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The thermoelectric effects which may be observed in the superconducting state are considered.
The circulation heat transfer and the appearance of a thermoelectric superconducting current in
anisotropic superconductors and in a superconducting thermoelectric circuit are discussed
specifically. The special nature of the thermoelectric effects in high-temperature superconductors
is stressed.

Thermoelectric effects in superconductors began to at-
tract attention back in the late twenties (for a review see Ref.
1). A conclusion was then reached that "all the thermoelec-
tric effects disappear in the superconducting state" (see Ref.
1). A similar view was held widely and, for example, in a
book2 published in English in 1969 and in the Russian trans-
lation in 1972, the authors say: "It is found, both from theory
and experiment that thermoelectric effects do not occur in a
superconducting metal. For example, no current is set up
around a circuit consisting of two different superconductors
if the two junctions are held at different temperatures below
their transition temperatures." It would seem that we are
dealing with quite categorical statements. However, strictly
speaking these statements are not true: the thermoelectric
effects do not disappear in the superconducting state and, in
particular, in the superconducting circuit just mentioned
there is a current /s. However, we are not simply dealing
here with an error but with the fact that /s under normal
conditions would have been several orders of magnitude
lower than the current In expected in the same circuit for
two metals in the normal state. More specifically, if we speak
of a circuit made of a wire with a diameter d, then
/s//n <x (S/d)2, where 5 is the depth of penetration of the
magnetic field into the superconductor; for example, if
6~ 10 -5 cm and d~0.1 cm, then obviously /s//n ~ 10 ~8.
Therefore, the thermoelectric current /s could be detected in
a superconducting state only by modern methods of measur-
ing the magnetic field, whereas in the usual investigations of
the thermoelectric effects1 this current cannot be detected.
The existence of a thermoelectric current /s in a completely
superconducting circuit is naturally interesting for its own
sake. However, this is not the end of the story: some other
effects of thermoelectric origin can appear in the supercon-
ducting state. The fact that the thermoelectric effects do not
disappear in the superconducting state was pointed out back
in 1944 (Ref. 3). However, for a long period of 30 years (!)
the thermoelectric effects in superconductors have attracted
practically no attention and only in 1974 there appeared sev-
eral theoretical and experimental papers on this topic (for a
bibliography see the review in Ref. 4). One might expect that
the ice was broken, but there have been no extensive investi-
gations of the subject. Undoubtedly, it is not easy to observe
the thermoelectric effects in the superconducting state (for

reviews see Refs. 4 and 5). Moreover, there are some ambi-
guities in the experimental situation. This will be discussed
later, but at this point I shall simply say that the lack of
interest in the subject is incomprehensible. There is some
hope for a change in this situation, particularly since certain
special features of the thermoelectric effects in high-tem-
perature superconductors have been revealed.6'7 The pres-
ent paper, like the recent communication7 and a conference
paper8 (which are not very readily accessible to Soviet
readers), were written to draw attention to the thermoelec-
tric effects in superconductors or, more exactly, in the super-
conducting state. However, the purpose is not to provide in
any sense a comprehensive review covering all aspects.

1. It is appropriate to recall here the thermoelectric ef-
fect in a circuit of two metals I and II which are in the normal
state (Fig. 1). Obviously, if the metals are superconductors,
then the minimum temperature Г, in this circuit should ex-
ceed the critical temperatures of both metals Tcl and Tc n.
Naturally, it is assumed that there is no external magnetic
field because if there is such a field the metals may be in the
normal state even if T< Тсщ. We shall always assume that
there is no external magnetic field.

The local current density j is related to the intensity of
an electric field E and a temperature gradient V7"by

- b\T, (1)

where fj, is a suitably normalized chemical potential (e is the
electron charge). From now on we shall sometimes omit the
term with V/u (because it is unimportant for a closed circuit)
and we shall ignore the signs. If a conductor is anisotropic,
then in the local approximation we have

FIG. 1. Circuit consisting of two metals I and II which are in the normal
state.
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(2)

К the circuit of the type shown in Fig. 1 is open, then
j = 0 and integration of Eq. ( 1 ) along the circuit gives the
thermo-emf at the "cut" (i.e., at the contacts of the open
circuit):

r,
(3)

The coefficient S( T) =b(T)/a(T) is known as the thermo-
electric power or the Seebeck coefficient (instead of 5 many
authors use a). The transport coefficients b and a (the latter
represents the conductivity) have been the object of investi-
gations in the physics of metals and semiconductors. Within
the framework of the electron gas or Fermi liquid models the
coefficients b and a are determined by the nature of the Fer-
mi surface and by the distribution function of electrons or of
corresponding quasiparticles ( see, for example, Refs. 9-11).
Therefore, naturally, information on the function b(T) or,
in the anisotropic case, on the tensor bik ( T) is very interest-
ing. There is an extensive literature ( see Refs. 1 and 9 and the
bibliographies given there) on determination of the function
S( T) for superconductors in the normal state. This applies
also to high-temperature superconductors (see, for example,
Refs. 1 and 12-17). Naturally, we must distinguish the nor-
mal state in the absence of an external magnetic field (i.e., at
temperatures T> Tc ) and the normal state in a field higher
than the critical value.

We shall now consider a mixed circuit in which part of
the metal is superconducting. Let us assume specifically that
Tc u < Tc j and that the critical temperature Tcll of the met-
al II is less than the temperatures T2 and T1, at the end of the
circuit (Fig. 2). In this situation the metal I is in the normal
state in the interval between the temperatures T2 and Tcl . It
follows from experiments that the emf developed in this cir-
cuit is

4 =
г

С f J-
J \ о

df. (4)

' c .I

If the whole circuit becomes superconducting (i.e., if
T2 <Tci), then the thermo-emf ^ disappears, which is for-
mally clear also from Eq. (4). This is the result stated at the
beginning of this paper: there are no thermoelectric effects in
a superconducting circuit (in addition to the thermo-emf,
also the Peltier heat and the Thomson effect also disappear
in such a circuit, as follows from the experiments reported in
Ref. 1).

The proof of the absence of the thermo-emf in a super-
conductor was assumed to be provided also by the experi-

%22222L
'A

ments reported in Ref. 18, where to a high degree of preci-
sion it was concluded that the heating of one of the junctions
of a closed superconducting circuit produced no current ris-
ing with time. The question is: what follows from this experi-
ment? To some approximation, a change in the density of the
superconducting current can be described by the following
equation (sometimes called the second London-London
equation)

aAis _ p v> («ч
£j \**J

where in the adopted approximation we have Л = 4тг<52/с2

and 8 (T) is the depth of penetration of a weak magnetic field
into a superconductor.

Since the current density js does not rise in this experi-
ment, it follows from Eq. (5) that in the presence of a tem-
perature gradient in a superconductor, we have

E (6)

FIG. 2. Circuit in which only a part of the metal I (shown shaded) is in the
normal state; the rest of the circuit is in the superconducting state.

2. If we substitute Eq. (6) into Eq. (1) and assume that
j = 0, we reach the conclusion that in the superconducting
state we have 6 = 0. However, there are no grounds for
reaching this conclusion and, which is most important, the
relationship (1) is invalid in the superconducting state. It
must be recalled, as pointed out back in 1943 (Ref. 3), that
two currents flow in a superconductor: the superconducting
current of density j8 and the normal current of density jn.
This is in full analogy with the superfluid and normal flows
in He H.

The normal current is carried by "normal" electrons
(excitations) and it does not differ essentially from the cur-
rent in the normal state of a metal. Therefore, in a supercon-
ductor the relationship (1) applies to jn :

Therefore, under the conditions corresponding to Eq. (6),
we have

ja=bnVT. (8)

At T = Tc a second-order transition takes place so that there
are no grounds for expecting discontinuities of the functions
<7( Г) and 6(T), i.e., bn (Tc) = b(Г- Гс), where 6( Г) re-
fers to the normal state. If we ignore fluctuations, we can
expect these functions to have only a discontinuity of the
derivative with respect to T at T = Tc. Cooling, when the
"normal electrons" are "frozen out" in the superconducting
state, lowers the value ofaa(T) right down to &f (0) = 0 (in
the presence of the superconducting gap). The value of
6n (0) also vanishes and in the simplest case the function
bn (T) falls monotonically on reduction in T. However, in
the "exotic" pairing case, the function bn (t) varies nonmon-
otonically and can increase strongly in a certain range of
temperatures.19'20 We shall return to this point later.

It therefore follows that below Tc under steady-state
conditions when Eq. (7) should be obeyed, if VT^O, the
density of the normal current js should be finite because of
Eq. (8). However, if the circuit is open, then the total cur-
rent is zero and in the simplest case the density of the total
current also vanishes: j = js + jn = 0, i.e.,

(9)
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In the case of a homogeneous" and isotropic superconduc-
tor such a solution should indeed be correct: it satisfies the
equations of the problem. These equations are in the simplest
case as follows (for details see, for example, Ref. 4):

4яI TT 1JI • ЧЛ . . , . .curl H = — J = — (Js + Jn),

curlAjs = Acurljs + [VA, js] = - -̂
(10)

Hence, in view of the condition div H = 0, we have

VH--g-H = —^-curljn + ^-[VA,j,]. (11)

The material is assumed to be isotropic (because otherwise
Л should be replaced with a tensor Л9; see Refs. 3 and 4 and
the discussion given below). Next, for a homogeneous mate-
rial we have VA = 0 and curl jn = curl (6n (T) V T) = 0, and
it then follows from Eq. (10) that the magnetic field H de-
cays with depth in the metal in the manner usual for a super-
conductor. Well inside the metal we have H = 0 and, obvi-
ously, it follows formally from Eq. (11) that the total
current density indeed vanishes: j = js + jn = 0.

3. Therefore, if we consider a rod made of a homoge-
neous and isotropic superconductor (Fig. 3), then under
steady-state conditions, we find that

For the same rod but in the normal state, we obtain

j = 0 , (Е-3±.}=—bVT. (13)
\ /

The appearance of a "convective" current is far from self-
evident and it gives rise to an additional transport of heat by
the normal current. In the normal state when j = 0 the flow
of heat (we are ignoring the signs) is

q = (14)

where x is the thermal conductivity.
In the case of a normal metal, to a good approximation,

we have

X = Xph + Xei, (15)

where %ph is that component of x which is associated with
the lattice (phonons) and XA is the electron component of
the thermal conductivity.

In the superconducting state, we have

Y. = X ь -4- Xel + Xc (16)

where XA is defined, for example, assuming that jn = 0,
whereas xc allows for the "circular" transport of heat which
is due to the presence of the current jn. However, the main
contribution to xc is not simply related to the thermal con-
ductivity in the bulk of the metal, but to the conversion of jn

into js and back again at the ends of the rod (Fig. 3).
The existence of the circular thermal conductivity in

the superconducting state was pointed out back in Ref. 3, but

FIG. 3. Rod made of a superconductor. At T< Tc there are two opposite
currents with densities js and jn = — j, •

at that time it was not possible to calculate xc because it
required a microscopic theory of superconductivity estab-
lished only in 1957 and later. Some calculations have been
carried out earlier21 and were then repeated on the basis of
the BCS theory.22

We shall give an estimate of xc due to the conversion of
jn into js (this is the main contribution). At the ends of the
rod (at temperatures T= T2 and T= Г,) the formation
and dissociation of a pair releases or absorbs an energy
2Д(Г), where Д(Г) is the gap width per one electron. The
density of the normal current is jn = enn v = bn V T, where e
is the electron charge and nn is the density of the normal
electrons (quasiparticles). It is therefore clear that at the
end of the rod the energy released per unit time is of the order
of Д(Т)n n v =jn Д/е = bab(VT)/e, but this is in fact the
heat fluxqc =xcVT. Hence, xc <x bn Д(T)/e. It then follows
from the Wiedemann-Franz law that

(17)

here, а„ =jn/E is the conductivity due to the normal elec-
trons introduced above [see Eq. (7) ].

Combining the above expressions, we obtain

(18)

where in the derivation of the penultimate expression we
used

(19)

which is valid for free electrons whose energy is Ef (see, for
example, Sec. 6.1 in Ref. 10); naturally, on transition to the
last expression in Eq. (18) it is assumed that we are speaking
here of a region near Tc, as a result of which we find that
Д(Л~Д(7;)~*ВГС.

We obviously used above the model of Bardeen, Coo-
per, and Schrieffer (BCS) and assumed that the normal elec-
trons are free [Eq. (19)]. However, the thermoelectric ef-
fects are sensitive to the distribution function of the normal
electrons and even the estimate given by Eq. (18) is only
rough.

If we nevertheless use Eq. (18), we find that in the case
of "ordinary" superconductors with Tc ~ 1-10 К and EF ~ 3
-10 eV, we have

—— 3.10-*. (20)

Under these conditions the circulation thermal conductivity
is of no interest. The situation has changed drastically since
the discovery of high-temperature superconductors which
have higher values of Tc and lower values of EF. For exam-
ple, if Tc ~ 100 К and Ef ~0.1 eV, we now have8

-^Г-0'1- (21)

In view of the roughness of the estimate given by Eq.
(18), we may indeed find that in the case of some materials
the inequality XC/XA % 1 may be satisfied. Then, if pairing is
not of the s type, as in the BCS theory, but of the p or d type
and, in general, if it is exotic pairing, then xc /XA increases by
a factor EF/kBTc (Refs. 19 and 20) and, therefore, even if
we adopt the estimate given by Eq. (18), we may find that
xc/xel ~ 1. The situation in the case of high-temperature su-
perconductors is similar to that of heavy-fermion supercon-
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FIG. 4. Temperature dependence of the thermal conductivity of the high-
temperature superconductor YBa2Cu3O7_J,.

ductors.23 In the latter case both Tc and Ef are low, so that
хс/ил % 1. Moreover, in contrast to high-temperature su-
perconductors, the exotic pairing is very likely in heavy-fer-
mion superconductors.

4. The appearance of the circular thermal conductivity
should obviously increase the total thermal conductivity in
the superconducting state compared with the thermal con-
ductivity xph + XA . At the same time, xel falls as a result of
cooling, because the normal electrons become "frozen out."
However, the value of xph may even increase as a result of
cooling because of the weaker scattering of phonons by elec-
trons. Consequently, both xph and x exhibit a maximum at
T<TC. Such a maximum had been observed a long time ago
(see Refs. 1 and 21). In the case of high-temperature super-
conductors the appearance of a maximum is the rule rather
than the exception. By way of example, we reproduced in
Fig. 4 the dependence x( T) based on Ref. 24: it applies to a
high-temperature superconductor of the 1-2-3 type
(YBa2 Cu3 O7 _ у). Since in the case of high-temperature su-
perconductors the contribution xc may be large, as demon-
strated above, in this case it is quite realistic to ask the ques-
tion: what is the mechanism responsible for the rise of x at
Т<ТС1 Are we speaking here of the contribution of x or the
rise of xph? There is as yet no answer to this question and a
detailed theoretical and experimental analysis will be needed
to obtain it. It would be very useful to carry out measure-
ments of the thermal conductivity of single crystals. Then,
instead of к we have the tensor xik (we have in mind here
crystals with symmetry less than cubic). Specifically, in the
case of the 1-2-3 high-temperature superconductors and
other strongly anisotropic materials it will be necessary to
determine x(T) for the heat flowing along the с axis and in
the (a, b) plane (in this plane the anisotropy of л: is probably
very weak and it should be altogether absent in the case of
tetragonal symmetry). We can expect the anisotropy of л:рЬ

to be considerably less than the anisotropy of x& and xc.
Measurements of x of single crystals have already been
made;25 we should mention here also other measurements of
the thermal conductivity of high-temperature superconduc-
tors.26"29 In addition to revealing the role of anisotropy, it
may be useful to study the role of impurities and defects
(particularly, those created by neutron irradiation—see
Ref. 29), strains, and of an external magnetic field.

5. The exact compensation of the current densities js

and jn, i.e., the situation described by Eq. (9), occurs in
general only in isotropic and homogeneous superconductors
(see Sec. 2). In the case of inhomogeneous but isotropic or

FIG. 5. Bimetal plate. The resultant superconducting current la flows in a
layer of thickness of the order of 5 near the interface or "junction" be-
tween the metals I and II.

even homogeneous and anisotropic superconductors (more
exactly when the tensor Aik cannot be reduced to A.8ik and
the direction of VT does not coincide with one of the symme-
try axes of a crystal), the exact compensation is not obtained
and a certain resultant superconducting current /s appears.
Although both possibilities (inhomogeneity and anisotro-
py) were pointed out in Ref. 3, the attention was concentrat-
ed on the anisotropic case. This was not accidental. An inho-
mogeneous superconductor considered there was a
bimetallic plate consisting of two soldered superconductors
(Fig. 5). In this case an alloy may form along the interface
(junction). At that time (in 1953) the alloys were regarded
as somewhat "dirty" and it was held that studies of the su-
perconductivity should be made using the "purest" possible
materials (single crystals with the minimum concentrations
of impurities and defects). Undoubtedly, this view has some
justification, but nowadays the alloys in general and, more
specifically, an inhomogeneous superconducting circuit can
in no way be regarded as second-rate.

However, we shall consider first the anisotropy of a su-
perconductor in the geometry shown in Fig. 6. Here, x' and
z' are the symmetry axes of the crystal and у' = у is also a
symmetry axis. A temperature gradient VTis directed along
the z axis, which is tilted at an angle <p to the z' axis. The
solution of the problem is given in Ref. 4 and in the literature
cited there. The result is as follows: a certain superconduct-
ing current /s flows in a sample and its density js is signifi-
cant only near the surface in a layer of thickness of the order
of the depth of penetration 6 of the magnetic field. The cur-
rent /s flowing around the sample creates a magnetic field
Hr, which is homogeneous across the thickness of the sam-
ple, directed along the у axis, and equal to

FIG. 6. Anisotropic (single-crystal) superconductor. The resultant su-
perconducting current /s creates a magnetic field Hr > directed along the.y
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«Я <2
— -Г-°о-

dT1 \2
JQ =

2я fljj<az<62' — ax,bx,)sin2<f
dz (22)

where ax., ay, 6^, bz. represent, respectively, the principal
values of the tensors aik and bnik corresponding to the sym-
metry axes x' and z'. We also have here

4я64 т
= A0ailc, Л0 =

Т Т1
(23)

in the temperature interval close to Tc .
For example, in the case of tin we have S0 = 2.5 X 10 ~ 6

cm, Tc = 3.72 K, and if (a^b^ — ax:bz.) sin2<p
~b( Tc ) ~ 10" - 10U cgs esu, we obtain

10"— 101»
(24)

If 1-(7УГс)~10-2 and d7Ydz=Cr2 -Г,)/!, -0.1
K/cm, then the magnetic field is HT ~ 10 ~ 7-10 ~ 8 Oe. Such
a field can be measured quite easily by modern methods, but
because of a number of complications a comparison of the
theory with experiment is not simple. Unfortunately, suit-
able measurements have been carried out only once quite a
long time ago.30 Some comments about that paper and the
possibility of determination ofHT or of the field-originating
current /s were made in Ref. 4. To the best of my knowledge,
after the appearance of the review of Ref. 4, only one relevant
paper31 was published and it deals with the theory of the
thermoelectric effect in anisotropic superconductors. How-
ever, the problem deserves both experimental and theoreti-
cal study.

6. We shall now consider inhomogeneous isotropic su-
perconductors, but not a bimetallic plate (Fig. 5): instead
we shall consider a totally superconducting circuit formed
by two metals (Fig. 7). Obviously, the usual thermoelectric
circuit of two conductors made of metals I and II is a special
case of the circuit in Fig. 7. Naturally, a bimetallic plate can
also be regarded as a limiting variant of the circuit in Fig. 7 in
the absence of an open gap. However, the presence of an
open gap in a massive circuit when its thickness d (for exam-
ple, the diameter of the wire forming the circuit) is much
greater than the depth of penetration 8 of the field makes it
possible to calculate readily the magnetic flux Ф across the
gap without solving the problem completely.32'33 With this
in mind we shall assume that in the bulk of a superconductor
we practically have j = js + jn = 0 (see above) i.e., we shall
assume that

Contour С

FIG. 7. Totally superconducting circuit made of two metals I and II. The
contour С lies in the bulk of the semiconductors. The current I, flows on
the inner surface of the circuit (aperture) in a layer of thickness of the
order of <5.

2m
V<p -— AT lie

- — А I ¥ I2
тпс ' '

(25)

where the familiar expression for the superconducting cur-
rent density4 is used and the order parameter is expressed in
the form Ф = (и,/2)|/2е^, where «s is the density of the
"superconducting" electrons (the density of pairs with a
mass 2m and a charge 2e is ns/2). We shall integrate Eq.
(25) along the contour C, which is in the bulk of the super-
conductor and is represented by the dashed line in Fig. 7. We
shall bear in mind that $Ads = JHdS = Ф and
$V<p ds = 2irn, where и = 0, 1, 2, ... (obviously, H = curl A,
where A is the vector potential). We then obtain directly

Ф = пФ0 + $ (fen.ne!i - !) AT;

where m/e2ns = Л0 = 4w<52/c2,<5 is the depth of penetration
of a field, and Ф0 = irfa/e — hc/le = 2- 10 ~7 Ое-cm2 is a
quantum of the magnetic flux. The relationship (26) can be
readily obtained for и = 0 from the London-London equa-
tion without introducing Ф. We can do this also for n Ф 0, but
subject to an additional assumption such as the Bohr quanti-
zation condition (see Ref. 4). The current /s, which leads to
the appearance of a flux Ф, flows on the internal surface of
the circuit (ring, etc.) in a layer of thickness of the order of <5;
this applies also to a bimetallic plate: a field HT appears at
right-angles to the plane of the plate and the current /s flows
in the region of the junction again in a layer of thickness of
the order of 8 (Fig. 5). As pointed out already, the current /s

is very small compared with the current !„, which appears in
a similar normal circuit. Therefore, in the usual measure-
ments of the thermoelectric current the contribution Is can-
not be detected. The nature of the current /s makes it super-
conducting (it does not carry heat) and it is established in
the process of formation of a temperature gradient in the
circuit (for details see Ref. 4).

If, for the sake of simplicity, we assume that
(M2)nXM2>i and 52

I=6S,I I,[l-(r/rc)]-
then find from Eq. (26) that

we

ФГ = Ф — пФ„
; —— bn,ii£>0,iiTc (27)

In the case of high-quality samples of tin, we have
МГ0)~10П-1012 cgs esu, 50=S2.5X10-6 cm, and for
T0 - T2 ~ 10 -2 К and Tc - Г, ~0.1 K, and generally for
ш[(Гс -Г,)/(ГС -Г2)]~1, the flux is ФС~К)-2Ф0,
i.e., in principle, it can be detected quite readily by modern
methods.

The flux Фг was measured in several investigations
mentioned in the reviews,4'5 but I am not aware of any re-
ports of new experiments after 1982, which is the reason I am
referring only to the reviews.4'5 In the case of open circuits
(of the wire ring type) the experiments are in agreement
with theory [ we are speaking here of Eq. (27) ]. However, in
the case of a circuit of the toroidal type5 with a closed mag-
netic flux the observed values of Фт are considerably higher
than the values predicted by Eq. (27) and have a different
temperature dependence. On the whole, the experimental
side of this topic is still an unsolved problem. The discrepan-

105 Sov. Phys. Usp. 34 (2), February 1991 V. L. Ginzburg 105



cies between the theory presented above and the experiments
can be explained in a variety of ways mentioned already in
Refs. 4, 5, and 34—36. For example, it is suggested in Refs. 34
and 35 that heating of the circuit results in the trapping of an
increasing flux, i.e., the number of the flux quanta и in Eq.
(26) is a function of the temperature Т of a sample and may
be large. However, the total flux Ф = и(Г)Ф0 + Фг is mea-
sured. The high experimental value of Ф is attributed in Ref.
36 to surface and contact effects. It would seem that these
hypotheses could be checked by changing first of all the ge-
ometry of the circuit. In particular, the role of the trapped
flux лФо can quite readily be identified at least qualitatively
by considering a bimetallic plate (Fig. 5) for which there is
no aperture at all and, therefore, we always have n = 0. One
should stress also the importance of theoretical and experi-
mental investigations of contacts, of the regions close to
them, and of the ends of an open circuit, particularly the
ends of a rod shown schematically in Fig. 3. At these ends the
current js is converted into jn and vice versa. How does it
occur in detail?

7. We must stress that the thermoelectric effects in the
superconducting state are not limited to those discussed
above: there are also other effects or their variants (see Refs.
3, 5, and 37-39 and the literature cited there). Since I have
not analyzed these effects and in view of the nature of the
present paper, mentioned at the beginning, I shall stop
here,2' but with one exception. The enormous interest in
high-temperature superconductors suggests that the specific
properties of these materials should be considered from the
point of view of observation of the thermoelectric effects.
Possibly the most important feature of high- temperature su-
perconductors from this point of view was mentioned above:
it is the circular thermal conductivity (Sees. 3 and 4) . Since
the majority of the known high-temperature superconduc-
tors are strongly anisotropic, they are suitable thus for the
observation of thermoelectric generation of a magnetic field
in a crystal (Sec. 5). One can investigate also circuits com-
posed entirely of high-temperature superconductors or con-
taining them. If in the case of high-temperature supercon-
ductors we use the published values of S( Tc ) and cr( Tc ) and
regard them as typical also in the superconducting state near
Tc, then S~10-5 V/K, ст=1/р~103 fl-l-cm~l, and
hence b = aS~\0~2 V-ft- '-cm^-K" 1 . On the other
hand, the case of — for example — tin,4 we have а~ 109

Since the magnetic field flux in the thermoelectric circuit
and the field in an anisotropic superconductor are propor-
tional to bn S

2 [ see Eqs. ( 26 ) and ( 22 ) ] , the smallness of the
coefficient bn in ceramic high-temperature superconductors
(compared with ordinary superconductors) will reduce the
effects under consideration, even in spite of the somewhat
higher values of S. However, we do not know what are the
true values of bn for high-temperature superconductor crys-
tals at temperatures T<TS. They may not be that small for
the s-pairing case and in the exotic pairing situation they
may be considerable.19'20 This makes such measurements
even more desirable.

Finally, a specific feature of high-temperature super-
conductors is the short coherence length £0 . Consequently,
fluctuations near Tc are strong in high-temperature super-
conductors (these fluctuations are proportional to £0~6 —

see Ref. 41). Therefore, the fluctuation corrections for the
thermoelectric effect near 7^ are also large. Moreover, such
fluctuations have indeed been observed at temperatures
T> Tc (Ref. 17); a theoretical paper on this topic has ap-
peared.42 Fluctuations should occur also below Гс, but in
this case they naturally cannot be observed in the usual way
by measuring S. An investigation of fluctuations of the ther-
moelectric effects in high-temperature superconductors
both at T> Tc and T< Tc deserves serious attention. This
applies, as I tried to demonstrate, to the whole problem of
the thermoelectric effects in the superconducting state.

I wish to thank G. F. Zharkov for the comments made
in reading the manuscript.

"It should be stressed that the homogeneity, i.e., independence of the
properties of the coordinates, is understood to be the homogeneity when
vr=o.

21 It is interesting to note that in the case of a closed multiply connected
container ("circuit") filled with He n (or, in principle, with some other
superfluid liquid), we should observe, and this has been confirmed, a
characteristic thermomechanical circulation effect,40 which is some-
what analogous to the thermoelectric current in a closed superconduct-
ing circuit (Fig. 7).
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