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Studies of the development of acoustoelectronic instability in AIIIBV and AIIBVI bulk
piezosemiconductors are reviewed. The results of the classical theory of linear and nonlinear
acoustoelectronic interactions are briefly summarized and the energy approach to this problem is
discussed. An analysis is then given of the properties of instabilities and of instability
development, including coherence effects. Experimental methods are briefly surveyed with
particular reference to the fundamentals of the most effective method, namely, Mandel’shtam—
Brillouin scattering. The results of the most significant experiments are presented, and an attempt
is made to interpret them in terms of a unified model. It is emphasized that the high gain regime, in
which a propagating acoustoelectronic domain is produced, requires further investigation.

INTRODUCTION

In 1961, Hutson, McFee, and White' discovered that
acoustic signals were amplified by piezosemiconductors
when an electric field was applied to them. The amplification
was so large that it gave rise to acoustic instability, with the
thermal acoustic noise rising to a very high level. The phe-
nomenon immediately attracted considerable attention. For
about 15 years there was a veritable flood of papers on this
subject, followed by something of a decline, despite the fact
that many of the fundamentals of the effect were not under-
stood. The total number of publications in this field now
stands at over a thousand. Since many of the results have
already been examined in existing reviews,””’ we shall con-
centrate our attention on the more recent publications. We
note that our bibliography does not claim to be exhaustive,
and we offer our apologies in advance to authors whose work
has not been included in this review.

The acoustoelectronic interaction is of considerable in-
terest from many points of view. In particular, the process
involves different linear, nonlinear, and parametric interac-
tions, self-organization occurs of a quasidense quasimon-
ochromatic flux out of thermal noise, and so on. Moreover,
the parameters of the acoustoelectronic interaction can be
varied quite readily between wide limits by varying the exter-
nal conditions, so that the phenomenon can be used for mod-
eling purposes in many cases.

Possible technological applications of the effect are also
of interest. In particular, it can be used as a basis for an
electric-signal amplifier for the decimeter wavelength range,
offering unique properties, e.g., high gain (tens of dB), rela-
tive passband of the order of 1/3, the possibility of electronic
tuning, and the absence of external circuitry. After the first
few years of investigation, it was found that there was no
fundamental bar to the development of such an amplifier,”
but it also became clear that the amplifier would not work in
practice, principally because of the anomalously high ampli-
fication of noise. The situation was not clarified despite nu-
merous experimental and theoretical publications. Indeed, a
peculiar conceptual cul de sac was encountered, and there
was a general loss of interest in the subject.

Nevertheless, since the problem remained unsolved ei-
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ther from the fundamental or technological points of view,
some research work has continued and new ideas were re-
cently expressed on the details of the processes that accom-
pany the acoustoelectronic interaction. These ideas are in-
corporated in our review which is confined to
acoustoelectronic interactions in AIIBVI and AIIIBV pie-
zosemiconductors in bulk.

1. THEORY OF THE ACOUSTOELECTRONIC INTERACTIONS
1.1. Simplified physical picture of the process

It is well known that the deformation of a piezoelectric
material can produce an electric field in the direction of de-
formation.® Correspondingly, elastic waves propagating in a
piezoelectric medium give rise to a longitudinal electric field
whose spatial period is equal to that of the elastic waves.

If the crystal is a semiconductor, the distribution of its
free electrons is modulated in space by the piezoelectric field
of the elastic wave with the same spatial period. Free elec-
trons tend to screen the field produced by the wave, but the
finite Debye screening length and the finite Maxwell relaxa-
tion time constant ensure that this screening is not complete.
The residual piezoelectric field induces an electron-density
wave that propagates with the velocity of sound; i.e., the
field produces an acoustoelectric current. In a crystal of fi-
nite resistivity, this current is maintained by the energy
drawn from the acoustic wave. This gives rise to an elec-
tronic attenuation coefficient &, which is added to the usual
lattice attenuation coefficient a; . The application of an ex-
ternal electric field that produces an electron drift at the
velocity of sound should then reduce the electronic attenu-
ation to zero and, when the electron velocity is high enough,
it should give rise to amplification. In principle, the amplifi-
cation process is analogous to the amplification of electro-
magnetic waves ina TWT.

1.2. Linear theory of the acoustoelectronic interaction

This theory was developed as far back as 1962 by Hut-
son and White’™'! and, independently, by Gurevich.'*'* It
has frequently been presented in a variety of publications.
We shall therefore confine ourselves to a very brief account
of it.
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We shall assume that the piezosemiconductor occupies
the entire half-space to the right of the z = 0 plane and that
the z axis lies along one of the symmetry axes of the crystal. A
plane monochromatic acoustic wave is excited on the surface
of the medium and is characterized by deformation §

= Syexp[i(gz — Q) ] where g is the wave vector and () the

frequency. We thus have a one-dimensional problem in
which an infinite plane wave that depends only on the coor-
dinate z propagates in the sample. This is one of the basic
assumptions that restrict the range of amplification of this
particular special solution.

A simple model of an n-type extrinsic semiconductor is
used. It is assumed that the electron distribution is nonde-
generate and is described by the Maxwell-Boltzmann statis-
tics. The wavelengths are such that the hydrodynamic ap-
proximation is valid (¢/<1) and the electrons have an
isotropic reduced mass m*. It is also assumed that an exter-
nal source produces a constant electric field £, in the sample.
Finally, the situation is described by the equation of state of
the piezoelectric medium, the wave equation, the Poisson
equation, the continuity equation, and the current equation.

This set of equations is solved by the method of slowly-
varying amplitudes. It is clear that, because of nonlinearity,
the propagation of a wave in the sample may be accompanied
by the generation of harmonics, and the elastic and electron-
density waves may not be sinusoidal. The determination of
their waveform constitutes the so-called fast problem.'>'¢
On the other hand, the variation of the wave amplitude with
distance for a constant waveform is the concern of the so-
called slow problem. It is clear that if the incident wave is
sinusoidal and its amplitude is small (the relevant criterion
will be reproduced later), the elastic and electron-density
waves can be expanded into a Fourier series, and terms of
order higher than the first discarded; i.e., we can assume that
the waves are purely sinusoidal. Accordingly, we seek the
complex wave amplitudes in the form

S = S,(2)expli(qgz — Q) ],
n = n (z)expli(gz — Q)1+ ny, (1)
E = E,(z)expli(gz — Q) 1.

This transforms the differential equations into a set of alge-
braic equations for the amplitudes. By combining these
equations, we obtain what is essentially a dispersion relation.

The problem can be solved in two ways. In the first
method, used in the majority of publications (see the reviews
in Refs. 3 and 4), we eliminate the electric wave and find the
dispersion relation for the mechanical part of the coupled
wave, which is then used to determine the modified modulus
of elasticity ¢'. In the second method, due to Pustovoit,® the
mechanical part of the wave is eliminated and a solution is
sought for the electric part, i.e., for the modified permittivity
£’. In principle, the two methods are equivalent.

The solution of the problem leads to the following ex-
pressions for the velocity of sound and the attenuation of
sound, respectively:

B2 + [(1 + x?H/4]
BL+ [(x+ x~HY/41[

&= gMﬂg + [(x+ x~HZ/47

— 2
vg = Yy 1 +x

(2)
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FIG. 1. Relative gain as a function of relative detuning.

where v, and v are the velocities of sound in the piezoelectric
medium and the piezosemiconductor, respectively,
y = 1 — (uE,/v) is the supercriticality, 7, = 2(Q,/Qp)'/?
is the optimum supercriticality, S = ¥/, is the normalized
supercriticality, Q, = (0, Qp)'/? is the frequency at maxi-
mum gain, O, = o/¢, Qp = v*/D., x = Q/Q, is the relative
detuning, o = ngeu is the conductivity, g,, = %>Q,/8v is the
absolute maximum gain, x is the electromechanical coupling
coefficient, D, = kg T /e is the diffusion coefficient, a, = 2g
is the power and amplitude gain, i is the mobility, e is the
electron charge, kg is the Boltzmann constant, and 7 is the
temperature.

The amplitude of the piezoelectric field of the wave in
the semiconductor E, = E, f] is related to the amplitude of
the elastic wave by E,, = dS,/¢, where the screening factor
is given by

Bg + (ix/2)

= : 3
£ B + li(x + x71)/21 &

Accordingly, the amplitude of the self-consistent electron-
density wave is n, = uE\nyf5/v where
fo={rolBe + (ix/2)]}~"

We must now analyze the above expressions. First, it is
obvious that the influence of the electrons exhibits a reso-
nance; i.e., a maximum occurs at frequency Q, (Fig. 1) for
which the wave vector is equal to the reciprocal of the Debye
length. At higher frequencies, the spatial modulation depth
of the electron distribution is reduced, and this leads to a
reduction in the strength of the interaction. On the contrary,
at lower frequencies, the electron distribution can follow
even the screened field, so that the electrons are not dragged
by the piezoelectric field of the wave; i.e., the acoustic cur-
rent tends to zero. The contribution of electrons to wave
attenuation (amplification) also tends to zero.

Next, the sign of the interaction depends on the sign of
the supercriticality B, i.e., on the ratio of the electron drift
velocity to the velocity of sound (Fig. 2), which depends on
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FIG. 2. Relative gain as a function of normalized supercriticality.
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TAB_LE L. Frequency at maximum gain F,, optimal supercriticality y,, and maximum gaingy as
functions of concentration for the T2 wave in standard CdS samples with mobility 250 cm?

V-Iis™h

[ Ao cm Q.,s! Qp,s! F,, GHz o gm, dB/cm
10" 5-10° 4,9-10° 0,79 2 1,1-10°
108 5-10° 4,9-10° 2,5 6,6 3,5-10°
10% 5101 4,9-10° 1.9 20 11-10°

the phase of the electron wave relative to the piezopotential
wave.

The gain depends on the supercriticality. At first, the
amplification of the field leads to a rise in the gain, and then
the gain reaches its maximum for optimum supercriticality
B = L. Further increase in the field is accompanied by a
reduction in gain. A similar dependence is produced when
the phase of the electron-density wave shifts relative to that
of the electric-field wave. As an example, Table I lists the
optimum supercriticalities and the numerical values of the
gain in CdS for typical electron concentrations. We note that
the gain is very high and does not vary to any great extent on
the left-hand (downward) branch of the curve as the con-
centration is increased and the gain curve shifts upward and
to the right.

We emphasize that the frequency dependence of the
transmission factor of this acoustic amplifier depends on the
frequency dependence of the gain, but differs from the latter
because it appears in the argument of the exponential as a
cofactor of the path length. The passband is infinite near the
entrance plane of the sample, but decreases in the course of
propagation (Fig. 3). For limiting values, determined by the
linear dynamic range (10°-10%); this is a relatively weak
dependence and the relative passband in this range is
AN/Q,~1/3.

It is important to note that the total gain is determined
by the difference between electron (a.) and lattice (a, )
attenuation coefficients. Accordingly, the frequency de-
pendence of the total gain is also found to depend on this
difference. Obviously, lattice attenuation can be neglected
when a, > a, , and all the foregoing discussion is then valid.
However, when the electron gain is comparable with the lat-
tice attenuation, the frequency dependence of both terms has
to be taken into account. We know that the frequency de-
pendence of the lattice attenuation is @ ~ 2” where p ranges
from 2 (high temperatures, Akheizer attenuation mecha-
nism) to 1 (low temperatures, Landau—Rumer attenuation
mechanism).'® It is shown in Ref. 19, that when a, and a;
are comparable, the frequency at maximum gain shifts
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FIG. 3. Relative bandwidth (1) and width of angular spectrum (2) as
functions of growth rate.'”
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downwards and is given by Q_,.,. = Q,(2—p)/(2+ p),
which must be taken into account in the interpretation of
experimental data.

There is an analogous filtration of the angular spectrum
(Fig. 3), due to the angular dependence of the gain. For the
same limiting values of the gain, the width of the angular
spectrum is of the order of 5-10°. It will be clear later that
knowledge of this quantity is essential in the analysis of the
amplification of noise.

As mentioned above, free electrons are also found to
affect the velocity of the acoustic wave [see (2)]. It is clear
that this is significant only near the frequency corresponding
to maximum gain and zero supercriticality for which the
gain reaches a few percent. Physically, this is due to the
screening of the piezoelectric field by free electrons, which
leads to a reduction in the effective stiffness. For commonly
used supercriticalities, we have ¥ > 1 and it may be consid-
ered that acoustic waves do not in most cases exhibit disper-
sion under such conditions.

1.3.Nonlinear theory

It is obvious that the amplification of a propagating
acoustic wave in a crystal is eventually limited by nonlinear
mechanisms that prevent an infinite rise in the signal ampli-
tude. Estimates show that the inelastic nonlinearity is usual-
ly negligible in this process. The most important effect is
associated with the electron nonlinearity which becomes sig-
nificant at much lower acoustic flux densities. Physically,
this nonlinearity is due to the remodulation of the electron
current.”® When the modulation amplitude 7, is comparable
with n,, any further increase in the wave amplitude leads toa
distortion of electron-density modulation waveform (Fig.
4). When the wave amplitude is large enough, all the free
electrons are confined to a single half-wave, so that there are
practically no electrons in the other half-wave.

@

AR
7 |
g

L =
-2 0 mle wm 3mi2 oz
FIG. 4. Distribution of electrons within one wave for e®/k, T=0.1(1),
2.0(2),5.0(3),7.0(4), 10(5) and the distribution of potential within one
wave (6).%
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It is clear from Fig. 4 that 100% modulation of the
electron flux occurs for e® ~2k 3 T (for B <1). However,
since the nonlinearity becomes significant much earlier, it is
common to use e®,/k ; Tas the nonlinearity parameter. The
nonlinearity is weak for e®,/k T <0.1, intermediate be-
tween 0.1 and 2-4, and strong above 4. In the last case, the
thermal energy of electrons is insufficient to overcome the
potential barrier ®, produced by the piezoelectric field; i.e.,
the electrons are all trapped in the potential wells and travel
with the velocity of sound.

A closed solution of the problem can be constructed
only for weak nonlinearity and deep saturation. A number of
different methods is available for this. In the case of a weak
nonlinearity, the electron density is expanded into a series
and the second term is retained as a small correction®'? that
leads to a reduction in gain. For a strong nonlinearity, the
exponential rise in the size of the signal slows down and the
increase becomes sublinear. This is formally described as a
reduction in gain. When lattice attenuation is taken into ac-
count, the signal reaches the saturation level given by the
expression®

1, .. =envEy/a, (4)

a,sat

The intermediate nonlinearity is the most difficult to
analyze. It requires the inclusion of a large number of terms
in the expansion,”®?*** which in turn involves a numerical
calculation. However, there is also another approach pro-
posed by Gulyaev'*'® who constructed the solution in the
form of functionals for arbitrary nonlinearity. For large and
small nonlinearities, the functionals can be simplified and
the solution assumes the usual form. Interpolation formulas
are used for the intermediate nonlinearity. However, these
formulas are relatively complicated and are difficult to use in
the analysis of the processes taking place.

Tien’s solution® is the clearest and relies on a computer
to plot out a large number of graphs characterizing this pro-
cess. The solution employs a Fourier expansion and the ex-
amination of the self-consistent problem with the retention
of a sufficient number of harmonics. The first step is to con-
sider the fast problem and to determine the form of the elec-
tron distribution for a monochromatic elastic wave of arbi-
trary amplitude in an arbitrary drift field (see Fig. 4). It is
clear that an increase in the amplitude of the modulating
wave is accompanied by a conversion of the sinusoidal wave-
form into short Gaussian pulses that become narrower and
shift toward the piezopotential minimum as the amplitude
increases.

Next, the current flowing through the sample is calcu-
lated for a constant amplitude of the acoustic wave (Fig. 5).
As expected, at low intensities, the ohmic current,
Jo = penyE,, flows through the sample, but the current is
significantly reduced when the intermediate nonlinearity is
reached. The current reaches the saturation level J, = engv
in the case of the strong nonlinearity. This corresponds to
the complete trapping of electrons by the piezopotential
wells and to their motion with the velocity of sound indepen-
dently of the strength of the drift field.

Calculations of the gain (Fig. 6) for this situation show
that the fall in the current from its ohmic value is accompa-
nied by a fall in gain, and the linear dynamic range expands
with increasing drag field.

It is clear from the foregoing that the onset of apprecia-
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FIG. 5. Relative current saturation factor r/p= [1 — (j,//)]/x¥, as a
function of the relative amplitude e®,/k, T for S =0.1(1), 0.5(2),
0.9(3), 1.1(4), 1.5(5) for x =1 (Ref. 20).

ble nonlinearity ensures that the electron-density wave be-
comes nonsinusoidal; i.e., the modified waveform contains a
large number of harmonics and the inverse piezoelectric ef-
fect gives rise to the excitation of the corresponding harmon-
ics in the elastic wave. Since the contribution of dispersion is
negligible, this forced excitation is in phase with the free
wave. This should give rise to the efficient generation of har-
monics.'®**?* However, in practice, the more commonly
observed effect is the generation of subharmonics rather
than harmonics. This will be discussed below.

1.4. Energy approach

It is clear from the foregoing presentation that the exact
solution of the acoustoelectronic interaction problem for an
arbitrary wave amplitude is possible only by numerical
methods. On the other hand, an exact solution would not be
particularly useful in practice because of the parasitic effect
of the many factors that are ignored in the above idealized
model, so that the final precision of such calculations is not
high. It would therefore be desirable to have a method of
solution that could, on the one hand, ensure satisfactory pre-
cision (5-10%) and, on the other, allow simple analysis for
any degree of nonlinearity.

These conditions seem to be satisfied by the energy ap-
proach to the interaction between acoustic and electron
waves. The elements of this approach were first introduced
by Weinrich?® who calculated the acoustoelectric current in
the linear regime. He showed that, in the linear case, the

9/Gn
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FIG. 6. Relative gain as a function of relative amplitude e®,/k,, T for the
same values of B as in Fig. 5 (Ref. 20).
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acoustoelectric current is given by the following expression:
Jae = — 2ayul,/v. The basic validity of the energy ap-
proach, at least in principle, was then demonstrated by Po-
merantz®’ who did not, however, report a complete solution.

The complete implementation of the method was re-
ported for the first time in Refs. 28 and 29. It is clear from the
above discussion that an acoustic wave has a mixed electro-
mechanical character in a piezoelectric medium, and that
the ratio of the current densities associated with the waves,
I\ /1,,is determined by the electromechanical coupling fac-
tor x: I, = x*I - Theenergy of interaction between the elec-
tron wave and the electric field of the acoustic wave is ex-
pended in increasing the total energy. It is easy to show that
the change in the energy produces a change in the amplitude
by the amount

dE ;= szne“sin ¢ - dz/e, (5)

where Ane = QAn, An =N, — N,.... @ is a coefficient
representing the particular form of the distribution, and
N... and N, are, respectively, the number of electrons in
the two half-waves (see Fig. 4). Direct calculation shows
that Q varies from 7/4 in the linear case to 1 in the case of a
strong nonlinearity; i.e., the variation is relatively slight. We
can therefore always assume that, to a good approximation,
0o=1

The expression given by (5) is the basic equation for the
change in the amplitude of the electric field, and, corre-
spondingly, the amplitude of the deformation accompany-
ing the interaction with the self-consistent electron-density
wave. In the above terminology, this is the solution of the
slow problem. However, since the energy approach is known
to be insensitive to the fine details of the processes taking
place, we need not have an exact solution of the fast problem:
Q=1 for any waveform. This is confirmed by calculations
made for linear and strongly nonlinear cases, when the re-
sults obtained by this method are found to agree with those
already known.

Itis clear from (5) that the variation in the wave ampli-
tude is determined by the dependence of the effective num-
ber of electrons An,, and their phase shift ¢ on the piezoe-
lectric field amplitude. The wave amplitude varies
exponentially in space if, and only if, the effective number of
electrons is proportional to the piezoelectric field amplitude,

but the phase does not depend on this amplitude. If, on the -

other hand, the effective number of electrons is constant and
independent of the piezoelectric field amplitude, and the
phase is constant, the wave amplitude varies linearly in
space. However, since for a constant number of electrons,
screening becomes weaker with increasing amplitude, which
leads to a reduction in the phase shift, the real increase in
amplitude is slower (for B¢ <1).

The energy approach to the solution of the problem of
interaction between acoustic and electron waves is thus seen
to lead in limiting cases to results that agree with those ob-
tained by traditional methods. This confirms their validity.
However, the energy method has significant advantages as
compared with the traditional approach. First, it empha-
sizes the locality of the interaction: the increase in the ampli-
tude of a particular wave period depends only on the behav-
ior of the electron distribution at the given wavelength. This
interaction is local both in the longitudinal coordinates,
which follows from the procedure used to construct the solu-
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tion, and in transverse coordinates, which follows from the
principle underlying the calculation. The necessary condi-
tion for the validity of this method is that the variation with
respect to the Riemann variable t — (z/v) is slow; i.e., the
method is valid even for very short pulses (one or two per-
iods). Coherence in the transverse coordinate is necessary
on the scale of a few wavelengths in order to ensure that the
wave process can occur.’® This extension of the validity of
the model will be necessary later when we come to analyze
the evolution of an acoustoelectric domain. Second, the
method has the advantage that it provides us with a unified
approach to states with any degree of nonlinearity, including
intermediate nonlinearity. This is also important in the anal-
ysis of the evolution of a domain.

2.EVOLUTION OF ACOUSTIC INSTABILITY

We have already considered the amplification of a plane
monochromatic wave generated on the boundary of a sam-
ple. When the acoustic instability is examined, it is impor-
tant to allow for the fact that, first, the source of nucleating
noise may be distributed uniformly throughout the sample
(thermal noise) and, second, the nucleating noise has a wide
temporal and spatial spectrum; i.e., the longitudinal and
transverse multimode nature of the signal must be allowed
for. In the linear regime, the individual modes do not inter-
act, so that the generalization of the single-mode theory to
this regime presents no particular difficulty. On the other
hand, the nonlinear regime requires separate analysis.

2.1. Longitudinal distribution of currentin the linear regime

We showed in the last section (see Fig. 3) that, in the
case of high gain, for which the process is usually analyzed,
the amplification bandwidths (temporal and spatial) un-
dergo very little variation. We may therefore consider them
tobe constant for any growth rate, and refer them back to the
cathode.

Let us now consider the transient regime (Fig. 7) in this
approximation. The field is applied at # = 0 at which time the
noise within the amplification bandwidth has a random pro-
file in the form of a quasimonochromatic oscillation with
mean wavelength equal to the reciprocal of the Debye length
(which corresponds to the gain maximum). When the field

lar
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FIG. 7. Acoustic noise flux as a function of position along the specimen in
the linear (f = 0-5") and nonlinear (¢ = 1- ) regions in the ideal case.
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is applied, this profile begins to move to the right and its
amplitude increases (convective instability?). The result is
that the flux envelope in the sample takes the form of an
exponential followed by a plateau. The plateau eventually
shrinks and (at time ¢t = L /v) disappears altogether; i.e., the
distribution becomes a pure exponential.

It is shown in Refs. 17, 22, and 28 that the noise distri-
bution is then described by the equation

d1,/dz = 2g — a))I + ayl . + 28yl 4, (6)

where I, 1 is the initial thermal-noise intensity within the
amplification bandwidths and g, = g| The solution of
the equation then takes the form

I, =1, {2lexp(2g —a;)z— 11 (g, + 8)/(2g + o)1 + 1}. (7)

y=1-

Henceit is clear that for 2¢> a; , and as the acoustic instabil-
ity develops, the solution has a different structure in the fol-
lowing two limiting cases. When z < 1/2g (in the initial re-
gion) the first term can be neglected and the noise is
practically the same as in the absence of amplification. In the
other part of the sample, where z > 1/2g, we can neglect the
second term. Hence, the flux structure in this region is such
that intrinsic noise can be ignored. The flux in this region is
wholly determined by amplified noise from the nucleating
region. We therefore conclude the entire sample is naturally
divided into the nucleating-signal generator and the ideal
noiseless amplifier in which the “frozen” fluctuation from
the nucleating-signal generator propagates with growing
amplitude.

The output of the effective nucleating-signal generator
is produced as a result of interference between a large num-
ber (up to 10°) of modes and takes the form of a quasimon-
ochromatic wave with mean frequency equal to the frequen-
cy at maximum gain and coherence length determined by the
passband, i.e., of the order of three wavelengths. Phase fluc-
tuations are equivalent to a frequency variation within the
limits of the passband, whereas amplitude fluctuations are
described by the Maxwell-Boltzmann distribution with
modulation depth not exceeding 50% with a probability of
70%.

2.2. Transverse structure of the flux

We know?® that the transverse structure of the noise
flux in a passive medium is described by the van Cittert—
Zernike theorem. The theorem is generalized in Ref. 31 to an
active medium in which gain is a function of the transverse
coordinate. However, its generalization to the case where
the gain is a function of direction, as it is in the case of the
acoustoelectronic interaction, has encountered certain diffi-
culties.

It is more convenient in this case to use the spectral
approach in which Kotel'nikov—-Shannon trial func-
tions®?*%3* are used as the basis functions instead of the usu-
al plane waves. This method has been used to show that the
influence of the amplification process on transverse coher-
ence is significant in this case if g/g> 9 5/(1 — &,)* where
9, is the angle for which the first nonzero term of the expan-
sion of g into a power series in 4 is found to vanish. It is
readily seen that, in the case of the acoustoelectronic interac-
tion, the weak dependence of gain on angle means that the
above inequality is not met, so that amplification does not
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have a fundamental effect. For practical purposes, the coher-
ence length is determined by the van Cittert—-Zernike
theorem. Even near the anode, the coherence length does not
exceed a few dozen wavelengths, so that the flux should split
into a set of coherent tubes. This shows that the plane-wave
model used in theoretical analyses does not correspond to
reality and one can hardly expect good agreement with ex-
periment.

2.3. Effect of noise near the cathode

Experiments show that noise near the cathode (and not
the thermal noise) is often the nucleus for developing noise
flux. Noise near the cathode is due to two factors. First, it is
associated with the flow of electric current through a con-
tact, which is analogous in origin to electric contact noise.
Second, it is due to the shock excitation of the cathode sur-
face layer, which produces wave packets. It is precisely this
that is largely responsible for the nucleation of a domain, and
we shall therefore discuss it in greater detail.

Since the work functions of a semiconductor and a met-
al are necessarily not very different even in the case of an
‘ohmic’ contact, and since the surface layer is damaged dur-
ing crystal processing, there is a transition layer between the
bulk crystal and the metal. This layer constitutes an acoustic
resonator that is excited by the leading edge of the incident
drift-field pulse, and continues to emit acoustic radiation at
its natural frequency for a certain period of time. If the sur-
face is not damaged, the layer thickness is of the order of the
Debye length, and its natural frequency is close to the fre-
quency at maximum gain. Since fluctuations in electron con-
centration are significant in a layer of this thickness, the
natural frequency of the layer may fluctuate from pulse to
pulse. On the other hand, the natural frequency is lower
when the surface is damaged, and this is indeed observed
experimentally.®*

Since the leading edge of the field pulse is usually long in
comparison with the period of the oscillations, the shape of
the emitted packet is different from the shock shape, and is
determined by the convolution of the spectral density of the
pulse and the transmissivity of the layer. The packet is ex-
pected to have a smooth bell-shaped envelope whose length
is somewhat greater than the length of the leading edge of the
pulse, and whose amplitude is just above the thermal level.**
Attempts to estimate this amplitude by expanding the pulse
sequence into a discrete Fourier series®®> cannot be regarded
as valid because the pulse repetition period is long in com-
parison with the length of the packet.

The properties of this nucleating noise are different
from those of equilibrium thermal noise. First, it is emitted
by a localized source. Second, its temporal and, consequent-
ly, longitudinal coherence is significantly greater, i.e., of the
order of the leading edge of the field pulse. Third, its trans-
verse coherence is much greater because it is determined by
the inhomogeneity of the layer on the contact surface. There
are as yet no experimental data on this field, but physical
considerations suggest that modern technologies available
for the deposition of contacts can produce areas of constant
thickness over linear dimensions of the order of 10-1000 zzm.
Another significant point is that, from the cathode onward,
the amplitude flux splits into a set of parallel coherence tubes
whose radius remains practically constant along the entire
length of the sample.
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The properties of this nucleating noise must be taken
into account in the interpretation of experimental data to-
gether with the equilibrium thermal noise, since the two in-
tensities are comparable.

2.4.Effect of nonlinearity on the evolution of flux coherence

The effect of nonlinearity on transverse structure has
not been examined at all (it is meaningless on the one-dimen-
sional model), whereas its effect on longitudinal structure is
discussed in Ref. 36 in which it is shown that, in general, the
coherence length can rise or fall depending on the signs of
the coefficients in the solution. Since these signs have not
been determined theoretically or experimentally, it is hardly
possible to perform a comparison with experiment. More-
over, the solution is valid only for weak nonlinearity, and
this restricts its range of validity.

3.EXPERIMENTAL METHODS FOR THE INVESTIGATION OF
ACOUSTOELECTRONIC INSTABILITY

3.1. Electrical and acoustic methods

Historically, the first method was based on a study of
the current-voltage characteristic.’” It was found that the
current-voltage characteristic had a ‘‘knee” at the threshold
field, at which the linear portion turned over into a practical-
ly horizontal plateau. For a pulsed field, the current pulse
had the following characteristic shape: The current was ini-
tially constant and equal to its ohmic value, but then (at low
gain) it began to fall in step-like manner (with a period
T =L /v), tending to a saturation level; at high gain, the
current began to oscillate between the ohmic value and the
saturation level with the period 7= 2L /v (Ref. 38). It is
precisely these oscillations that were used to establish for the
first time the domain character of the developing instability.
However, it is now common to sue the single-transit regime
in which the oscillations cannot be seen.

The length of the ohmic plateau (the so-called incuba-
tion time), is a measure of the time necessary for the devel-
opment of the acoustic flux from the initial value 7,1 to the
onset of the intermediate nonlinearity 7,,, (when about 10%
of the free electrons are trapped ). The process is linear in this
region, so that the incubation time is given by***'

1
Tinc—mln(lun/lﬂ)' (8)

Since the beginning of the saturation region is well defined,
once we know the incubation time we can estimate the initial
nucleation level I, even when it is of nonthermal origin.

The natural way to investigate the evolution of acoustic
instability is to investigate the acoustic flux at the end of the
sample, using piezoelectric transducers.*’ This gives the
spectrum of the emitted flux and its spectral density, but
only at one point, namely, at exit from the sample.

An effective method of investigating this phenomenon
is to examine the field distribution along the sample, using
ohmic*®***** or capacitive*® probes. The field in a homoge-
neous sample is initially constant, but as nonlinear effects set
in and the effective electron mobility declines because of the
trapping of electrons by the piezoelectric field, the field is
redistributed. The redistribution of the electron concentra-
tion also has an effect on the field redistribution, and ensures
that the potential becomes a nonmonotonic function of dis-
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tance along the sample. Theory does not predict this effect,
but it has been seen experimentally and requires explana-
tion.

A technique exploiting the dependence of the micro-
wave attenuation coefficient on the acoustic flux has also
been developed. It was shown theoretically and experimen-
tally*® that when the electric field vector in the microwave
radiation pointed along the wave vector of the acoustic flux,
the result was a reduction in attenuation because of reduced
effective mobility due to electron trapping.

3.2. Optical methods

These methods have yielded the greatest amount of in-
formation about the development of acoustic instability.
First, we note the method of induced birefringence in which
the Pockels effect produces an additional contribution to n,
and n,, so that the beam passing through the sample receives
an additional phase shift between the components, which in
turn leads to the rotation of the plane of polarization at exit
from the sample and to a change in its intensity when it
passes through a polaroid. The method is sensitive to the
integral flux intensity and can be used to visualize it direct-
ly.47

The largest amount of information about the develop-
ment of acoustoelectronic instability was obtained by the
Mandel’shtam—Brillouin diffraction*®**° which we shall
now examine in greater detail. The principle of this method
is simple. The elasto-optic coefficients ensure that the acous-
tic wave modulates the permittivity of a transparent sample
(there are also other mechanisms, e.g., electron density
modulation®! etc., but these are usually less effective, and
need only be taken into account in special cases). For plane
waves, scattered light is observed only when the Bragg con-
ditions are satisfied, i.e., when the angle of incidence ¢, of
light (in an isotropic medium) on the acoustic wavefront is
equal to the angle of reflection, and the angle of diffraction
satisfies the condition ¢/2 = k sin(«%,/2). In the case of a
complicated perturbation of the sample, Mandel’shtam-
Brillouin scattering can be used to investigate the total spa-
tial spectrum of the perturbation (in its modulus, i.e., at the
temporal frequency, and in the direction of ¢) by varying the
angles of incidence and diffraction. It is possible to investi-
gate the time dependence of the spectrum, and its depend-
ence on position can be studied by displacing the probing
light beam along the sample.

9 mnl

FIG. 8. Scattering of the pump &, by the component g,,,, of the expansion
of sound into a spectrum over the cells mnl.
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All this is illustrated by the well-known vector diagram
shown in Fig. 8 in which the acoustic wave vector ¢ is added
to the wave vector k; of the incident light. The spectral com-
ponents of the wave vectors ¢ whose end points lie on the
Ewald sphere of radius k are active in scattering, and the
scattering intensity in each direction is proportional to the
intensity of the corresponding component of the wave vector
q. Thus, without using time-domain spectroscopic devices,
we can deduce from the scattering geometry the modulus of
the acoustic wave vector and the temporal frequency, pro-
vided we know the type of the scattering wave and the dis-
persion relation.

The situation is more complicated in birefringent crys-
tals. In the case of interaction with transverse waves, the
polarization vector rotates by 90° during diffraction, and in-
stead of 0-0 or e-e isotropic diffraction we have e-0 or 0-e
anisotropic diffraction. This is accompanied by a qualitative
change in the diffraction geometry.**->*

3.2.1. Three-dimensional character of the diffraction process

The Mandel’shtam-Brillouin scattering method is sub-
ject to certain limitations®® that must be borne in mind in the
analysis of experimental data, since otherwise errors may
creep in. The first of these limitations is imposed by the
three-dimensional character of the diffraction. The forego-
ing discussion was confined to planar diffraction; i.e., all
three vectors g, k,, and k, (the diffraction triangle) lay in the
plane that coincided with the plane of incidence, the exit
plane, and the plane of the apparatus. However, the compo-
nents of nucleating noise can be amplified within a cone
drawn around the direction of the draft field.*® In the planar
case, only an infinitesimally thin layer of this cone is accessi-
ble to analysis, and most of the spectral components of the
amplified flux leave the plane of the apparatus, so that the
diffracted beam emerges from this plane.

This means that, to determine the modulus and the di-
rection of the acoustic wave vector in space, we must mea-
sure at least three angles, namely, the angle of incidence ¢, in
the plane of the apparatus, the azimuthal angle ¢, and the
position angle ¢, of the escaping beam. The basic relation-
ships used in this calculation must be modified according-
1y.57

However, the three-dimensional character of the dif-
fraction process leads not only to complications in the analy-
sis of experimental data, but also to qualitatively new effects.
First, we note when the receiving aperture is a vertical slot
(which is often the case in practice), this leads not only to
the complete loss of information about the angle of escape, g,
from the horizontal plane, but also to uncertainties in the
determination of |¢| which for small values of |g| can reach a
few dozen percent.

Next, while in the planar case, the polarization of the
scattered light is unaffected (isotropic diffraction) or ro-
tates through 90° (anisotropic diffraction), these selection
rules fail in the general case. The longitudinal wave begins to
contribute to anisotropic diffraction and the transverse wave
to isotropic diffractions. This removes the degeneracy and
multivaluedness of the diffraction process, so that different
additional data have to be used to obtain reliable results.

Apart from introducing a second degree of freedom in
the detecting device, we have a further possibility in the in-
vestigation of the three-dimensional character of the pro-
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cess, namely, we have at our disposal the inclination of the
crystal to the plane of the apparatus.®® The diffraction ge-
ometry remains planar in this case, but the inclination of the
crystal can be exploited to investigate the inclined compo-
nents of the acoustic flux as well. The ambiguity in the scat-
tering process is thus removed, and this significantly facili-
tates the interpretation of the data although numerical
calculations are still necessary. However, this method intro-
duces a considerable complication into the design of the sys-
tem used to move the crystal.

3.2.2. Effect of finite volume

The second restriction on the Mandel’shtam—Bril-
louin scattering method is imposed by the finite volume of
the scattering region.’>*° Actually, to achieve satisfactory
spatial resolution, the probing beams must have a small
enough diameter. At the same time, the natural divergence
of the focused beam of this type introduces an uncertainty
into the determination of the angles; i.e., the scattered wave
vector cannot be established with sufficient precision. This is
a manifestation of the principle of complementarity at the
macroscopic level. Let us examine this in greater detail.

The interaction between the probing light beam and the
deviation Ag(r) of the permittivity from its equilibrium val-
ue in the illuminated portion of the sample gives rise to the
distribution p = E(r)Ae(r) of the induced polarization vec-
tor that acts as the source of the secondary (scattered)
light.**3*® This distribution occupies a finite volume con-
fined to the region of intersection of the probing beam and
the crystal. According to the Kotel’nikov—Shannon
theorem, the spectrum of any distribution that is limited in
space is in principle continuous and infinite and can be repre-
sented by a discrete infinite series in sampling functions of
the form sinc x = sin x/x, i.e.,

p(ay 9y 4, = z z z P(@pppsinc a,(q, — 2mAqy,)

X sinc az(qy - 2nAq02)-sinc ay(q, — 21Aq03), 9)

where Ag,; = 7/2a;, a; are the dimensions of the interaction
region. Each sampling function in spectral space is analo-
gous to a phonon when mechanical oscillations are resolved
into a spectrum, and by analogy with a phonon in real space,
each such function has a proper mode associated with it.
Accordingly, each mode is in fact an elementary oscillation
that can be excited independently. However, not all the
modes are active in emission because emission is confined to
the phase cells that are cut by the Ewald sphere (Fig. 8).
Each active mode in emission corresponds to an elementary
beam whose divergence is determined by the effective trans-
verse dimension of the scattering volume. In the far-field
zone, these beams come into contact with one another, and
fill the entire sphere densely and uniformly (Fig. 9). The
intensity of each elementary beam is related to the mode
excitation intensity by the universal transfer coefficient.
This means that the radiation field emitted by an arbitrarily
excited finite scattering volume can be represented by a finite
discrete series of elementary sources.

This approach provides us with a means of estimating
correctly the possibilities of the Mandel’shtam—Brillouin
method and of optimizing the experimental conditions. Ac-
tually, there is no point in using an aperture that is smaller
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FIG. 9. Subdivision of the spatial spectrum of the source (plane-wave
case) into elementary phase cells of size Ag = 77/2a, and the correspond-
ing subdivision of the resulting field into elementary beams; the true shape
of the envelope of the beam is replaced by the equivalent rectangles.*

than the diameter of an elementary beam because this would
reduce the signal intensity and no new information would be
produced. Nor is there any point in using an aperture that is
greater than an elementary beam because although this
would increase the signal intensity it would also giverise to a
loss of resolution. The receiving aperture must therefore be
matched to the exit aperture, i.e., to the diameter of the prob-
ing beam. The latter is in turn determined by the required
spatial resolution which should not exceed 10-100 zm for an
experimental gain of the order of 100-1000 dB/cm. We also
note that to produce experimental data that can be readily
interpreted, the time resolution must be no worse than 25 ns
(which is consistent with the time taken by sound to trans-
verse the probing beam). Inadequate temporal resolution
and the production of time-averaged data in the rapidly-
varying processes that are observed experimentally, means
that such data are unsuitable for analysis.

Unfortunately, many workers have ignored these prop-
erties of the Mandel’shtam—Brillouin scattering method and
this may well be one of the main reason for the spread among
the experimental data which must be viewed with consider-
able caution. The second possible reason for the spread is
that the properties of the samples employed depend on the
technology used to grow the AIIBVI crystals, which is still
relatively inadequate.

3.3. Applications of x-ray scattering

X-rays are used® in the analysis of high-frequency
acoustic fluxes, especially in the case of opaque crystals such
as GaAs. In principle, this is equivalent to Mandel’shtam—
Brillouin scattering, but with an extended frequency range.
The fundamental disadvantage (apart from technical diffi-
culties) is the low temporal resolution.

3.4. Measurement of the absolute acoustic flux density

The methods described above are suitable mostly for
relative measurements. There is, however, considerable in-
terest in absolute intensities as well, but there are no direct
methods for measuring the acoustic flux density in the range
under consideration. This is so since it is practically impossi-
ble to apply this flux to some particular measuring device
because of the very high attenuvation in acoustic ducts. The
flux density must be measured at each point, and this can
only be done by indirect methods.

In one of the first methods of this type, the acoustic flux
was measured after the field pulse was turned off. Clearly,
thecurrent was related to the number of electrons trapped by
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piezoelectric field, so that the power could be estimated from
the Weinreich relation. However, this method is suitable
only in the linear or weakly nonlinear situations. In the case
of complete electron trapping, the acoustoelectric current
carries no information on the flux density (this was con-
firmed experimentally in Ref. 61).

3.4.1. Measurement of intensity using the Franz-Keldysh
effect

The electric field accompanying the elastic wave affects
the optical properties of the sample, and this can be used to
measure the flux intensity. It is also possible to use the elec-
tro-optic effects,*” but this is inconvenient because they are
not single-valued. We shall therefore consider the influence
of the piezoelectric field on the band-edge shift due to the
Franz—-Keldysh effect. It is clear that, in principle, this shift
is determined by two factors, namely, the drift field®> and
the piezoelectric field associated with the acoustic flux.** It
is readily shown that, after saturation, the piezoelectric field
due to the acoustic flux is related to the drift field as follows:
E} = 2enyx’E,/a. . Hence it follows that the contribution
of the acoustic flux is predominant for typical concentra-
tions and lattice attenuations. This is seen experimentally as
a delay of higher attenuation relative to the field pulse.

Let us now examine this effect in greater detail for real
semiconductors whose absorption edge obeys the Urbach
rule a = a, exp| — 0 (0, — w)] where o = Bfi/ky T, a
and a, are the light attenuation coefficients at frequencies
and w,, respectively, and B is the relative steepness. The
application of an electric field® is equivalent to a band-edge
shift by the amount

2522
fow = —BC g2 (10)
24(kyT)2m*
The piezoelectric field of an acoustic wave modulates the
attenuation coefficient with amplitude Aa,
=alexpl,/1,. — 1], where

12evm* (kT) 3

L= G\ B

(11)

By measuring the change in the transmitted light inten-
sity and then averaging the attenuation coefficient over the
acoustic wavelengths, we can thus determine the acoustic
flux density. Since many of the parameters, including the
steepness of the Urbach edge, are not usually known to a
high precision, we may expect that the total uncertainty in
the flux density determined in this way could be of the order
of 50%. Although this is not high precision, more accurate
methods are unfortunately not available at present. The ex-
periment reported in Ref. 66 was concerned with studying
the saturation level by this method, and has confirmed its
possibilities by demonstrating agreement with calculations
based on (4).

3.4.2. Determination of intensity from excitonic
fuminescence

We now mention one further method that is essentially
an indicator that a particular intensity threshold has been
exceeded. We know that a certain fraction of free electrons
present in a semiconductor is coupled to holes, forming free
excitons, so that an electric field close to the exciton ioniza-
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tion field should produce a reduction in the intensity of exci-
tonic luminescence.®’ In addition, there is also the piezoe-
lectric field of the acoustic wave, which enables us to
estimate the flux density. For CdS, the ionization of excitons
begins at ~ 30 kV/cm, which corresponds to a flux density
of about 10 W/cm? (for a longitudinal wave). This effect has
been observed experimentally.®®

4.EXPERIMENTAL RESULTS ON THE DEVELOPMENT OF
ACOUSTICINSTABILITY

We note, first, that in the great majority of published
experiments, the development of acoustic instability was ob-
served only for transverse piezoactive T2 waves. This was
not unexpected when the field was applied at right angles to
the C, axis. However, even when the field was applied paral-
lel to this axis, oblique T2 waves (at 30°) were also amplified
(instead of the expected amplification of longitudinal
waves). This property will be discussed below.

Next, it may be considered as established that there are
two fundamentally different amplification regimes, namely,
the low-gain regime (approximately 100 dB/cm or less) and
the high-gain regime for which nonlinearity is reached after
only a fraction of the length of the sample.®® In the former
case, the instability initially develops roughly along the lines
predicted by the linear theory, but then, after a few transits,
it gives way to a standard domain near the anode. In the
latter case, a traveling acoustoelectric domain is formed
after only one transit and takes the form of a wave packet in
which the sound intensity is much higher than elsewhere in
space. Practically the entire applied potential is developed
across the domain which moves with velocity close to the
velocity of sound. We shall now consider these regimes in
greater detail.

4.1. Low-gainregime

This has been investigated by a large number of
workers’ and its main features are now well understood.
~ The process develops as follows. Linear amplification of the
nucleating noise begins as soon as the field is applied. The
noise distribution function rises monotonically in space and
tends to the exponential distribution. At the same time, the
acoustic flux begins to be reflected by the anode. For a num-
ber of reasons, including a possible change in wave type on
reflection,”" the reflected flux is attenuated to a lesser extent
than the corresponding amplification of the incident flux.
Repeated reflection by the cathode is therefore found to pro-
duce a wave in the forward direction that exceeds the origi-
nal noise level. This wave is again amplified and the process
repeats several times until the flux near the anode reaches
the level at which nonlinearity begins; i.e., e®,~0.1k 5 T.
Electrons then begin to be trapped, the effective resistance of
the region near the anode rises, and the field in this region
increases. In accordance with the theory, the increase in the
field produces an increase in gain and an expansion of the
dynamic range near the anode as well as a reduction else-
where. The acoustic flux density at the anode increases as a
result of this, but elsewhere it falls until the dynamic equilib-
rium is reached. At the same time, the flux density at the
anode is much greater than elsewhere in the sample. This
type of distribution is commonly referred to as an acoustic
domain. The development process is well illustrated by a
stepped fall in the current through the sample from its ohmic
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FIG. 10. Flux distribution in CdS without the piezoshock (/,2) and with
the piezoshock (3,4) at 2.5 GHz (1,3) and 0.28 GHz (2,4); y = 0.38;
t=2.6us (Ref. 72).

value prior to saturation. The step length is usually equal to
twice the double transit time in the sample.*®

The real picture is usually only qualitatively similar to
the above description because the plateau on the intensity
distribution along the sample is not observed even at the
initial time. To establish the reasons for this, Gelbert and
Many” have performed a special experiment in which a
double-pulse technique was used to produce a significant
reduction in the effect of the piezoelectric shock in the region
near the cathode. A subcritical field was initially applied to
the sample, and was followed by a further small field pulse
after a certain time sufficient for the oscillations in the region
of the cathode to die down. The net effect of this was that the
resultant field rose above the critical value and the acoustic
instability of the thermal level began to develop (Fig. 10).
Agreement with theory was reported in Ref. 72 for single-
transit conditions. This suggested that the simple model was
valid for these particular experimental conditions. This pa-
per is also of major importance because it provides direct
experimental confirmation of the importance of shock noise
near the cathode in the nucleation process during instability
development. We shall return to this question below.

There have also been experiments” on the dependence
of the velocity of sound on supercriticality as predicted by
theory. They showed that for low supercriticalities (y <€1),
the velocity of injected sound depended significantly on fre-
quency and applied field. The agreement with theoretical
predictions was found to be adequate.

The parametric interaction between two injected sig-
nals and between signal and noise has also been investigat-
ed.”*8? Experiments confirmed the possibility of parametric
(including non-Peierls) interaction and have shown that en-
ergy can be transferred from one wave to another when the
corresponding phase relationships determined by the angle
between the directions of propagation are satisfied (low su-
percriticality and significant dispersion). It was also shown
that the parametric signal/noise interaction can lead under
certain conditions to the transfer of energy from signal to
noise and, eventually, to the suppression of the signal. It was
suggested that this was why a practical electric-signal ampli-
fier could not be produced.

There is considerable interest in the spectral composi-
tion of a developing instability. In the multitransit regime
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there is a continuous downward shift of the frequency at
maximum spectral density by a factor of two or more.””®* It
was suggested that this was a consequence of the parametric
(mostly degenerate) interaction involving the splitting of
the main phonon into two phonons of roughly equal energy.
It was shown theoretically that, in the case of weak nonlin-
earity, this interaction was possible not only for monochro-
matic signals, but also for noise,*>*' and that in this approxi-
mation the conversion efficiency increased with increasing
signal amplitude.”* The same mechanism was considered in
quantum-mechanical language’® in terms of phonons rather
than waves. It was shown that the Peierls interaction (quan-
tum-mechanical analog of the three-wave parametric inter-
action) and the non-Peierls interaction with the participa-
tion of a highly damped electron-density wave
(quantum-mechanical analog of the four-wave parametric
interaction) could also explain this effect. Finally, it was
shown that the non-Peierls interaction was more effective
than the Peierls interaction, and that the former was usually
employed at present to explain the frequency shift.

However, it is important to emphasize that all theoreti-
cal work has been confined to the weak-nonlinearity approx-
imation. It is only in this approximation that the interaction
effectiveness increases with increasing wave amplitude. It
seems that there is no justification for the extension of the
range of validity of this theory to the intermediate nonlinear-
ity regime, which is frequently done in experimental publica-
tions. It can be shown that under the conditions of interme-
diate nonlinearity, the conversion efficiency falls by analogy
with the fall in gain (see Fig. 6). For a deep nonlinearity, the
fourth-order (non-Peierls) interaction should vanish; i.e.,
an electron bunch cannot be lost since it is separated from
neighboring bunches by high potential barriers.

The reduction in the frequency at maximum spectral
density in the case of the multitransit regime can be ex-
plained as follows. Gelbert and Many’? have shown that the
down-conversion of frequency is not observed in the single-
transit regime for low supercriticalities. Consequently, the
reverse propagation of the wave reflected by the anode may
well play an important role. Actually, since this wave
reaches the cathode, the contribution of electron attenuation
is relatively small and lattice attenuation plays the dominant
role especially when there is a change in wave type on reflec-
tion. This attenuation decreases with decreasing frequency.
It follows that low frequencies are emphasized in reverse
propagation of the flux, and each transit is accompanied by a
downward shift of the spectral density maximum until this is
compensated by a reduction in gain in forward transit. The
net result of all this is the appearance of a cutoff frequency
for the acoustic flux.

4.2.

The development of acoustic instability undergoes a
fundamental change under high-gain conditions (gain in ex-
cess of 100 dB/cm). The acoustic flux reaches the strong
nonlinearity level after a single transit, and this gives rise toa
moving acoustoelectric domain (AED).?**° The AED is a
short (of the order of 100 #m ) packet of acoustic oscillations
propagating in the sample with the velocity approaching the
velocity of sound. The properties of this domain are unusual
and do not fit into the framework of existing theories. We
begin by listing them.
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FIG. 11. Acoustic flux (a) and electric field (b) distributions at times 1-7
indicated on the current pulse oscillogram (see insert) during the evolu-
tion of a domain (Ref. 86).

4.2.1.

The AED is first recorded after a time approximately
equal to the incubation time, i.e., at the onset of an apprecia-
ble reduction in current.***° The domain is therefore a de-
finitely nonlinear formation, and its amplification coeffi-
cient must fall smoothly with increasing intensity (Fig. 11).
This was not observed in the experiment in which the do-
main was found to grow exponentially or even super-expon-
entially with gain (by two orders of magnitude in the latter
case). It was only after the current reached saturation, i.e.,
in the region of deep saturation, that the gain began to de-
crease (Fig. 11). These unusual properties of the nonlinear
regime cannot be explained by the theories described above.

4.2.2.

The AED is not formed if the gain is high but the ap-
plied field is greater than the optimum value (S > 1). There
are few such experiments because high fields are associated
with high breakdown probability in the crystal, usually on
the surface. However, the authors of Ref. 66, for example,
used a high initial electron concentration for which the time
taken by the acoustic flux to reach the saturation did not
exceed the ionization time of air, and performed their mea-
surements using short field pulses that did not give rise to
breakdown in the sample. Their results showed laminar flux
growth under these conditions, and a domain was not
formed.

4.2.3. Properties of domain propagation velocity

The graph of the position of domain maximum as a
function of time shows that, on average, the points lie on a
straight line whose slope is close to the velocity of sound.*%
When the straight line is extrapolated to t = 0, it is found to
cut the cathode to within the dimensions of a domain. How-
ever, between its point of creation and the point at which the
AED reaches saturation, the velocity of the crest of the do-
main is found to deviate from the velocity of sound, which, in
all probability, is related to a change in the domain shape.
Careful measurements were performed with a system incor-

V.M. Rysakov 1037



Iy &

g t, ns

FIG. 12. Acoustic flux distribution vs time for the distance from cathode
(1 mm): I—1.05; 2—1.25; 3—1.45; 4—1.65; 5—1.85; 6—2.05; 7—2.25;
8—2.45; and 9—2.65.

porating multichannel digital storage and recording of the
complete temporal profile of the signal at each point, and the
resulting data were used to reconstruct the distribution of
flux along the sample with time as the parameter. These
measurements showed®® that, on the superexponential
growth curve, the leading edge of the domain travelled with
velocity close to the velocity of sound (in fact somewhat
higher than the velocity of sound) and its crest and trailing
edge were practically at rest, but had greater amplitude (Fig.
12). This behavior is consistent with an absolute (rather
than convective) flux instability predicted for the acoustoe-
lectronic interaction. We emphasize, however, that the abso-
lute instability is observed not in the linear regime, for which
the theory was developed, but in the essentially nonlinear
regime.

As the growth in domain intensity slows down, and be-
gins to reach saturation, the domain seems to free itself and
begins to move as a whole with velocity close to the velocity
of sound.

When the crystal quality is not adequate, or the domain
is observed in a longitudinal crystal (oblique T2 waves), a
more complicated picture can also be observed: the domains
may begin to bifurcate, the first domain may decay and be
replaced by another at the same time but at a different point,
a double domain may be observed, and so on. In all probabil-
ity, such effects are due to crystal inhomogeneity and reflec-
tions from the side surfaces of the sample. Such complicated
situations will not be discussed below.

4.2.4.

The domain length depends on the conductivity of the
sample, the applied field, and the crystal type. Detailed mea-
surements of these functions have not been carried out, but
the domain length in CdS is usually 100-300 «m. This length
tends to its lower limit with increasing conductivity and de-
creasing field.*”*

4.2.5,

The average spectrum of the contents of a domain cor-
responds to quasimonochromatic noise and its relative
width is AQ/Q,~=1/3, in accordance with the above theory.
However, even at the point of domain nucleation, the fre-
quency at maximum is in most cases below {},. As already
noted, this is usually explained in terms of three factors,
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namely, the influence of lattice attenuation, the influence of
the initial spectrum of the nucleating shock packet, and the
influence of attachment centers.’"*2

The most interesting and least understood is the behav-
ior of the spectral density maximum during the amplifica-
tion process. Since the domain is obviously a nonlinear for-
mation, the spectrum may be expected to shift upward as a
result of the generation of harmonics.”® Experiment shows
that, in fact, the spectrum shifts smoothly downward within
the super-exponential region of domain growth. It then
reaches the first subharmonic and usually stabilizes in the
region of domain saturation. As in the low-gain case, this
shift is usually explained in terms of one-dimensional para-
metric interactions. However, this explanation is valid only
in the region of weak nonlinearity. On the other hand, the
observed frequency shift occurs in the intermediate nonlin-
earity region.

There are also several experiments that do not fit into
the theoretical scheme. First, there are the two papers re-
ported in Refs. 94-95 in which the experimental situation is
similar, but the results are fundamentally different. Mono-
chromatic sound of appreciable amplitude, generated by an
external source, was introduced in these experiments into
the amplifying sample, and light scattering was used to ob-
serve the change in its spectrum. The frequency of the inject-
ed sound was in both cases greater by a factor of 2-3 than the
frequency at maximum gain. Intensive generation of subhar-
monics was observed as usual in Ref. 94, and harmonics were
not recorded. On the other hand, Ref. 95 reported intensive
generation of harmonics, and the level of subharmonics was
much lower. No explanation was offered of this difference,
but a possible interpretation is presented below.

Another series of experiments that is in conflict with
parametric theories involved studies of instability develop-
ment in active regions with small transverse cross section.
The first of these publications® was concerned with x-ray
diffraction and reported a study of the spectrum of amplified
high-frequency (60 GHz) flux in a thin (20 gm) gallium
arsenide film. It was found that the peak of the spectrum
occurred at the theoretical value of the frequency at maxi-
mum gain, and no subharmonics were observed. This fact
was said to be surprising, but no interpretation of it was
offered. We note, however, that the single-particle regime
(gl <1) and not the hydrodynamic amplification regime
(gl>1) was involved in this experiment. It is difficult to
believe that the Peirels or non-Peirels phonon interaction
mechanisms can operate in this regime in a different way.
However, it would be desirable to confirm this under the
usual hydrodynamic conditions. In the special experiment
reported in Ref. 96, a thin filamentary active channel (diam-
eter 120 um) was produced in a photosensitive bulk sample
of CdS by illuminating it with a collimated pump beam
through one of the ends (Fig. 13). It was found (Fig. 14)
that a continuous downward shift of the frequency at spec-
tral maximum did not take place in this channel (an abrupt
frequency change occurred across any inhomogeneity that
randomly entered the channel). On the other hand, an in-
crease in the channel diameter to 200-300 zm was accompa-
nied by a qualitative change in the picture; i.e., as usual, the
spectrum shifted into the region of the first subharmonic.

These results demonstrate that the transverse size of the
interaction region has a fundamental effect on subharmonic
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FIG. 13. Experiment with a thin active channel in a sample: /—sample,
2—lightguide, 3—stop, 4—lens, 5—mercury lamp (Ref. 96).

generation. This is the basis for concluding that one-dimen-
sional theories are not really valid for real experimental si-
tuations, and that steps must be taken to seek an alternative
mechanism. In all probability, this mechanism is related to
the transverse incoherence of the noise flux, which will be
discussed below.

4.2.6.

Interesting results have been obtained by measuring the
width of the spatial spectrum for fixed |¢| and, in particular,
for the frequency at maximum gain. It was found'” that this
width, i.e., the divergence of the corresponding acoustic
flux, is usually 5°-10°, which is close to the theoretical value.
Hence, it follows that the flux coherence length is of the
order of a few wavelengths. The high-frequency wings are
smaller in the nonlinear than in the linear region. The entire
flux can therefore be represented by a set of contacting co-
herence tubes for which transitions between the tubes in the
nonlinear case are smoother than in the linear case.

Hence it follows (at first sight paradoxically) that the
one-dimensional model with infinite plane waves corre-
sponds, typically, to an experiment with a thin active chan-
nel and not a thick bulk sample. Actually, if the channel
diameter is much greater than the wavelength of sound,
waveguide effects are still relatively insignificant and the
wave propagates effectively in free space. On the other hand,
if the channel diameter does not exceed the flux coherence
length, the wave is transversely coherent within the channel,
and this corresponds to the one-dimensional theory.

4.2.7.

Asnotedin Sec. 4.2.5, therelative width of the temporal
spectrum of a domain is of the order of 1/3. However, the
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FIG. 14. Acoustic flux spectrum inthe active channel at 2.5 (1), 3.2 (2),
3.4 (3), and 3.8 mm (4) from the cathode (Ref. 96).

intensity of light scattered by the domain is usually subject to
very strong amplitude fluctuations (by a factor of 10 or
more), so that the width of the spectrum is essentially an
average over many realizations of this process.

This question was investigated in a special experiment
in which the statistical properties of light scattered by a do-
main were studied as a function of the width of the receiving
aperture.”” The experiment was designed as follows. The
scattering geometry was matched to the signal maximum for
optimum receiving aperture. A strobe pulse was then used to
find the maximum amplitude of light scattered by the do-
main, which was recorded by a digital multichannel analyz-
er for each realization (out of a total of 128 realizations). A
statistical analysis of the data was then carried out to deter-
mine the intensity mean and variance as functions of the size
of the receiving aperture. The results are shown in Fig. 15.

Itis clear from this figure that the mean intensity at first
increases with increasing aperture, but eventually saturates.
This behavior is not unexpected: when the receiving aper-
tureis large, all the light scattered by the quasimonochroma-
tic acoustic flux in different directions within the cone de-
fined by the width of the flux spectrum is intercepted by the
receiving aperture.

The variance exhibits a much more interesting behav-
ior. At first, and as expected, the relative variance increases
as the square root of the signal intensity. However, when the
curve turns over and the intensity begins to saturate, the
variance at first decreases as the square root of intensity, but
eventually tends to a value determined by instrumental noise
(~5%).

We must now compare these results with possible mod-
els. If we suppose that the spectrum of each realization of a
domain is identical with the average, and that the intensity
fluctuations are caused by fluctuations in the integral inten-

FIG. 15. a—Mean scattered intensity J, (1), absolute (2) and rela-
tive (3) mean square deviations as functions of the receiving aper-
ture. Points—experimental, curve 4—calculated, normalized to the
peak; b—scattering process; Ad;,—width of diagram in each real-
ization, Ad,—total width (Ref. 97).
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sity of a domain, then the variance should not depend on the
size of the receiving aperture. This assumption is in conflict
with experimental evidence. The second possibility is that
the AED frequency content varies from realization to real-
ization in a random fashion between limits determined by
the amplification bandwidth at constant integral AED in-
tensity. This model is in agreement with experiment. Actual-
ly, the scattered beam of light in each such realization points
in a somewhat different direction (see Fig. 15) and this gives
rise to fluctuations in the recorded signal when the aperture
is small. As thesize of the aperture increases, the signal must
fall into the aperture and its variance tends to zero.

This experiment has thus shown that the recorded do-
main spectrum is usually an average over a large number of
realizations. However, the spectrum of an individual realiza-
tion must be narrower than the average by a factor of at least
six. Correspondingly, the coherence length must also be
greater, and in each realization the domain is almost com-
pletely longitudinally coherent along its entire length. How-
ever, the frequency content fluctuates randomly between re-
alizations and within the limits of the amplification
bandwidth. This situation cannot occur for a thermal nu-
cleating source, which confirms its shock origin described
above.

4.2.8.

Probe measurements of the electric-field distribution in
a sample have produced interesting domain data. In high-
grade homogeneous samples, the field is initially constant
along the entire sample but, as soon as the domain is formed,
the field within it begins to rise and rapidly saturates. At this
stage, the field reaches its threshold value everywhere except
within the domain where it is given by the residual potential
divided by the domain length: £y = [U— E (L — 1,)]/I,.
This is much greater than the mean field E, = U /L. This
behavior is readily understood: all the electrons are trapped
within the domain by the piezoelectric field and travel with
the velocity of sound, so that the effective conductivity of the
region is lower, which gives rise to a redistribution of the
field. Outside the domain, the field is maintained at the
threshold value because, in order to maintain the continuity
of electric current, the electrons outside the domain must
also travel with the velocity of sound.

More detailed and careful measurements of the poten-
tial distribution along a sample®***-'°° have shown that the
distribution is not monotonic. A hump and a valley are
found to occur in the region of a domain, which clearly
shows that an excess charge is stored in the domain, and,
often, there is a double layer when the region in front of the
domain is depleted. Estimates® show that the excess charge
amounts to a fraction of a percent of the concentration but, if
we recall that the separation between probes used in such
measurements is much greater than the Debye screening
length, this charge is actually about an order of magnitude
greater. For a domain 100-200m long, the charge is several
times greater than the free-electron concentration as com-
pared with the equilibrium concentration n,. We know of no
explanation of the origin of this charge or of its influence on
AED development. However, the charge is expected to play
a significant part. We shall discuss this in greater detail be-
low.
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4.2.9.

We also note that recent experiments with a thin active
channel®® have revealed the development of longitudinal-
wave instability in the longitudinal samples, as expected
from one-dimensional theory. In bulk samples, oblique T2
waves, for which the threshold is lower, begin to develop
earlier (because of the finite length of the leading edge of the
field pulse) and suppress the amplification of longitudinal
waves when the nonlinearity region is reached. However,
oblique T2 waves propagating in a thin channel will escape
from the channel and will not succeed in reaching high inten-
sities. The instability development is therefore found to rely
on axial longitudinal waves. This mechanism of suppression
of longitudinal waves in bulk samples was put forward long
ago, but direct experimental verification has only recently
become available.

4.2.10.

These are the basic properties of AED development un-
der high-gain conditions. Some of them can be understood in
terms of the generally accepted theory of acoustoelectronic
interaction (and examples of this have already been cited),
whereas others cannot be so explained. It is clear that the
theory of the onset and development of AED must explain
all these properties. Unfortunately, papers devoted to the
theoretical analysis of acoustic domains have been largely
confined to nucleation and, as will be shown below, have not
even provided a solution for this problem (let alone the other
domain properties).

To begin with, it was suggested that the nucleus of a
domain is a shock-wave packet generated in the region near
the cathode. Experiments have confirmed this. Moreover,
the oscillatory behavior of the process, which has the period
L /vfor long field pulses, shows that after the shock the cath-
ode region acts as the source of enhanced noise.

Next, it was noted*® that an inhomogeneous distribu-
tion of conductivity along the sample and inhomogeneous
illumination may also lead to a domain-like regime. How-
ever, in all probability, this can facilitate the evolution of a
domain from the nucleating packet, but cannot be the main
reason for its appearance.

We also note the paper by Hayd]®’ that reports an at-
tempt to explain the single domain structure (SDS). Ac-
cording to Hayd]l, the SDS appears during the acoustoelec-
tronic instability even for low flux amplitudes. A more
rigorous theoretical analysis of this process has shown? that
the SDS does not occur for low intensities, and this was con-
firmed by measurements of instantaneous current-voltage
characteristics.'°’

Ridley and Wilkenson'® have examined the evolution
of a domain by investigating the nonlinear coupling between
space charge and acoustic modes by the Bogolyubov—Krylov
method. They succeeded in showing that a domain-like solu-
tion was possible in the multimode state in the random-
phase approximation. However, this theory does not actual-
ly predict any of the domain properties observed
experimentally.

Some interesting ideas on the formation and develop-
ment of a domain can be found in the paper'® by Butler, but
they are not sufficient to explain the properties of a domain.

We therefore conclude that there is at present no final
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theory capable of explaining adequately the basic properties
of a domain. Moreover, it is still not finally clear which phys-
ical mechanisms have to be taken into account in domain
theory. It follows from experimental data described above,
especially the more recent data, that at least three factors are
of fundamental importance in the theory, namely, the three-
dimensional character of the process, its properties at inter-
mediate nonlinearity, and the accumulation of excess charge
in a domain. The development of a three-dimensional non-
linear theory of this kind is found to encounter difficulties
that cannot be overcome at present. We shall therefore con-
fine ourselves to a qualitative model of AED evolution and
will try to reinforce it wherever possible with numerical esti-
mates.

4.2.11.

Experiment shows that a domain originates in a piezoe-
lectric shock in the cathode region.”? The amplitude of this
wave packet is several times greater than the equilibrium
thermal noise level, which is indicated by the fact that the
domain incubation time is close to the value obtained nu-
merically for the thermal nucleating noise. This can be ex-
plained by the relatively long leading edge of the field pulse
and the associated low efficiency of shock excitation.

We may therefore conclude that the initial stage of
AED development (which is usually not observed experi-
mentally) can be pictured as follows (Fig. 16). The applica-
tion of the drift-field pulse gives rise in the cathode region to
a relatively long acoustic wave packet which begins to be
amplified together with the uniformly distributed thermal
noise. In the linear region, i.e., within 5-6 orders of magni-
tude, the two are amplified independently. The distribution
shapes remain the same. The distribution maximum, i.e., the
crest of the nucleating wave packet, eventually reaches the
beginning of the intermediate nonlinearity region, and at
this point the piezoelectric field traps about 10% of the elec-
trons, as indicated by the decay of the current. This is also
the beginning of the field redistribution that gives rise to an
increase in the field within the domain. If, as is usually the
case, the applied field strength is less than the optimum, the
increase in the field should lead to higher gain, as already
noted.?>'%*1% However, this is opposed by the nonlinear re-
duction in gain, and it is not clear a priori which of these two
effects will predominate.

/

ad

Iay

2

FIG. 16. Simplified model of domain evolution. Acoustic flux distribution
at times /-7. [, and /,,—thermal and shock nucleation; /,,—onset of
nonlinearity, /,, —saturation.
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4.2.12

Let us examine this process in greater detail on the basis
of the results reported by Tien.?® Suppose that a short acous-
tic wave packet of length /, propagates in a sample of length
L. The effective conductivity in the region of the packet (in
Tien’s notation) is given by

Yo (l—y")r]
Op=0—|1————|, (12)
eff Oy[ Ya p

wherer = 2[1 — (j,/j}1/x¥,1s the normalized current satu-
ration factor, p = 38 /x is the normalized supercriticality,
andy=y+1,y,=v% + 1 =EJ/E,.

When this change in resistance is taken into account, we
obtain the expression for the field in the region of the wave
packet. In the approximation defined by Lr/I p> 1, which s
well satisfied in practice, we can readily show that the do-
main field is

Eq= EgLr/1,p. (13)

We can use this expression whenever the reduction in the
current is greater than 5%.

We have used these considerations in numerical calcu-
lations. The dependence of  on the acoustic flux density was
taken from the graphs given in Ref. 20 and the calculation
was based on the iteration method described in Ref. 28. The
final result is shown in Fig. 17 for a number of selected pa-
rameter values. Although, for these values, curves 2-5 are
qualitatively similar, physical considerations suggest that
curve 3 is closest to reality. It follows from this that, when
ed,/k g T~1, the gain rises by a factor of 2 which corre-
sponds to the super-exponential growth of the domain in the
intermediate nonlinearity regime. Since this is accompanied
by a reduction in the field outside the domain, the resultis a
reduction in gain and in the final analysis a complete damp-
ing out of the background surrounding the domain. This is
why we may consider that the domain evolves from a nu-
cleating wave packet at the beginning of intermediate non-
linearity and after the incubation time following the applica-
tion of the field pulse. The region with superlinear gain
extends up to e®,/k 3 T~ 3. The amplitude rises by a factor

o

5L

: t I\ i I\ 1
7 2 3 4 ) &
e¢1/kB T

FIG. 17. Relative amplification in a domain as a function of reduced
amplitude e®,/k; T for different initial supercriticalities and ratios /,/L:
Iy =08 =05(1);14/L=0.02, B =05 (2); I,/L=0.2, B =0.2
(3);44/L =002, Bg =0.1(4); I,/L=0.1, B =0.1 (5) (Ref. 28).
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of 6 over this segment, and this corresponds to an increase in
the dynamic range by just over an order of magnitude (in
intensity). This result is less than the experimentally ob-
served value which is usually close to two orders of magni-
tude.

4.2.13.

The field redistribution is accompanied by the onset of
charge redistribution.”® Let us examine this in greater detail.

If the amplitude of the acoustic wave remains constant
all over the sample, then it is clear that in the nonlinear re-
gime the electrons can be redistributed only within each
wavelength; i.e, all the electrons concentrate near the poten-
tial minimum and the average concentration in this half-
wave is doubled. It is precisely this case that is considered in
all publications.

A different situation occurs in the case of a short acous-
tic pulse. In the hydrodynamic approximation that we are
considering (gl < 1), theelectrons tend to equalize the distri-
bution and flow into the potential well not merely from the
neighboring crest, but also from the entire sample. Accord-
ingly, their mean local concentration in the well is approxi-
mately e®,/k 5 T (the volume of the well in units of k5 T').
However, this filling of the well and the increase in the local
concentration continue until the electrons outside the pulse
can overcome the potential hill and become trapped in the
well. If the height of the crestis 3k 5 T'— 4k y T, the probabili-
ty that an electron will cross the crest becomes very small
and the flow of electrons into the well ceases almost com-
pletely. Further increase in the wave amplitude will then not
produce a rise in the number of electrons in the potential
well, and we may assume in approximate calculations that,
for a short pulse, the maximum rise in the number of elec-
trons in the well will be greater by a factor of 3—4 as com-
pared with the corresponding number for a continuous
wave. The concentration excess can produce a correspond-
ing increase in the saturation level, and this has actually been
observed experimentally®® and is briefly described in the
next section.

There is also a second factor that prevents the accumu-
lation of electrons in the well, namely, the Coulomb field of
electrons already trapped in the well (we recall that the
amounts of positive and negative piezoelectric charges are
equal; i.e., the acoustic packet as a whole is electrically neu-
tral). Under normal conditions, this factor does not prevent
the accumulation of charges within one period of the wave
and determines the number of waves in the packet in which
the accumulation of electrons can take place.

As already noted, the field in a domain is E,; > E, (Fig.
18). The accumulation excess charge ANe produces a field
whose maximum strength on the domain boundary is
E. = ANe/2¢. Outside the domain the field decays within
the Debye length. It follows that it is only for E, > E_ that
the electrons can still succeed in entering in the domain and
be trapped there by piezopotential wells (we are, of course,
neglecting the tunnel effect ). Since we have already calculat-
ed the maximum charge that can be stored in one period, we
can use this inequality to determine the total possible do-
main length:

ly= (cUl4eng)' 2. (14)

If we suppose for the purposes of an estimate that /, = 100
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FIG. 18. Field distributions in the sample: domain regime, external field
(a) and field due to excess charge in the domain (b) with (I) and without
(2) shielding (Ref. 28).

pum, L =10 mm, and £, = 2 kV/cm, we find that the maxi-
mum excess charge in a domain is AN =2x 10" cm ™3,
which can produce an increase in the concentration in the
domain by a factor of several times. Correspondingly, the
dynamic intensity range can expand by roughly an order of
magnitude. Since the field and charge redistributions pro-
ceed independently, their combined effect should extend the
dynamic range by roughly two orders of magnitude, which is
consistent with experiment. At the same time, the gain does
not in general remain constant in this range and exceeds the
linear value by a factor of about 2.

It is readily seen that the domain length /, that we have
obtained corresponds to 15-30 oscillations. Since this is
close to the unaveraged flux coherence length indicated by
the above statistical experiments, each domain realization is
almost completely longitudinally coherent.

4.2.14.

We now return to the evolution of AED from the nu-
cleating wave packet, taking into account the above field and
charge redistributions and their effect on the amplification
process (Fig. 16). We have already noted that, some time
during the amplification of the nucleating packet and ther-
mal noise, the leading edge will reach the beginning of the
intermediate nonlinearity region (see Fig. 10). This will
mark the beginning of the field and charge redistributions
which will lead to the beginning of the field and charge redis-
tributions which will lead to the super-exponential growth of
both the leading edge of the domain and the portion behind
it. The leading edge will continue to move with the velocity
of sound until it reaches the saturation level (see Fig. 12).
While all this is happening, the rest of the nucleating packet
remains well below the saturation level and is amplified with
a high gain. In our coarse approximation, the domain tends
to become rectangular, and this is seen experimentally as the
motion of the leading edge with the trailing edge pinned
down, i.e., as an essentially absolute instability. The process
can continue until the entire accumulated charge limits the
domain length. The rear wall of the domain then begins to
move, and this is seen as the unpinning of the domain from
its point of creation, and as the motion of the domain as a
whole with the velocity of sound.
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The above semiquantitative discussion of the evolution
of an AED from a nucleating wave packet is very approxi-
mate, but it does account for the main features of domain
behavior. Actually, this approach can explain the temporal
behavior of a domain, including its creation after the incuba-
tion time following the passage of the leading edge of the
field pulse, its velocity anomalies, and the reason why the
extrapolated curve cuts the cathode. An analytic expression
for the domain length was thus obtained for the first time
and the result it predicts is close to the experimental value
without involving any adjustable parameters. An explana-
tion has also been provided for the super-exponential growth
of the domain in the nonlinear regime within a range cover-
ing about two orders of magnitude. The reason for the accu-
mulation of excess charge in the domain becomes clear, as is
the role played by this charge. The reasons for the fluctu-
ations in scattered-light intensity and the observed spectral
width due to averaging have also become clear.

4.2.15.

The shift of the spectrum into the subharmonic region is
essentially the only remaining unexplained question. As al-
ready noted, the nucleating wave packet is incoherent in the
transverse coordinate and is distributed over a large number
of practically parallel coherence tubes with diameters of a
few dozen wavelengths. Although the packet reaches the
level corresponding to the onset of intermediate nonlinear-
ity, the piezopotential humps begin to limit the mobility of
electrons in the longitudinal direction without affecting it in
the transverse direction.?® Electron bunches can move freely
in the transverse direction under the influence of both Cou-
lomb and diffusion forces. This transverse motion takes the
electrons from the region of the potential barrier in one of the
coherence tubes into the valley of a neighboring tube. They
can subsequently return to the original tube, but only to a
previous valley (Fig. 19). This *“snaking” of the electrons
can continue because of flux incoherence until the piezopo-
tential humps accidentally coincide in neighboring tubes.

It is readily seen that this motion produces an increase
in the spatial period of the electron-density wave because the
electrons accumulate only on certain piezopotential humps.
If the frequency content of neighboring coherence tubes can
lie within the amplification bandwidth, i.e., 0.70,7-1.3Q,,7,
the smallest spatial period of sound for which the piezopo-
tential humps can coincide for neighboring coherence tubes
is the largest spatial period of sound (Fig. 19). Since the
amplification process is local, the only oscillations that will
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be amplified will be those for which the electrons are found
to bunch, and all others will be damped out. This will lead,
first, to a reduction in the mean flux frequency by a factor of
about 2; i.e., it will shift towards the lower limit of the ampli-
fication bandwidth; and, second, the transverse coherence of
the flux will increase; i.e., transitions between neighboring
tubes will become less sharp. As noted above, both these
effects have been observed experimentally.

This mechanism provides a natural explanation not
only of the frequency shift itself, but also of its confinement
to the intermediate nonlinearity region with the super-expo-
nential domain growth. It is readily seen that this mechan-
ism will not operate either in the linear or the deep saturation
regions, but it will explain all other properties of spectrum
conversion. Indeed, only the experiments reported in Refs.
94 and 95, in which sound was injected from outside, require
special examination. These experiments were found to pro-
duce different results, probably because of the special fea-
tures of the external injection of sound (in so far as we can
judge, all the other experimental conditions were the same).
We know that a large-diameter source was employed in Ref.
95, so that the sample intercepted a practically homoge-
neous plane wave. The peripheral regions, in which the wave
intensity may have been lower and the relative importance of
noise greater, were only of minor importance. Accordingly,
“snaking” motion was practically impossible, which en-
sured the efficient generation of harmonics and the poor gen-
eration of subharmonics. We note that the frequency at max-
imum gain was found to occur in the subharmonic region.
The design of the source used in Ref. 94 is not known, but we
may suppose that it actively excited only the central portion
of the sample. There was therefore very little contribution
due to noise from the periphery of the beam, and this assured
the efficient generation of subharmonics while completely
suppressing harmonic generation.

The snaking motion of electrons described above is thus
seen to provide a qualitative explanation of all experiments
involving frequency conversion in the subharmonic region.
However, a quantitative theory based on this mechanism is
still lacking.

5.RESONANCE EFFECTS IN THE ACOUSTOELECTRONIC
INTERACTION

Resonance effects accompanying the development of
the acoustoelectronic instability are particularly interest-
ing.®7*193-11% There are at least two types of effect: One of
them occurs in photosensitive crystals in which carriers are

FIG. 19. Distributions of the maxima of piezopotential and number
of electrons (schematic). Line thickness is an approximate measure
of the potential amplitude and the thickness of the layer of electrons
represents their number. Dashed lines show the snaking motion of
electrons in a flux consisting of three coherence tubes.
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excited by photons whose energies are less than the band
gap; the other occurs when the energy of the probing pho-
tons is less than the band gap. We shall now consider these
very different effects in turn.

We recall at this point that a change in the frequency of
light is accompanied by a change in the absolute values of the
elasto-optic coefficients,'' some of which increase and some
decrease at resonance. Next, there is also a change in the
absolute values of the refractive indices n, and n,. They be-
come comparable near resonance (at the isotropic point''?)
after which the difference between them changes sign and
the crystal becomes negative instead of positive. Finally, in
real semiconductors, the band edge is not perfectly sharp
and obeys the Urbach rule.

5.1. Resonance between probing beam and band gap

We assumed in the foregoing discussion that the modu-
lation of permittivity by an elastic wave was almost entirely
due to elasto-optics. There are, however, other modulation
mechanisms as well. The most important of these in a piezo-
semiconductor is band edge modulation by the Franz-Kel-
dysh effect. This is equivalent to an increase in the attenu-
ation coefficient, i.e., modulation of the imaginary part of
permittivity. In accordance with the Kramers—Kr6nig prin-
ciple, the change in the imaginary part of permittivity leads
to a change in the real part, i.e., to the formation of a spatial
phase grating which scatters light simultaneously with the
scattering due to the elasto-optic constants. This problem is
examined theoretically in Ref. 108.

The basic properties of this type of scattering can be
summarized as follows. First, the phenomenon exhibits res-
onance and can be observed only when the frequency of the
probing light beam falls on the Urbach edge. Second, since
the Franz-Keldysh effect is even, the spatial period of the
grating produced by this effect is greater by a factor of 2 as
compared with elasto-optics, and scattering occurs as if it
were due to the second harmonic of the flux frequency. This
produces a radical change in diffraction geometry. Third,
whatever the type of the amplified wave, scattering by this
mechanism can only be isotropic. Finally, the scattered in-
tensity is not a linear function of the flux intensity: the rela-
tion is quadratic (for low intensities) or exponential (at high
intensities). Scattering due to the Franz-Keldysh effect is
significantly different from scattering due to the elasto-optic
effect, and this enables us to separate their contributions ex-
perimentally. Experimental results'® are in reasonable
agreement with the theory.

5.2. Properties of the process at almost resonant
photoexcitation

When the sample is photosensitive and free electrons
are excited almost resonantly by a light beam, it is found that
several properties appear in the course of instability develop-
ment. If the equilibrium concentration of electrons, deter-
mined by the attenuation coefficient and pump intensity, is
high enough, the saturation of the acoustic flux will also
occur at a high level. The piezoelectric field of the flux will
produce an increase in the attenuation coefficient as a result
of the Franz-Keldysh effect, which in turn will give rise to
an increase in the electron concentration. This will produce
a rise in the saturation level, and the attenuation coefficient
will increase still further. The process forms an avalanche
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that is not limited by the nonlinearity of the acoustoelec-
tronic interaction factor or lattice attenuation. It follows
that resonant photoexcitation gives rise to a new mechanism
for the development of acoustoelectronic instability, which
leads to a rapid rise in the flux intensity above the usual
saturation level. The new saturation level is determined by
the fact that the Mott transition''>'"® occurs and high-den-
sity neutral plasma bunches are produced when the electron
concentration exceeds the critical value (n,~10'"® cm™?).
These bunches are unaffected by the drift field and do not
therefore contribute to amplification. Moreover, they are
dragged by the deformation potential and provide an addi-
tional damping that rapidly stops the avalanche growth.

This process has been observed experimentally.®®*® A
powerful laser beam was introduced through one end of the
sample and acted both as a pump and a probing beam for the
observation of back scattering. It was found (Fig. 20) that
when the pump photon energy was significantly lower than
the band gap, the scattered intensity was a linear function of
the drift field. Moreover, the absolute acoustic flux intensity
was found to be in good agreement with the theoretical pre-
diction.

When the pump was close to resonance, the acoustic
flux intensity rose rapidly by approximately two orders of
magnitude and then quickly reached its saturation level. Si-
multaneous observations of the luminescence spectra
showed that, as the flux reached the saturation level, the
luminescence spectrum acquired a new and rapidly growing
Q-band with a maximum at 505 nm, which is usually inter-
preted as luminescence of high-density plasma.''®

The linear theory of the onset of this avalanche growth,
developed in Ref. 116, predicts a threshold that is close to the
experimental value, which can probably be regarded as a
verification of the proposed mechanism.

We note that a similar effect is considered in the theo-
retical paper by Sitnikov and Shkerdin.'® The only differ-
ence is that, in the latter case, the band edge was assumed to
be perfect and the band modulation due to the deformation
potential and not the Franz-Keldysh effect. Estimates show
that at frequencies typical for the acousto-electronic insta-
bility, the contribution of the former mechanism is small as
compared with the contribution of the Franz-Keldysh ef-
fect, and has therefore not been detected experimentally as
yet. We note in conclusion that the initial experimental and
theoretical research into the resonant interaction has al-

1 ]
a 5 0
Eo, kKV/Ccm

FIG. 20. Scattered-light intensity as a function of electric field in CdS for
A, = 539.5 (/) and 500.8 nm (2), T= 62 K (Ref. 66).
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ready been revealed new and exceedingly interesting aspects
of the effect, so that further theoretical and experimental
studies are clearly necessary.

CONCLUSION

It is clear from the foregoing presentation that acousto-
electronics generally and the development of the acousto-
electronic instability in particular are of considerable scien-
tific and practical interest. Many of the problems in this field
have long been solved, and have been surveyed in the review
literature,””’ while other problems were tackled relatively
recently and our review was largely focused upon them.
Nevertheless, many unanswered questions remain and await
a complete solution. Although the new mechanisms pro-
posed recently may well produce a significant contribution
to the acousto-electronic interaction, and provide a qualita-
tive explanation of practically all experimental data, the ab-
sence of an adequate theory of these processes means that we
cannot consider the problem to be fully solved, which is an
obstacle to the planning of further experiments and thus
tends to delay them. Satisfactory experimental techniques
are now available, but there is a lack of high quality samples
which are essential if reliable and reproducible results are to
be obtained. A technology for growing such samples is still
lacking.

The final solution of the problem will have to await the
advent of a three-dimensional nonlinear theory of the
acousto-electronic interaction for short pulses and the avail-
ability of high-grade samples.
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