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Publications on the structure of the physical phase space (PS) of dynamical systems with gauge
symmetry are reviewed. The recently discovered phenomenon of reduction of the phase space of
the physical degrees of freedom is studied systematically on mechanical models with a finite
number of dynamical variables. In the simplest case of one degree of freedom this phenomenon
consists of replacement of the phase space by a cone that is unfoldable into a half-plane. In the
general case the reduction of the phase space is related with the existence of a residual discrete
gauge group, acting in the physical space after the unphysical variables are eliminated. In
"natural" gauges for the adjoint representation this group is isomorphic to Weyl's group. A wide
class of modes with both the normal and Grassmann (anticommuting) variables and with
arbitrary compact gauge groups is studied; the classical analysis and the quantum analysis are
performed in parallel. It is shown that the reduction of the phase space radically changes the
physical characteristics of the system, in particular its energy spectrum. A significant part of the
review is devoted to a description of such systems on the basis of the method of Hamiltonian path
integrals (HPIs). It is shown how the HPI is modified in the case of an arbitrary gauge group. The
main attention is devoted to the correct formulation of the HPI with a poor choice of gauge. The
analysis performed can serve as an elementary illustration of the well-known problem of copies in
the theory of Yang-Mills fields. The dependence of the quasiclassical description on the structure
of the phase space is demonstrated on a model with quantum-mechanical instantons.

1. INTRODUCTION

Gauge theories are now on center stage in the modern
physics of the microworld. Judging from their successes,
they will probably remain there during the next ten years.
For this and other reasons, associated with their intrinsic
merits (elegance, relative simplicity, clear geometric inter-
pretation, etc.), gauge theories are under intensive study;
quantum electrodynamics (QED)—a system with an Abe-
Han gauge group—has now been studied for more than half a
century.' At the same time new and sometimes unexpected
aspects, previously neglected or simply unnoticed, are being
discovered in these theories even now. This pertains both to
fields with a non-Abelian gauge group, the Yang-Mills
fields,2 and to electrodynamics. Examples are the Higgs
phenomenon,3^8 asymptotic freedom,9'10 and the problem of
fixing the gauge in the Yang-Mills theory.''

The question of the structure of the phase space (PS) of
gauge theories, i.e., the question of the peculiarities of the
Hamiltonian dynamics of the physical variables, can also be
included here. It is known that dynamical systems with
gauge symmetry have unphysical variables, which change in
time according to a law that is not contained in the equations
of motion. Elimination of these variables means transferring
from the initial phase space to a lower-dimensional physical
phase space, which is usually assumed to be locally Euclid-
ean.1' It has been found, however, that this is still not the
end. Study of the simplest models has shown that a residual
discrete gauge group, which brings about further reduction
of the phase space, operates in the space of the physical vari-
ables (Refs. 12,13).2) This group, which in the simplest
cases is identical to Weyl's group,13'14 cannot lower the di-
mension of the physical phase space, but it can change its
"volume." The essence of the matter lies in the well-known
fact that points of configuration or phase space which are
connected by a gauge transformation are physically indistin-

guishable. The residual discrete group identifies with one
another some points of the space of physical variables and
this is what leads to reduction of the space; for example, the
phase plane is transformed into a cone that is unfoldable into
a half-plane.12 This circumstance brings about a change in
the dynamics of the system.

Thus, in the case of a two-dimensional isotropic oscilla-
tor with the gauge group SO(2) the frequency of the oscilla-
tions is doubled (compared with the same oscillator without
gauge symmetry). This result is easy to understand: if the
gauge group is the group of rotations in the plane, then all
points on a circle in the plane are physically indistinguish-
able and the only physical variable is r—the distance to the
origin of coordinates. The motion of a material point now
looks as follows: After the particle passes through the point
r = 0 the subsequent motion is indistinguishable from the
reverse motion, i.e., the motion along the path the particle
has just traversed (see Sec. 2). As a result, the particle re-
quires half the time to return to the starting point—this is the
origin of the doubling of the frequency.

A diiferent formulation of this phenomenon is also
fruitful: Eliminating as unphysical one of the two Cartesian
variables (by setting it equal to zero) we arrive at motion
along an axis whose points, which are symmetric relative to
the origin of coordinates (the point of intersection of a
straight line with the gauge orbit, i.e., a circle), are physical-
ly indistinguishable. The residual gauge group Z2 identifies
these points with one another: The nontrivial element of this
group is reflection relative to the origin of the coordinates. It
is very important that this approach can be easily extended
to arbitrary groups, and in the non-Abelian case Weyl's
group plays the role of the group Z2.13>15

This feature also appears in the quantum theory: Since
the physical states are fixed by the requirement that the con-
straints vanish on them, some of the states of the initial space
are eliminated. Only the states that are invariant under the
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residual gauge group, i.e., states whose energy spacings (fre-
quencies) are doubled, remain. This situation occurs not
only for the normal (commuting) but also for the Grass-
mann (anticommuting) variables.15'16 The transition to an
arbitrary group complicates the structure of the phase space
without changing the essential nature of the problem.

The question of the formulation of such theories on the
basis of the method of Hamiltonian path integrals (HPIs) is
of independent interest. This problem is identical to prob-
lems in which it is required to take into account in a path
integral zero boundary conditions (particle in a "box") or
the topology of the configuration space.17'18 The fundamen-
tal feature of this problem is that here the structure of the
phase space must be taken into account. We emphasize that
only physical variables are of concern here. This problem,
which is quite trivial in the case of a three-dimensional iso-
tropic oscillator (theSO(3) group19), becomes appreciably
more complicated for an arbitrary simple Lie group.13'15'20'21

What are the consequences of changing the structure of
the phase space? It was mentioned above that the spacing of
the energy levels of a harmonic oscillator is doubled already
in the case of an Abelian gauge group (or more complicated
groups, but for representations with one physical variable).
Transferring to groups of higher rank, generally speaking,
increases the number of physical degrees of freedom, and the
spectrum becomes more complicated. Thus for the adjoint
representation of a simple compact group of rank / the spec-
trum is identical to that of a collection of noninteracting
oscillators with the frequencies raa), a = 1,2,..., I, where m
is the frequency appearing in the Lagrangian and ra is the
degree of the independent Casimir operators in the group.13

Reduction of the physical phase space leads to modification
of the Hamiltonian path integrals. Therefore the quasiclassi-
cal description can be expected to change. However, this is
already clear from analysis of the problem of an oscillator
with gauge symmetry, for which the quasiclassical descrip-
tion is exact. In Ref. 22 it was shown for the example of
quantum-mechanical instantons23"27 that reduction of the
phase space of physical variables brings about a change in
the structure of the в vacuum.26'27

This review is devoted to a range of questions connected
with the phenomenon of the reduction of the phase space of
the physical degrees of freedom in theories with gauge sym-
metry. Mechanical systems with a finite number of variables
are studied; this stage is necessary in order to proceed to
gauge field theories. Gauge field theories are very complicat-
ed, and if the properties and consequences of the reduction of
the phase space are not understood for the simplest models,
it will be impossible to understand and evaluate its role in
field theory (the structure of the phase space of the Yang-
Mills fields as well as the consequences of changing the phase
space for some field systems are examined in Refs. 12,15,22,
and 28). However, these models are of interest in themselves
as the simplest examples of mechanical systems encountered
in nature, but which have not been included in textbooks on
theoretical mechanics.

Models with one physical degree of freedom are studied
in Sec. 2. Models with an arbitrary gauge group and several
degrees of freedom are studied in Sec. 3 and models with
Grassmann (anticommuting) variables, which are encoun-
tered in the description of Fermi fields, are studied in Sec. 4.
Section 5 is devoted to an analysis of Hamiltonian path inte-

grals for models with a reduced phase space of the physical
variables. The effect of the reduction of the phase space on
the quasiclassical description is studied in Sec. 6. Finally,
systems with several degrees of freedom and a phase space
with a more complicated structure are studied in Sec. 7.
These models make it possible to understand better the role
of unphysical variables. In this paper we study only compact
gauge groups. In the concluding section ( Sec. 8 ) , the investi-
gations performed are summarized and the prospects for
their application in field theory are discussed. Supplemen-
tary material is presented in the Appendix (Sec. 9). Our
analysis of constrained systems is based on Dirac's scheme29

(see Sec. 9.5 for a more detailed discussion).

2. GAUGE SYSTEMS WITH ONE PHYSICAL DEGREE OF
FREEDOM

2.1 . The simplest model (the SO(2) gauge group)

2. 1. 1. The classical theory12

Consider a dynamical system given by the Lagrangian
function

(2.1)

where the two-dimensional vector x and the scalar у are dy-
namical variables, T= — ir2 (т2 is a Pauli matrix), and
( 7x ) , . = TI/XJ . The Lagrangian (2.1) describes a nonrelativ-
istic particle of unit mass in a two-dimensional space. If we
now transform to the complex quantities
<p = (x, + ix2 )/V2, then L will assume the form

L((f, ф*,ф, ф*, у, y)\

(2.2)

whence it is obvious that the Lagrangian (2.2) is the Lagran-
gian of scalar electrodynamics in (1+0) space-time, and
у = AQ (t) is the zeroth component of the vector potential
A p. The Lagrangian (2.1) is invariant under the group of
gauge transformations

6x = еГх, ду = е, (2.3)

where e = e(t) is an arbitrary infinitesimal function of time.
The transformation to the Hamiltonian formalism is deter-
mined by the equations/)' = dL /dxit ir = dL /dy = 0, and

(2.4)

It is easy to verify that the Lagrangian (2.1) defines a me-
chanical system with two constraints of the first kind:29

IT = 0, <j=p7x = 0, and cr = хгр2 — x2pl is the generator of
rotations in two-dimensional space.12 Only one of the three
degrees of freedom y, xl, and x2 is physical. A description of
the system using only physical variables can be obtained by
two methods. The first method is explicitly invariant. Per-
forming the canonical transformation x, p^#, r, pr, pe,
where /•= (x2)172 and в are the polar coordinates while
pr = (p,nr) andpe = (p,ne) лаге the momenta conjugate to
them, n, = x/r and ne are unit vectors, we verify that r and
pr are gauge invariants and can be taken as the physical vari-
ables. The second (noninvariant) method is as follows. Be-
cause of gauge invariance2 the points of the circle x2 = const
are physically indistinguishable. As a representative one can
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take from each circle a point that also lies on a line intersect-
ing each circle only once, for example, the semiaxis x2 = 0,
xl >0. It is more convenient, however, to assume that the
physical variable л:, runs over the entire real axis, on which
the point Xi is identified with the point — x,. This is equiva-
lent to the assertion of a transformation to a dynamical sys-
tem with the gauge group Z2 consisting of the two ele-
ments4' 1 and P, where Pxt = — x,. It is obvious that both
formulations are equivalent. In the case of more complicated
groups and representations the relation between these ap-
proaches is no longer so simple.

The question of the structure of the phase space of a
model is solved as follows. In the invariant approach r>0,
— oo <pr < со, so that the physical phase space is a half-

plane. A more careful investigation12 shows that on the
straight line r = 0 the point pr must be identified with the
point — pr. This is most easily seen by studying trajectories
in the phase space (r, pr) for some simple potential, for ex-
ample, F= x2/2inEq. (2.4) (j»playstheroleofaLagrange
multiplier). It is easy to verify that the solutions of the corre-
sponding Hamiltonian equations of motion and constraints
a = 0 have the form

and p(r) = — ( t g f ) x ( f ) . Then r ( t ) = |cos t\r(0) and
pr(t) = — ( t g f ) cost\r(0). It is obvious that at time
t = ir/2 (r = 0) the trajectory in the plane (r, pr) has a dis-
continuity andpr changes abruptly. It is clear from physical
considerations, however, that there cannot be any jumps in
the phase space of this mechanical system (the potential is
regular). For this reason the points (r = Q,pr) and (r = 0,
— pr) in the phase space must be identified with one an-

other. This means that the phase space of the system is a cone
that is unfoldable into a half-plane. In the noninvariant ap-
proach this result is obtained automatically. From the equa-
tion a = 0 it follows that p = /Ix, where Л is a function of
time. For this reason, if x2 = 0, ihenp2 = 0. Since the laws
of the gauge transformations for p and x are identical, p , also
changes sign under the action of the group Z2 , i.e., the gauge
group Z2 operates in the phase space according to the rule

Therefore the points (jct, p{ ) and ( — xlt — /?,) of the
phase plane are physically indistinguishable, i.e., the phys-
ical phase space is a cone that is unfoldable into a half-plane.
For the model (2.1) both methods (the invariant method
and the noninvariant method with the group Z2 ) appear to
be equivalent. The advantage of the noninvariant approach
is seen in the case of more complicated groups or representa-
tions (see Sees. 3 and 7).

It may seem that the phase space of the polar variables r,
pr is also a half-plane in the absence of gauge symmetry,
because r>0. Analysis shows that this is not so. The question
of the structure of the phase space of the variables in the
polar coordinate system is studied in the Appendix (Sec.
9.1).

2. 1.2. The quantum theory

The transition to the quantum description of the system
(2.1) is made by transferring to operators x, p, у, тг-» x, p, y,

TT in the Hamiltonian and the constraints (the problem of
ordering the operators does not arise here). In so doing the
gauge must be fixed30 by adding to the Lagrangian, for ex-
ample, the term j>2/2; then H->H + (7rV2). In accordance
with the standard recipe for quantizing such systems29 the
physical states are singled out by the conditions

ЙФ = 0, аФ = рГхФ = 0. (2.5)

The first condition means that the physical state vectors do
not depend on y. In what follows, we shall ignore this vari-
able5' (for example, in normalizing the states we shall not
integrate over it). The second condition (2.5) means that Ф
is invariant under the group of rotations in the plane, i.e., in
the coordinate representation it does not depend on the angle
в and therefore Ф = Ф(х2), since x2 is the only invariant
that can be formed from the vector x. The states are normal-
ized as follows:

-̂ - d2.r | Ф|2 = drr | (2.6)

We note that although the theory is one-dimensional the
integration is performed with a nontrivial measure. This is
actually an invariant approach. Transferring in the Hamilto-
nian (2.4) to operators and rewriting it in polar coordinates
Я+ (7rV2) = [ ( f t + r ~гр1 - (4r2) ~')/2] + (7rV2)
+ УРе + У(гг)> we find the energy operator operating in

the physical space (рвФ = тгФ = 0)

(2.7)

here pr = — ir l/2dr l/2/dr and the wave functions are
normalized according to Eq. (2.6).

The unphysical variables can be eliminated in an invar-
iant manner even before quantization. In the variables r, pr

and в, and/7e the Hamiltonian (2.24) with the constraint
рв = а = 0 has the simple form ( l / 2 ) p 2

r + V{r2). But then
the Hamiltonian operator obtained from it by making the
substitution pr ->pr = — idr, is not the same as the operator
(2.7). This approach is acceptable a priori (see Sec. 9.5).
However it has a number of inherent fundamental draw-
backs. First, the theory is formulated on the semiaxis r>0
and the operator j?, = — id, is not self-conjugate on the se-
miaxis and cannot be extended to a self-conjugate operator.
Second, in order for the Schrodinger equation to make sense
it must be supplemented with a boundary condition at the
point r = 0, i.e., extraneous considerations must be invoked.
Third, the choice of invariant variables is not unique. The
form of the Hamiltonian depends on this choice (see Sec.
2.3.2). If, now, when quantizing, the canonical momentum
in this Hamiltonian is replaced by the corresponding differ-
entiation operator, then the quantum theories correspond-
ing to different choices of the invariant variables will be dif-
ferent (unitarily nonequivalent; "quantization" can be
performed only in Cartesian coordinates) (see Sec. 2.3.2).

Dirac's scheme29 does not have these deficiencies (see
once again Sees. 2.3.2 and 9.5). It can thus be used as a
standard for comparing different quantization schemes.

The noninvariant analysis involves transforming in Eq.
(2.4) to x2 = p2 = 0. However a direct approach cannot be
used here. One cannot solve the constraint xlp2 = x2p^ for
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p2, substitute/>2 into Eq. (2.4) and set x2 =0 and then
transfer to the quantum description. The fact that the con-
straints hold only on the physical states must be taken into
account. For this reason, according to Ref. 17 the substitu-
tion^ = (x2/x} )pl in the termp\ in the formula (2.4) can
be made only for one momentum р2Ф =p2 (x2/xl )pi$>,
since the state obtained (x2/xt )/>, Ф will no longer be phys-
ical. The second momentum p2 must first be transferred to
the right of Ф and only then can the indicated substitution
followed by elimination of x2 (x2 = 0) be made. Ultimately
the term p\ will transform into ( — i/x} )/>,; the Hamilto-
nian sought is

(2.8)

The operator (2.8) is defined on the entire axis, and we must
take into account the residual gauge invariance associated
with the group Z2, i.e., the physical states must be made to
satisfy the gauge condition

P(f(x1) == (j) (— X j ) = ф ( (2.9)

(We recall that P is the only nontrivial element of the group
Z2.) From Eqs. (2.9) we conclude that the physical vectors
Ф are even functions of xl, i.e., Ф = Ф(х2). However the
normalization of Ф differs from that of the wave function of
the one-dimensional problem with the Hamiltonian (2.8).
In accordance with Eq. (2.6) we have

Ф (2.10)

The choice of the normalization condition in Eq. (2.10) re-
quires explanation. The integration over the entire real axis
corresponds to the formulation of the problem: x, assumes
any real values, but the physical range of xl is the semiaxis
x, >0, whence appear the factor 1/2 and \xt | (instead of xt)
in Eq. (2.10). The facts that the Hamiltonians (2.7) and
(2.8) are identical (x, <-»•/•) and the corresponding problems
are identical is obvious. We note that in choosing the norma-
lization condition in the noninvariant approach it was neces-
sary to resort to an invariant formulation.

The role of the discrete gauge group becomes clear from
Eqs. (2.6), (2.9), and (2.10). Because of it: 1) Some of the
eigenfunctions of the Hamiltonian are dropped and 2) the
normalization condition changes (the factor 1/2 in Eq.
(2.10)). There is one other feature. If the unphysical vari-
ables are eliminated before quantization is performed, then a
quantum theory with the Hamiltonian ( \ / 2 ) p \ + V(x\ ) is
obtained. Obviously, it differs from the theory given by Eqs.
(2.8) and (2.10). Everything we have said above in our dis-
cussion of the invariant approach pertains also to the nonin-
variant method, with the exception of the fact that the opera-
tor/^ = — /<?,, in contrast to Д., is self-conjugate because
x, eK. Here, as in the invariant approach, in order to prevent
the quantum theory from depending on the gauge, Dirac's
scheme (the noninvariant approach) must be used.

The example analyzed above illustrates the noncommu-
tativity of the operations of quantization and elimination of
unphysical variables in constrained systems. 12Л7'32~35 The
resulting theories can differ, first, by their Hamiltonians
and, second, by the normalization condition. Of course, in
particular cases it may happen that these operations com-

mute (in the model (2.1) у can be eliminated at any stage
after transferring to the Hamiltonian dynamics). The indi-
cated noncommutativity is important for Yang-Mills
fields.32'36

2.2. The harmonic oscillator (the gauge group (SO(n))

2.2.1. Coordinate representation

The elimination of unphysical variables in the classical
theory for the model of Sec. 2.1 does not present any diffi-
culty. Solving the constraint p2 x, — x2p\ =0 for p2, substi-
tuting the solution into Eq. (2.4), and then setting x2 = 0 we
obtain the Hamiltonian (p\ /2) + V(x\). The consequences
of gauge invariance are taken into account by identifying
with one another the points (x, ,p{) and ( — x, , — / > , ) of the
phase space. In the case of the harmonic oscillator
(V = x2 /2) this results in doubling of the frequency of the
oscillations, because in the configuration space after the par-
ticle passes through the point х, = О the reverse motion ac-
tually occurs (the points x, and — x, are identical), and the
particle returns to the starting position in half the time. This
fact should also be manifested in the quantum theory, i.e.,
the separations of the energy levels of the oscillator should be
doubled.

We shall demonstrate this assertion for the example of
an n-dimensional isotropic oscillator with the gauge group
SO (и), when the gauge transformations are rotations of the
и-dimensional vector x.12 The corresponding Lagrangian is
an obvious generalization of the Lagrangian (2.1)
(уТ->уаТа, V= x2/2, where Г* are antisymmetric matri-
ces (the generators of SO(n)) and a = 1,2,..., n(n — l)/2).
The secondary constraints are now generators of the group

(2.11)aa = рЛ'х; = 0 (;, / = 1 , 2 , . . ., n).

where/?, are the momenta that are canonically conjugate to
x,. Since the stationary subgroup of an «-vector is
SO(« — 1), from the n(n — l)/2 constraints only
n(n — l)/2 — (n — \)(n — 2)/2 = л — 1 are independent,
and the physical states are the functions that do not depend
on the angular variables.

Schrodinger's equation for the radial functions in an n-
dimensional spherical coordinate system is12

Г d2 n —1 d

I ~ d 7 * r dr

(2.12)

where / = 0, 1,..., whence by making the substitution
Ф = r 2 exp( - r 2/2)/(r) we obtain forz(f) =f(r), t = r2,
the following equation

tz" + (a — t) z = 0, (2.13)

in which а = / + (и/2) and P = (a — E)/2. The solution
of this equation that is regular at the origin is given by the
confluent hypergeometric function

(t) = ̂  (P, a; t) . (2.14)

From the condition that Ф(г) decay at infinity (from the
condition that z(t) is a polynomial, i.e., with/? = — A:) we
find the energy spectrum:

fc = 0 , l , . . . (2.15)
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Using the relation between the functions ,F, and the La-
guerre polynomials L"(tFl (-k,a+ l;f) = La

k(t)T
(k+\)T(a+\)/T(k + a+\) (Ref. 37, p. 189), we ob-
tain the sought solution of Eq. (2.12):

Ф», (r) = const •r'Ljr1+(nft) (г») (2.16)

The physical solutions are spherical symmetric functions
Ф^ о . It is clear from Eqs. ( 2. 1 5 ) and ( 2. 1 6 ) that for / = 0 the
spacings between the levels double, and the physical states
are even functions of r. The latter fact means, in particular,
that in the noninvariant formulation the eigenfunctions of
the Hamiltonian (2.8) ( F= x2/2) that are regular at the
origin automatically satisfy the condition (2.9).

In conclusion, we shall discuss the meaning of the vari-
able xl . From the outset it was clear that x, is "not a com-
pletely" physical variable, because it changes under the
gauge transformations (xl -»—*,). It follows from Eqs.
(2.9) and (2.10) that all matrix elements of x, between
physical states are equal to zero

(2.17)

The equation (2.17) is equivalent to the following assertion:
The state with a definite nonzero value of x, cannot belong
to the physical Hilbert space ̂ ph, i.e.,

x-fy = x$ —*• *v|? £~ <H ptj, (2.18)
s^ s^

because in this case Рф^ф. Indeed, the operators P and x,
do not commute (Px, = — x,P), so that the only eigenstate
they can have in common is if> = 0. Only even powers of x,,
i.e., variables of the form |x, | = xl sign x, ,x2,xf,... (|x, |
can actually be represented by a series of even powers of x,),
are physically meaningful. This fact is important for the
quantum field theory.12'15'16'22'28

We shall now summarize. After the unphysical vari-
ables are eliminated we obtain two equivalent formulations
of the feature of interest of the dynamical system: 1) The
system has a conical phase space and 2) the system is invar-
iant under the discrete gauge group (in this case, the group
Z2). The first formulation is useful for studying the classical
Hamiltonian mechanics, while the second property is con-
venient in the Lagrangian approach, in quantum mechanics,
and in the method of path integration. A physical conse-
quence of this fact is that the spectrum of the Hamiltonian
changes. In particular, the frequency of oscillations of the
oscillator is doubled and the Hilbert space is reduced. We
stress, however, that the condition (2.9) starts to play an
important role only in the process of elimination of the un-
physical variables (when transferring to one-dimensional
motion in the problem (2.1)). Within the framework of Dir-
ac's general approach29 all information about the physical
states is contained in the conditions (2.5).

2.2.2. The second-quantization representation

It is useful to represent in the second-quantized form
the quantum-mechanical problem of Sec. 2.1 for the oscilla-
tor potential. Transforming in Eq. (2.4) from F= x2/2 to
the new variables a = (p — /x)/V2~ and a+ = (p + /x)/v2~,
we write the Hamiltonian operator in the form

Taking into account the fact that the basis of the Hilbert
space is given by the states (c,+ )m(af )"|0), m, n = 0, 1,...,
we find the basis vectors of the physical space from the con-
dition that the constraints а = а + Та vanish on the physical
states а|Ф) =0:

| фк> = (2R/c!)~l [(a^2]* | 0>. (2.20)

The result (2.20) is obvious, since a is the generator of
rotations in a plane: [<7,a+ ] = — Ta + , [a, a] = — 78; in
addition, <т|0) = О and the physical basis is exhausted by
vectors which are obtained by applying to |0) invariant poly-
nomials of a +. There exists only one independent invariant
polynomial. This polynomial is (a+)2. This proves Eq.
(2.20). Since

[a+a, = 2 (a+)> (2.21)

the spacings between the energy levels are doubled. In the
case of an n-dimensional oscillator, whose physical states
satisfy the conditions аа |Ф) = 0 (see Eq. (2.11)), we have
(Ref. 15, pp. 74 and 38)

4*fcl T(k + re/2)
Г(в/2)

(2.22)

Й = a+a + 1 + i£'a+ [ai? a}] = 6i;-. (2.19)

and by virtue of Eq. (2.21) the frequency of the oscillations
is also doubled.

We note that in a physical state all n oscillators are ex-
cited and that the physical picture does not reduce to a one-
dimensional oscillator with doubled frequency. The case
n = 3 is an exception. In this case the normalization factor in
Eq. (2.22) [(2A:)!]~1 / 2 admits such an interpretation. This
can also be seen from Eq. (2.16) with / — 0, n = 3, and
rLl

k
/2(r2)~H2k+l(r) (Ref. 37, p. 193).
This representation has been found to be very useful in

the case of more complicated groups for the adjoint repre-
sentation (see Sees. 3.2 and 9.8).

2.3. The residual discrete group and the choice of physical
variables ("choice of gauge")

2.3.1. The noninvariant approach

The foregoing presentation can create the impression
that the residual discrete group Z2, being a subgroup of the
gauge group, is an objective characteristic of a dynamical
system (together with, say, the dimension of the physical
space). In a certain sense this is true. The exact assertion,
however, is as follows: The residual group is wholly deter-
mined by the choice of gauge39 and the group Z2 is the sim-
plest of the possible groups, as a result of which the gauge
condition x2 = 0 is the simplest method for eliminating the
unphysical variable. A poor choice of physical variables can
greatly complicate the residual gauge group. By its very na-
ture this fact is related to the problem of nonuniqueness of
the gauge, which was discovered in the study of Yang-Mills
fields.11 We shall now discuss the details.

Suppose that in the model (2.1) the physical variable is
determined not by the straight line x2 = 0 but rather by a
line in the plane (x, ,x2). There exist several fundamentally
different possibilities, illustrated in Fig. 1 by the curves 1-3.
The concentric circles in the figure are orbits. The choice of
gaugex2 =/, (Xj ) (curve 1) is not acceptable at all, because
the physical region 0<r<r0 (r = |x|) is excluded (curve/is
tangent to the circle S(r0) with radius r0). The choice
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FIG. 1.

x2 =/2(дс, ) (curve 2) means that orbits with and
r > r2 intersect twice while orbits with radii г, <r<r2 inter-
sect four times. In contrast to the case x2 = 0, transforma-
tions connecting the points of the curve 2 which lie on the
same orbit do not form a subgroup of the gauge group. In-
deed, by means of a rotation transformation the point x2 on
the circle S(r) (see Fig. 1 ) can be transferred into the point
x, , but under such a rotation the point x3 is not transferred
into x2 , x4 into x, , and x, into x4 . For this reason the com-
position of two residual transformations, generally speak-
ing, does not give a new residual gauge transformation.
More elaborate curves can complicate even more the struc-
ture of the residual gauge group. Trajectories projected on
the xl axis can have discontinuities; an example is curve 3
after the twice-traversed section BB'C (BB1 ~B'C) is ex-
cluded. It is clear that when more realistic systems are stud-
ied all such possibilities must be taken into account.

This model is a good illustration of the problem of non-
uniqueness in fixing the gauge. It is clear that a poor choice
of the gauge condition can make the problem meaningless
(curve 7) and can even make it fantastically more compli-
cated ( the continuation of curve 2 with increasing amplitude
of oscillations). We note that the recipe proposed in Ref. 1 1
for eliminating the nonuniqueness of the gauge in a path
integral (integration over the region Д>0, where Л is the
Faddeev-Popov determinant) should at least not be regard-
ed as a general method suitable for any choice of gauge. In
the model at hand, for example, we fix the gauge by the
condition x2 = 0 for xl > 0 and x2 =/3 (*i ) = xl (x\ —a)
for д:, >0. In this case the determinant A is det{^,cr}
= {x2 -/3 (x, ),p7x} = *3 + /3/3 = x, (2x\ - За*, + а2

+ 1 ) . The equation Д = 0 gives the points at which the
gauge orbits are tangent to the curve x2 =/3 (л, ); its solu-
tions are je(,'-2) = [За + (a2 - 8)1/2]/4 and xf = 0. It is
obvious that real solutions which are different from zero are
possible only for a2> 8. In Fig. 1 these are points at which the
curve 3 is tangent to the circles S(rt ) and S(r0 ). It is also
obvious that the determinant A = 2x, (дс, — x\1))(xl

— x{2^ ) is negative in the interval (x[l\x{2^ ). According to
the recipe of Ref. 1 1 precisely this interval — it corresponds
to the motion between the points В and В ' — is discarded. But
from Fig. 1 it is clear that the interval (r0,rl ) is thereby

taken into account twice: once on the segment AB and again
on the segment В 'С. For the curve 2 this fact is illustrated by
the symbolic contour of the variable r = | x |: The segments
with the arrows between the points rl and r2, on which
A > 0, make identical contributions to the integral, i.e., they
lead to double counting. The correct recipe takes into ac-
count all parts of the curve without exception; in this case,
the determinant must be taken with the appropriate sign, so
that the contributions from integration over segments in op-
posite directions would mutually cancel.

We note at the same time that although the nature of the
phenomenon of nonuniqueness discovered in Ref. 11 is iden-
tical to that in the model (2.1) (the physical variables are
singled out by transforming to curvilinear coordinates)
these cases are concerned with different phenomena. Refer-
ence 11 is concerned with fixing the arbitrariness of the theo-
ry (in our language, fixing j>), while here we are concerned
with eliminating the unphysical variables, say, x2 after у has
been eliminated. We also note that the phenomenon of gauge
nonuniqueness is usually attributed to the complexity of the
gauge group, since this problem was encountered in the
study of non-Abelian theories. It is clear from the example
presented above that this problem can also arise in an Abe-
lian theory (see also Ref. 40). In the non-Abelian theory the
invariant gauges (for example, the Fermi gauge), which do
not admit the existence of finite-dimensional residual gauge
groups,40 are "unsuccessful." This means that the relativis-
tically invariant gauge condition is not natural for such sys-
tems (see also Ref. 41).

Remarks. 1) The determinant A does not permit judg-
ing the admissibility of the gauge condition. For the straight
line DD' in Fig. 1 (x2 = jc, + b, A = 2x, + b, b > 0) A > 0
for .x, > — b/2, though this is not at all a suitable method
for fixing the gauge. 2) In this model the case A = const
corresponds to an inadmissible gauge. Let A = x\ +/'/= c.
Then /= + [R2- (x, -c)2]l/2CFl or x2 + [R 2

— (л;, — с)2 ]1/2 = 0; this is the equation of a circle, and this
is inadmissible (for example, for 0<c<R the semiaxis
r > с + R is excluded). The assertion is apparently correct
for any compact gauge group. To solve the question of ad-
missibility of the gauge condition we turn to Dirac's scheme
and the invariant approach.

2.3.2. The Invariant approach39

We know (Sec. 2.1) that the gauge x2 = 0 is directly
related with the invariant description in terms of
r — (x2)172 = inv. What do nontrivial gauge conditions of
the type of the conditions prescribed by the curves 2 and 3 in
Fig. 1 look like in the invariant approach? We transform
from the variables x, and x2 to the variables в and ы accord-
ing to the rule39'42

„ег i («> (2.23)

where/ ( и ) , i = 1,2, are some functions of the parameter u.
The case/ (м) = и and/, = 0 corresponds to transforming
to polar coordinates u2 = x2; the matrix евт in Eq. (2.23)
rotates the ray x2 = 0, л:, = r> 0 so that it sweeps over the
entire plane. For arbitrary/ the equalities x, =/ (u) and
X2 =/2 («) give some line/in the plane xt 2, the parameter i/
being an invariant of the gauge transformations
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The mapping (2.23), generally speaking, does not nec-
essarily determine the substitution of variables for all
(M,0)eR2. But this mapping will be a substitution of vari-
ables if a region С R2 is defined such that it prescribes a one-
to-one correspondence between (и, 0)еАТ and xeR2. This
imposes certain restrictions on the curve /. In particular, the
curve must pass through the origin of coordinates and for
some и it must pass to infinity. For this reason, it is always
possible to choose a parameter и such that for motion along
the curve / it increases monotonically from — oo to +00,
and/(0) =0 and г 2 (м)^оо as «-»«>. We shall also as-
sume that / is a continuous curve.

To determine the region К it is necessary to study the
symmetry group S of the mapping (2.23), i.e., the group of
transformations of the plane (u,0) -» (u s ,9 s ) for which x in
Eq. (2.23) does not change. For example, for a polar coordi-
nate system (/ —u=r,f2 =0) this group consists of the
two subgroups 5 = SeXS, where Se: 0-»0 +2irn,r->r,nis
an integer and S:r-> — г,в-+в +tr. The points in the plane
(r,0)eR2, that are connected by transformations from Scor-
respond to one and the same point xeR2. Therefore К is the
fundamental region of the plane R2(r,#) with respect to the
action of the group 5; any point (r,0)eR2 can be obtained
from a point (r,0)eA"by the action of an appropriate element
from S. For this reason, К = R2/S is a strip, for example,
#e[0, 2ir), re[0,oo). Analogously, for the variables и, в in
Eq. (2.23) we define S=SeXS, where Se: (Э-.0 + 2ттп,
и->и, п is an integer and S: u->us = us(u), в->в + 6s(u).
The general case differs from the case analyzed here by the
fact that the transformation from 5 is a function of и, i.e., for
different и the groups S can be different. The form of these
functions is determined by the conditions of intersection of
the curve /with circles. Indeed, by definition ofSwe have

, , If I \\ В Я /f I )\ fl //1 (U ) \

Ui/ = e \/г(и))~е " в " \'*(u))~e ' l/i (и,)/

(2.24)

The last equality means that the point xeR2 does not change
when (u,0) is replaced by (us ,в + 6S); this indicates that the
transformation belongs to S. It is obvious that the transfor-
mations from 5" satisfy the group axioms, i.e., a composition
of two transformations from S belongs to S and every trans-
formation from S has an inverse transformation which also
belongs to S.

The next to last equality in Eq. (2.24) shows that the
points/ (и) and/ ( u s ) lie on the same circle and transform
into one another under a rotation by an angle в,. Therefore
the transformation и-» us connects all points of intersection
of the curve / with a circle of radius r( и). In particular, all
functions us can be found by solving the equation

r2 (M,(«)) = r*(u), (2.25)

where г 2 ( м ) = / 2 ( и ) = х 2 ( м ) .
For given и Eq. (2.25) can have several solutions.

Moreover, the structure of the solutions of Eq. (2.25) may
be extremely complicated. For example, the curve / can in-
tersect itself, it can intersect any circle an even number of
times, etc. We will not analyze these cases here. We require
only that, for the sake of simplicity, Eq. (2.25) have a finite
number of solutions for every weR, i.e., the curve / must
intersect each circle centered at the origin of coordinates a
finite number of times.

We divide the straight line weR into segments Ra so that
as и varies over Ra the number Na of solutions of Eq. (2.25)
us (u) is fixed; then, since fs (u) is continuous the м, (w) de-
pend continuously on MeRa. We denote by Sa the group of
transformations from S that act on Ra. Obviously,
S = HaSa. The fundamental region К for the substitution
(2.23) consists of 0e[0, 2ir] and иеЛГ, and in addition
К = UaKa, where Ka = K.a/Sa is the fundamental region
in Ra relative to the group Sa.

For example, for curve 2 in Fig. 1 the entire axis weR
separates into three regions: R, = ( u _ , , 0 ) U ( 0 , M 1 ) ,
R2 = ( M _ 2 , M _ , ) U ( w 1 , M 2 ) U ( M 2 , M 3 ) U ( M 3 , M 4 ) and
R3 = ( — o o , M _ 2 ) U ( M 4 , o o ) (the points of the curve /
ft(ua), a = — 2, — 1, ..., 4) are marked in Fig. 1 by the
points ua), which differ by the number of times this curve
intersects the circles: TV, =2, N2 = 4, and 7V3 = 26. For
ыеКи Eq. (2.25) has a unique nontrivial solution, i.e.,
us /м. By definition the function us (u)&S\ prescribes a one-
to-one mapping M S :R, -»R,. According to Eq. (2.25) it con-
sists of the one-to-one mapping (0,и 1 )-»(0,м_ 1 ) for
ие(0,и _ !) and the inverse mapping (0,« _ , -»(0,м,) for
ие(0,и _ , ) , so that us (u) is continuous at the point и = О
(us(0) =0). The function us (u)eS3. is defined analogous-
ly. For this reason, the groups Sli3 are isomorphic to Z2. For
weR2 Eq. (2.25) has three nontrivial solutions for fixed u.
The transformations from S2 establish a one-to-one corre-
spondence between points of the segments ( и _ 2 , и _ 1 ) ,
(и,,и2), (и2,и3) and (м3,и4). Here the functions us:
R2 -»R2 are all possible compositions of four one-to-one
mappings: of the segment (u _ 2 ,u _ 1) into any other seg-
ment in R2 for и е ( м _ 2 , м _ i ) , of the segment (ultu2) into
any other segment in R2 with ие(м,,и2), and analogous
transformations for (u2,u3) and (и3,и4). Obviously the
functions us form the group of permutations of four seg-
ments in R2, i.e., S2 is isomorphic to P4—the permutation
group. For this reason either of the two segments (и _ , ,0) or
(0,м,) can be taken as AT,; any semiaxis in K, can be taken as
K3; and finally, any of the four segments constituting R2 can
be identified with K2. Thus here there are 2 • 4 • 2 = 16 meth-
ods for choosing the fundamental region K. Fixing one of
them and setting меАГ we uniquely define the function us (и):
K-*R fromEq. (2.25) or the definition (2.24). We note that
the form of the functions/ (и) determines uniquely the form
of the functions и/ (и) and vice versa.

The substitution of variables (2.23), generally speak-
ing, does not have a global coordinate grid in the plane xeR2.
However this plane can be divided into rings in a manner so
that such a coordinate grid will exist within each ring, i.e., a
coordinate grid of the substitution of variables (2.23) is ob-
tained by gluing together a finite and generally speaking
countable number of maps (rings in this case). As an exam-
ple, we consider once again the curve 2 in Fig. 1. Let
AT, = (0,Ui ),K2 = ( M , , w 2 ) andAT3 = (и4,оо). Then inside
the circle S( r,) the coordinate grid is constructed from cir-
cles centered at the origin of coordinates and a fan of curves
/, (в), which are obtained from a piece of the curve /, мейТ,
by simultaneously rotating all its points by angles 0e [0,2-rr).
The coordinate grid in the ring between the circles S( r,) and
S(r2) also consists of circles centered at the origin of coordi-
nates and curves 12(в), which are obtained by simultaneous-
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ly rotating all points of a piece of the curve /, u&K2 by angles
#e[0, 2тг). The coordinate grid outside the circle S(r2) is
defined analogously.

The coordinate grid can be changed by changing the
method for choosing K. For example, if in our example
K2 = (ut ,u2) is replaced by the segment (w 3 ,« 2 ). then the
curves 12 (в) of the new coordinate grid are obtained by ro-
tating the piece of the curve /, «е(и2,н3). In so doing, how-
ever, only the method of gluing together local coordinate
grids, which exist for u&Ka, i.e., giving the coordinate line
в = const as a continuous function of u, changes. The exis-
tence of such a gluing is guaranteed by the definition of the
regions Ra. Thus for the example analyzed
K— (0,u, ) U ( H , , H 2 ) U ( « 4 , o o ), the line в = const is ob-
tained by gluing pieces of the curve /, we(0,z/2) and
ме(н4,оо ), where the points u4 and «2 in Fig. 1 are made to
coincide by rotating the second piece.

We are now ready to analyze the dynamics in the vari-
ables (2.23). For this we introduce the momenta that are
canonically conjugate to the variables в, и:

pe = = о, Ри = -у (Р' х) -77Г 1п х2' (2.26)

It is easy to check, using Eqs. (2.23), that {рд,риУ = 0,
{в,рв} = {u,pu} = 1 (to obtain the last equality it is neces-
sary to determine the derivative ди/дх:, taking into account
the equality x2 =f] (n) +f\ ( u ) ) . It follows from Eq.
(2.26) that в is an unphysical variable, because pe = aanda
is a secondary constraint, while и is a physical degree of
freedom.

The points of the phase plane (u,pu), connected by
transformations from S: u-+us, pu^pu< = (dus/du) ~lpu

(in Eq. (2.26) d/dus = (dus/du) ~ ld/du), correspond to
states of the system which differ by values of the angle
в->в + 9s(u), similarly to the manner in which in polar co-
ordinates the states (r,pr) and ( — r, — pr) differ by the val-
ues of the angle, в-> в + тг (see Sec. 9.1). In the gauge theory
в is an unphysical variable, so that the points of the phase
plane (u, ,pu ) are physically indistinguishable and should be

identified with one another. This feature of the phase space
( u , p u ) should be taken into account when describing the
system. The last remark actually establishes a relation be-
tween the invariant and noninvariant methods for describ-
ing classical dynamics. Both methods are identical, if in the
noninvariant method the reduction of the physical phase
space is also taken into account: After all, the action of the
group S on the invariant variable (и -»u s ) is identical to that
of the residual discrete gauge symmetry (RDGS), which
reduces the physical phase space in the noninvariant de-
scription. Indeed, in the gauge xi=fi(u) the points
x] =/(*O lie on the same orbit (seeEq. (2.25)), i.e., they
are related by RDGS transformations, and by construction и
and us are related by a transformation from S. We stress,
however, the fact that the nature of RDGS is dhTerent from
S. RDGS is a residual symmetry in the noninvariant ap-
proach, which does not always form a subgroup of the gauge
group, while 5 is a subgroup of the symmetry group of the
mapping S. The group 5 can induce the action of RDGS only
for a special substitution of variables in the invariant ap-
proach, when the surfaces of constant values of the physical
variables are orbits of the gauge group while the surfaces of

constant values of the unphysical variables are prescribed by
the gauge conditions in the full configuration space. We shall
say that such a substitution of variables is matched with the
law of the gauge transformation and the gauge.

The last remark makes it possible to solve the question
of admissibility of the gauge condition in the noninvariant
approach. A given gauge is admissible if there exists a substi-
tution of variables that is matched with it and the law of the
gauge transformation.

We now proceed to the quantum theory. We shall show,
in particular, that the physical amplitudes do not depend on
the choice of functions/, if on quantization the curvilinear
nature of the physical variable и and the reduction of the
physical phase space are taken into account. The former is
achieved by quantizing before eliminating the unphysical
variable в and the latter is achieved by denning the scalar
product of the physical state vectors in accordance with the
rules of the substitution of variables.

After quantizing the system (see Eq. (2.5)) we trans-
form to the curvilinear coordinates (2.23). The second
equality in Eq. (2.5) is equivalent to the equation

вФръ = 0, i.e., ФрЬ (и,в) = Ф(и). Then, calculating
the Laplace-Beltrami operator in the coordinates (2.23)
and dropping in it the terms containing д /дв we obtain the
Schrodinger equation in <^£h (the index / indicates the
choice of functions in Eq. (2.23))

1 d r 2 (u )
du

d
"3u~

ФЕ (и) = ЕФк(и),

(2.27)

where //(м) = (l/2)(d/di/)r 2(u) =f,(u)f',(u). The sca-
lar product in ̂ ph has the form

2 $ Аи | ц (и) | Ф* (и) ФК' (и) = 6КЕ,; (2.28)

here we took into account the fact that dx, dx2 = ц ( и ) dudO.
In J^£h the integration over в gives a factor of 2ir, which we
included in the normalization of Ф£ . Generally speaking, К
can be chosen so that on some Ka /a ( и ) < 0, and for this
reason the modulus7' \/t\ is inserted in Eq. (2.28).

We shall prove that ̂ f

ph for different/ are isomorphic
to one another. In Eq. (2.27) we make the substitution

d
du

dr d
dr

= JL
r

d
dr

after which the Hamiltonian in Eq. (2.27) transforms into
the Hamiltonian (2.7). Since Eq. (2.23) is a substitution of
variables, in the equality (2.28)

a. Kn

transforms into

i.e., Eq. (2.28) is equivalent to (2.6). From here it follows
that all J^-£h are isomorphic to one another, since they are
isomorphic to the Hubert space of the theory (2.7) and
(2.6). From here it follows that according to the analysis
made in Sec. 2.2.1 ФЕ in Eq. (2.27) are regular functions of
r 2 =fj(u). Therefore the scalar products (amplitudes) in

115 Sov. Phys. Usp. 34 (2), February 1991 L. V. Prokhorov and S. V. Shabanov 115



ph
do not depend on /• since

r

(2.29)

The S-invariance of the physical state factors follows from
the equalities in Eqs. (2.29):

Ф (м) = Ф (и,), Ф e Mf

vh. (2.30)

All these features must be borne in mind when con-
structing a path integral. They are missed when simply
transforming in the classical Hamiltonian (2.4) to the new
variables (2.23) and (2.26) with/>e = 0 and then quantizing
by making the substitution /?„-»— idu (quantum theories
corresponding to different/ are um'tarily nonequivalent).
Elimination of unphysical variables in the path integral with
the help of only 8 functions from the constraints and addi-
tional conditions without transferring to Heff corresponds
precisely to such a quantization procedure. The correct
method of constructing a Hamiltonian path integral with an
arbitrary choice of physical variables is discussed in Sees. 5.5
and 5.6.

3. MODELS WITH AN ARBITRARY SIMPLE GAUGE GROUP

In spite of its simplicity the model studied in Sec. 2.1
contains all the basic features characteristic of models with
both more complicated groups and a larger number of de-
grees of freedom (for example, field models). In this section
the dynamical features of the simplest systems with an arbi-
trary gauge group are studied. The problem is important
because before studying the dynamics of the physical vari-
ables of a system one must know how to separate these vari-
ables, and this is not easy to do in the case of an arbitrary
group. However, the difficulties here are connected not so
much with the complexity of the group as with the nontrivial
nature of the representation. Thus in Sec. 2.2 a model with a
group of arbitrary rank SO (n) was studied, and the example
was a very simple one. This happened because the dynamical
variables belonged to an elementary representation .of the
group which contained only one physical variable. We shall
study primarily the case when the variables transform ac-
cording to the adjoint representation; this is important for
studying Yang-Mills fields.

3.1. The classical theory

3.1.1. Separation of the physical variables

We shall study the model given by the Lagrangian13'21

L(x, x , y, y) = 4-Tr(Z>,z)2 - F (x), (3.1)

where D, = d, + [ y, ] , x and у are elements of the Lie alge-
bra A'of some simple compact group G, x = хаЛа (and anal-
ogously for у) Ла form a basis in X, and 1тЛаЛь =8аЬ,
[ Л а , Л ь ] =Fc

abAc,a,b,c= 1, 2,..., N = dim G. The Lagran-
gian is invariant under the gauge transformations

x -»- QxQ'1, у -> QyQ-1 + Qdfi-1, (3.2)

if F( ilxil ~ ' ) = F(x) . To simplify the notation we shall as-
sume that Tr x2 = x2 (and, in general, px = Trpx). The
function L defines a system with N primary constraints
dL /dy" = ira = 0, the Hamiltonian

(here р=Лара, pa =dL/dxa), and N secondary con-
straints cra =pTax = Tr Aa [p^] = Fa

bcpbxc = 0. All con-
straints are primary.29 We are required to separate from the
N variables the physical variables and to find them as func-
tions of time. Here two approaches are likewise possible—
invariant and noninvariant.

First we ask the question: how many physical variables
are there in all? In the invariant approach the answer is sim-
ple: it is sufficient to find all independent gauge invariants—
they will determine the set of physical variables. Their num-
ber, in turn, is determined by the number of independent
invariant symmetric tensors in the adjoint representation,
i.e., it is equal to the rank / of the group. Therefore the prob-
lem contains / physical degrees of freedom. This means, in
particular, that among the TV constraints aa = 0 only / are
independent. However it is difficult to formulate a theory in
terms of only invariant physical quantities, because the in-
variants are polynomials of x: of different degrees and it is not
at all simple to formulate a theory in the new variables (for
groups of rank 2 this is done in Refs. 21 and 15). It is even
more difficult to investigate next the dynamical features of
the system (see Sees. 9.7 and 3.2.2).

The noninvariant approach rescues us. Let x be a given
element of the algebra X; the key formula for what follows is
(Ref. 14, p. 459)

= S (z) hS'1 (z), (3.4)

in which h = A,/l,, / = 1, 2,..., /, {/I,} is the maximum set of
mutually commuting generators (i.e., h is an element of the
Cartan subalgebraЯ (Ref. 14)), and S(z)eG is obtained by
exponential mapping of the element z = zaAaeXQH into
the group G(a = / + ! , / + 2,..., N), and A, and za are real
numbers (or functions of time). The variables A, are analo-
gous to x, from Sec. 2.1, and za can be eliminated by a gauge
transformation. Indeed, since the variables x transform ac-
cording to (3.2), then in accordance with Eq. (3.4) by
means of an appropriate gauge transformation x can always
be transformed into an element of the Cartan subalgebra:

h = QxQr1, Q = S'1 (z). (3.5)

H = -Lp*+V(x) (3.3)

Thus any element of the algebra X is gauge equivalent to
some element of the Cartan subalgebra (Ref. 43, p. 305).
The dimension /of the maximum commutative subalgebra Я
determines the number of physical variables, for which the
functions A,(r) can be taken. The formula (3.4) permits
eliminating Л^—/ unphysical variables. Although formally
there are N secondary constraints, only N—/ will be inde-
pendent; this follows at least from the invariance of A relative
to/—the parametric subgroup of transformations (3.4) with
zefl, i.e., /generators (constraints) identically vanish on the
elements of H. What we have said can also be explained dif-
ferently: It is well known that the generators of the group Aa

in the adjoint representation have / zero eigenvalues [44, p.
197], i.e., /of them vanish identically on / linearly indepen-
dent vectors (in the example from Sec. 2.2 with the gauge
groupSO(w) (и — 1)(л — 2)/2 generators of the stationary
subgroup of the vector vanished,12 since a nonadjoint repre-
sentation was studied there). Thus, the subspace of physical
variables has been separated out. We shall now study its
structure.
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3. 1.2. The structure of the physical subspace

Although we can no longer reduce the dimension of the
physical subspace by means of gauge transformations, the
physical subspace can be further reduced. As is well known
(Ref. 14, p. 469), any Lie group contains a discrete finite
subgroup W (Weyl's group), generated by mirror reflec-
tions relative to hyperplanes in H, orthogonal to the roots of
the group ( the algebra X is a linear space44 ) . The group W is
isomorphic to the group of permutations of the roots, i.e., the
group preserving the system of roots. The existence of this
discrete gauge group is what leads to further reduction of the
space. While the group Z2 from Sec. 2. 1 identified the mir-
ror-symmetric points of the straight line x\ , i.e., it "recon-
structed" the entire real axis x, based on the set x, >0,
Weyl's group reconstructs, based on some subspace
К + СН (called Weyl's chamber (Ref. 14, p. 470)), the
entire space H (with the exception of the boundaries of the
chamber — a set of measure zero) .8) In what follows Weyl's
chamber is the intersection of all positive half-spaces,
bounded by hyperplanes orthogonal to simple roots ( "posi-
tiveness" is defined by the direction of the roots; "Weyl's
chamber is an open convex cone" (Ref. 45, p. 104), i.e., for
any h<=K + the relation (A,<y) — A,«, > 0, where со belongs
to the set of simple roots, is satisfied).

So, residual gauge transformations acting in H and
forming a Weyl group make it possible to identify some sub-
regions of the linear space H with one another. It is clear that
this leads to reduction of the phase space. Indeed, the phase
space in our case can be defined as an even-dimensional

space A/2, (A,- ,/?,•) = Г2 (see Sec. 9.5)) provided with a sym-
plectic structure.46 Since/?, = dL /dh, and L is gauge invar-
iant,/», is also an object of the representation of Weyl's group
and the physical phase space is reduced, because some of its
points are identical to one another. It is precisely in M2 (A,,
/>,.) that the point (A, p) and (whw~\ wpw~l), where
p = Я ,•/?,., weW, are gauge equivalent. When they are identi-
fied with one another M2 transforms into a 2/-dimensional
hypercone, which is unfoldable after an appropriate cut into
К + ® R'. 13 As in the case of the simplest systems, reduction
of the physical phase space radically changes the dynamics
of the system. It often happens that it is simpler to study the
quantum theory than the classical theory. The present prob-
lem confirms this observation. For this reason, we shall be-
gin our study of the characteristics of the simplest mechani-
cal system — the mechanical oscillator — with quantum
mechanics.

3.2. Harmonic oscillator

3.2. 1. Quantum theory

The quantum description of the model does not present
any difficulties. Because of the antisymmetry of the matrices
Ta (i.e., the structure constants), when transferring to the
operators of the problem ordering of these matrices does not
arise either in the constraints or in the Hamiltonian. In ac-
cordance with Dirac's recipe29 the conditions

я 0 Ф=0, аиФ = а = 1 , 2 , . . . , Л'. (3.6)

nates. The transition to "radial" (transversal43) and angu-
lar (orbital) variables in the kinetic energy operator/)2, (i.e.,
the transition to invariant and noninvariant variables) is a
separate, quite complicated problem43 (see Sees. 5.3 and
9.6), so that in order to elucidate the essence of the matter we
shall confine our attention to the problem of a harmonic
oscillator. Transferring to the operators аь = (рь — irh)/V2
and of we write out the Hamiltonian (3.3) with V = x2

a/2
and the constraints ab in the form

Я = а+а + ~ -f iyba+Tba, ab = a+Tba,

and

(3.7)

(3.8)

single out the physical Hilbert space. The first set of condi-
tions is not interesting — it is equivalent to the assertion that
Ф is independent of y" ( see Sec. 9.5). The second set is more
informative, because it is related with the curvilinear coordi-

form a basis of the Hilbert space. The operators aa satisfy the
commutation relations

[6а,вь] = Р1ь6с, (3.9)

i.e., cra are generators of the gauge group, so that from Eq.
(3.6) and the equality aa JO) = 0 it follows that the basis of
the physical subspace is constructed by applying to |0>
invariant polynomials of aft

+. The number of independent
invariant polynomials is equal to the rank of the group /
(Ref. 14, p. 573), and therefore the physical basis vectors
are exhausted by the states13

P;:(a+)...P^(a+)\Oy, (3.10)

where P,. are invariant homogeneous polynomials of degree

rl,...,rl (r, are the degree of the Casimir operators), and
n, =0,1,.... The degrees rt for all simple groups are given in
Sec. 9.8 (see Table I). The homogeneity of the polynomials
implies that

whence we find the energy spectrum of the physical states

(3.12)

It is clear that the spectrum (3.12) is degenerate. In a non-
gauge theory (ya = 0 in Eqs. (3.1) and ( 3.3 ) ) the spectrum
would be given by the formula

i.e., the pattern of energy levels changes radically. Since r,
are integers, the degree of degeneracy for fixed E is deter-
mined by the number of solutions of the Diophantine equa-
tion ( 3.2 ) with a fixed integer E — N /2. In order to visualize
better the structure of the excited states we shall take in Eq.
(3. 10) the simplest invariant polynomial P2 (a + ) = 2аа

+ 2,
which is a Casimir operator for all groups. It is obvious that
the physical states correspond to excitation of all oscillators
in the case of an arbitrary group also.

3.2.2. The classical theory. Analysis of the dynamics for
groups of rank 2

It is obvious from the formula (3.12) that the spectrum
of the system is determined by quite subtle characteristics of
the gauge group ( the degrees of invariant polynomials ) . Due
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to the gauge invariance the number of physical degrees of
freedom of the system (3.2) has been reduced from N
( = dim G) to the rank / ( = dim Я) of the group. Judging
from the basis of the physical states (3.10) and the energy
spectrum (3.12), the resulting system can be represented as
a collection of independent subsystems, each of which has
the spectrum E, = nr, + const, n = 0, 1,..., in which the
spacings between the energy levels are r, times greater than
the spacing for a normal oscillator. What does this fact indi-
cate?

To answer the question we shall analyze the dynamics
in the case of groups of rank 2, when the oscillator has only
two physical degrees of freedom A, and Нг. The physical
configuration space, i.e., Weyl's chamber, is a sector in the
plane (hlth2). For the groups SU(3), SO(5) ~Sp(4), and
G2 the aperture angles a of the sector are a = v/3, ir/4, and
ir/6, respectively. Figure 2 shows the trajectory of a material
point in the physical configuration space for the group
SU (3). For the sake of simplicity, the initial conditions were
chosen so that the solutions of the equations of motion are
/z2 (t) = A2 cos t, hl(t)=A}sint and A2>A^ Weyl's
chamber in Fig. 1 is filled with dots. The ray OO" is its sym-
metry axis. At the time t = 0 the particle is located at the
point A. Then it moves along an ellipse, oriented along the
axis h2, and at time t = ir/6 reaches the point B, i.e., the
boundary ЭК +. The further motion along the ellipse in the
sector between the rays Or and On is gauge-equivalent to the
trajectory B-+ С in К +. The particle is seemingly reflected
from дК +, moves along the trajectory 5->C, and reaches
the point С at t = тт/Ъ. We note that the particle does not
experience (the potential of the oscillator does not have sin-
gularities on дК + \) any real "impact" against the wall (i.e.,
the action of a force), although at first glance it seems that on
reflecting from the boundary дК + the momentum changes
abruptly. The essence of the matter lies in the fact that the
momentum before "impact" is gauge-equivalent to the mo-
mentum after "impact" (the momenta are related by a trans-
formation from Weyl's group (see Sec. 3.1.2)), and for this
reason no catastrophic change in the physical state of the
particle occurs at the moment the particle reaches the
boundary. In analyzing the quantum theory on the basis of a
path integral (Sec. 5) we shall see that the behavior of the
phase of the wave function in the case of such a reflection

FIG. 2.
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from the boundary of the physical configuration space
differs from the behavior on reflection of a particle from an
impenetrable barrier (as, for example, in the problems of a
particle in a box, on a semiaxis, etc.). Let us proceed with the
analysis. At the point С the particle undergoes another re-
flection and moves along the section of the ellipse C-»Z> in
К +. Finally, at the time t = IT it reaches the point D, is
reflected from the boundary, and passes along the trajectory
in the opposite direction D^>C->B-*A, ending up once
again at the point A at the time t = 2-rr.

Let us see how the increase in the frequencies of the
physical oscillations occurs. By definition the angular fre-
quency is the quantity 2ir/T, where Tis the time over which
the system returns into the starting state. The state is deter-
mined by the values of the coordinate and momentum of the
degree of freedom under study. Let us decompose the mo-
tion of the oscillator A, 2 into oscillations along the axis О 'O"
and rotation around the origin of coordinates O. After pass-
ing through the sections^ -> В -> С the angular degree of free-
dom returns to the starting state, since the angles О" ОС and
О "OA are equal to one another, and the fact that the canoni-
cally conjugate momentum is the same at these points fol-
lows from its conservation law. From the point С the angular
variable once again passes along the "path" equivalent to the
path studied (C-»Z)-»C), after which it returns to the point
A along the path C-> В ->А. Thus the frequency of the oscilla-
tions of the angular variable is three times higher than the
starting frequency. For oscillations along the axis O'O",
however, it is clear from Fig. 2 that the state of the radial
degree of freedom at the points is the same as at the point D.
Therefore the frequency of the radial oscillations is twice the
starting frequency.

The groups SO(5) ~Sp(4) and G2 could be studied in
an analogous manner; in so doing we would find that the
frequency of the radial oscillations (along the symmetry axis
of AT + ) is always doubled, while the frequencies of the oscil-
lations of the angular variables (they are determined by the
degrees of the second Casimir operators for these groups)
increase by factors of 4 and 6, respectively (see Table I in
Sec. 9.8). It is clear that this analysis can be extended to the
case of a group of any rank, but this does not change the
qualitative picture. In Sec. 9.7 explicit solutions of the classi-
cal and quantum equations of motion are given for the case
just described above, and a relation is established between
the variables studied here and the Casimir operators.

Thus in the classical theory the reduction of the phys-
ical phase space is manifested as the phenomenon of reflec-
tion of the particle trajectory from the boundary of the phys-
ical configuration space. In Sec. 5 we shall see that this fact
must be taken into account when constructing a path inte-
gral: The reflected trajectories also contribute to the quasi-
classical transition amplitude.

4. GAUGE SYSTEMS WITH GRASSMANN VARIABLES

4.1. The minimum model with an Abelian gauge group.
Classical theory

Gauge theories with Fermi fields are employed just as
often as theories with Bose fields. For this reason we shall
now look at models with Grassmann variables. We shall first
study a system which has the minimum number of anticom-
muting degrees of freedom and exhibits nontrivial dynamics.
Let
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Л Ф+. У' У)

- F
(4.1)

where the column vector т|> = (\/>l ,ф2 ) is a two-component
complex element of a Grassmann algebra, фа = в" + IB ",
0/ are "real" generatrices, and (6>7

a) + =6/7, (0«)2 = 0,
a,- = 1,2; Г is the "electric charge" operator, Г = т} (aPauli
matrix), and i[> + means that in the complex conjugate ele-
ment \[)* we have transferred from a column vector to a row
vector. The Lagrangian (4.1) is invariant under the gauge
transformations ф-»ехр(/£Г), -ф, y-+y + e, where e is an
arbitrary function of time. The question of how Lagrangians
which are linear in the velocities should be interpreted from
the viewpoint of the Hamiltonian formalism ( "formalism of
the first order") is discussed in Sec. 9.2. From the analysis
there it follows, in particular, that the model specified by the
Lagrangian (4.1) can be regarded as a dynamical system
with two primary constraints of the second kind29 (con-
straints not in involution). It is easy to see that there is in
addition a primary constraint of the first kind:
ir0 = dL /dy = 0. The transformation to the Hamiltonian
formalism reduces to relaxing constraints of the second kind
and eliminating some of the variables ( actually, making the
identification г); + -»тт; see Sec. 9.3) and replacing the Pois-
son brackets by Dirac brackets.29 Having done all this, we
arrive at the Hamiltonian

Я = V (4.2)

whence follows the existence of the secondary constraint of
the first kind

о = Л0 = {зг0, Я} = = О (4.3)

(the Poisson brackets are determined by the formula
(9.10)). The function Fin Eq. (4.2) is specified by the ex-
pansion V= V0 + co\|> + \(> + П(^ + ч|>)2, where F0,m,andfl
are constants. Since a — ф + г/>г — ф-f i/>2, we have
(t|)2

+ ̂ )2 = - a2. Setting V0 = 0 we rewrite the Hamilto-
nian (4.2) in the form

Я = - у (t) - И (4.4)

By virtue of the equalities (4.3 ) the term in the Hamiltonian
that is quadratic in the constraints does not affect the equa-
tions of motion, which with fl = 0 have the form

= {$, H}D = i(yT - to)

and can be integrated in an elementary fashion

- (о) ф*

(4.5)

4>(i) = exp( — icoi + »Г $ у (t') dt')ij>(0). (4.6)

Choosingy(t) = — со we find

Ъ (t) = e-*™ ifc (0), г|>2 (t) = ip, (0), (4.7)

whence we conclude that the dynamics of the degree of free-
dom ^2 is trivial and ,̂ oscillates with twice the frequency.
We know that this is an indication of reduction of the phase
space (the concept of phase space for Grassmann variables is
discussed in Sec. 9.3). We note that here the unphysical vari-

ables cannot be made to vanish by choosing the gauge. The
difference lies in the fact that gauge arbitrariness is connect-
ed with multiplication of ^, 2 by ordinary complex func-
tions, whose modulus is equal to unity, and such transforma-
tions cannot change the dimension of the Grassmann
algebra. This is why an unphysical variable is manifested as a
variable with trivial (or any prescribed beforehand, not de-
termined by the Hamiltonian) dynamics.

The conclusion that the phase space of the physical
variable is reduced in the model (4.1) can be arrived at by a
different method. The equality ф\(1) = ф2(1) 0> = 0,
ф1 (0) = фг (0) in Eq. (4.6)) can be obtained by choosing
the gauge and the initial conditions;9' without violating this
equality the sign of the physical component can be changed
at any time ,̂ -» — ̂ , ( y ( t ' ) - > y ( t ' ) + wS(t — t ' ) ) . From
here we conclude, in accordance with the definition of a
phase space, that the phase space is ФП(^, ,̂ ,+ ) = соп(я-),
because the pairs (ф{,ф^ ), ( — ф\,— ф^) are gauge-
equivalent. By the way, it follows from here that in the
expression \fi(?) =z(/)i|>(0), where z is a diagonal matrix,
argz(0 for the physical variable is defined only mod (tr)
(see also Ref. 47).

4.2. The minimal model. Quantum theory

Quantization of the model (4.1) does not present any
difficulties. According to (9.11) we transfer from the opera-
tors фа, ф£ to the operators

the brackets { , }D are defined in Eq. (9.10). As always, the
constraint ir0 = 0 can be ignored. The ground state of the
system with the Hamiltonian (4.4) (the "vacuum" ]0)) is
fixed by the condition фа |0) = 0. An arbitrary state \%) is
defined as

ifc)|0>=|x>; (4.9)

(4.Ю)

*) 10> = (Xo + Xa<j£

the conjugate state is

<X I = <01X (ФТ = <01 (Xo + A

and

| X> = S <P*Xa-
0=0

(4.П)

The physical states |Ф> satisfy the condition that on them
the constraints vanish:

a j ф> = | Ф> = 0.

Then among the eigenvectors |0>, ф+ |0>,
Hamiltonian

(4.12)

y-|0)ofthe

Я = со - 1)

(on quantizing ^we made the substitution i|) + t|)
-» ( 1/2) (•$ + tj> — ijnj)) =^) + л}) — 1 in order to take into
account the noncommutability of the operators) only |0)
and ,̂+ ̂ 2

+|0) satisfy the requirement (4.12). Indeed,
ou,JO>A =(^+D^|0) 7-0, W^2+|0> =(h+fc
+ $2 i>2 ) |0) =0. The spacing between the energy levels

of the physical states is equal to E2 — E0 = 2ca in exact
agreement with the classical picture.
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4.3. Model with a derived gauge group. Adjoint
representation

In elementary particle theory systems with anticom-
muting variables play no less an important role than systems
with commuting variables. It is thus important to study
gauge models with Grassmann variables and a non-Abelian
gauge group. The difficulties here are connected not so much
with the complexity of the group as with the complexity of
the representation. As we have shown for the example of the
group SO(«) (see Sec. 2.2), it is quite simple to analyze the
elementary48 representations. The problem becomes nontri-
vial already for the adjoint representation. It may seem su-
perfluous to study it for fermions, because Fermi fields
usually transform according to elementary representations.
This objection vanishes if we recall supersymmetry. At the
same time, systems with Grassmann variables in an adjoint
representation are quite informative and interesting in their
own right.

Thus, we consider the Lagrangian (4.1), in which we
set V= й)ф + ф, ф = фаЛа, i/>+ = 1/>^Ла, where Ла is a basis
in the Lie algebra of the group G from Sec. 3.1, and we re-
place the covariant derivative д, ф — iyTif> with
3,ф+[у,'ф](у = Лауа). As in Sec. 3.1 we assume that
Tr фф+ = if>aif>+ =фг/>+. The transfer to the Hamiltonian
formalism is made using the same rules as Sec. 4.2, the only
difference being that now there will be 2N (N = dim G) pri-
mary constraints (see Sec. 3.1)

я „ = - - = 0 , 0„ = 1|>+21

вф = 0, а = 1,2,...,Л'. (4.14)
»e

We turn immediately to the quantum description. In-
stead of the Hamiltonian (4. 1 3 ) we have

Й = (4.13')

Here [^a,^6+] + =Sai, and the physical vectors satisfy
conditions analogous to the conditions (4.12). As in the
model with commuting variables (see Sec. 3.2), the physical
states are obtained by applying to the "vacuum" invariant
homogeneous polynomials P( ф + ). Since the operators ф +

anticommute, the polynomials P are determined by invar-
iant antisymmetric tensors, which are expressed in terms of
the structure constants and symmetric tensors. The polyno-
mials sought have the form

PK = Tr(X0 l...Xa >)•$+_.. .$JK- (4.15)

From Eq. (4.15) it follows that for even kPk =0 (because

•••̂ ot̂ o, )• In the case of odd k we transform (4.15) as fol-
lows. We set •ф + 'фъ'ЛаЛь = \/2Рс

аЬЛсг1> + 'фь~ =ЛСВС —В.
Then

The quantities Ba commute with one another, so that the
trace in (4.16) can be symmetrized with respect to a, ,...,am.
We make the substitution in (4.16) Л„тЛа

= ЛаЛ„т+Рат

ь

аЛь; the term Fum

b

aBaJ№ = (1/2) F,^

F"cd $a+ ^c+ $d = 0 vanishes by virtue of Jacobi's identity for
the structure constants14

where antisymmetrization is performed with respect to the
indices in brackets. For this reason the trace in (4. 16) can be
symmetrized with respect to all indices a, ,..., am, a, i.e., in-
cluding a. This trace is a symmetric invariant tensor; it is
expressed in terms of the irreducible symmetric invariants of
the tensors Ca| Q , determining the Casimir polynomials Cr.

Any separation of the collection of indices (at,..., am,
a) in (4.16) into subsets containing not less than two ele-
ments a,, a (two because r>2), necessarily generates Casi-
mir polynomials of the form P 2 r ( i f > + ) = Cr(B), r = 2,...,r,,
I = rank G. But we have established that the even invariant
polynomials of if>+ are equal to zero Cr(B) =0. The only
remaining possibility is that Tr (/I0i ...Л„тЛа ) is an irreduci-

ble symmetric tensor (Casimir tensor) of rank r = т + 1.
Therefore the basis of the Hilbert space is generated by poly-
nomials of the form p ("/,+ \ _ p rCti+ \

-"2m + 1 I V > — r2r _ 1 I V )

[Tr ( 1 ]"•... [Tr ( -1]п J 1 0> , ( 4. 1 7 )

where», =0, 1 (the odd elements of the Grassmann algebra
are nilpotent) . The invariant antisymmetric tensors, accord-
ing to (4. 16) and the definition of B, have the form

a'-i (4.18)

The simplest of the tensors (4.18) is identical to the struc-
ture tensor F^.

The basis (4. 1 7 ) corresponds to the following spectrum
of the Hamiltonian (4.13')

; — IK— -̂ -, «j = 0,1. (4.19)

— [jFfab-f o']c = FabFca> + Fba Fa'aFcb = 0,

In cases of practical interest (i.e., in field theory) the
problem of finding the invariant polynomials looks some-
what different, since the operators -ф can have additional
indices, symbolizing the existence of other quantum
numbers (for example, spin). They must also be taken into
account in the process of antisymmetrization when con-
structing invariant polynomials. This question, however,
falls outside the scope of this paper.

5. THE HAMILTONIAN PATH INTEGRAL FOR SYSTEMS WITH
A REDUCED PHASE SPACE

In modern quantum physics it is virtually impossible to
avoid the method of path integration. A Hamiltonian path
integral (HPI), in which the integration extends over all
paths in the phase space, is employed quite often, for exam-
ple, in the study of constrained systems. It is clear that re-
duction of the phase space will change the HPI, so that it is
important to know how. This is especially important for
quantum field theory, because the path integral provides a
natural possibility for going beyond the perturbation theory
(classical theory) . But before proceeding to field systems we
must study the simplest models. This is what we shall now
do.

5.1 . The harmonic oscillator. The discrete gauge group Z2

In order to make clear the essence of the matter we shall
consider the simplest model (the one-dimensional harmonic
oscillator), in which the discrete gauge group Z2 is postulat-
ed, i.e., it appears as one of the characteristics of the phase
space in the construction of the Hamiltonian formalism.

120 Sov. Phys. Usp. 34 (2), February 1991 L. V. Prokhorov and S. V. Shabanov 120



This problem can be solved in an elementary manner. The
principal and simplest object of Hamiltonian path integrals
is the kernel of the ^infinitesimal ^evolution operator
U,(x,x') = (x\ exp( -iHt)\x') = (x\U, x'), t = £^Q. In
the case of a harmonic oscillator, there exists a simple for-
mula for it (for any t) (Ref. 49, p. 218)

Ut(x, x')= £ clEn\x)Hn(x )e-(*'«'2>/2e-iEn<,. (5.1)
71=0

where En = n + 1/2 is the spectrum of the energy operator;
Hn (x) are Hermite polynomials; the coordinates x and x'
run over the entire real axis; and, с„ are normalization con-
stants. As we determined in Sec. 2, the existence of the gauge
group Z2 changes the spectrum of the Hamiltonian, since
only even functions belong to the physical subspace. There-
fore, in the case of a conical phase space (which is a conse-
quence of the existence of the group Z2) the functions

г|5 lx\ _ fr JJ lx\ e-x*/2t с __ T/2" С , И = 0, 1, ...

(5.2)

form a basis in the physical Hilbert space. The change in
normalization с2„ ->c2n is related with the transfer in the
normalization integral to integration over the semiaxis [0,
oo ). Therefore, instead of Eq. (5.1), we have for Uc

t (the
index с indicates that the kernel pertains to a problem with a
conical phase space)

U e

t ( x , x ' )

) ехр

Ut(x,—x'); (5.3)

x and x' in Eq. (5.3) run over the positive semiaxis. From
here we conclude that

' Ut (x, x) «F, (x'), (5.4)4>f (x) = Ax'Uc

t (x, x'

where

and ipt (x) = ip(x,t) is the wave function at time t. We note
that г/>, is normalized to unity on the entire axis only if this is
true for Ф0. It is obvious from Eq. (5.5) that Ф0 isafunction
of ^0, continued in an even fashion into the unphysical re-
gion of negative values of x: ^0(х) = г/>0(х), х>0,
4>0(x) = i/t0( — x^, x<0, i.e., Ф0 is defined on the entire axis
and the operator Q with the kernel (5.5) defines гр0 for x < 0.
From the formulas (5.4) and (5.5) there follows the repre-
sentation

00

Uc

t(x,x')=l dx"Ut(x,x")Q(x",x'), (5.6)
— OO

from which it becomes clear how the Hamiltonian path inte-
gral is modified for the kernel of the evolution operator of the
harmonic oscillator:
Ut(x,x')

t

where x = x(t) and x(0) = x'. We shall make several re-
marks.

1. The formulas (5.1) and (5.7) completely solve the
problem. It is helpful to verify that they are self-consistent. It
is known that the representation of the operator U, by a path
integral is based on the formula E/, +,. = U, Ur.

49 It is ob-
vious that this formula holds for the operators U, given by
Eq. (5.1), while for U °, it must be checked: the equation

Ulv (x,'x') = (x, x") U\, (x", x'), (5.8)

must be satisfied, and the validity of this equation must be
proved. In operator language the problem is formulated in
terms of the self-consistency of the conditions

tft = VtQ и Ot+f = #<£?(-;

combining them, we obtain U,+ ,,Q=U,QUt.Q=U,Ut.Q,
i.e., the condition

QOtQ = OtQ (5.9)

must be satisfied. These operator equalities require explana-
tion. The problem is that the range of the second argument of
the kernel Q(x,x') is the positive semiaxis, while the range
of the first argument is the entire axis. Since the point of the
operator Q is to continue the function in an even manner
over the entire axis, Q operates on even functions as a unit
operator, so that the content of Eq. (5.9) consists of requir-
ing that the kernel U,Q be even with respect to the first
argument. From here and the fact that the kernel Q(x, x') is
even with respect^to the first argument we find a sufficient
condition for Ut: U, ( — x,x") = U, (x, —x'). In reality, the
self-consistency of the apparatus of path integrals is guaran-
teed by the weaker condition

(-x, x') = Ut (x, -x') + 0 (5.10)

(5.7)

which we shall employ below.
2. From the formulas (5.1), (5.3), and (5.6) it is clear

that the operator Q eliminates the contribution of unphysi-
cal states, associated with the^pdd functions, to the kernel
Uc, (x,x'). This is the point of Q.

3. It is instructive to compare the role of Q in Eq. (5.6)
with the role of the analogous operator in the problem of a
particle on the semiaxis (with the zero boundary condi-
tion17'18), where it is given by the kernel
Q(x,x') = 8(x — x') — 8(x +x'). The kernel Q guarantees
that the boundary condition at zero is satisfied; the purpose
of the second 8 function is to take into account also, in addi-
tion to the straight trajectory, the trajectory reflected from
the boundary (approximating the trajectories by straight
lines for UE). The difference in the signs in front of the sec-
ond 8 function in Q and Q corresponds to a change in the
physics of the problem. In the model at hand the motion for
x < 0 is indistinguishable from motion for x > 0 in the oppo-
site direction; at the point x = 0 the particle is seemingly
reflected, but without a change of phase, while in the prob-
lem of a particle on the semiaxis17'18 the phase changes by IT
on reflection from the boundary. This can be interpreted as
follows. In the case of an impenetrable wall the sum of the
contributions of the direct trajectory and the trajectory re-
flected from the wall for an infinitesimal kernel UI is equal
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to the sum of the contributions of the trajectories (direct)
from x' and — x' into the point x, and in addition the second
contribution is taken with a negative sign. This guarantees
that the zero boundary conditions are satisfied. In the model
at hand it is also necessary to take the sum of the contribu-
tions of trajectories from the points x' and — x' to x, but
with the same signs. This guarantees that the wave function
is even, i.e., the wave function is invariant under the gauge
group Z2 .

4. In spite of the reduction of the phase space, the mea-
sure in the Hamiltonian path integral (5.6) and (5.7) did
not acquire a factor of 1/2, as one would expect. The reason
is that the region of integration in the normalized integral
changed: the physical variable x runs not over the entire axis
but only over the semiaxis. This is why the substitution
с„-*с„ =V2cn was made in Eqs. (5.2) and (5.3).

In conclusion we call attention to the following. On
transferring to polar coordinates an operator Q with the ker-
nel50

= г — r б(ф —

2я«).

also appears in the path integral. Does this result agree with
the formula (5.5)? It is easy to see that it does. Since by
virtue of Eq. (2.5) the physical functions do not depend on
the angular variable, by integrating over ф ' in

2Л oo

J dy' J dr'r'Q (г, ф, г', ф') г|з0 (г')
о о

we eliminate the S functions from the summand. The kernel
so obtained is identical to the kernel (5.5) (to within the
notation). This is actually a different method for deriving
the relations (5.4) and (5.5),w> underscoring the fact that
the formulas found are completely equivalent to the conse-
quences of the standard conditions on the physical state vec-
tors (2.5) in Dirac's quantization scheme29 (see the discus-
sion at the end of Sec. 2.2. 1 ) .

5.2. Harmonic oscillator with the gauge group SO(3)

In Sec. 5. 1 we studied, for pedagogical considerations, a
model in which the discrete gauge group Z2 was postulated.
We shall clarify the situation in models prescribed by a
gauge-invariant Lagrangian. Consider the Lagrangian
(2.1), in which yT^y"Ta, where Ta are generators of the
group SO(3), a = 1,2, and 3, and x and у are three-dimen-
sional vectors. Since the constraints (2.11) aa = рГах are
components of the angular momentum (F£c = /£a(,c,seeSec.
3.1), the Hamiltonian (3.3) with V= — r 2/2 corresponds
to the operator (Ref. 51, p. 168; for the convenience of the
reader we shall carry out the calculations explicitly, without
referring to Sec. 2.2)

(5.11)

where/»,. = — ir ldr°r. Since the physical states satisfy the
condition дФ = О, the problem reduces to the equation

We are interested in the solutions that are regular at the
origin (see Sec. 2.1.2). The functions <&k, which behave at
the origin as ~ 1/r, though they are normalizable (we recall
that the integration over the semiinfinite interval is per-
formed with a weight of r 2 ) , satisfy the inhomogeneous
Schrodinger equation with the S function S(x) on the right
side (Ref. 52, p. 219). Transferring from Ф to ф = гФ, we
find that ф are the eigenfunctions of the Hamiltonian of the
one-dimensional oscillator, i.e., if>n =с„Н„(г) ехр
( — r 2/2). From the condition that Ф is regular at zero we
conclude that states with odd и form a physical basis, i.e.,

«Ptt+i=Ctt+i Jtt+l(r) e-r'/s, * = 0,1,... (5.12')

and the energy spectrum is given by the formula
Ek = 2k + 3/2, in agreement with Eq. (3.1 2). Turning once
again to the formula ( 5. 1 ) , we find that the evolution opera-
tor of the problem is given by the equality19

Uet (r, r') = -i- (Ut (r, r') - Ut (r, - r')); (5.13)

and U,(r,r") is the kernel ( 5 . 1 ) of the evolution operator of
the one-dimensional harmonic oscillator. Finally, we arrive
at formulas analogous to (5.4) and (5.5):

where Q is given by (5.5). The difference from Eqs. (5.4)
and (5.5) is that the integration measure is different. Thus
the characteristic features of the initial space, including the
physical and unphysical variables, are transferred into the
space of physical variables. The unphysical degrees of free-
dom do not vanish without trace (as a consequence of the
fact that they are related with the curvilinear coordinates;
see also Sec. 5.6).

We note in conclusion that in the case of an arbitrary
group SO(«) (see Sec. 2.2) the solution does not reduce to
the one-dimensional harmonic oscillator.19'21 In Eq. (5. 12)
the "quantum potential" (и-1)(и-3)/8г 2 (~Л 2 ),
which must be born in mind in the formula ( 5 . 7 ), is added to
r 2/2. The integration measure in Eq. (5.14) also changes:

5.3. Model with an arbitrary gauge group. Adjoint
representation

It is helpful to study the case of the arbitrary simple
gauge group, which was studied in Sec. 3. To this end, in the
problem with the Lagrangian (3.1) we single out the phys-
ical variables, i.e., we transfer from xto h,z (3.4), where h,
according to Sec. 3.1.1, plays the role of the physical variable
and belongs to the Cartan subalgebra H while z includes all
unphysical variables, zeXQH. Mathematically the problem
reduces to writing the Hamiltonian operator (3.3)

Й = - (5.15)

in the curvilinear coordinates h, z and actually (since
— id/dxa =pa ) to writing the ̂ -dimensional Laplace oper-

ator Д = д2 in the variables h and z. For this, it is necessary
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to find the metric tensor in the new variables, i.e., it is neces-
sary to calculate the square of the element of length
d?2 = Trdx2. Using Eq. (3.4), we find dx = dShS~J

+ S dS ~ ' + Sh dS ~ '. Squaring dx and using the formula
dS " ' = -S' ldSS - \ we find

ds2 = Tr {(dA)2 + 2 ((hS-4S)*

- Aa (5-45)*] + [S'4S, h] dh}

= Tr [(dA)2 + [h, S-Wm = dA? + gap (A, z) dza dzB

(5.16)

(the trace in the last term in braces is equal to zero). The
metric tensor sought has a block structure gab = (Sij,gae),j,
i= 1,2,..., /; a, /3 = I + 1 ..... N. Using the representation
S -}dS = AaF

a

a (z)dza, where F"a(z) are unknown func-
tions, and the fact that [Я,,Л, ] = О, [Я,, Я ° ]еЯ, we obtain

CO ^P (z)'

(5.17)

Therefore the Beltrami-Laplace operator has the form

g.1/2
g '

(5.18)

where g1/2 = del <y(A) del
g°<£ci = <5£, «?. =d/dhl. da =d/dza. We have the identity
x~2di°x2di=x~ Id2°x — x~l(d2x); in Sec. 9.6 it is shown
that ?c(A) = Па > 0 (A,a) (а>0 means that the product ex-
tends over the positive roots), whence it follows that the
"quantum potential" is V4 =x~l(dx)/2 = Q (see Eq.
(9.25) ). Based on what has been said, we arrive at the fol-
lowing expression for the Hamiltonian in the physical sub-
space:

#ph = -- g-x-^bx + H*) (5-19)

(according to Eq. ( 3.6) the physical states do not depend on
z: the independent constraints are generators of translations
along za ) . The scalar product of the physical state vectors is
given by the formula

(5.20)(Ф1,Ф,)= } Д А и ( А ) Ф Т ( А ) Ф 2 ( А ) ,
У+

in which К + indicates that the integration is performed in-
side Weyl's chamber (Ref. 44, p. 470). Here and below A is a
vector in R with the components (A, ,...,h,) in the orthogo-
nal basis: Instead of d'h or dh we shall write dh, instead of
^(h) we shall write i(>(h), etc. The weight/г(А) is propor-
tional to the volume of the gauge orbit. The narrowing of the
range of the variables A, from H = R' to К + in (5.20) is
connected, as explained in Sec. 3.1, with the action of Weyl's
residual gauge group in H.'''

Thus, we have arrived at the quantum-mechanical
problem of a particle in an /-dimensional space with unusual
normalization of the state vectors. We must determine how
the kernel of the evolution operator of the system with the
Hamiltonian (5.19) and the scalar product (5.20) but with-
out the symbol К + (integration over the entire space R')
changes when Weyl's gauge group is turned on, i.e., on trans-
ferring to the scalar product (5.20) with the symbol К +.
Although the Hamiltonian (5.19) is expressed in terms of
the physical variables, not all solutions of the equation

ЯрЬ^, = Eif> will be physical solutions. This is illustrated in
Sec. 5.2, where it is shown that only solutions of Eq. (5.12)
(invariants of Weyl's group Z2 ) that are even in r (regular at
the origin) belong to the physical Hilbert space 3V ph .

Weyl's group W is a subgroup of the gauge group G.
Hence from the fact that the physical states are stationary
under G (£Ф = Ф, geG and is generated by the operators aa ;
see Sec. 3.2.1) it follows that they are stationary under W
(и)Ф = ф, weW). Consider any arbitrary function i/>(h)
that is normalized in the entire space. Its physical (invar-
iant) component is

Ф = Л' 1 S ®* (A) = (5.21)

We shall explain the notation and the meaning of Eq. (5.21).
We shall write the transformation h^whw~t=hw as
hw = wh (here w is an / X / matrix). By virtue of the gauge
invariance of the initial Lagrangian the theory does not con-
tain any constant noninvariant tensors. From here there fol-
lows the equality wifi( A ) = i/>(hw), employed in Eq. (5.21).
The summation in this formula extends over all elements of
Weyl's group. The normalization factor is chosen from the
following considerations. It is assumed that Ф is normalized
according to Eq. (5.20), i.e.,

and (5.22)

But the group W operates in R' simply transitively on the set
of Weyl's chambers,45 so that for Nw elements of this group
the symbolic equality Nw = VR,/VK + .where VK and VK are

the "volumes" of K' and К + (they are infinite; we note at
the same time that Nw = /-, ...r, (Ref. 14, p. 568) ), is satis-
fied. This explains the choice of the factor N ~ 1/2 in front of
the summation sign in Eq. ( 5.21 ) . It is clear that Ф is invar-
iant: шФ = Ф, because Wis a group.

From here there follows a recipe for constructing the
kernel of the physical evolution operator Vе,. From the ker-
nel U,, constructed with the participation of all eigenfunc-
tions ^(n) of the operator (5.19) (analog of the kernel
(5.1)), it is necessary to single out a term containing only
the physical function Ф( я ) (analog of (5.3); here ( n ) sym-
bolizes the complete set of quantum numbers specifying Ф) .
Using Eq. (5.21 ) we obtain

Uc

t(h,h')

(n)

Ut(hw,hw-), (5.23)

where U, (A, A ') is the kernel of the evolution operator in the
problem with the Hamiltonian (5.19) and with normaliza-
tion in the entire space R'. We can verify directly that as e -»0

Ue (h, h') =

-~-exp \i I p (A — h') — fl^HL. _)- V (

и' = v/h'\- C 5 741Л :̂ ^ Л ^/t К ^ J*t*T)

the appearance of the factor (xx1) ~ ' in Eq. (5.24) is con-
nected^ with the fact that the eigenfunctions of the Hamilto-
nian H' = — ( l/2)<92 + F are, according to Eq. (5.19),
xi/>M . It is easy to prove that the kernel (5.24) has the prop-
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erty

(A., A') = U, (h, hw] + 0 (e2) (5.25)

for any potential V(h); if, however, the potential is invariant
V(hw) = V(h), then in Eq. (5.25) the term O(e2) can be
dropped. This assertion can be checked by making the sub-
stitution of variables p^>wp in the integral taking into ac-
count the invariance of dp and p2, which follows from the
orthogonality of the matrices w. Based on Eq. (5.25), we
rewrite the kernel (5.23) at t = e in the form

(h, h') = 2 Ue (h, h'w) = ,(h,h")Q(h",h'), (5.26)

(5.27)

the integration extends over the entire space, unless stipulat-
ed otherwise. The formula (5.26) is an extension of the for-
mula (4.6) to the case of an arbitrary group. As in the for-
mula (5.6), the kernel Q here plays a dual role: on the one
hand, Q eliminates the contribution of unphysical states in
Uc

t while on the other hand, based on formulas analogous to
(5.4)-(5.5), it extends the initial function Ф0 (h) to the en-
tire space R'. Since

Q (A», A') = Q (h, h') (5.28)

(which is a consequence of Eq. (5.27) and the obvious equa-
lity 8(hw) = <5(A), which follows from the orthogonality of
the transformation w),Q extends Ф0 outside К + in a sym-
metric fashion. We shall write out the corresponding formu-
las explicitly:

фе (A) = dA'

Ф„(А)

l (h, h') Ф0 (h')

dA'(?(A,A')Oe(A').

(5.29)

(5.30)

In deriving Eq. (5.30) we employed Eq. (5.26) and the in-
variance of /J.(h) under Weyl's group. Obviously,
Ф0 (h&K + ) = Ф0 (h); the range of the first argument of Q is
the entire space and the range of the second argument is К +.
By virtue of the formulas (5.25) and (5.27) we have the
analog of the formula (5.9) for^C/^. Then repeated use of U c

c

reduces to the operator Uc, = UtQ, in which the kernel U, is
given by the path integral

Ut (h, h')

(5.31)

where A=g(f) , h '=g(0),x' = x(h'). The relations (5.26),
£5.27)x £5.29), and (5.31) together with the equality
U°, = U,Q and the definition of the scalar product (5.20)
solve the problem.

In the formulas presented above the integration over h
is performed with the weight gl/2->^ = я2. The integral
(5.30) (or (6.26)) is an exception. It is easy to see that by
redefining Q as Q— Qx = (x") ~~ 1Q, we achieve complete un-
iformity:

\ uh'Q (h, h') Ф0 (h') = \ dh'uWQx^h^fb^h'). (5.32)

The explicit form of the kernel Q is determined by the trans-
formation properties of the function x relative to Weyl's
group (compare Eq. (5.5) and the representation with the
help of б (5.13); see also Sec. 9.6).

5.4. Model with Grassmann variables

We shall now determine how the path integral changes
when a gauge group is included in models with Grassmann
variables.

By definition, the matrix element of the evolution oper-
ator is

<<P I e~iSt | x> = J de de/ <<P I e><9 1 e'iSi I в'Хв' | X> ( 5-33 )

(see Sec. 9.4; we denoted the variable £ * by 6? and we treat в
as a real variable), and in addition

tf((e,e')= <e|e-^|9'>=S<e|£>e-i£ t<£|e'>, (5.34)

where the summation extends over the spectrum of the
Hamiltonian. We shall find the kernel ис,(в,в') for the
model of Sec. 4. 1 ( в = ( 0, ,вг ) ; see Sec. 4.1). The spectrum
of the Hamiltonian (4.4) under the condition (4.12) con-
sists of two points 0 and 2co (the energy is measured from the
energy of the "vacuum": E^>E — E0)

, в') = <в | 0> <0 1 в'> «* <в 1 2ш> <2со | в'). (5.35)

We shall choose the representation introduced in Sec. 9.4:
\X) - (в l*>; fa ^ва>Фа -<Э/<Э0а. Then, according to Sec.
9.4(seeEq.(9.17))<0|0> = l , < 0 | f l » > , = 0,,<0|u>> 2 =02,
(в |2u>) = #i#2> and in accordance with Eqs. (9.17b) and
(9.19)

<o | e>= ел, <« I e>1= etl

As a result we have

| e>2 = elt <2co | e> = i.

(5.36)

For the model without gauge symmetry (i.e., without the
condition (4.12) ) the terms

е-'-* «в I o)>! <co I в'>! + <в I co>2 <(o | в'>, ),

would have been added on the right side of Eq. (5.36), i.e.,
we would have obtained

Ut (в, в') = . (5.37)

It turns out that, as in Sec. 5.1, the kernels U, and Uc

t are
related by the formula

Ut(Q,Q') =

where

f (в, в")(?(в", 9'), (5.38)

в') + в(в + в')), (5.39)

and 86 =в,вг, i.e., в(в,9 ') = 0, 02 + в ', в '2 (8 functions of
Grassmann variables are discussed in Refs. 53-56). The va-
lidity of the recipe (5.38) and (5.39) can be proved directly,
for example,

-*"" (9,el — e + = o.

We call attention to the appearance of the factor 1/2 in Eq.
(5.39), as compared with the analogous formula for normal
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variables (5.5), where the absence of this factor is connected
with the transfer to integration over the semiaxis. For Grass-
mann variables the concept "semiaxis," obviously, does not
exist; this is what explains the appearance of the 1/2 in Eq.
(5.39).

It is easy to check that the kernel (5.36) has the neces-
sary property

' d29"t/Y (Q, 6") U\, (в", в') = UC

M> (в, 9'). (5.40)

The formulas (5.37)-(5.39) essentially solve the problem,
since the construction of the path integral for U, is standard.

We shall give the expression for the Hamiltonian path
integral in the holomorphic representation. The holomor-
phic representation for fermions is introduced in Sec. 9.4
(see Eq. (9. 13) ). The physical states in this representation,
satisfying the condition (4.12), are (^*|0) = 1,
(•ф*\2со) = ffiip*. Repeating the arguments leading to the
formulas (5.37)-(5.39), we find

= l П (dtp* d$a) exp (— <р*ф) Ut (

where

Q (+*. t) = 4- ( = ch t*

(5.41)

(5.42)

and U, (i/>*,i/>) is the kernel of the evolution operator neglect-
ing the gauge symmetry, for which the standard representa-
tion of the Hamiltonian path integral is valid:

t
Ut ft,* (О, Ъ (0)) = \ П (dt|>* (т) d4> (т)) exp (4

T=0

t
X exp •x p j i J dr [-^-(4»»^_^*^)_

(5.43)

in which Ф = if>*(t)i/>(t) + i/>*(0)i/>(0). The kernel Q in the
holomorphic representation for Bose variables is derived in
Sec. 9.8.

In accordance with the rule (9.16) the kernels of the
operators (5.24) and (5.43) are related by the following
expression:

Ut (в, в') = P exp (— xp'*t|>') Ut ($*,
J v*^»

(5.44)
XV

which is also valid for other operators (for example, Q).

5.5. The Hamiltonian path integral in an arbitrary gauge (the
gauge group SO(2))39

In Sec. 2.3 it was shown that the discrete gauge group
operating in the phase space of physical degrees of freedom
can have a quite complicated structure if the gauge (the
physical variables) are poorly chosen. In realistic theories
the gauge is usually fixed not based on the structure of the
orbits of the gauge group but rather based on other require-
ments, for example, the requirement of Lorentz covariance,
which engenders the well-known problem of nonunique-
ness.

We shall show what the Hamiltonian path integral

looks like for an arbitrary choice of physical variables. We
shall give the solution of this problem for not too complicat-
ed, but quite representative gauge conditions for the example
of Sec. 2.3. The extension of the recipe to an arbitrary group
is studied in the next section.

The kernel of the unit operator (и \ u') ph in the quantum
theory, given by Schrodinger's equation (2.27) and the sca-
lar product (2.28), is defined for u, u'eK. However, because
of the property of 5-invariance (2.30) of the physical wave
functions, this kernel can be analytically continued into the
unphysical region меК (by complete analogy to Eqs. (5.5),
(4.6), and (5.13) or (5.27))

oo

= f - *Hl - - б (и — и") Q(u",u'),
J (ц(и)ц(и"))/г

where u, u'eRu', eAT and

•Q(u,u')=

(5.45)

(5.46)

The functions u's=us (u') were determined in Sec. 2.3.2.
We shall use the standard procedure for deriving the

Hamiltonian path integral for an infinitesimal evolution op-
erator. In our case the corresponding formulas are

(u,u

= <w I e~ = (1 - «'etf («)) <•* | u')ph
0(e2),

(5.47)

where e —0, and the Hamiltonian H(u) is given in Eq.
(2.27). We substitute into Eq. (5.47) the expression (5.45),
replacing in it the 8 function by the integral
(2ir) ~' dp exp[ip(u — u") ]. In writing out Eq. (5.47) the
order in which the operators in E(u) follow one another
must be taken into account.17'39 To this end, we shall rewrite
the Hamiltonian in Eq. (2.27) in terms of the Hermitian
momentum operators pu= — щ ,1/2 17.39 after
which we perform the differentiation in Eq. (5.47). In the
expression obtained и — и" can be replaced by u"e. AS, a
result, up to terms of order О (г2) we have

ePV«')= JV

where

du*
Щ" (u,u")Q(u", u ) , (5.48)

(5.49)u" — HO" (u, p))].

The effective Hamiltonian H efr is obtained from the Hamil-
tonian in Eq. (2.27) by replacing all derivatives — id Ъу р
and adding terms that take into account the order of the
operators. Ultimately Fis replaced by F+ V , where39

(5.50)

If / , = w and /,=0 in Eq. (2.27), then
Vq = — (8r2) ~', where и coincides with r=\\ in the po-
lar coordinate system.

In constructing the Hamiltonian path integral the ker-
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nels (5.49) can be used instead of the kernels (5.48). In view
of the invariance of Eq. (2.27) under the group S it can be
proved,39 as in Sec. 5.1, that t/ft/f = U?QUfQ
= UfUfQ = Uf£Q, where

U%(и, u') = J du" U? (u, u") Ul" (u\ u') (5.51)

(compare Eqs. (5.8)-(5.10)). The composition of the ker-
nels U £h is determined in accordance with the scalar product
(2.28). As a result, we obtain that the formula (5.48) is valid
for a finite time interval т with the kernel Ue^(u,u'), given
by the standard Hamiltonian path integral

(u, u)

dp (т) du (т)
2л exp

(5.52)

where и(0) = и' and u(t) = u.
It follows from Eqs. (5.48), (5.51), and (5.52) that

taking into account the so-called "copies," i.e., gauge-equiv-
alent points on the axis U&R, comes down not to reduction of
the region of integration in the functional integral,11 but
rather to symmetri/ation of the kernel Uf(u,u'), defined by
the Hamiltonian path integral with the standard measure,
with respect to the residual gauge group Sat the point и' or и.

In conclusion, we note that in accordance with the re-
sults of Sec. 2.3.2 taking into account the curvilinearity of
the physical variables and the reduction of their phase space
guarantees that all physical amplitudes will be explicitly
gauge invariant (independent of /•)• The amplitude
U^(u,u') is not an exception. Indeed, let us represent it as a
spectral sum over the orthonormal solutions of Eq. (2.27).
Then, according to Eq. (2.29), we conclude that U?h(u,u')
is an analytic function of two variables /2(w) = x2 and
/2(и') = x'2, i.e., it is explicitly gauge-invariant.

5.6. The operator Q and the Hamiltonian path integral in an
arbitrary gauge (arbitrary gauge group)

The reduction of the phase space of physical variables is
taken into account in the Hamiltonian path integral by the
operator Q, which symmetrizes the kernel of the evolution
operator with respect^to the residual discrete gauge group.
The explicit form of Q, generally speaking, depends on the
method by which the physical variables are chosen (see Sec.
5.5). On the other hand, it was shown for the example of the
simple model in Sec. 2.3.2 that the amplitudes (scalar prod-
ucts) do not depend on the choice of physical variables, since
the physical state vectors are functions of invariants of the
starting variables. ^

We shall show below that the operator Q does not de-
pend on the dynamics of systems and is completely deter-
mined by the gauge group, its representation^and the choice
of physical variables. Using this property of Q, we shall give
a recipe for constructing the Hamiltonian path integral for
an arbitrary choice of physical variables; the recipe agrees
with Dirac's quantization scheme (taking into account the
curvilinearity of the physical variables and the structure of
their phase space).39'42

We shall study the quantum theory given by the Schro-
dinger equation

and the normalization condition

(5-54)

Here x realizes some linear representation of the compact
group G,

N

<x, УУ = Д xiyi

is the invariant scalar product in the space of the representa-
tion, where x, and y( are real, i.e., the integration in Eq.
(5.54) extends over R ,̂ and К is a G-invariant potential.

The quantum theory with gauge symmetry is obtained
from Eq. (5.53) and (5.54) by imposing the requirement29

thatcraOp h(x) =0 (analogously to Eq. (3.6)); these condi-
tions single out the physical subspace of the states of ̂ ph.
The operators aa generate the gauge transformations from
the group G, ехр(<оааа )i/>(x) = i/>(T(co)x), where T(m) is
an element of the representation of the group G. Since
(7аФрЬ =0, we have

Ф (Т (со) x) = Ф (x), (5.55)

i.e., ФрН(л;) are gauge invariants. The relations (5.53)-
(5.55) prescribe the quantum gauge theory in the full con-
figuration space.

The group averaging operation

G r.
(5.56)

where VG is the volume of the group space and dg(ca) is the
invariant measure on G, is the projector onto < "̂ph . We shall
now study the kernel of the unit operator in the full Hilbert
space 3F:

{x | x'y = 2 ФЕ (x) Ф* (x') + 2 % (x) t| (x') = 6* (z — x'),

(5.57)

where Ф£ and ̂ g form bases of the physical subspace ̂ ph

and the unphysical subspace ̂ nph = ̂ °9^ph , respective-
ly.12' The first term in Eq. (5.57) is the kernel of the unit
operator in <^ph . Since PG is the projector onto ̂ ph , oper-
ating with it on the equality (5.57) we obtain the kernel of
the unit operator in ̂ ph :

<x | z'>Ph = (x I PC I x"> = Vo1 dg (CD) 6" (x - Т (со) x').

(5.58)

The kernel (5.58) is obviously gauge-invariant.
The formula (5.58) makes it possible to write down the

gauge-invariant kernel of the evolution operator without re-
sorting to separating out the physical variables explicitly.
The kernel of the evolution operator for the problem (5.53)
and (5.54) is represented by the integral

П (x тЛ - С П /а*Р(*)Д"'(*U, (x, x)-} 11 1 - ̂

,*>— --<Р.Р>-П*)> (5.59)

wherex(O) =x'and;c(0 = x. On the other hand, by defini-
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tion we have

Ut (x, x') = 2 ФЕ (x) 2 ̂  (*) ̂  (*') e~^' '
к

(5.60)

where the first sum is the kernel of the evolution operator
U^(x,x') in^p,, . By virtue of the projection properties of
the operator PG we obtain

(x, x') = J &"x"Ut (x,. x") (x" \ PG | *'>. (5.61 )

In Sec. 9.8 analogous formulas are derived for the holomor-
phic representation and the kernels (5.58) for the models
from Sees. 2.2, 3.1, and 6.1 are also explicitly calculated (see
alsoRefs. 39, 42, and 57).

x induce the transformations M — us: T(0s)x(u) = x(us),
us = us(u), u€RM. They form a group isomorphic to the
group of permutations of the points MS in RM. From the de-
finition of the group S we have the equality
K=RN/S=RN~M/Se(JRM/S=G/HUK, i.e., К is a
fundamental region in RM(M) relative to the action of the
groups':*: -Мы) (us:R

M^RM).
We also recall that the group S can depend on the point

и, i.e., for different и it can have a different number of ele-
ments. In this case RM(u) must be divided into R^so that
for ueR% the number of elements 54м) = Sa(u) is fixed, i.e.,
S= UaSa andK = (JaKa, where Ka = R"/Sa.

Thus, the scalar product in ̂ ph is given by the formula
( 2.28 ) , in which du -» dMu and the factor VG ' is included

The formula (5.58) shows that the kernel (x *')„„ has in the normaiization of ФЕ(Ц). if ^ (и) is a basis in
a universal structure, i.e., it depends only on the group G and
its representation. We shall establish the relation between
(5.58) and the operator Q. For this, we must specify the
physical variables and transfer from the description in the
full configuration space to the description in its physical sub-
space. Let the number of physical variables be M. Then the
number of independent constraints is TV — M. We introduce
curvilinear coordinates

= T(Q)x, f = x (u), (5.62)

where the components x identically satisfy the additional
N — M conditions %a (•*) = 0. i-e., all TV components of the
element x are functions иеКм such that х„ (x (и)) = 0 (anal-
ogously to Eq. (2.23)). The additional conditions %a

 must
be chosen so that the equality (5.62) would specify the map-
ping (0,u)eRN-MeRM->xeRN (see Sec. 2.3.2 regarding
the adtnissibility of the gauge condition). Then there exists
in R^_a region К such that the mapping (5.62)
(0,u)eK->xeRN defines a substitution of variables. In the
new variables the physical wave functions
ФрН (x(u,Q)) = Фр„ (u,0) = ФрЬ (M) do not depend on 0,
since cra are generators of translations 6.

A basis Ф£ (и) in JTph is constructed from the solu-
tions of Eq. (5.53) in the curvilinear coordinates (5.62).
Since Eq. (5.62) is a substitution of variables, the states from
< "̂ph are normalized according to (5.54) with the measure

where VG is the volume of the group space and VH is the
volume of the group space of the stationary subgroup Я of
the element x (actually VG Vи ^fJ-(u) is the volume of the
orbit of G for the elements (Ref. 58)). This representation
follows from the obvious relation K=G/HDK, where
0eG/H, ueK. If the substitution (5.62) is such that Я = 1,
then VH = \.

To determine K, we shall study the symmetry group of
the mapping (5.62) S = Se X S, where Se consists of transla-
tions of 0 by amounts that are multiples of the periods of the
compact manifold G /Hand Se does not change u. The group
S consists of the transformations 0->0\, и -»и s such that x
in Eq. (5.62) does not change. Then, analogously to Eq.
(2.24), we have T ( 6 ' s ) = T(0) Т ~ \0S), where the trans-
formation T( 0S) must satisfy the condition
*Л*) =Xa(T(9s)x) = 0, i.e., it does not violate the addi-
tional conditions Xa = 0- Therefore such transformations of

then the basis ФЕ (и) in ̂ ph can be defined as an induced
basis, using the projection formula (5.56) and the decompo-
sition ̂  = ̂ ph e JTnph , i.e.,

ФЕ (и) = PG-^E (x) = PG^E (T (6) Z (и)) = PGfe (г («)).
(5.63)

The last equality in Eq. ( 5.63 ) follows from the properties of
in variance of the measure g(co) in Eq. (5.56). Due to the
invariance of the measure dg(co) and the definition
x(us) = T(9s)x(u), from Eq. (5.63) follows the S-invar-
iance of the physical states ФЕ (us ) = ФЕ (и), i.e., the equa-
lity (2.30) is valid in the general case; it permits determining
the analytical continuation of the kernel of the unit operator
(u\u')ph in ̂ ph into the unphysical region ueRM, analo-
gously to Eq. (5.45), where du' and 8(u — u") must be re-
glaced by dMu" and 8м (u — u"), respectively. The operator
Q also has the form of Eq. (5.46). If the measure
/j, ( и ) = x2 ( и ) , where x ( и ) is a real analytic function in RM,
then in Eq. (5.45) (/up") 1/2-> ( x x " ) ( an example of such a
theory is presented in Sec. 5 . 3 ). Using the method of Sec. 5 . 5 ,
it is possible to construct a Hamiltonian path integral in the
physical phase space. The Hamiltonian H(u) in Eq. (5.47)
is calculated by transferring in Eq. (5.53) to curvilinear co-
ordinates (5.62) and dropping terms containing the deriva-
tives два (ФрЬ (и,0) = ФрЬ (ы) ). The obtained Hamiltonian
path integral has the form (5.52). The effective quantum
correction Vq to the potential will have a more complicated
form than (5.50).39 The complication is connected with the
fact that in the general case the system contains several phys-
ical degrees of freedom. But the method for calculating Vq

does not change.
The kernel of the operator Q can also be determined

from the projection formula (5.58), substituting for x and
x', respectively, T(Q)x(u) and Т(в')х(и'), and carrying
out the integration over the group. As a result

<м|м'> Р ь = (и)-Г(ш).г (м')); (5.64)

because of the invariance of the measure dg(&>) the depen-
dence on 0 and 0 ' is eliminated by performing a group trans-
lation. The factor V „ ' in Eq. (5.64) is connected with the
difference of the normalizations of the kernels (5.58) and
(5.64). The kernel (5.64) is normalized in the physical con-
figuration space with the measure

,11 (u)
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similarly to Eq. (2.28). For this reason, it can be obtained
from the kernel (5.58) by multiplying the latter by the vol-
ume of the unphysical configuration space VG V и '• Com-
paring Eq. (5.45) (definition of the operator Q) and Eq.
(5.64), we find a universal expression for the kernel of the
operator Q that is suitable for any group with any (reasona-
ble) gauge

Q(u,.a) = dg (со) 6* (3 (u) — Т (со) г (и)), (5.65)

where меКи, u'eK. We note that the calculation of the inte-
gral in Eq. (5.65) automatically reproduces the sum (5.46),
i.e., it determines the group S.

The formula (5.65) shows that the operator Q does not
depend on the dynamics of the gauge system, but rather it is
completely determined by the gauge group, its representa-
tion, and the choice of physical variables.

What is the result? We can say that if the gauge is poorly
chosen the correct description of the system on the basis of a
Hamiltonian path integral may turn out to be a problem of
incredible complexity. As is well known, invariant gauges of
the Fermi type do not adequately describe the physics of a
system in the theory of Yang-Mills fields (by virtue of their
nonuniqueness11>41), so that the problem of correct and con-
structive formulation of this theory with the help of explicit-
ly Lorentz-invariant path integrals is apparently hopeless.

6. REDUCTION OF THE PHASE SPACE AND
QUASICLASSICAL DESCRIPTION

The formalism of path integration makes it possible to
determine in a natural manner the quasiclassical transition
amplitude. The problem reduces to calculating the path inte-
gral by the method of stationary phase in the neighborhood
of the classical trajectory.

In Sees. 2.2.1, 3.2.2, and 5.1 we saw that a classical tra-
jectory is sensitive to the structure of the phase space, so that
it can be expected that the quasiclassical description will
depend on the structure of the phase space.

Two problems are usually distinguished in the quasi-
classical approach:27 determination of the spectrum of the
system by using periodic classical solutions (WKB quanti-
zation) and description of tunneling effects with the help of
the solutions of Euclidean equations of motion (classical tra-
jectories in imaginary time—instantons). We shall examine
these questions for systems with a conical phase space
con(тг). More complicated systems are discussed in Refs.
15, 20, and 22.

6.1. The WKB method

Let the potential of the system V be such that there
exists a periodic solution of the classical equations of mo-
tion. It is obvious that the period T— T(E) is a function of
the energy of the system E.

According to the Bohr-Sommerfeld quantization rule,
the quantum energy levels can be determined by solving the
equation

rr

W (E) = § p dg'= ^ pi At = 2зг (« + -L),. n = 0, 1,...,

(6.1)

for E. The integral in Eq. (6.1) is taken along a classical
trajectory.

What changes if the phase space is соп(тг)? It is easy to
see that the period of the oscillations of the system Tc with
the phase space соп(тг) is one-half the period of a system
with the phase space R2 and the same energy E:

The reason is simple. Since the potential is an even function
V(g) = V( — g) (a consequence of Z2 invariance (see Sec.
2.1)), the time the particle spends in the region q < 0 is equal
to the time that it spends in the region q > 0. Since the phase
space is finite the motion with q < 0 is indistinguishable from
the motion with q > 0. From here the halving of the physical
period follows immediately, and therefore for the conical
phase space соп(тг)

(6.3)= pqdt = ~

From the quantization condition WC(E) = 2ir(n + 1/2),
и = 0, 1, ..., it follows that the quasiclassical spectrum of a
system whose phase space is соп(тг) contains half the num-
ber of levels of a spectrum whose phase space is M2. The
physical energy levels in Eq. (6.1) correspond only to even
n.

In the case of systems with several physical degrees of
freedom the difficulties of taking into account the reduction
of the phase space in the WKB method are connected with
singling out the independent modes of oscillation. As was
shown in Sec. 3.2.2, this problem is far from simple. The
essence of the matter, however, does not change, only the
technical details become more complicated. For example, in
Refs. 15 and 22 the spectrum of internal excitations of a
quantum soliton, whose phase space is соп(тг), was found.
The result agrees with Eq. (6.3).

6.2. Quantum-mechanical instantons

We shall study the simplest example of the effect of re-
duction of the phase space on instanton calculations. We
recall that instantons are employed in quantum theory for
calculating tunneling effects.26'27'58 For example, consider a
one-dimensional quantum system with a periodic poten-
tial.27 Then the ground state in the neighborhood of each
local minimum of the potential is degenerate. The degener-
acy is removed by tunneling effects, and in addition the
ground state becomes a band. It turns out that knowing the
solutions of the Euclidean equations of motion (the equa-
tions of motion with imaginary time t-> —ir) makes it pos-
sible to calculate the energy levels in the band and find ap-
proximately the corresponding wave functions (в
vacuums).

Consider the model from Sec. 3 with the group
SO(3)~SU(2) and the periodic potential V(x2) = 1
— cos(x2)1/2. An analogous one-dimensional model has

been studied many times (see Ref. 27 and the literature cited
there), i.e., with K2 as the phase space. In our case the phase
space with r= (x2)172 as the only physical variable is
соп(я-).

We shall study a Euclidean variant of the theory: r-»/r,
y-*iy in Eq. (3.1), and then L->LE = (1/2) (Дх)2

+ V(x2). We shall take the solutions of the classical equa-
tions of motion
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дх дх
x = дтж,

in the form15'22 jcinst (т) = rimt (т)Л,, where

Hnsi (т) = 4 arctg exp (r — тс) + 2nm.

(6.4)

(6.5)

Here m is an integer, у(т)€Н and Я, is the "only" basis
element in //, and тс = const. The solution (6.5) is deter-
mined to within the gauge transformation (3.2). It relates
the local minima of the potential: x2

nst -» (2ттт)г, т-» оо and
-(2я-(/п-1))2, т- - оо.

We note that setting in Eq. (6.4) x = Л l r&H and у = О
we obtain an equation for r that is identical to the equation of
motion for an analogous system whose phase space is R2; its
solution is given by Eq. ( 6.5 ) . For a one-dimensional model
with a flat phase space the calculations are performed as
follows.27 The transition amplitude UT (2irm,2irm' )
between two local minima of the potential is calculated by
the saddle-point method; in so doing, the instanton solution
serves as the stationary point. I3> In the limit r-» oo the states
from the bottom band (states with higher energy make an
exponentially small contribution ) make the main contribu-
tion to this amplitude:

£7T(2nm,
2Л

\ exp ( — т#) | 2nm")

e><9 I 2nw'> exp (—de <2

where the parameter в enumerates the energy levels Ee in
the lower band. The amplitude (lirm \ в > is obtained by cal-
culating the path integral by the saddle-point method. The
corresponding calculations were performed in detail in Ref.
27; it was found that

, (6.6)

( 6.7 )= -L — e~s>Slf*K cos 9,

where S0 is the action for the solution (6.5) and К is some
number that does not depend on в (instanton determi-
nant27). The quantity (2тгт\в > ~exp( — imd) gives the
value of the wave function of the в vacuum (г\в ) in the
neighborhood of a local minimum of the potential r = 2-irm,
so that the approximate expression for (r\6 ) has the form27

<r 1 9> = const • e-""9 <r ||2nm>,' (6.8)

where {r|2irw)~exp[ — (1/2) (r — 2irm)2] is the wave
function of the ground state in the neighborhood of each
local minimum of the potential.

How are the calculations modified if the phase space is
соп(я-)? Obviously, now the amplitude U°T(2irm, l-rrm")
must be used instead of the amplitude UT(2wm, 2irm'). The
relation between these amplitudes is given by the formula
(5.13)withthe substitution t -> — ir, according to which we
obtain

d9 fsiri•_ 'O_____ , /• n\
(6.9)

Therefore reduction of the phase space does not change the
energy levels in the bottom band. However the form of the

coefficients (2irm\6 ) changed, so that the form of the wave
function (6.8) of the в vacuum also changes:

<r |e>«=const . (6.10)

In view of the obvious equality ( — r\2irm) = (r — 2-irm)
the function (6.10), in contrast to the function (6.8), is even
( _ г\в > c = (r c|0 }c, i.e., Z2 is invariant. We also note that
the function (6.10) is normalized according to (5.20), while
the function (6.8) is normalized as in the one-dimensional
theory with the phase space R2.

The energy levels Ee are independent of the structure of
the phase space, generally speaking, only for the continuous
spectrum. Here the analogy with the case of a free particle is
pertinent. The reduction of the phase space К2->соп(тг)
does not change the spectrum of the system. On the other
hand, the discrete spectrum (for example, the oscillator
spectrum) is sensitive to reduction. This is also true for in-
stantons, as can be easily verified by studying a model with
the potential V= (x2 — a2)2/4! and the gauge group
SO ( 3 ) ~ SU ( 2 ) ( the one-dimensional analog was studied in
Ref. 26). In this model the vacuum is doubly degenerate:
дс = гЯ. , €H and r = +a. The band contains two levels, and
the wave function of the lower level is odd and the wave
function of the upper level is even.14' Taking into account
the structure of the phase (which is соп(тг) ) eliminates the
contribution of the Z2 -odd state.

7. MORE COMPLICATED MECHANICAL SYSTEMS.
CHARACTERISTIC FEATURES OF THE DYNAMICS

Thus far we have studied systems in which all physical
variables had a reduced phase space. Increasing the number
of degrees of freedom while maintaining constant the num-
ber of gauge parameters leads to models of a new type, in
which, seemingly, some physical variables must have a flat
phase space while others must have a reduced phase space.
The situation, however, is more complicated. The gauge
group engenders a specific relationship between the physical
degrees of freedom which often has a purely kinematic char-
acter and prevents such a simple interpretation of the struc-
ture of the phase space.39

7.1 . Two particles in a two-dimensional space

We shall study a system of two particles in a two-dimen-
sional space. If we take for the Lagrangian the sum of La-
grangians of the form (2. 1 )

=4-1(0* —

1
[ ( d t - y2T) x2]' - V, (Xl) - V, (x2), (7.1)

wherey, andj>2 change independently under gauge transfor-
mations, then a simple analysis shows that the phase space of
each particle is a cone con (IT) and the energy of the system is
the sum of the energies of each subsystem. Let us now nar-
row the gauge group of the Lagrangian (7.1)
SO(2)®SO(2) to SO(2), making the identification
уi =y2 =y, i.e., we transform to the Lagrangian39

^—[(Ot-yT)^

+ -№>i-2/:r)x2]
2-F1(x1)-:F2(X2), (7.2)
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which is invariant under gauge transformations

6хг = еТ-к,, by = e, bVi = 0, i = 1, 2. (7.3)

The standard analysis shows that the Lagrangian (7.2) pre-
scribes a system with one primary and one secondary con-
straint

dL
(7.4)

and the Hamiltonian

#= -rOtf + pS + ̂ W + M*»)-
(7.5)

where each H, is identical to (2.4). The constraint cr gener-
ates gauge transformations of x,. What can we say about the
physical phase space of each variable x,, xz ? If we choose the
gauge*!2' =0(x, = (jcjn,jc(

<2>)), then in view of the remain-
ing gauge arbitrariness, associated with the discrete group
Z2 (see Sec. 2.1.1), it would seem natural to conclude that
PS(xSu) = con (-IT), while the phase space of the two re-
maining physical degrees of freedom is flat:
PS(x2) = M2XK2. However instead of x{2) we could have
eliminated x2

2) and drawn the conclusion that
PSOcz0) = con(ir). Therefore, although according to (7.5)
If = H\ + H2 and {//, ,H2 У = 0, i.e., although the systems
described by the Hamiltonians Я, appear to be dynamically
independent, the question of the structure of the physical
phase space of each system separately is meaningless. We
can talk only about the structure of the phase space of the
system as a whole. Thus the Lagrangian (7.2) is another
example of the unusual nature of the properties of theories
with gauge symmetry: The dynamical characteristics of two
systems, which by the standard measures are independent,
are found to be interdependent, one independent subsystem
affecting the other through the "physically meaningless" de-
gree of freedom у (formally, through the constraint cr = 0 in
Eq. (7.4)).

We shall now proceed to the quantum description.39

Once again we shall confine our attention to the case of oscil-
lator potentials F,- = u>2x2/2, u>, фа>2. In the second-quanti-
zation representation the Hamiltonian operator H and the
constraint a (see Eqs. (7.4) and (7.5)) are written in the
form

#=
1=1, 2

a =

(7.6)

(7.7)

where а, = (p} — sxj)/vb and а/ = (р, + яку )/v2. The
physical states are generated by invariants of the rotation
group which are composed of the vectors a,+ and a2

+:

(7.8)

еи is the unit antisymmetric tensor and EU =1. Here the
following should be noted. The operators (7.8) are in variant
under the group SO ( 2 ) . All of them, except for i>4 , are invar-
iant under the larger group О ( 2 ) = SO ( 2 ) ® Z2 ( the nontri-
vial element of Z2 corresponds to reflection of one of the
coordinate axes; the operator bA changes sign in the pro-
cess). Question: Should the operator b4 be included among

the operators that generate the basis of the Hilbert space? In
other words, what is the gauge group of the model (7.2):
SO(2)orO(2)? Formally, all information about the dynam-
ics and constraints of the system is contained in the Lagran-
gian (7.2). The standard analysis29 gives the constraints—
the generators of the gauge group. But the generators make it
possible to reconstruct only the constrained component of
the identity element of the group,14'44 so that one can talk
only about the gauge group SO(2). The existence of a dis-
crete gauge group for the Lagrangian (7.2) cannot be estab-
lished.39 According to Sec. 5.1, the requirement of such a
symmetry can be formulated only in the form of an indepen-
dent condition that is not contained in the Lagrangian. The
other possibility is to regard this problem as the result of
reduction of a larger configuration space and the group
О (2) as the subgroup of a larger group, for example, SO (3).
The latter group contains elements which change the direc-
tion of any axis in the plane. In any case, additional assump-
tions are required in order to transfer to discrete gauge trans-
formations. We shall adhere to this point of view, i.e., we
shall include b4 among the generating operators.

Because of the identity £^£м = 8ik8jt — 8a8jk the oper-
ator b 4 can be expressed in terms of the other operators A,
(/= 1, 2, 3), so that the basis of the physical space
^ph = ̂ °ph $ £fph is given by the vectors

£!'№I o> e 0C. bl&'bl'bi| о > e ̂ Рь, (7.9)
И ;=0,1,.Л; i = 1,2,3,

и, = 0, 1,... and / = 1,2, 3, and the energy spectrum is given
by the formula

E = 2/ijCui ~T~ 2/i2co2 * ^з (̂ *i ~^~ ^2)

+ 0)2) + (Oj + (02, (7.10)

= 0, 1.

The structure of the spectrum gives no basis for assigning to
some degree of freedom a definite phase space. For example,
we cannot say that the phase space of one variable is соп(тг)
and that the phase spaces of the other variables are planes.
We can talk only about the structure of the phase space as a
whole.

The foregoing example shows the specific nature of the
effect of unphysical variables on the physical variables: A
fundamental characteristic of a dynamical system—the
phase space—changes. Conversely, the effect of the physical
degrees of freedom on one another is not so dramatic: only
the equations of motion change. Thus if a term F(X[, x 2 )
that is invariant under the group SO (2) e SO (2) is added to
the Lagrangian (7.1), then the phase space of each subsys-
tem x,, x2 remains unchanged, though the subsystems will
strongly affect one another.

What is the role of the residual discrete gauge group (or
the corresponding group S) in such systems? The formula
(5.65) makes it possible to calculate S in any theory. In par-
ticular, if in the system under study the physical variables
are separated by the condition *S2) = 0, then, as the calcula-
tions (9.46)-(9.49) show (seeSec. 9.8),S = Z2,andSoper-
ates on all physical variables simultaneously: x(,s>, x2'' -*>x[l J,
— x2" (analogously for the canonically conjugate mo-

menta). For this reason the physical phase space is
(R 2 ®R 2 ®R 2 )/Z 2 . Obviously, it is different from
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con (тг) » R2 ® R2, where con (тг) = K2/Z2 . This fact is of a
general character,39'42 i.e., the residual discrete gauge group
operates simultaneously on all physical variables. For this
reason, the physical phase space is reduced as a whole, there-
by giving rise to a specific purely kinematic relationship
between the physical degrees of freedom.

7.2. System with Bose and Fermi degrees of freedom

It is instructive to study a mixed system which includes
Grassmann variables together with the normal variables.
The simplest system of this type is given by the Lagrangian
(more complicated systems are studied in Ref. 42)

(7.11)

which is essentially the sum of the Lagrangians (2.1) and
(4.1) with specific potentials V. An analysis analogous to
that performed in Sees. 2 and 4 shows that the Lagrangian
(7.11) defines a system with one primary constraint
py = dL /dy = 0, the Hamiltonian

(7.12)

(7.13)

and one secondary constraint

a = рГх — t|5+rt|> = 0.

The uniqueness of the model lies in the fact that the con-
straint a is an even element of the Grassmann algebra. The
vanishing of these elements is equivalent to several equalities
(similarly to the manner in which the vanishing of a vector
means that all its components vanish), i.e., in classical me-
chanics (7.13) is equivalent to two conditions:

or, = рГх = 0, of8 = 11>+Гф = О. (7.14)

There arises the question: Does this mean that new indepen-
dent constraints appear? At first glance the answer depends
on whether a classical or quantum theory is under study. In
the classical theory the Hamiltonian (the "energy") of such
systems is an even element of the Grassmann algebra; ac-
cording to the Hamiltonian (7.12), the normal and Grass-
mann variables do not mix in the process of the motion, i.e.,
both subsystems evolve in time independently. For this rea-
son, the conditions (7.14) can be interpreted as an indica-
tion of reduction of the phase space in both subsystems, be-
cause, for example, the equality cr2 = ̂ i+ Ф\ ~ fa+ fa = 0 is
impossible for independent variables ,̂ and i/>2. In the quan-
tum theory, however, the canonical variables of both types
are, on the contrary, operators and the condition
(a, — a2 )Ф = О does not lead to the equalities а,Ф = О,
/ = 1,2 since the eigenvalues of ст, are с numbers.

What we have said above agrees with the definition of S
functions of even elements of a Grassmann algebra,56 in this
case the function S(a). The appearance of this function is
unavoidable in the formulation of the quantum theory on the
basis of a Hamiltonian path integral (when the unphysical
variables are eliminated). But classical variables appear in
the Hamiltonian path integral, so that it could shed light on
the situation in the classical theory. In Ref. 56 it is shown
that 8(a) must be understood as a Taylor series

(7.15)

which cuts off at the k th term such that a 2

 + ' = 0. The S
function defined in this manner has the necessary property

(1)8(1- Io)4 = /(1o).

where £ is an even element of the Grassmann algebra ( defini-
tions of integrals over the even elements of a Grassmann
algebra as well as more general integrals on such an algebra
are given in Refs. 56 and 59 ). From Eq. ( 7. 1 5 ) it is clear that
the appearance of the S function <5(<7, — a2 ), where a, 2 are
classical quantities (7.14), does not mean that the equality
a = CT] + <72 = 0 is satisfied term by term in the process of
evolution of the system. Thus, in the quantum theory there is
only one secondary constraint, and since the classical pic-
ture is obtained from the quantum picture by passing to a
limit the quantum picture also will correspond to dynamics
characterized by one secondary constraint. This conclusion
becomes obvious, when one takes into account the fact that
the real gauge arbitrariness is determined by the number of
independent arbitrary parameters (functions of time) in
front of the generators of the gauge transformations. The
Hamiltonian (7.12), which contains all information about
the dynamics of the system, contains only one such param-
eter y(t). Fixing this parameter, for example, by the condi-
tion x2 = 0, exhausts the gauge arbitrariness (to within a
discrete subgroup; the residual gauge subgroup Z2 cannot
change the dimension of the phase space).

We can now find the spectrum of the Hamiltonian
(7.12). We write it in the second-quantized form as

Й = ш2'Ф
+'Ф + У (t) (ia+Га —

(7.16)

where//, withw, = 0 is identical to (2.19) and//2 is identi-
cal to (4.4), if in the latter we set a> = co2 and fl = 0. Obvi-
ously, [//, ,//2 ] = 0, i.e., according to the standard criteria
the subsystems are dynamically independent. The basic
gauge-invariant operators, which generate the physical Hil-
bert space, are given by the formulas

(7.17)

The operator 64 appears here for the same reason as in (7.8):
Enlarging the gauge group up to О (2) eliminates it. We note
that such an enlargement would also eliminate the operator
63—this is another argument in favor of the group
SO(2).15) The state vectors obtained by applying all possi-
ble nonnegati ve integer powers of the operators(7.17)tothe
ground state form the basis of the physical Hilbert space
(analogously to (7.9)). They are all eigenvectors of the op-
erator H. This makes it possible to write out the energy spec-
trum:

E = 2И1Ю1 -h «2 (<">! +

- 0)2. (7.18)

6(0! — os) =

In contrast to (7.10), here only n, runs through all the posi-
tive integers nl = 0, 1,2,..., while n,, i = 2, 3, and 4, assume
the values 0 and 1, since for these values of A ] = 0, and in
addition л2 + и3 + и4 = 1. The latter restriction follows
from the identities for the operators (7.17): Ь2Ь4 = £,£3

and t>2,4£3 = 0. We note that for <a, = a>2 the energy of the
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ground state is equal to zero (supersymmetry). From the
structure of the spectrum (7.18) we conclude that, as in the
model (7.2), here it is impossible to single out the degree of
freedom whose excitation does not depend on the residual
subsystem while the spectrum would indicate a conical or
flat phase space.

8. CONCLUSIONS

We shall now summarize what we have said. We have
reviewed the results of the investigation of the phenomenon
of the reduction of the phase space of physical variables in
theories with gauge symmetry. This phenomenon was stud-
ied for the simplest models with a finite number of degrees of
freedom. The reason for the reduction of the phase space was
determined (the existence—after elimination of the unphy-
sical variables—of a residual discrete group, isomorphic to
Weyl's subgroup of the complete gauge group), and we es-
tablished some of its consequences (change in the energy
spectrum of oscillators and modification of the Hamiltonian
path integral). This phenomenon is of a general character
and occurs both in theories with normal (commuting) vari-
ables and in theories with Grassmann (anticommuting)
variables.

We studied only the simplest mechanical systems. We
purposefully did not discuss the theory of gauge fields,
which we had at the back of our minds when we wrote this
review. This is a subject for an independent and more exten-
sive investigation, which is still far from completion. How-
ever the results already obtained in this direction make it
possible to talk about the possibility of studying the phenom-
enon for the theory of elementary particles. In Ref. 12, in
which scalar electrodynamics was studied, in particular, the
Higgs phenomenon, it was concluded that the phase space of
the Higgs field is reduced. In Refs. 15, 20, and 22 the sine-
Gordon model with electromagnetic interaction was investi-
gated. It was shown that the existence of a discrete gauge
group changes the spectrum of the breather excitations. In
Refs. 15 and 28 the phase space of the Yang-Mills fields was
studied. It was shown that the residual Weyl group changes
the phase space of the physical components of the gauge field
as well as the fields interacting with it. The most important
consequences, following from these investigations, concern
the nature of the Higgs field and the problem of confinement.
In Refs. 15, 16, and 28 it is concluded from the fact that the
phase space of the Higgs field is reduced (in the standard
approach) that the Higgs field is of a composite nature, i.e.,
it is concluded that this field is not an elementary field. The
importance of the phenomenon of reduction of the phase
space for understanding confinement is pointed out in the
preprints of Refs. 60 and 61. One would think that by elimi-
nating in the quantum electrodynamics all unphysical de-
grees of freedom ("fixing the gauge") we would arrive at the
standard field theory with the normal canonical variables.
There then arises the question: what prevents the corre-
sponding particles (excitations of these fields) from flying
apart? It turns out that it is precisely the residual gauge sym-
metry, acting in the space of the physical variables, that pre-
vents them from separating. Only composite objects, which
are invariant under these residual gauge transformations,
can be regarded as legitimate physical objects.60'61

Many questions were not studied in this review. Consi-
deration of the problem of the structure of the phase space of

field systems, especially systems with several fields, includ-
ing spinor and scalar, opens up an extensive field for re-
search. Other questions, for example, questions connected
with quasiclassical calculations, also were not studied. This
is work for the future. We believe that the solution of the
problems considered will make it possible not only to under-
stand better the nature of dynamical systems with gauge
symmetry but it will also lead to progress in describing the
properties and interactions of so-called "elementary parti-
cles."

We are sincerely grateful to the referees I. A. Batalin, B.
L. Voronov, I. V. Tyutin, as well as to M. A. Solov'ev, who
read the manuscript, for a helpful discussion and valuable
remarks.

9. APPENDIX

9.1. The phase space in polar coordinates

The phase space of each of the two degrees of freedom of
a particle moving in a plane in Cartesian coordinates is a
plane: P S ( x / , p t ) = S2, i = 1, 2. In polar coordinates each
variable r and в takes on values which lie only on a part of the
real axis. What then are the phase spaces of the correspond-
ing degrees of freedom? The fact that r takes on values on the
semiaxis r>0 and в in the segment [0, 2ir\ suggests that
PS(r,pr) is the half-plane and PS(0,pe) is a strip of width
2tr, since pr and/7,5, are unbounded. A more careful analysis
shows that in both cases the phase spaces are actually the full
planes.

To prove this result for r andpr, we shall study in paral-
lel the motion of a particle through the origin in Cartesian
and polar coordinates. Let the particle move along the x,
axis. As long as the particle moves along the positive se-
miaxis the equality x, = r is satisfied and no paradoxes arise.
As the particle moves through the origin xl changes sign, r
does not change sign, and в and pr change abruptly:
в-* в + tr,pr = \p\ cos в-> — pf. Although these jumps are
not related with the action of any forces they are consistent
with the equations of motion. Meanwhile, the kinematics of
the system admits an interpretation that permits avoiding
them. Indeed, the formulas for the transformation to polar
coordinates x, = r cos в and x2 = r sin в are invariant un-
der the substitutions 0-» в + ir and r-» — r. This means that
the motion with values of the polar coordinates в + тт and
r>0 is not distinguishable from motion with values of the
polar coordinates в and r < 0. As expected, the phase trajec-
tory will be identical in both the (r,pr) plane and the (x,,p t )
plane.

In other words PS(r, pr) is the plane folded in half
along the axis r = 0. Each half of the plane corresponds to
values of в differing by IT, so that the physical states in these
planes are different, and prior to being combined with the
first half r>0 the second half r<0 is turned by an angle ir
around the axis/>r = 0 (in view of the jump in the momen-
tum pr -> — pr). Thus to each point of the phase space r>0,
/7reR there correspond two different physical states (they
differ by the values of the angle в), and therefore such a half-
plane is isomorphic to the phase plane (r,pr)eR2, to each
point of which there corresponds only one physical state of
the system, i.e., by definition of the phase space it is precisely
this plane that must be identified with PS ( r ,p r ) . In the pres-
ence of gauge symmetry в becomes an unphysical variable
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(unobservable variable), so that the difference between the
two superposed half-planes vanishes and
P S ( r , p r ) = con (тг) (the rotation by an angle w of the second
half of the phase space r < 0 prior to combining with the first
half r> 0 is precisely what makes it possible to identify them
with one another in agreement with ideology of the gauge
group Z2, operating in the phase space of the physical vari-
ables).

By studying the rotation of a particle around the origin
of the coordinates we can verify that in order to describe the
motion uniquely the angular variable must be unbounded
c9eK, if the number of rotations completed by the particle
around the origin is taken into account. Therefore PS(0,pe)
is also a plane.

9.2. First-order formalism and Hamiltonian mechanics

In theories with Fermi fields the Lagrangian is usually
linear in the velocities. In order to elucidate the content of
these theories from the viewpoint of the Hamiltonian for-
malism, we shall study a model with the Lagrangian

L = - - V (I), i,lj = 1,2,.. ., 2 n,
(9.1)

The essence of the matter will not change, if we set for simpli-
city n = 1 and a12 = — 1. Then, transferring to the Hamil-
tonian formalism, we have тт\ = dL /<?£, = |"2 /2,
тг2 = dL /<?£2 = — £, /2, i.e., we have two primary con-
straints of the second kind: <t>! = ir2 +|"t/2 = 0,
Ф2 = ITi — £2/2 = 0, {ф, ,Ф2} = 1. The variables Ф! and
Ф2 are, essentially, a pair of canonically conjugate variables.
Another such pair is |"= — (тг2 — J",/2),
77= (IT, +£,/2), and in addition {£,Ф,} = {тг,Ф,} = 0.
According to Dirac29 the constraints can be relaxed (the
unphysical variables can be eliminated), replacing at the
same time the Poisson brackets { , } by Dirac brackets

{/. g}o = {/, g) — {/,. ФЛ {Ф;, я gb (9.2)

We have gzz£t, ir~£;2 and {£, ,£2}B = I (the symbol x
symbolizes an equality taking into account the constraints,
{Ф,,Ф7} ~ ' is a 2X2 matrix that is the inverse of the matrix
{Ф,,ФД). Finally,

l* + E.ii) + v (ij, £,) « v (b, |2),

(9.3)

i.e., Eq. (9. 1 ) is essentially the "density" of the action in the
Hamiltonian form: The action A = SH = f L dt, and Fis the
Hamiltonian. Thus £[ and£2 are actually canonically conju-
gate variables. All calculations can be easily extended to any
integer n, since by linear transformation of g the matrix a
can be reduced to the standard block-diagonal form with the
matrices — т= — /Y2 along the diagonal (т2 is a Pauli ma-
trix). The conclusion is that the first-order formalism is es-
sentially a Hamiltonian formalism: If the matrix a is re-
duced to the standard block-diagonal form, then |"2, _ , =qt,
$2i=Pi, '=!, 2,..., n, V(g)=H(p,q), and the action
A = $L(g,g)dt is the action in the Hamiltonian form

the equations of motion in a theory with the Lagrangian
(9. 1 ) are identical to the Hamiltonian equations of motion

<7,. =<?#/<?/>„ A = -дН/дд,.

9.3. Dynamical systems with Grassmann variables

A Lagrangian system is usually given in the form16'

L=-g-eA—я(в).

The equations of motion have the customary form

d dL _ dL .
Л"* ~" * я с Г ^ *Ш 50. №.

J J

(9.4)

(9.5)

but the type of derivative in them must be denned more pre-
cisely (left or right53'54). In this paper left derivatives are
employed. Taking the simplest case, when j = I, 2, we find
the equations of motion for a "Grassmann" harmonic oscil-
lator17'

6L = u)62, 62 = —0)0!,

whose solution can be written in the form

e (t) = exp (icox2t)e (0),

(9.6)

(9.7)

where 9 is the column vector (#,, t92). Writing the solution
(9.7) in the more detailed form

0J (t) = Oj (0) cos cot + 62 (O)sin cot,

62 (t) = 62 (0) cos cot — Q! (0) sin cot

shows that the motion reduces to rotation of the two-dimen-
sional "vector" (f?!, 62) with the angular velocity со.

The transfer to the Hamiltonian formalism is made in
the same manner as for the normal variables, studied above.
The Poisson brackets are defined as53

')|e<=e. (9.8)

The equations of motion have the standard form:
t9, = Ц,Я}.

Having in mind subsequent quantization, it is conven-
ient to transform in the Lagrangian (9.4) to the complex
variables77 = (0, + i62 )/v2~and r j + = (0, - /<92 )/v2 (it is
assumed that the number of generators is even):

(9.9)

The Poisson brackets in the new variables 77,, т^+ assume the
form

(9.10)

and in addition {rji,i)j+ } = — Sy. The complex generators
77, 77 + , as is easily shown, play the role of canonical variables
and are convenient for transforming to the quantum descrip-
tion

(9.11)
>"4 -*, УЧ

where [А, В ] + is the anticommutator of the operators A
and B. The equations of motion for rj and rj + are

T) = — ioyr| rp ioxrp (9.12)
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i.e., 7/(0 =exp( -iwt)rj(0)sz(t)ij(0).m We can now
introduce the concept of phase space for a Grassmann oscil-
lator. We define it as a two-dimensional plane in which
Rez(0=cos? is plotted along one axis and Imz(f )
= — sin t is plotted along the other axis. This agrees with

the definition of the phase space for the normal oscillator,
where a = (q + /»/V2, a* = (q — ip)/Vl and q = Re oV2,
p — Im aV2 play the role of 77 and rj + (if H = coa*a, then
the equations of motion are a — — icaa and a* = — ia>a*
and their solutions are a(t) = exp — (iajt)a(O) =
( q ( t ) + ip(t)/Vl and a*(t); we plot cosutf and — sincat
along the q and p axes, ifp(O) = 0 and q(0) = 1).

9.4. Quantum description of a system with Grassmann
variables

Aside from the description in the "coordinate-free"
(Dirac) formalism presented in Sec. 4.2, it is helpful to have
a specific realization of the algebra (9.11), which is neces-
sary for constructing a path integral. The following choice is
natural and convenient. Let £a and g*,a=\,2, ..., и, be
generators of the complex Grassmann algebra,
la^r + 10?, £*=0?- /0? , (0°)* = 0? ( / = 1 , 2 ) .
Then to an arbitrary state \x) there corresponds an element
of the Grassmann algebra

and to the conjugate state (x\ there corresponds the element

<X I D = 2 = X* (Й-

The operator g£ is realized as a multiplication operator
f «+*(£*> = £**(£*), and la, according to Eq. (9.11), is
realized as a differentiation operator: £aX(£*)
= (d/dg*)%(g*). The scalar product is defined as fol-

lows:53

<Ф|Х>

ф* (|) X '(!*) П (dgdS«) = ф*Хо + JpJXa + • • -,

(9.13)

= в

with

(9.14)

This definition is a concrete representation of the formulas
(4.9)-(4. 11). In the formula (9.13) we can integrate over
Hadga. Then the scalar product will assume the new form

(9.15)

where
-Si*!

° (9.16)

and Pis the parity of the permutation:

It can be verified that precisely in the sense of the metric
(9.13) (or (9.15) and (9.16)) the operations of multiplica-

tion by I" *. and differentiation д /dg * are Hermitian conju-
gates. The operation (9.16) evidently corresponds to Mar-
tin's definition of conjugation.54 For example, for n = 2 we
have

Ф (£*) = Фо?*1* + фГЙ + qft? + Ф* = <Ф 1

and

(9.17a)

( 9. 1 7b)

(9.18)

The variable g * in formulas of the type (9. 15) can be
regarded as a real Grassmann variable в, since in the formal-
ism (9.15) only g * is employed and since the complex conju-
gate transforms (9.15) into

<Ф|Х>*

= <X | Ф> = SJPK&) X* (i) П db, = J Ф* (I*) x* (I*) П dg

(9.19)

The second equality is a consequence of ( 9. 14 ) ( the fact that
the algebras {£} and {£ *} are identical to one another) , and
the last equality follows from Eq. (9.15) and (9.16). The
variables £ and | * must be distinguished in an algebra with
involution, i.e., with the generators {£, £ *}.

9.5. Quantization of constrained dynamical systems

Gauge theories are a typical, though not the most gen-
eral, example of constrained dynamical systems. The prob-
lem of quantizing them was first encountered in the descrip-
tion of the electromagnetic field. Already in the 1920s
Heisenberg and Pauli65 and Fermi66 (see Ref. 30 for a more
detailed discussion) formulated a procedure for quantizing
such systems. This problem later arose in all its magnitude in
the study of gravitation and the Yang-Mills fields.
Dirac67'29 and Bergmann68 studied the problem in its gen-
eral form, they gave a classification of constraints, and they
formulated a general procedure for quantizing the con-
straints. An extensive literature was subsequently devoted to
this question (see, in particular, Refs. 17, 18, 31-34, and 69-
78).

By quantization we mean making a transition to a quan-
tum description of a dynamical system, i.e., to a description
of its evolution with the help of probability amplitudes. In
this paper we adhere to the standard procedure formulated
by Dirac in Ref. 29 for quantizing constrained systems. The
study of specific models on the basis of general rules of Ref.
29 has raised a number of questions that were not studied
previously. We shall briefly formulate Dirac's procedure,29

discuss the questions associated with it, and indicate specific
methods (in variant and nonin variant) for implementing the
general scheme.

In the process of making a transition from the Lagran-
gian to the Hamiltonian formalism there can arise con-
straints, i.e., expression of the form <p(q, p) — 0, which es-
tablish relations between the canonical variables
( generalized coordinates and momenta ) . When transferring
to the quantum description it is necessary to distinguish
between constraints of the first and second kind. The Pois-
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son brackets (PB) of the latter constraints are different from
zero (even weakly, i.e., taking into account the constraints),
while the PB of constraints of the first kind are equal to zero
in the weak sense. Simplifying the situation somewhat, we
can regard constraints of the second kind as conditions on
some generalized coordinates and momenta Q, =0,
&, =0, and constraints of the first kind as conditions on the
generalized momenta.79 On quantization the canonical vari-
ables become operators, which satisfy the standard commu-
tation relations. From here it is clear that the constraint con-
ditions cannot Ы: transformed into operator equalities (the
condition [Sf^j] = 18jf is violated). It remains to select
state vectors on which the constraints vanish; the corre-
sponding linear space is called a physical Hilbert subspace.
But this is admissible only with respect to constraints of the
first kind, because these states that would be eigenstates for

хч ^УЧ

both canonically conjugate variables 22$ = 0, SP$ = 0 do
not exist (they are not consistent with the uncertainty rela-
tion). For this reason the only remaining possibility for con-
straints of the second kind is to relax them, i.e., to eliminate
the corresponding unphysical variables, prior to quantiza-
tion. Thus, in the process of quantization Dirac treats the
constraints of the first and second kind differently,29 though
both types of constraints refer to unphysical variables.

The formulation of the theory in the language of Hamil-
tonian path integrals69 creates the impression (erroneous,
see Refs. 17 and 54 (p. 172)) that in this manner it is possible
to do away with the problem of noncommutability of the
canonically conjugate quantities, problems of ordering such
quantities, etc., i.e., in some manner it is possible to work
entirely on the basis of the classical Hamiltonian formalism.
But then any distinction between the unphysical variables
which correspond to constraints of the first or second kind is
also lost. Their elimination by substituting into the path inte-
gral the corresponding ^-functions (in the case of con-
straints of the first kind so-called additional conditions are
also added;69 in so doing, the entire set of conditions is equiv-
alent to constraints of the second kind) leads to a quantum
theory that is identical to the theory obtained by quantizing
after the unphysical variables are excluded. The correspond-
ing quantum picture can diifer from the picture given by
Dirac's procedure.29 This fact has been pointed out by many
authors; 17'32~35 the operations of quantization and elimina-
tion of unphysical variables (constraints of the first kind)
are, generally speaking, not commutative. The reason for the
inconsistency is buried in the nature of quantum mechanics:
canonical quantization cannot be performed in curvilinear
coordinates,5 *'52 and it is precisely such coordinates that one
must usually use when transferring to the physical variables
(see Sec. 2.1.2). If, however, the unphysical variables are
related with the Cartesian coordinates (for example,y(t) in
the model (2.1)), then these operations do commute.

Which approach is the correct one? The objection to
Dirac's scheme29 is that it is unsuitable, since physical states
satisfying conditions of the type Д-Ф = 0 are not normaliza-
ble. Meanwhile, in the alternative approach this problem
does not arise. In Ref. 60 it is shown (see also Ref. 31, p. 665)
that this objection to the procedure of Ref. 29 is unfounded,
at least, for gauge theories. We note first that the collection
of constraints of the first kind as generators of translations
must be divided into two classes, related with compact and
noncompact groups of transformations. The physical states

on which the generators of compact groups vanish are nor-
malizable in quantum mechanics. There remain generators
that are noncompact on their range of operation. Both are
encountered in gauge theories. But in gauge theories the un-
physical variables with a noncompact domain (such a s y ( t )
in Sees. 2 and 3 orA0 in the Yang-Mills theory) belong to a
subspace of the Euclidean space, orthogonal to the "phys-
ical" space (i.e., containing the physical variables; in the
model (2.1) this is the subspace R1 of the variable у in the full
configuration space R3). But in this case it makes no differ-
ence whether they are included before or after quantization.
For this reason, they can be ignored (there is no need to
integrate over them when normalizing the vectors31) or eli-
minated before quantization. Since the results are the same,
either approach can be used, depending on the desire or cir-
cumstances. In both cases the problem of nonnormalizabi-
lity does not arise. The general case of dynamical systems
with constraints which are generators of arbitrary compact
and noncompact groups has not been studied and we do not
examine it.

We have shown that Dirac's method is well-grounded
for gauge theories. Are there any arguments which show
that it is preferable? Such arguments do exist. We recall that
although we must usually reconstruct the quantum picture
starting from the classical picture, the quantum theory is the
true theory. It must be explicitly relativistically invariant
and therefore, in application to gauge fields, it must be for-
mulated with the participation of all components of the vec-
tor fields Ap, including also unphysical fields. This means
that the requirement of explicit Lorentz invariance leads to
the appearance of operators corresponding to unphysical
variables. Their presence makes reduction of the full Hilbert
space (transition to the physical subspace) unavoidable.
This reduction is achieved by requiring that the constraints
(generators of the gauge transformations) vanish on the
physical vectors. The necessity of using Dirac's scheme29 in
physics appears to us to be indisputable.

We wish to say a few words about applications of gen-
eral procedures. In both schemes (Dirac and the alternative
one) specific theories can be constructed in two ways—in-
variant and nonvariant. In the invariant approach only ex-
plicitly gauge-invariant variables are employed, while the
noninvariant approach involves the use of gauge-noninvar-
iant quantities; this approach is also noninvariant in form
(outwardly). Since both approaches are embodiments of the
same theory which differ in form, physically (according to
their content) they must be indistinguishable. Unfortunate-
ly, in both schemes these possibilities have not been studied
in general form, so that we shall direct the reader to specific
models. In the alternative scheme both approaches were
studied in Sec 2.1 for the example of the model (2.1). The
additional conditions that must be imposed in order for both
approaches to be physically identical were also indicated
there. These approaches are realized on the basis of Dirac's
method in Sees. 2.1.2, 3.2, and 9.7.

In conclusion we shall give the definition of a physical
phase space in the invariant and noninvariant approaches.
In the first case, the physical phase space of a system is ob-
tained by identifying with one another all points that are
connected by a gauge transformation, i.e., the physical phase
space is the factor space of the full (enveloping) phase space
under the gauge group. We have in mind the extended gauge
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group29 G, generated by all constraints of the first kind (pri-
mary and secondary, independently). In the second ap-
proach, one first transfers from the starting phase space
T2N = Rf ® R^ to a smaller space T2M = Rf ® Rf , if N - M
is the total number of independent constraints of the first
kind. In Sees. 2 and 3 it is shown that, as a rule, a residual
discrete gauge group S operates in this reduced space and
leads to additional reduction of the reduced space. Factori-
zation of the space Г2М according to this group gives the
physical phase space.19' This can all be written down sym-
bolically in the form (PS)ph = T2N/G = T2/S.

9.6. Properties of the measure x2(h) (Sec. 5.3)

The measure// = x2 can be calculated explicitly.13'15'43

To this end, we introduce in the Lie algebra X the Cartan-
Weyl basis14'44

[h, ea] = (h, a) ea, [ea, e_a] = a, [ea, ep] (9.20)

where h, aeH, a>0 are positive roots, ea are the corre-
sponding root vectors, Nap are nonzero numbers if a + /? is
a root of the algebra; ( , ) is the Cartan-Killing form (x,
y) = Tr(ad x ady), where ad* is an operator of the adjoint
representation for the element x, operating in G according to
the rule ad л: (у = [ x , y ] , \/x, yeX. For compact Lie groups
the normalization of the structure constants can be chosen
so that (x,y) = xaya. Obviously, in the basis (9.20) any ele-
ment z€XQH can be written in the form
z = ~La > о (z + ea + z~ e _ a ) . However a basis in XQH, con-
structed from ea , e _ a , is not orthogonal, since the square of
the vector x = h + z, АеЯ, zeXQHin this basis is (Ref. 47, p.
217)

(x, x) = (h, h) + S j&£- (9.21)

To calculate det со, in Eq. (5.17) it is necessary to intro-
duce an orthogonal basis in XQH

г = S (ZaCa + ZaSa).
a>o

(9.22)

where
l i

/TJ- \ea. ~T 6_a), Sa = — =- (ea 6-a). (9.23)

Then the second term on the right side of (9.2 1 ) is replaced
by

S [(4)2 + (&?].
a>o

In the basis (9.23) it is easy to find the matrix coa0(h). By
definition (5.17) [й,Аа] =саае(Н)Л/3, where Aa form an
orthogonal basis in XQH. For {A;+1, Л1 + г, ..., AN} we
choose the set {cai, sa^ саг, sa2, ...}. Then from Eqs. (9.23)
and (9.20) there follows [h,ca ] = (h,a)sa,
[h,sa ] = (h,a)ca. Therefore, in this basis the matrix шар
consists of the blocks TI (h,a), wherer! is a Pauli matrix and
a runs over the set of all positive roots. Therefore, to within a
sign we have (in the Cartan-Weyl basis; &>ар are real)

x (h) = (det co)l/2 = Д (a, h), (9.24)
a>o

i.e., x(h) is a polynomial of A, of degree (N — /)/2. By con-
struction of (5.16) and (5.17) the quantity VG YU V ( A ) is

the volume of the orbit of the gauge group of the element A.59

Here FG is the volume of the group space and VH is the
volume of the stationary subgroup of the element A, i.e.,
VH = (2tr)' (Cartan's subgroup is isomorphic to
(®С/Ш)'.

Using Eq. (9.24), it is not difficult to check that the
"quantum potential" Vq = x~l(d2x)/2) is equal to zero:

(a. P)
Fg = ̂ - («, Л) (Р, A)

2
overall
planes

1
^>3>0,

(«. P) = 0. (9.25)

Here we divided the sum over the positive roots а ФР > 0
into a sum over the positive roots lying in one plane and a
sum over all such planes. The sum in one plane can be calcu-
lated explicitly, since the mutual arrangement of the positive
roots in it is determined by the four cases
cos2 e^ = (a,p)2(a,a) ~ '(Д0) -! = 0, 1/4, 1/2, 3/4,14-44

i.e., actually Vq for a group of rank/is determined by F^fora
group with /= 2: SU(3), Sp(4)~SO(5), and G2. It can be
checked by explicit calculation that for them Vq — 0. The
same result can be obtained by algebraic-geometric meth-
ods.43 (theorem A.5.33).

We shall discuss the question of the poles of the physical
wave functions (5.21). The eigenfunctions of the operator
(5.19) are represented in the form •ф = к ~ 1<р, where <p is the
solution of Schrodinger's equation with the Hamiltonian
— d2/2 + V(h). The functions ф can have singularities at

the points where x(h) =0. We shall show that the physical
functions (5.21) are regular at these points. We base our
argument on the following assertion (Ref. 43, p. 403): Any
polynomial p(h), АеЯ, which has the property
p(wh) = det wp (A), can be represented in the form

(Л) = x (h)q (h), (9.26)

where q is an invariant of the group W.
Since Weyl's group is the group generated by reflections

of the roots, // = x2 is an invariant of W (see Eq. (9.24) ),
i.e.,

x (wh) = +x (h) = det шх (h), det w = +1. (9.27)

Then we have Ф (5.21)

ф (h) = Nw /2 -1 (h) wh) = х^ф (h). (9.28)

Obviously, ip(wh) = det w<jp ( h ) . We expand ̂  ( A ) in a series
in powers of A, and collect together the terms of the series
into homogeneous polynomials р„ (A) with a fixed total de-
gree и, i.e.,

Since the group W operates uniformly on A,
pn (wh) = det wpn ( A ) . According to Eq. (9.26)
р„ (h) = x(h)qn (A), where qn (wh) = qn (A) and р„ = О
for n<(N—l)/2 — the degree of the polynomial x(h).
Therefore f>(h) = x(h)%(h), and

X(*)= S Ф«9п(А)
n=0

is a W-invariant function. The conclusion is that the factor
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к
ф.

1 (А) in Eq. (9.28) cannot produce poles in the functions

9.7. Invariant coordinates for groups of rank 21 s>21

In Sec. 3 it was pointed out that independent excitation
of "Cartesian" physical variables h is impossible as a result
of reduction of their phase space. On the other hand, in the
second-quantized representation (see Sec. 3.2.1) indepen-
dent degrees of freedom can be separated out. They are
found to be collective excitations of the initial degrees of
freedom. Such variables can also be introduced in the coordi-
nate representation. The wave functions which depend on
them are explicitly gauge-invariant.

We introduce in the Hamiltonian (3.3) for groups of
rank 1=2 the gauge-invariant variables

= (Тг Ф2 = ФГ Tr (9.29)

where r is the degree of the second independent Casimir op-
erator (see Table I), and the momenta canonically conju-
gate to them

я, = i = 1, 2. (9.30)

By direct calculation we verify that the elements

have two properties: Tr e}e2 = 0 and [e} ,e2 ] = 0. For this
reason they can serve as a local basis in H. It can be shown
that Tre2 = l, Tr e\ = л2Фг2(с2 + с,Ф2 - Ф2

2)=г г

ФГ2(а-(Ф2-0)2), where /9 = с, /2, а = с2+с2/4,
and the constants cl2 depend on the structure constants
and determine the decomposition of the polynomial (Tr
аХ~'))2= (С1Ф2 + с2)Ф2 ( г-и. For example, for
SU(3)c, = 0andc2 = l/6(/-=3).

In the new variables/» = тг,е, +p, where Tr etp = 0, so
that the solution of the equations of constraint [p, x] = 0 is
p = 0, since et form a basis in Я. Then in the case of the
oscillator V= (1/2)Ф2 we have the physical Hamiltonian

,)»] + -- Ф1. (9.3 1 )

and the condition for the norm to be positive Tr e\ >0 im-
plies that — 1<(Ф2 — /?)Д/а<1. The Hamiltonian equa-
tions of motion

(9.32)

(9.33)

have oscillating solutions independently for each degree of
freedom:

Ф2 = л2 = О,
Ф1 (t) = А | cos t |, K! (t) — — A sin t e(cos t),

where A = const, e is the sign function, and

<l>j (t) = v = const, rt! = 0,

(9.34)

(9.35)

ra1/2 s inri

The modulus in Eq. (9.34) is inserted in view of the fact that
Ф, is positive. From the solutions (9.34) and (9.35) it is
clear that the independent frequencies are 2 and r, as was
established in Sec. 3.2.1. Obviously, агссо8(Ф2 — /7) Л/а
can be related with the angular variable introduced in Sec.
3.2.2.

The variables (9.29) permit constructing explicitly
gauge-invariant wave functions of the oscillator. For this
purpose, it is necessary to transform in Schrodinger's equa-
tion with the Hamiltonian (5.19) to the new variables

Ф! = (TrA 2 ) 1 / 2 , Ф2 = (Tr йгФ,-г-/?)Л/а. By explicit
calculation we verify that /j. = x1 = const Ф2г( 1 — Ф2,);
after the substitution if>E = к~ 1фЕ, this equation assumes
the form (К=Ф2/2)

т. ят. i ЗФ1
Ф|

(9.36)

We seek the solution in the form <pE = F(3>t)/(Ф2). Then
Eq. (9.36) is equivalent to

(9.38)

where с is the separation constant. Since фЕ must be finite at
the boundary of Weyl's chamber (see Sec. 9.5), it is neces-
sary to impose the boundary conditions/( + 1) = 0 (fj. =0
for Ф2 = ±1). From here we find the solution of Eq.
(9.37) / =(1-ф 2 ) 1 / 2£/ т (ф 2 ) =sin [(w + 1)
arccos Ф2 ], where Um are Chebyshev polynomials of the
second kind (m = 0, 1, ...), and с = — (т -f I)2. The
substitutions /ЧФ,) = Ф;(т+ " exp( - Ф2/2)^(Ф,) and
Ф2 = t reduce Eq. (9.38) to the standard equation (2.13),

TABLE I.

Group

ri.
i = 1,2 1

Group

i= 1,'i ..., I

Ai ~ SU (I + 1)

i + 1

G2

2, 6

B, ~SO(2Z + 1)

2i

F,

2, 6, 8, 12

C;~Sp(2i)

2i

E,

2, 5, 6, 8,
9, 12

E-

2, 6, 8, 10,
12, 14, 18

Dj ~ SO (2/)

2«, г ( '¥=')

E8

2, 8, 12, 14,
18, 20, 24, 30
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and in Eq. (2.13) we must set a =r(m +1) + 1 and/9 =
— (E — a)/2. As a result we find the final expression for

the wave functions that are invariant under the group W:

4W = const <D!"tfm (Ф2) Д<"'+1) (Ф?) ехр ( j- Ф?) .

(9.39)

It is clear from the expression (9.39) that i/>nm depend
only onpri (h) and/?rj (h) (r, =2,r2= r), i.e., the expres-
sion in front of the exponential in Eq. (9.39) is a polynomial
in pr.(h). The latter fact is obvious for G2 and
Sp(4) ~SO(5), since r = 6 and 4, respectively. For SU(3)
r = 3 and for odd тФ3ш is proportional to (Tr h2)1/2. How-
ever it was pointed out above that for SU(3) /3 = 0. There-
fore in this case Ф2 = V6~ Tr h 3Ф[~3 and the singularity in
the expression 0>\mUm (Ф2) vanishes.

Based on a theorem of Chevalley44 on the analytical
continuation of ^-invariant polynomials in H we conclude
that the explicitly gauge-invariant wave functions in the full
configuration space have the form (9.39), where j? r (A) are
replaced by pr.(x), x&X.

9.8. The operator Of or an arbitrary group

In the formulation of the quantum theory a holomor-
phic representation, in which the state vectors are functions
of the complex variable at = (x, + ipj)/Vl (j enumerates
the degrees of freedom) and the operators
aj = (Xj + ф} )/V2 and a/1" are, respectively, the differenti-
ation operator д /do, and the operator of multiplication by
a}, is often employed. In this representation it is also possible
to construct the kernel of the projector onto the physical
subspacePG (a,a*) and thereby define the Hamiltonian path
integral without explicitly separating out the physical vari-
ables. This is most simply done with the help of the spectral
decomposition for Pc. For example, the states (2.22)
(a | Ф* > = Ф k( a) ((a \ Ф0) = 1) form a basis in *Гр„. There-
fore38

PG(a,a*) Г - - <»„,_! (2Q,

(9.40)

where g= l/2(a2a*2)1/2, and Iv(x)=Jv(ix) is a Bessel
function of imaginary argument. The formula (9.40) shows
that PG is an analytic function of the invariant of the theory
aV2.

The laws of the gauge transformations of x} and a} are
identical, so that 4>ph (a)eJ^ph are functions of invariant
polynomials constructed from uj. From here it follows that
the projection formula (5.56) is also valid for the holomor-
phic representation, if in it x is replaced by a. A characteris-
tic feature of the holomorphic transformation is that the ker-
nel of the identity operator is exp<c,a*) = exp(a,af )
instead of a 5-function. Then, instead of Eq. (5.58) we have

PG (a, a*) = -- dg (со) ехр <а*, Т (со) а>. (9.41 )

One can see that PG does not depend on the dynamics
and has a universal character.

In many cases the integration over the group in Eq.
(9.41 ) or (5.58) can be performed explicitly. For example,
for the model from Sec. 7.1 we have

(a*,T(co)a) = 2,(af ехр(<аГ)а,) (i= 1,2), VG = 2ir, and
2Л

§dg(co) = § dco;

thenEq. (9.41) gives

(9.42)

where £ ± =2, (a*a, ± a, Taf). The corresponding formu-
las in the coordinate representation are also of interest. To
calculate the integral (5.58) we construct the matrix x
whose columns are xt (x,, = x\;>). Then

PG (S, Г) = ~ dco64 (3 — (9.43)

here the 5-function of a matrix is interpreted as the product
of the й-functions of its elements. After the substitution of
variables x = евтр, x' = евтр', where p and p' are upper-
triangular matrices, the integral can be easily calculated, and
the result is39'20'

(9.44)

= - - 1 det S det $' \

(9.45)

The equality (9.44) makes it possible to find the kernel Q(p,
p' ) . Taking into account the difference of the normalizations
of {/0|/0')ph (see Eq. (5.64) ) and the kernel PG, we find

«? (p, p') = 63 (p - p') + 6MP + P'), (9.46)

which is in complete agreement with the analysis of Sec. 7.1.
The residual gauge group S = Z2 operates simultaneously
on all components of p. We note that the^ representation
(9.45 ) for PG makes it possible to calculate Q for any meth-
od of prescribing the physical variables, i.e., instead of
pl2 = 0 any condition on the components of p can be em-
ployed. It is sufficient to set in Eq. (9.45) x = ехр(Г#)^>
(analogously for д;'), where the components of^> satisfy the
chosen condition, to find (p\p')ph, based on which it is easy
to reconstruct Q from the formula (5.65).

In the case of an arbitrary group (the model from Sec.
3 ) the kernel PG(x,x'), where x, x'eX and X is a Lie algebra,
is determined by Casimir operators. To prove this we shall
construct the analytic continuation of the kernel of the iden-
tity operator for the model from Sec. 5.3

(9.47)

in the full configuration space X (we note that the kernel
(9.47) can be derived by explicit calculation from the for-
mula (5.64), if the theorem (A.5.35) from Ref. 43 is em-
ployed and if the fact that the stationary subgroup of an
arbitrary element xeX is a Cartan subgroup, i.e.,
VH = (2ir) ', I = rank G, is taken into account). We shall use
the formula (III.3.7) from Ref. 43

det
3Pr.(h)

dh.
= ex (h), с = const, (9.48)
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where Pr = Tr hr>, /•, is the degree of the independent Casi-
mir operators (see Table I), and x(h) is defined in Eq.
(9.24). Using the rule for substituting for the argument in a
multidimensional <5-function we shall represent (9.47) in the
following form57

;

<Л | /OPh = с (x2 (h)x» (A'))V« П 6 (PT{ (h) — Pri (h')). (9.49)
1=1

Here we have employed the in variance of the measure л:2(А)
under the Weyl group W (see Sec. 9.5) and the definition
\x(h)\ = (*2(A)1 / 2). The polynomial x2(h) can be ex-
pressed in terms of the polynomials Pr.(h), as can any W-

invariant polynomial in H.*4 In view of the equality
P,t(x)=Pri(S(z)hS-l(z))=Pri(h) (see Eq. (3.4)) the
elements h, h 'еЯ in Eq. (9.49) can be replaced by x and x',
respectively. Now, in order to find the kernel Pc (x^x1) for an
arbitrary group G, Eq. (9.49) must be multiplied by
VH VG ' = (27r)'Fc '. As one can see from Eq. (9.49), the
kernel PG is determined only by the characteristics of the
gauge group—the Casimir operators—and does not depend
on the dynamics.

The exact definition of the concept of a physical phase space is given in
Sec. 9.5.
This phenomenon has also been observed and is under intensive study
in the modern theory of strings (see, for example, Ref. 80).
By gauge group we mean the full group generated by both the primary
and secondary constraints.29

The normal (nongauge) dynamics can be given a discrete gauge sym-
metry only "by hand." It cannot be prescribed by a Lagrangian which
does not contain unphysical variables. Here Z2 is a subgroup of a gauge
group.
See Sec. 9.5 of the Appendix as well as Ref. 31.
Generally speaking, the points ua cannot belong to any of the sets R, w,
since for и = u(aa ^0) Eq. (2.25) has three solutions (for u = u0 =0
it generally becomes an identity 0=0). The set U ua has measure zero,
so that it is not significant for determining the scalar product of phys-
ical state vectors. Formally it cannot be included in the set Ra (the open
sets in R, 2 3 cannot be closed), since the corresponding functions
u,(u) cannot always be continuously continued into Uua (see below).
However, this need not be done, if it is agreed that the orientation of Ka

be chosen in accordance with the sign of ц. For example, if
K2 = (u 2 ,u,) (see curve 2 in Fig. 1), then/i(u) < 0, but

du u ( u ) | = и).

8 'The gauge x = h is called an incomplete global gauge with residual
group symmetry WC. G (see Ref. 40).

91 The equality ф, (0) = ^2 (0) actually follows from Eq. (4.3 ) after sub-
stitution of Eq. (4.6).

10) The characteristic features associated with the curvilinearity of the
physical variable in the model of Sec. 2.1 are examined in Sec. 5.2.

'"The equality (3.4) determines the substitution of variables with
x€X~R" and^hsK + , S(z)&G/G^, and GH is a Cartan subgroup.43

121 Since [ст„,Я]=0, where Я is defined in Eq. (5.3),

131 More accurately, a linear combination of the solutions of Eq. (6.5),
such that тс individual instantons are separated by quite large intervals
and as r— + oo this combination approaches 2irm and 2-irm', respec-
tively, serves as a stationary point. This is the instanton-gas approxima-
tion.27

"" In the corresponding one-dimensional model26 the opposite is true.
The difference is connected with the existence of the measure
p.(r) = r2, on which the wave functions depend (see the analysis of Eq.
(5.12)). _

15> The state b3 10> is the only physical state in the model from Sec. 4.2.
16) Generally speaking, there exist consistent theories with Grassmann

variables, whose Lagrangian is quadratic in the velocities (see, for ex-
ample, Ref. 62). In this paper this case is not studied.

17) This is also true in the case when the residual gauge transformations do
not form a subgroup of the gauge group.

181 The general case of systems with Grassmann variables was studied in
Refs. 63 and 64.

191 We note that the transformation 0, — Mlt where Я is an arbitrary real
number (Я ^0), does not change Grassmann algebras. In this case z( t)
is a function of time: It carries information about the dynamics of the
system.

20)Here and in Eq. (9.48) the й-function of a symmetric 2x2 matrix is
interpreted as the product of б-functions of the three independent com-
ponents of this matrix.
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