (5.!):/>->//*, h-*H, (V — Vip)/
V -»r — r
' sp ~*л Л8р '

An important case is that of polymer mixtures. Here, in
the Flory-Huggins approximation,l09 the expression for the
equilibrium thermodynamic Gibbs potential has the form

л / ч xlnx
Ф(*.»)=—лг- (5.14)

Here NA and NB are the lengths of the polymer chains of
components A and Б, and v is the Flory-Huggins parameter,
which plays in this case the role of the temperature. Isomor-
phism with binary mixtures and one-component liquids is
attained with the substitutions: T->(V — vsp)/vsp,

5.3.2. Liquid crystals

In the phase transition from nematic liquid crystal
(NLC) to isotropic liquid (IL), features are found experi-
mentally that are typical of a first-order phase transition,
namely: jumps in the density, the entropy, the enthalpy,
etc.'lo At the same time, as one approaches the clearing tem-
perature, one finds experimentally an anomalous increase in
such quantities as the isothermal compressibility, the iso-
baric heat capacity, and the Kerr constant. These phenome-
na, which are called pretransitional effects, are usually char-
acteristic of second-order phase transitions. The
combination in the NLC-IL transition of such properties,
seemingly completely mutually exclusive, can be explained
by the closeness of the transition temperature Гс to the spin-
odal temperature (Г * or Г * *) and by the influence of spino-
dal effects on the equilibrium states. The region of metasta-
ble states on the side of the nematic phase has the width
7"** — Tc S 0.3 K, and on the side of the isotropic phase
71* — Tc~l K.111 By analogy with the theory of critical
phenomena, the pretransitional effects are described by
power laws of the type Cp = Cpiper

+ C0[(T—T**)/T**]~a and analogous relationships
for the other quantities. However, the experimentally ob-
served values of the "critical" indices a, /3, etc., do not coin-
cide with any of the known sets of values of indices of any
universality class. Moreover, they do not satisfy the scaling
identities.

A treatment of the pretransitional phenomena as being
pseudocritical was presented in Ref. 112. The comparison of
theory and experiment in this case is difficult, since experi-
ments in liquid-crystalline systems are performed at
p = const, which does not correspond to the conditions un-
der which one finds the pseudocritical indices of this prob-
lem.

For an isobar one can obtain, e.g., Т— Т**
~(V— V**)2', where 1 <z, < 3, depending on the relation-
ship between the parameters of the original expansion of the
thermodynamic potential in powers of the quantity
<p = V — V**, which plays the role of the scalar pseudocriti-
cal order parameter. However, indices of the type of z are not
universal and do not constitute critical indices. In the "iso-
morphous" case, in which h0 = p — p*
- (др/дТ) ug(T-TS)=h *^0, within the framework of

the SCF approximation we have a* =13* = y* = 1/2,
<5* = 2, v*= 1/4.m

As we have already noted, the NLC-IL phase transition
is a first-order transition. For this reason it is natural to use
the approaches of Refs. 113 and 114 to describe its features,
which have been well tested in the theory of nucleation. The
problem consists in describing the regimes of appearance
and growth of nuclei of the nematic (or isomorphous) phase
by using equations of the Zel'dovich type for an ensemble of
drops. The experimentally established law of growth in time
of the radius of nematic drops upon nucleation from a super-
cooled IL has the form a (r)~r1 / 2.1 1 3 Such behavior is
known for other systems having a one-component order pa-
rameter, whereas it differs from the Lifshits-Slezov law
( a ( t ) ~t1/J) established for coalescence processes.20'21

6. FRACTAL STRUCTURES IN THE METASTABLE REGION

Over the past decade the ideas of fractal geometry"5

have actively penetrated almost all fields of modern phys-
ics.59'116'120 It has turned out that fractal nature is inherent
in very many physical objects, both in the micro-116"119 and
in the macroworld, including the structure of galaxies in the
Universe.59'120 It is already clear now that the result of the
penetration of fractals into physics was a radical change in
the views on the nature of many phenomena such as, e.g.,
turbulence and chaos, the structure of disordered systems,
the properties of materials, hardness, the nature of ball light-
ning,116 etc. (for more details see Ref. 121).

The connection between fractals and the theory of sec-
ond-order phase transitions and percolation theory is rather
fully reflected in the reviews of Refs. 116 and 120. Some
mathematical problems involved with the introduction of
fractal (Hausdorf) dimensionalities are studied in Ref. 122.
The properties of the objects called multifractals, which
have recently attracted attention, are discussed in Ref. 123.

The nature of random (or stochastic124'125) fractals is
directly manifested also in first-order phase transitions in
the fluctuational structures of the nuclei (clusters) of the
new phase, which are formed in the process of decay of meta-
stable states. The character of the course of the phase transi-
tion substantially depends of how the nuclei of the new phase
evolve in the process of their appearance and growth, how
they interact with one another, and how stable (i.e., capable
of further growth) the structures of the nuclei are. The lan-
guage of the theory of singularities of differentiable maps
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(catastrophe theory61'126) is very useful for analyzing this set
of problems.

Let us study the fundamental features of the process of
fluctuational formation of nuclei of a new phase. We have
the following expression for the fluctuation of the number N
of particles of the metastable phase in the volume V:

TABLE V.

= F'/,p (6.1)

Here p is the mean density in the metastable state. Forma-
tion of a compact cluster of dimensionality d with density
/0, =p2 —/o c Ap (A/0 substantially different from zero; see
Fig. 1) owing to fluctuation requires fulfillment of the condi-
tion <(AA02)1/2~L'', where L is the characteristic linear
dimension of the fluctuating volume of the cluster being
formed. In the nonfluctuational region (i.e., near the bino-
dal of the system) the variation of the thermodynamic vari-
ables p (А: в TX)1/2 is not singular. Hence we have

^AJV)8)1/» ~ Ld/*. (6.2)

Equation (6.2) implies that one cannot create a compact
cluster (manifold) of dimensionality d from particles fluctu-
ating near the binodal. In the language of catastrophe theory
one can say that in the case being discussed the structures
formed fluctuationally in the space R" will not look locally
like a "piece" of this same space or of a space Kd ~' (that is,
they will not even be two-dimensional compact structures
when d = 3). In order that such structures should actually
be manifolds (i.e., compact clusters), as is implied by (6.2),
they should have the dimensionality Dim(Af) = d /2, and a
codimensionality Cod ( M ) equal also tod/2, since by defini-
tion Cod(M) =d— Dim(Af),61 where the symbols
Cod(M) and Dim(M) respectively correspond to the codi-
mensionality of the manifold M being discussed and to its
dimensionality. What we have said above implies that the
mean-square density fluctuations in any volume on the non-
fluctuational region of variation of the thermodynamic vari-
ables will not even lead to appearance of a compact "sur-
face" (a manifold of dimensionality d — 2) nor with any
dimensionality of the enveloping space except d = 2. Yet
even when d = 2, the formation of such a fractal "foam"
does not lead to appearance of a compact nucleus of the new
phase (a manifold with d = 2). Since the codimensionality
characterizes the properties of the boundary between the re-
gions of the enveloping and the inserted manifolds, then evi-
dently in the nonfluctuational region the role of the correc-
tions involving the effects of formation of the new phase
increase with decreasing dimensionality of the enveloping
space. When d > 2, we have Cod(M) > 1, and the role of the
fluctuational corrections is negligibly small throughout the
metastable region.

As we approach the spinodal we havej^ -> oo, so that the
situation changes qualitatively. Since x~R ?o7''. where 17 is
the critical index of the correlation function, while Rc ~L at
a point of the stability boundary, we have

Here Д„ is the scaling dimensionality of the fluctuating or-

d

2
3
4
6
8

Dim (AT)

15/8
17/V

4
5

Cod (M)

1/8
4/7

2
3

where d f is the fractal dimension of the nucleus being formed
of the new phase. The corresponding dimensionalities and
codimensionalities of the fluctuational formations for differ-
ent values at the critical point are given in Table V.

We see from the data of Table V that, even at d = 4, a
fractal "foam" arises owing to fluctuations, since
Cod(Af) = 1, more compact structures arise for d = 3,
while for d = 2 the fluctuational formations already can ac-
tually play the role of nuclei of the new phase, since 15/8 S 2.
When d = 4, the role of the fluctuations that lead to forma-
tion of the new phase is inessential. If near the spinodal (far
from the critical point) we use the results of self-consistent-
field theory, then the corresponding dimensionalities and
codimensionalities of the fluctuational formations will have
the following values given in Table VI.

In the present case the boundary dimensionality is
found between d = 4 and d = 3. Somewhere between these
dimensionalities a fractal "foam" appears having a codimen-
sionality equal to unity.

We can conveniently illustrate the physical meaning of
the dimensionalities and codimensionalities of the fluctu-
ations with the example of fluctuations of the number of
particles in a cube of side L. If Dim(Af) = 2 and
Cod(Af) = 1 for d = 3, then as a result of the fluctuations in
the cube one of the faces moves (or, owing to the fluctu-
ations, a layer of particles with N~L2 grows or is lost).
When Dim(M) = 1 while Cod(Af) = 2, an edge fluctuates
in the cube, while when Dim(Af) = 0 and Cod(Af) = 3, a
vertex fluctuates. Interestingly, for formation of the new
phase throughout the region of space, we must have
Dim(M) = 3, while Cod(Af) = 0!

From what we have presented above, it is clear that the
concept of codimensionality of a manifold plays a more im-
portant role than the concept of dimensionality. In certain
cases or models the dimensionality proves to be infinite,
while the dimensionalities of the fluctuational manifolds
that arise also prove to be infinite, but the codimensionality
of the fluctuational formations can prove here to remain fi-
nite, while all its useful properties are conserved. Thus the
concept fundamental in the theory of differentiable maps
(catastrophe theory) of transversality can be formulated in
the language of codimensionality. Then two submanifolds in

TABLE VI.

der parameter. Since Др = /3/v = d — d{, we have

(6.4)

d

3
4
6
8

Dim (M)

2,09
2,8
4
4,67

Cod (M)

0,91
1,2
2
3,33
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Mrf intersect transversally at the given point if either we have
Dim(A/\nAf2) = 0, or

Cod (Mx) + Cod (M2) < d, Dim (Mt fl Mt) = Dim (Mt)
+ Dim (М2) - d.

(6.5)

According to the Bertini-Sarda and Toma theorems126 the
transversality of the intersection of two submanifolds is a
stable property that is conserved upon small perturbations.
For two manifolds taken randomly, the probability is infini-
tesimally small that they intersect nontransversally. Thus, if
fractal manifolds (clusters) are formed in a system owing to
fluctuations in the number of particles in different volumes,
then the situation is typical that they intersect transversally.
The probability of their nontransversal intersection equals
zero.

In the nonfluctuational region the transversality of the
intersection of two clusters implies that, if they intersect,
they do so in a manifold, the measure of whose set equals
zero, since Dim(M,nM2) = (rf/2) + (d/2) -dsO.
That is, growth of a new phase owing to merger of the clus-
ters being formed does not occur. In this case the intersec-
tion of two fractal "hedgehogs" at individual points or the
absence of intersection is typical.

Table V implies that we have Dim (M, fW2) = 2 at the
critical point when c?>4. This implies the impossibility of
merger of the clusters formed fluctuationally into a compact
structure. Here the case d = 4 corresponds to the situation in
which structures of the least degree of fractality are formed
as a result of transversal intersection. When d = 3 clusters
are formed with 3 < df<,2, while they intersect transversally
in a manifold with Dim(Mir\M2) 52. The case d = 2 is
most interesting, since Dim(Af) = 15/8<c?, while transver-
sal intersection occurs in a manifold of dimensionality
14/8<c?. That is, in this case the merger of the clusters being
formed to yield growth of the new phase is most probable of
all.

Analysis of the dimensionalities and codimensionalities
of the clusters that are formed in the vicinity of the spinodal
in the case d = 3 shows that the growth of fluctuational clus-
ters owing to their merger is less probable than in the vicinity
of the critical point (see Table VI).102

The analysis that has been performed of the dimension-
alities of the manifolds that arise upon fluctuation of the
number of particles in the equilibrium case shows that the
problem of the criteria of fluctuational stability of a phase in
the metastable state cannot be solved systematically within
the framework of an approach that employs the hypothesis
of fluctuational creation of nuclei of the new phase having a
compact form. In this regard we should note the results of
machine experiments, according to which the structure of
the clusters that are formed in the metastable region is close
to fractal.

7. CONCLUSION

We have paid the major attention in this review to
studying metastable states in liquid systems, for which, on
the one hand, sufficient experimental material has already
been accumulated, and on the other hand, substantial theo-
retical treatments exist. Since the studies of metastable states
in liquids have already been conducted long ago, the experi-

ence acquired in this field can be successfully applied also to
study metastable systems of another physical nature, the
treatment of which lies outside the scope of our review.
Among such systems we mention first of all the following:
binary alloys, superconductors, layers adsorbed on a sur-
face, polymer mixtures, gels, the electron-hole fluid in semi-
conductors, and chemically reacting systems. References to
a series of studies that treat metastable states in the systems
listed above are contained in the review of Ref. 127. In addi-
tion we should note that the '80s were characterized by a
surge in scientific activity in the field of study of the thermo-
dynamics of phase transformations and metastable states in
nuclear matter and in the early Universe. A phase transition
in superdense nuclear matter (the transition "hadron mat-
ter-quark-gluon plasma," which occurs at a temperature of
the order of 200 MeV) was discussed recently in the review
of Ref. 118. The possible role of metastable states in the evo-
lution of the early Universe preceding confinement and pri-
mary nucleosynthesis (miniinflation and inflation in the
hadronization stage) is studied in Refs. 128-133. Itturns out
that a possible supercooling of the quark-gluon plasma in the
expansion of the Universe substantially determines the sce-
nario of its hadronization. Here the rate of expansion in-
volves the form of the equation of state in the metastable
region, while the depth of intrusion is determined by a crite-
rion analogous to the Ginzburg criterion discussed in this
review.

This review also has not included a number of interest-
ing problems that as yet have not been studied sufficiently.
Thus it is not ruled out that, in the formation of a nucleus of
the new phase in a metastable state, the structure of the
phase boundary and its composition (in the case of solu-
tions) substantially differ from the equilibrium case. Natu-
rally, such a difference leads to a change in the surface-ten-
sion coefficient and to refinement of the criteria for depth of
intrusion into the metastable region. The problems of the
hydrodynamics of metastable liquids merit special treat-
ment. Apparently, near the spinodal the hydrodynamic
equations must be nonlocal and must take account of the
effects of memory in the kinetic coefficients and susceptibili-
ties. However, the literature contains little data on the vis-
cosity, heat conductivity, and diffusion coefficients of super-
heated liquids. Such a situation does not offer possibilities
for a comprehensive application in studying metastable
states of the traditional methods of light scattering, acoustic
relaxation, and slow-neutron scattering that are successfully
applied to study the features of behavior of matter near the
critical point. All these problems demand solution in the
very near future.
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