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1. INTRODUCTION

References 1-4 examined a hypothesis about the gener-
ation of galactic cosmic rays in cosmic plasma pinches which
do not contain an internal magnetic field. It was shown that
accelerated particles arise in plasma streams squeezed from
pinches. In the range of ultrarelativistic energies E> Mc? the
integral particle spectrum has the form I=CE~", with
v =+/3. This is close to the exponent of the observed spec-
trum of galactic cosmic rays, and increases the plausibility of
the hypothesis.

However, the plasma fiber filaments observed in space
contain, as a rule, an internal longitudinal magnetic field,
which is evidenced by the polarization of its synchrotron
radiation. Thus, this article examines the problem of con-
strictions in a pinch with a longitudinal field. One can pre-
dict that, in an ideal plasma with a fully “frozen-in” internal
magnetic field, constrictions in the pinch will not be able to
break off completely so that the forces of magnetic compres-
sion remain finite, and the yield of accelerated particles with
large energies will be substantially reduced compared to the
case of a pinch without a field. It is shown below that the
exponent of the spectrum of particles in a pinch with a field is
v=(3+a)'’? where a = (cB}/B{1})? where v} is the
thermal speed of ions.

2. FOUR-DIMENSIONAL VECTORS OF THE ELECTRIC AND
MAGNETIC FIELDS

If one assumes the absence of collisions which aid in the
exchange of energy between various degrees of freedom of
particles, one should use magnetic hydrodynamic equations
with anisotropic plasma pressure. These equations of ideal
relativistic anisotropic magnetic hydrodynamics are a rela-
tivistic generalization of the well-known Chew, Goldberger,
and Low equations (see Ref. 5), which were examined ear-
lier in Refs. 6-10. In all cases they are derived from a relativ-
istic kinetic equation.

Here for simplicity we note a more concise derivation of
the equations of ideal relativistic anisotropic magnetic hy-
drodynamics using a purely hydrodynamic approach. We
note that in the system of coordinates moving with matter,
the four-dimensional energy-momentum tensor of the plas-
ma and the field should have the form

e+u O g g
~.k_ 0 pJ_+,u
™ = 0 0 P tu (U
0 0 0 P—H (1)

where e = pc’(y) is the energy density of the particles, p is
the mass density, # = B 2/8w is the magnetic energy density,
and p,, are the components of pressure. To write this tensor
in an arbitrary, in particular, a laboratory system of coordi-

1018 Sov. Phys. Usp. 34 (11), November 1991

0038-5670/91/111018-03$01.00

nates, it is useful first to examine the ancillary problem of
movement in the fields E and B of a hypothetical particle
such as a “Dirac monopole” with an electric charge g, and a
magnetic charge g,,, . The equation of relativistic motion (see
Ref. 11) should have the form dp/d¢ = F, + F,,, where F,
=¢q,E* E* =E + [SB] is the well-known Lorentz force
and F, is the not so well-known “magnetic analog of the
Lorentz force,” which is presented, for example, in Ref. 11,
andisequaltoF A =¢4,.B* B*=B — [BE],B=v/c
Further, we recall that in the special theory of relativity

in four-dimensional space with coordinates 7 = ct = x°,
x'=x, x**’=y, x**=z and with a metric (ds)?=

(cdt)? — (dr)? = g, dx'dx* = (d7/y)?, a four-velocity
vector is introduced v’ =dx'/ds = (yu), u=8y, y=1/
(1 —B?) as well as a four-acceleration w' = du’/ds. This

can be used to write the equation of motion of a hypothetical
particle presented above as

w = +E ¥, ¢=(E"yE), ¥=(uByB"), (2)

where &, . = ¢.../Mc* arescalar. Then it is clear thate’ and
b' are correct relativistic four-vectors which are also used to
construct the equations of relativistic magnetohydrodyna-
mics.

3.EQUATIONS OF RELATIVISTIC ANISOTROPIC MAGNETO-
HYDRODYNAMICS

To derive the equations of ideal relativistic anisotropic
magnetohydrodynamics, we note that for the infinite elec-
tric conductivitL which we have assumed, we have the condi-
tion E* = E = [#B] =0, so thate' = 0. Only the four-vec-
tor of the magnetic field ¥ (Eq. (2)) remains, and with it
the energy-momentum tensor can be written as

’I"k=S1u’uk+Slg‘k+S3b"bk, (€))]

where S, , 5 are three scalars. Comparison of Eq. (1) with
Eq. (3) yields their values

Sl =e+pJ_ + 2{‘ )S2= —PJ_ —u, S3= ([7” — D —2#)3_2
(4)

If we then use the more convenient tensor
TS = Sulu, + S8, + S5, , b, =gV, (5)

the desired equations of ideal relativistic anisotropic mag-
neto hydrodynamics are reduced to the equations

VIT{k=O’ V’Pui=0, V'(bllt*—bku‘)=ov 6)

the first of which yields the laws of conservation of entropy,
energy, and momentum. The second is the relativistic equa-
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tion of continuity, and the third, considering the expression
B = yb — ub ? is equivalent to the freezing-in equation

divB =0, 8B/dt= curl[vB]. (7

It is useful to note that the combination u* V, T/, = 0O yields
for the adiabatic curves equation

d d 1 d ~,
P gs (S1/p) + 3552+ ipzs3 B/ =0,
d_ v, (8)
ds = “
and the combination V, T}, — 4, u'V, T/ =0 at k = 0 yields
the law of conservation of energy

S, L4 1p S (S)/p) + & Sy + V(S =0. (9)

4.EQUATIONS OF LONG-WAVELENGTH PERTURBATIONS
OF APINCH

Let us use the equations of ideal relativistic anisotropic
magnetohydrodynamics which we have obtained for the
problem that we have examined of constrictions in a pinch
with a longitudinal magnetic field. Due to the complexity of
the general equations we limit ourselves, as before, to an
analysis of only long-wavelength perturbations with A>a,
where a(¢,z) is the radius of the pinch. For these perturba-
tions one can use the “narrow jet approximation” in which
the quantities e, u, p, p|, p,, v = v, and B = B, are consid-
ered to be constant over the cross section of the pinch 7a?.
The radial components are considered to be equal, respec-
tively, to

v,=rala, a=daldt+vda/dz, B, =—(r/2)dB/oz.

(10)
Then, setting u = sh p, p, = pa*/p,a} and introducing two
convenient operators

3 j d 2

d d
—_ gyt - —— = —_
P—uvi—ds_yal'+

d 5_ . 9 9
uaz,Q—uat+yaz, (11)
we can reduce the continuity equation (6) and the energy
equation (9) to the form

6y= —?’lnp*, (e+P|P$y= —ap||+(p||—pi)aln§-
(12)

In the derivation of the last equation from Eq. (9) it was
assumed that n the narrow jet approximation one can set
bV, = BQ V.b' = BPy Further, we assume that in its own
system of coordinates the plasma is nonrelativistic and
e =pc* + p, + p;/2. Then Eq. (8) yields two Chew, Gold-
berger, and Low adiabatic curves: p; ~p 3B 2, )2 ~pB
T, ~B.

However, for simplicity, hereafter we will assume that
p; = 0. This assumption is reasonable when applied to a hy-
pothetical space pinch, whose formation should apparently
be preceded by a stage of gradual piling up of the plasma into
a cylinder. One can expect that in this stage the component
p, will increase much more than the longitudinal pressure
p)» which corresponds to p; > p| . Assuming equal tempera-
tures and densities of electrons and ions and substituting the
adiabatic curve expression p, =p, +p;, = pip, (a,/a)*
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P, =¢e(1 — x)/x(1

into the condition of equality of pressures
p. + B*/87 = B /8 at the boundary of the pinch r =g,
we express the effective density in terms of the transverse
temperature

—¢), e=(BYBYE x=eT /TS, (13)
and substituting it into Eq. (12), we finally find two equa-
tions

Px= x(1 - x)&y, ?’y = —vax, v= 2’I‘}_/f:Mc2 . (14)

5.SOLUTION USING THE HODOGRAPH METHOD WITH A
LORENTZ TRANSFORMATION

To solve these nonlinear equations we first introduce
the inverse functions 7 = ¢t = T(x,y), z= Z(x,y), which
are the “laboratory” time and coordinate. Then we intro-
duce another “accompanying” time and coordinate T(x, ),
Z (x,y) which are linked with the laboratory quantities T°
and Z by the Lorentz transformation formulas: 7 = yT
—uZ,Z =yZ — uT. Then it is easy to verify that this “‘ho-
dograph transformation” with an additional Lorentz trans-
formation can yield two equations from Eq. (14)

T”,+Z+Zx/v=0, Z,+T-x(1-xT /=0, (15)
from which, taking into account the nonrelativistic nature of
the quantity vx = 27, /Mc’ €2, we obtain

(1 — T L+ 2 = DT, =w(T - T)). (16)
Finally, introducing the convenient variable £ = 1 — 2x, we
finally obtain the “proper time equation™

6T = w(T — T") 6T =(1 - 1,-'2)T§ +(1 =52 —v)TE
(17)

For our purposes, only special solutions of this equation
which describe perturbations that vanish in the opposite
time limit #— — oo are interesting. This ““condition of spon-
taneity” of perturbations seems to simulate the preliminary
stage of gathering of plasma into a cylindrical pinch, which
is initially assumed to be in equilibrium without perturba-
tions. The absence of perturbations corresponds to the
“starting point” £ = £, = 1 — 2¢, ¥y = y,, and we require the
function 7'(£,p) to have a property of the typeof T— — oo at
this point and to go to zero at all boundaries of the examined
range of change in arguments — 1 < <1, — o0 <y < ol It
is not difficult to verify that only a solution of the following
type goes to zero at the boundaries

T= I;OC/‘V’/‘ qu, é\’/’k(‘S) = ekﬂl’k,
(18)
Y=V = Iy + (7’2 - 1)1/2]—1 ,

where the eigenvalues are 8, = — (1 + k) (k + v) and the
eigenfunctions are the well-known Jacobi polynomials (see
Ref. 12)

= wPp w=(1- %1 +§P, P = FEO),
(19)
a=1, f=v~1>0,
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which have the property of orthogonality

+1
JwP POk = RS2, b =241+ B/ (k+ )2k +v +1).
-1

(20)

One can expand any function, including a delta function, in
terms of the full set of polynomials P,

3¢ ~ ) = v 3, PPN (21)
which has the required property at the starting point
& =¢&,=1—2e>0. Wenote, by the way, thatat£ > 1/2 the
pinch is stable and constrictions cannot grow due to the sta-
bilizing effect of the field B, . The full set of solutions of the
spontaneous type that interest us is

~mn) _ S -1 g " 4 n)ﬂ". 22
(™) “(ﬁ)gohk P &) (dgo) Py (dy) (22)

6. THE SPECTRUM OF PARTICLES ACCELERATEDIN
CONSTRICTIONS

The perturbations described by the solutions in Eq.
(22) vanish as t— — oo, then gradually increase in the time
interval — oo <t <0, and at the critical time ¢t = 0 in the
narrowest parts of the constrictions we have p, -0 at the
smallest possible but finite value of the radius a
=a,,, =d.t''% Plasma is squeezed from the constrictions
into bulges which in our model with a “narrow jet approxi-
mation” have the form of thin disks, in which we have
Py — ®©, @— 0, x—0. The momentum distribution function
of particles p= Mcu is found from the expression
dN = nyma*dz = F(u,t)du. Taking into account Eq. (15)
we obtain

F=(Ng/p,IZ2 + vx(1 = )T 2V (T, + uZ}), Ny=maln,.

(23)

In the limit x —» 0 we then have F = const y“(T; )._0»>and
at ¥> 1 in the series in Eq. (22) it is sufficient to retain the
first nonvanishing term with k = k,,;,, which yields asymp-
totically an ultrarelativistic particle spectrum of .the
form F~dN /dE~E~° with exponent s = 1 4 q,, where
k=K

The first solution X% from the set in Eq. (22) has a
term with k = O with an exponent g, = v'2 both in the pres-
ence and absence of a longitudinal field B . The remaining
exponents are equal to g =[1—(6/v)]"?
={2 + k+ [k(k + 1)/v]}/% However, it can be shown
that the solution TX*® describes perturbations which are
periodic over the length of the pinch, and as they grow one
must have periodic *““priming” perturbations. One can sug-
gest, as was done earlier in Refs. 14, that there are no visible
reasons for the development of perturbations which are peri-
odic over the length of the pinch in space, so that the solution
TX*® apparently is not realized “in practice.”
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All remaining solutions given by Eq. (22) describe not
periodic but local perturbations of the type of ““isolated con-
strictions,” and apparently one should consider the most
typical among them to be the solution 7¢*%’, which begins
with the term with k=1 and has a spectral exponent
g, = [3 + (eMc*/T?)] "2 In the absence of a longitudinal
field B, =0, we obtain the previous result ¢, = V3 how-
ever, at a nonrelativistic temperature 79 €« Mc? the addition
of even a relatively small longitudinal field Bﬁ yields a
sharply falling off spectrum of accelerated particles.

7.CONCLUSION

We note that the case without a longitudinal field'™ is
obtained from the formulas presented above with a field by
passing to the limit £-0, v— o, when we have
Y. —me "L (n), where 7 =2T,/Mc?, and L " is the
Laguerre polynomial introduced earlier in Refs. 1-4.

It is also useful to note that in laboratory experiments
with deuterium pinches conducted in thermonuclear stud-
ies, the addition of a longitudinal magnetic field substantial-
ly reduces the yield of accelerated deuterons and the neu-
trons of the nuclear reactions D + D which they produce;
however, the stability of the pinches increases.

Finally, it was shown in Ref. 13 that the energy supply
for galactic cosmic rays may be provided by the so-called
cosmic “gamma bursts’’ which in our opinion are discharges
like “cosmic lightning” with pinches similar to those exam-
ined in this article.
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