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The problem of migration of particles in phase space
constitutes a classical problem. Its correct, nonphenomeno-
logical formulation for gases that are not too dense is con-
tained essentially in the work of Boltzmann,' where he for-
mulated his famous kinetic equation

' d(JH+ vV \p(nt) = S (D

for the distribution functionp(r\t) (r, v, and t are the coor-
dinate, the velocity, and the time). Under certain conditions
the collision integral S can be expressed in terms of deriva-
tives of p\ this approximation, which is called the diffusion
approximation, is widely applied in the most varied fields of
physics. It has been discussed in detail in the literature, and
has been included in textbooks.2 8 In the recent past, how-
ever, the situation has changed so that the given, seemingly
settled problem has required a certain modernization and
rethinking.

In the second half of the sixties a new field of applica-
tion of physical kinetics arose-laser physics, nonlinear laser
spectroscopy, which is characterized by conditions quite un-
usual from the standpoint of traditional kinetics. The point
is that the fundamental agent of laser spectroscopy-a plane
monochromatic wave reacting in resonance with a gas,
creates a sharply defined structure in the velocity distribu-
tion for the atoms existing in optically combining energy
levels. The width of this structure can be considerably
smaller than the general (Maxwellian) width of distribution
(what we have said pertains to one Cartesian variable—the
projection of v on the wave vector k of the wave). In contrast
to this, the traditional physical concepts associated with the
diffusion approximation started explicitly or implicitly with
a pattern of relatively smooth nonequilibrium components
of the velocity distribution.

A second new and important circumstance involves the
large spectral power densities of laser radiation and the cre-
ation of considerable concentrations of excited states. In
particular, very essential factors in the migration of atoms in
excited states are their short duration, the features of the
differential cross section in the region of small scattering
angles, and other circumstances. As a result, in describing
the migration of excited atoms, models prove to be of interest
that strongly differ from those appropriate in the ground
state.

Special approaches in the theory and in the overall
physical picture of diffusion processes have been created by
the particularly optical problem of the random walk of the
dipole moment (or the polarization, or the coherence),
which organically enter into the problem of Doppler broad-
ening of spectral lines.

The study of the mentioned problems and a number of
others in nonlinear spectroscopy has led to a revision of the
conditions of applicability of the diffusion approximation
for describing migration in v-space. It has undergone some

development, and the accent has been shifted in the common
views. Besides, this is what usually happens in attempts to
apply old, developed methods to new problems. Also the
general tendency of recent decades toward weakening the
role of phenomenology and increasing the relative weight of
microscopical theories has had a substantial significance.

First of all, let us examine the traditional problem of
migration of a small admixture of heavy particles (mass m)
in a buffer gas of light particles (mass mb, m > mb). Bearing
in mind the very simple case of structureless particles, we
shall write the collision integral in the form

S = -vp(rvf) (2)

(3)

Here the kernel A (v| V [ ) of the collision integral is the num-
ber of v, ->v transitions per second owing to collisions with
the buffer gas. The exit rate v evidently gives the number of
transitions per second from the point v into the entire veloc-
ity space.''

Usually one argues as follows (see, e.g., Ref. 6, Sec. 21).
It is actually evident that, when m > mb, the variation of the
velocity of the heavy particle owing to collisions is relatively
small. In other words, the kernel ^ (v |v , ) will be a sharply
varying function of the velocity difference vt — v = g, and a
far smoother function of v, :

Therefore it is natural to use the expansion

V) = a(v+£^

(5)

and write the collision integral in the form

For an equilibrium distribution we have

p(rvt) = p-expC-v2/^, i;2 = 2TJm,

Here the components of the vector Aa and the tensor BaB are

(7)

'„/»«. (8)

where Tb is the temperature of the buffer gas,2' and the
collision integral must be zero. Consequently a relation must
exist that connects the quantities Aa and Bae:

(9)

Ultimately the kinetic equation acquires the form of the dif-

1008 Sov. Phys. Usp. 34 (11), November 1991 0038-5670/91 /111008-10S01.00 © 1992 American I nstitute of Physics 1008



fusion equation in v-space, which is called the Fokker-
Planck equation:6

, T /!«- ,_ M
(10)

The collision integral in Eq. (10) amounts to the divergence
in v-space of a certain vector, which is naturally called the
flux density of particles in velocity space due to collisions:

S = -divvs, sa=-\Aa. dv

dB.
+ ̂ P-B.

'f
(11)

Therefore the kinetic equation (10) has the form of the con-
tinuity equation in v-space:

— + W /> + div s = 0, (12)

"thus the conservation of the number of particles is automat-
ically obeyed" (Ref. 6, Sec. 21).

Both the derivation and Eq. (10) itself leave the feeling
of a certain dissatisfaction. First of all, by definition the set of
quantities Aa and Ba/3 are the first and second moments of
the kernel. Generally the moments of any function, in this
case a( v,f) serve as independent characteristics of it. There-
fore the existence of a certain connection between Aa and
Bae seems unobvious and requires clarification. Clarifica-
tion is all the more necessary in that under equilibrium con-
ditions the collision integral in (2) is identically equal to
zero for an arbitrary interaction of the colliding particles, for
arbitrary values of any of their characteristics. In view of
what we have said, the flux density in v-space due to colli-
sions must automatically equal zero, and the additional con-
dition (9), albeit ensuring this equality, is superfluous. We
note, moreover, that it is not clear from the arguments that
led to Eq. (10) to what is the small parameter equal that
justifies the expansion (5). Finally, the expansion (5) itself,
where the functions a(v, ,f) andp(rv, t) figure "with equal
rights" in the product <z(v , ,f )p(r\{ t), will be natural if the
widths of the cofactors a(v, ,f) andp(r\{t) are of the same
order of magnitude as functions of the velocity. Perhaps the
situation is just so in the traditional problems. However, for
problems of nonlinear spectroscopy the stated conditions are
not at all typical.

The ideas and doubts that we have presented become
quite graphic if one uses the vanishing of the collision inte-
gral for equilibrium conditions, not at the end, but at the
very start of the discussions. Actually, let us substitute the
expression (8) into the formulas (2) and (3) for the colli-
sion integral. We find from the condition 5 = 0 the connec-
tion between ̂ (v|v, ) andA(\i |v) (the principle of detailed
balance):

^(vlv^expC-vf/i?) = ̂ (V, | v)exp(-v2/^), (13)

Thereupon we can write the collision integral thus:

S = Ja(v, v - vjjjexprcv? - vV '̂U'V) -P(n*)}a*i-

(14)

Now we note that the "smooth" variation of the kernel
a(v,v — v , ) contains v rather than v,, and in the integrand
of the entry term actually not the product

v, — v) /o(rv , f ) will be expanded, as was the case be-
fore, but the combination exp (v2 /v2 )p (rv, t) of the distribu-
tion function and the standard coefficient, which does not
depend on the features of interaction of the particles in the
collisions. In other words, Eq. (14) in explicit form gives the
"slow" coefficient of/9(rv,?) , and its width proves to be
equal to v. The expansion of the product exp(v2 /y2)p(rv, t)
in powers of (v, — v)0 leads to the relationship

As before, Aa and Ba/3 are defined by the formulas of (7).
Under equilibrium conditions we have

exp(v2/y2)/o(rvf) = const, and according to Eq. (15) we
have 5 = 0 without additional conditions of the type of (9) .
The conclusion that there are no connections among the co-
efficients remains in force also when we retain the deriva-
tives ofp(r\t) of all orders. We should have expected this
result, since the coefficients of the expansion are the mo-
ments of different orders of the kernel, and they are indepen-
dent characteristics of it. On the other hand, as we can easily
convince ourselves, the condition for going from Eq. (15) to
Eq. (6) is given by the same equality (9). In other words,
within the framework of the sequence of arguments (13)-
(15), the condition (9) ensures the representation of the
collision integral in the form of the divergence in v-space of a
certain vector, which is interpreted as the flux density of
particles in v-space, rather than the equality 5 = 0 under
equilibrium conditions.

The conclusions of the theory should not depend on the
sequence of using the arguments, and the contradiction that
arises can be only of methodological character. The point is
that the relationship (9) between Aa and Ba{3 is, of course,
not valid in the general case, yet it proves to be approximate-
ly valid, within the accuracy of calculating 5, which is given
by the terms dropped in the expansion ofp(rvt).

Indeed, let us use the explicit expression for the kernel:

{ulu^O^-uJpfv-V,--^!!-

-u,)dud«j; (16)

Here cr(u|u,) is the differential scattering cross section, u
and ut are the relative velocities after and before collision, fi
is the reduced mass, Nb is the concentration of buffer parti-
cles, and Wb (V[ — u , ) is their velocity distribution, which
we should assume to be the equilibrium distribution:

(17)

v b i= v i - u i '

The (5-function in Eq. (16) reflects the laws of conservation
of energy and momentum. Thus the kernel ^ (v |v , ) is pro-
portional to the differential cross section (or the partial rate
of collisions JVb anda(u|u,)) averaged over the velocities of
the buffer particles (or over the relative velocities) with ac-
count taken of the conservation laws.
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By using the reciprocity theorem and Eq. (17), one can
show6'9 that Eq. (16) implies the relationship (13) between
the kernels /4 (v | v i ) and ,4 (v! | v) that arose above in a purely
phenomenological way.

If we assume that 0-(u|u,) depends only on u and the
angle 6 between u and i^, we can arrive at the formulas

A = VjV, (18)

(19)

'-u)«3du, (20)

X(3 cos*0 - l)Wb(\ - u)M3du, (21)

u) = 2rcJ (1 - cosfe)cr(u| Uj)sin 8d0, cos 6 = uu,/«2,
(22)

cos 9 = vu/vu.

The proportionality coefficient v, between the vector A and
v is called the transport frequency. The diffusion tensor Ba/3

is axially symmetric (the symmetry axis is directed along v);
5|| and BL are the components of the tensor in the v-system
parallel and perpendicular to v.

Direct calculation shows that the values of Aa and Ba/3

from Eqs. (18)-(21) do not satisfy the equality (9). How-
ever, if we adopt the inequalities

mJm <cl, (23)

then the corresponding approximate values are given by the
formulas

L = V, V,

(24)

and the condition (9) is satisfied. The relative corrections to
the first approximation of (24) are equal in order of magni-
tude to mb/m and mb v

2/mv2, and one must not retain them,
since the dropped terms containing the third and fourth de-
rivatives of p are of the same order of smallness. Actually,
simple estimates of the terms containing the nth-order de-
rivatives of p are:

- \ 2
„=!: TtfiP, /t = 2: |£

JL\ n = 4:
vf~Z

(25)

Here Sv is the characteristic width of the nonequilibrium
component of the function p(rvt). Evidently the expansion
parameter of the collision integral is the quantity

m {dv (26)

This coincides with mb/m if 8v~v. We see also from the
estimates of (25) that the first term of the expansion can be
either smaller (v < v2/Sv) or larger (v > v2/Sv) than the sec-
ond term. Hence we must retain the terms with first and
second derivatives of p.3> Yet the third- and fourth-order
terms are small with respect to the parameter mb/m, as are
the corrections to the values of Aa and Ba/3 calculated by the
approximate formulas of (24).

Thus the relationship (9) is only approximately valid
when the transport rate and B\\ zzBL~B are taken to be in-
dependent of the velocity v.

Sometimes the independence of B on v is advanced as a
hypothesis not associated with the condition (9) that sup-
plements it. Here we see an error, at least, when we are deal-
ing with the Brownian motion of a particle in a gas. Of
course, without concretizing the physical meaning of the ar-
guments and the functions, in a purely phenomenological
approach, a dependence of v, and B on the variables of the
problem is quite possible (see, e.g., Refs. 4 and 8).

Problems close in spirit arise in the opposite limiting
case m<g.mb, when the velocities of the buffer particles on the
average are considerably smaller than those of the impurity
particles ( y > y b ) . Upon assuming in Eq. (14) that
H/m = mb(m + w b ) ~ l and substituting <5(v, — u , ) in
place of Wb (Y! — u , ) , we obtain

X(v|v1) = 2ATba(v|v1)<5(v2-v2). (27)

In other words, in this approximation the buffer particles are
assumed to be immobile, while the relative velocities u and
HI are assumed to coincide respectively with v and v, . The
limiting relationship (27) is known as the Lorentz model,
according to which the modulus of the velocity does not vary
in collision, while the angular dependence of the kernel and
of the differential cross section on the angle between v and v,
coincide.

The distribution Wb (v, — u t ) , which was replaced by
8 (v [ — u,) , actually has the width vb (see Eq. (17)). There-
fore, as simple estimates show, the mean-square variation of
the modulus of the velocity is

'• ~^vi, v£ v. (28)

The variation of the modulus of the velocity on the average is
relatively small, and we can proceed using the diffusion ap-
proximation with respect to the distribution of the particles
over the modulus of the velocity v.

Let us examine the spatially homogeneous problem
(Vp = 0); we shall integrate the kinetic equation over the
directions v of the vector v and take account of the fact that
the kernel depends only on v, i>, , and the angle between v and

|PO*)< I*)

:«,!«)- u^ivjdv,.

(29)

(30)

Now let us expand exp(v2/v2)p(v^ t) in Eq. (29) in powers
of y, — v and restrict the expression to second-order terms:

>V#3£ _ _
dt (31)
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Here we have introduced the following notation for the first
and second moments:

a — — |v)dvp

(32)

(33)

As in the previous case (m^>mb), under equilibrium condi-
tions the collision integral equals zero for arbitrary moments
a and b. However, if one tries to reduce Eq. (31) to the
continuity equation for the function v2p(vt),6

*•__ d \.2*l*v- . <P\\ (34)

(35)

For exact values of a and b, the relationship (35) is not ful-
filled, but proves valid in the case

then one must impose the condition

uu j. \ v , \ , nc = a + -: Hr - 1 6 = 0.

(36)v »

We have already discussed the role of the inequality ,
yet the condition i>>yb perhaps is not fully obvious. It in-
volves the fundamental condition of applicability of the dif-
fusion approximation: in the course of any time interval A? of
interest, a large number « of collisions must occur, i.e.,
n = vAf> 1 (see, e.g., Ref. 8). In view of what we have said,
in the diffusion approximation it is physically valid to study
the intervals u 2 ~ ( A u ) 2 ~ U j j n ~ u j ; .

Thus, also in the case of heavy buifer particles the con-
dition (35) is satisfied only at the level of accuracy that is
inherent in the diffusion approximation. In this connection
it is of interest to estimate the order of magnitude of the
terms dropped in Eq. (35). Here the values of the coeffi-
cients are important, and hence we must use some type of
models that allow calculation of the moments in full. For the
calculations the model is simplest in which the combinations
«<7 ( 1 ) ( « ) , ua < 2 ) ( « ) , and ua(u) do not depend on u. For
this model we have

c = 15(m/mb - ug/6uV

Consequently, actually the condition of applicability of the
diffusion approximation is stricter by an order of magnitude:

(37)

Similar results are obtained for a model that assumes
cr ( " ( M ) and a(u) to be independent of the velocity u.

If the light particles are electrons, while the heavy parti-
cles are atoms or molecules, then the condition (37) is ful-
filled with much room to spare; however, for a mixture of
atomic or molecular gases, the coefficient 15 is important in
practice, since the fulfillment of the inequality (37) requires
m/mb ~ 10 2. Even for m = 2 (molecular hydrogen) and
m = 4 (helium), we need mb = 200 and 400, respectively.

The estimates of (25) and the parameter of (26) char-

acterize the cases in which the entire collision integral is
written in the diffusion approximation. However, this ap-
proach is not at all obligatory. The point is that the kernel
y 4 ( y | v , ) consists of components that differ strongly in their
angular properties, and one can apply the diffusion approxi-
mation to describe the contribution of only small-angle scat-
tering. Let us study this problem in greater detail.

For collisions of heavy particles (atoms, molecules) un-
der gas-kinetic conditions, the differential cross section as a
rule has three components-isotropic or almost isotropic (i),
small-angle classical (c), and diffractive (d). If we use the
concepts of the quasiclassical theory of scattering, we can
say that isotropic scattering corresponds to values of the im-
pact parameters smaller than the radius of the electron shells
(or the radius of repulsion) of the particles. Small-angle
classical scattering arises from long-range forces, e.g., van
der Waals attraction. Finally, the diffractive component of
scattering arises from the region of values of impact param-
eters exceeding the Weisskopf radius, where the interaction
changes the phase of the wave function by less than 77/2, and
it must be treated quantum-mechanically in the Born ap-
proximation.

Estimates of the effective scattering angles for the stat-
ed three components are:

e.~ i, e c ~ I//T-0,1, »*-£-•• * ~ io-2.

(38)

Here U, X, and/ow are the interaction potential, the de Brog-
lie wavelength, and the Weisskopf radius of the colliding
particles. Since the change in velocity is associated with the
scattering angle Q by the simple relationship (see Eq. (16))

Av= |v-v, I - •
. 9

(39)

the kernel ^ 4 ( v | v j ) consists of three components having
sharply differing characteristic widths:

uc - Q,l(tt/m)l/2v,

- l(T2CwX/n)l/2jj (40)

(Here u is replaced by the mean thermal relative velocity
u = (m/(j.) 1/2y). It is pertinent to recall that the effective
cross section of the diffractive component is approximately
equal to trp2^ and constitutes about half of the total effective
cross section ( ~ 277/5 ̂  ).

The smallness parameter of the diffusion approxima-
tion, which equals the ratio of the effective widths of the
kernel (Ay) and the nonequilibrium component of the distri-
bution Sv, is given, of course, by the widest part of the kernel,

in agreement with Eq. (26).
As is known, in ordinary transport phenomena—diffu-

sion, viscosity, and thermal conduction—the main role is
played by the isotropic and the small-angle classical scatter-
ing (see, e.g., Refs. 10 and 11). In these processes one usual-
ly need not take the diffractive component into account4'
against the background of the others, since its contribution
to the transport cross sections a ( l ) ( u ) is infinitesimally
small (1 - cos'6>~/<9 2/2 for small 6>; see Eq. (22)) . How-
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ever, in problems of nonlinear spectroscopy of gases, the sit-
uation substantially differs, and the diffractive component of
the scattering under some conditions can prove decisive.

As we have already mentioned, owing to absorption and
stimulated emission of a plane monochromatic wave, the ve-
locity distributions of the atoms in the combining levels ac-
quire a sharply marked structure having the characteristic
width Sv~ Tk, where T is the radiative and impact width of
the spectral line for the given transition (the so-called Ben-
nett structure; see, e.g., Refs. 9, 12, and 13). For relatively
low pressures (less than 1 Torr), the standard estimate is
r~108s-'and

6v/V ~ T/kv ~ 1(T2.

Thus the Bennett structure can be extremely sharp on the
scale of the overall width of the distribution of v.

It is natural to use the diffusion approximation only in
the part of the collision integral arising from small-angle (or
only from diffractive) scattering, while keeping the integral
form for the isotropic component:

(41)

(42)

fy = IJ(v, - v)a(v, - vyd(vt |v)dv,,

Ad(y\ v,) = 2NbJ>(u|u,>5(u2 - u2>5 [v - v, - £(u - u,)]

(43)

Here A d (v |v , ) and c r d (u [u , ) are the diffractive (or small-
angle) components of the kernel and of the differential cross
section, while the term 5' involves the isotropic scattering
and is described by formulas like (2) and (3). The small
parameter in the expansion in (42) is the combination

Aud/au - (ji/m)l/2eai>/dv. (44)

We note the "practical disparity" of the effective angle #d

and the mass ratio/u/m in the formation of the small value of
the ratios Ayd and Sv. we can consider the values
#d ~ 10 ~ '-10 ~ * to be typical, whereas we should count the
values n/m = 10 ~ 2-10 ~ 4 "equivalent" to them as unique.

Integration over u and u, reduces the relationship (43)
for A ?, and B d

a/3 to formulas analogous to (18)-(22). How-
ever, the assumption of sharply directed forward scattering
(0d is the small parameter) leads to a simplification. Evi-
dently we have

1 - cos*0 = 2(1 - cos 0) - (1 - cos 0)2,

and for small angles we can drop the term (1 — cos 0)2 in the
definition (22) of the transport cross section a m (u). Con-
sequently, for small-angle scattering we have
<7d

2 )(") = 2o-d"(w),andEqs. (18)-(22) acquire the form

Ad=vfv,

«d ' - u)«2du,

(18a)

(19a)

B& + 2B«. - (£) ~M. \<&)(uWJv - u)M3du, (20a)

l)Wb(v-u)M3du.

(21a)

Thus, in the case under discussion A * and B A
a/3 are deter-

mined by the single transport cross section a d'' ( u ) . Explicit
integration over the angle d between v and u (cos t? also
enters into Wb (v — u)) enables us to convince ourselves of
the correctness of the identity

dBd
a 2v,>

Ad _,_ 22. IficdAa+ to,. ~ H^ap
(9a)

analogous to (9), whereby the component Sd of the collision
integral can be written in canonical form:

(10a)

We emphasize that the relationships (9a), (lOa), and
(19a)-(21a) are valid for an arbitrary mass ratio m/mb, as
long as the value of the parameter (fj,/m)l/20d remains
small. When mb/m ~ 1 or > 1, the quantities v, and B |f, B *
substantially depend on the velocity v, as we can derive di-
rectly from Eqs. (19a)-(21a). Moreover, also in contrast to
the case m^-mb, the anisotropy of the tensor B ̂  proves to
be appreciable. Besides, this can be considered to be one of
the manifestations of the dependence of B]} and BL on v. We
note also that the inequality B f > B jj holds for small-angle
scattering, whereas in the model of isotropic scattering5' we

We should emphasize that we have assumed implicitly
above a rather fast decline of the differential cross section
with increasing scattering angle, which brings about a real
decline in the means of 1 — cos d, (1 — cos d)2, etc. Of
course, this is the situation in models with an exponential
law of decline. However, with power-function laws compli-
cations can occur. For example, for Rutherford scattering
we have cr(u|u) <x I/sin4 6/2; in this case the means of
1 — cos 9 and of (1 — cos 0)', />2, differ only in the value of
the Coulomb logarithm.

Thus it is precisely in singling out the small-angle com-
ponent of the scattering that the diffusion approximation
leads to the general form of the Fokker-Planck equation
with coefficients dependent on the velocity, with anisotropy
of the diffusion tensor, and with the nontrivial relationship
(9a) between A £ and B ̂ . Yet the traditional case of migra-
tion of a heavy particle in a lighter buffer gas is highly simpli-
fied, since the transport rate and the diffusion coefficient do
not depend on the velocity.

We recall that applicability of the diffusion approxima-
tion requires a large number of collisions. Therefore, when
we single out the small-angle scattering and describe it with a
differential operator we assume that the small-angle scatter-
ing cross section is far larger than that of isotropic scatter-
ing.

Let us turn now to analyzing the features inherent in the
migration of excited particles. Here the new and very impor-
tant factor is the finite lifetime caused by spontaneous radia-
tive decay and inelastic processes in collisions. For the
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ground state the lifetime is not bounded, and steady-state
conditions correspond to the equilibrium distribution, i.e.,
statistical equilibrium between the migrating particles and
the buffer gas.6> The duration of an excited state is finite,
and it can prove to be too short for attainment of an equilibri-
um distribution. Therefore the steady-state velocity distri-
bution in the excited state often proves to be nonequilibrium.
Such conditions arise in regard to many degrees of freedom,
when "there isn't time" for the collisions to establish an
equilibrium distribution.

Let us illustrate the role of the short lifetime of an excit-
ed state with a very simple diffusion model. Let the index j
denote belonging to a level having the energy £,. The kinetic
equation for the element of the density matrix p^ (rvt) has
the form (see, e.g., Ref. 9)

..= .<.+ *. (45)

Here F,- is the decay constant, 5,- is the elastic component of
the collision integral, q} describes the entry into the level j
owing to collisions and interaction with radiation. The quan-
tity q} does not contain pa in explicit form and is usually
treated as the right-hand side of Eq. (45). Therefore we shall
study below the equation

(46)

In the diffusion approximation and for a model in which the
transport frequency v, and the diffusion coefficient depend
on v, the latter equation has the form

(47)

The Green's function of this equation is well known (see,
e.g.,Refs. 3, 14, and 15):

/MrV)

2(GP - H2)

V.

(48)

(49)

(50)

The Fourier transform of the Green's function of (48) with
respect to the variables r and v, which is sometimes more
convenient, is given by the formula

r'v') = expf-ry - /pk - i&r- ±(n<? + 2/00?+ o?)l,

p = r'+v'(l-e-
v.yVi, g = e-Vv-, (48a)

Here k and x are the Fourier variables conjugate to r and v,
respectively.

In the absence of decay (Fy = 0, ground state) one
usually does not consider short times v, t<f. 1, since they con-
stitute only the very onset of evolution, while we are interest-

ed in the duration of the transition phase of the process
( ~ 1/v, ) and relatively long times v, ?> 1,

G = v2/2, P •• ', = 2Dt, (51)

when memory is lost of the initial velocity (f/ = v), the vari-
ance G of the distribution over v is close to tJ2/2, and the
variance of the displacements P increases by the "diffusion"
law:

(52)

For excited states we are interested in the opposite
limiting case15 when everything is finished in relatively
short times,

(53)

and the variances are small:

' « u2, H - •• P='\

(54)

that is, within the lifetime of the excited state the sharply
marked structure "has no time" to expand and remains nar-
row on the scale of v. It is precisely in this limiting case that
the variance of the velocity distribution increases in propor-
tion to t (according to a "diffusion" law), while the variance
of the displacement is Pec t \ Moreover, the effect of braking
plays a smaller role here than diffusion,

(1 - e~v'')|v'| = V|v'l «(vlt)
l/2v, (55)

provided, of course, that the initial velocity v' does not ex-
ceed the mean thermal v by a large factor. As a result the
Green's function of (48) acquires the form

r'V) =
a>i

2U2

xexp -^—:

(56)
In the given approximation the "braking effect" was mani-
fested in the universal asymmetric coefficient
exp[ — (v2 — v'2)/2y2]. We can easily convince ourselves
(e.g., by using Eq. (13)) that in an arbitrary kernel of the
collision integral this factor is the sole coefficient asymmet-
ric with regard to permutation of v and v', namely

Here the function^, (v |v , ) is symmetric with respect to per-
muting v and v, . Hence we can say that in the approximation
of (53) the asymmetry of the kernel is simply "transferred"
to the Green's function. The steady-state population of the
excited level j is created by continuous excitation, which is
described by the right-hand side of Eq. (45). Let us study the
spatially homogeneous steady-state problem, upon assum-
ing that

Qj = Q/(v - V).

Then we have
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(57)

The function Fj (v| v') amounts to the solution of the equa-
tion

(58)

i.e., the Green's function of the steady-state, spatially homo-
geneous problem. For rapidly decaying excited states (con-
dition (53)), we have7'

F/v|v') .

^ «1. (59)

A characteristic feature of the Green's function of (59) is the
already mentioned small asymmetry with respect to the
point v = v' and the integrable singularity at this point. One
can show9 that the arbitrary kernel of the collision integral
contains the factor 1 /1 v — v' |. Consequently, similarly to the
asymmetric coefficient, the singularity of the kernel in the
approximation of (53) is "transferred" to the Green's func-
tion of (59). The scale of the structure in the velocity distri-
bution is given by the parameter av = (vl/2F,) l/2v<^v.

The function (57) is closely associated with the solu-
tion of the steady-state equation

- v') (60)

having the Keilson-Storer model kernel9'18

(61)

By using the method of successive approximations we can
arrive at the formulas of (62):

n = v/r.. (62)

The Green's function (57) of the diffusion approximation
and the regular component of the function FKS (v|v') are

approximately equal if we can replace the series in Eq. (62)
with an integral and assume that

(63)

(64)

which corresponds to the conditions

v,/v = l -y«l , n=v / r / » l

which must be fulfilled for applicability of the diffusion ap-
proximation.

Let us call attention to 6( v — v') in the expression (62)
for the Green's function FKS (v| v'). The given term, which is
also characteristic of short-lived states, evidently describes
the fraction of the atoms that have not undergone even a
single elastic collision in their time of existence in the excited
state. The fraction of such atoms (integrated over v) is
Tj/(Tj + v) = l/( 1 + «)<!. However, we must not drop
the (5-function a priori,^ since it can lead to a considerably
sharper structure than the regular part, owing to which the
amplitude of this sharp component can prove to be rather
large. Consequently the Green's function of the diffusion
equation for the steady-state, spatially homogeneous prob-
lem has the form

1 n = v/r,, (65)

where /-}(v|v') is given by Eq. (57) or (59).
Thus the diffusion approximation and the theory based

on the Keilson-Storer model kernel Eq. (61) are equivalent
from the standpoint of parameterizing the system: the first
and second moments of the kernel of the collision integral
contain the very same transport frequency of collisions v,,
which is taken to be independent of the velocity; in the Keil-
son-Storer model v, is expressed in terms of the parameter
y.

A = v,v = (1 - y)vv,

j(l -y)*?-^, V = B,

*/ V-Wj (66)

If one must retain the term 5(v — v') in Eq. (65), then the
problem requires three quantities-/!, v t , and B-for param-
eterization.

The short duration of excited states, which restricts mi-
gration in velocity space, makes possible a highly distinctive
variant of the so-called "cascade diffusion". The point is that
a transition from high enough excited states to the ground
state often occurs in cascade fashion and by different chan-
nels. Consequently, for any concrete level a complex struc-
ture can be formed in the velocity distribution, consisting of
several components with varying degrees of diffusion broad-
ening and displacement owing to the braking effect (we can
point to Ref. 19 as an example of analysis of a structure of
this type).
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Up to now we have been discussing the migration of
particles, excited or unexcited, i.e., on the formal level-the
diagonal elements of the density matrix. In treating the mi-
gration of dipole moments (or coherence, or nondiagonal
elements), new ideas are drawn in. Of interest are the coher-
ences, both between the magnetic sublevels of a degenerate
state, and between stationary states of differing energy.
Analysis of the features of migration of coherence of the first
type requires taking into account disorienting collisions, the
anisotropy of interaction of the colliding particles, and the
dependence of the cross sections on factors other than the
scattering angle. Here (as was true everywhere above), we
shall digress from level degeneracy, and focus attention on
"optical" coherence, coherence of the second type.

According to correlation theory, the space-time Four-
ier transform of the coherence is closely connected with the
form of the contour of spectral lines (see, e.g., Refs. 9, 14,
and 20). Therefore the problem of Doppler broadening of
spectral lines amounts to a transposition into spectral lan-
guage of the problem of migration of coherence in velocity
space.

The first fruitful attempts to apply the diifusion approx-
imation to the problem of broadening of spectral lines go
back as far as the fifties.21'22 It was shown that elastic colli-
sions, by retarding the displacement of dipole moments, de-
crease the role of Doppler broadening due to thermal mo-
tion. In the limit of high pressures they lead to a Lorentz
contour having the so-called diffusion width:

1
vl »kv, [a>-ca0\,

{ = (kv)2/2Vl;

(67)

(68)

Here F and A are the half-width and the displacement of the
line caused by spontaneous relaxation and by the interaction
during collisions. The quantity yd, which is called the diffu-
sion half-width, describes the residual contribution of the
motion of the emitter.

At the beginning of the seventies a series of studies23'27

appeared, in which the kernel of the collision integral in the
kinetic equation for the nondiagonal elementpmB (rvO of the
density matrix was expressed in terms of the scattering am-
plitude. Namely, the equation for pmn (m) has the form

Here ymn and qmn (rvt) describe the spontaneous decay and
the excitation of coherence (e.g., by light), while we have

•-u)du, (70)

A.

(u| u,>5(u2 - u?>5 [Y - Y! - £(u - u,)]

(71)

(72)

Here/^ (u|u,) are the amplitudes of elastic scattering in the
combining states j = m, n. Thus the nondiagonal element
obeys a kinetic equation of the Boltzmann type. However,
the exit frequency vmn and the kernel Amn (v |v , ) generally
turn out to be complex. If the scattering in the states m and n
is the same, fmm (u |u , ) =/„„ (u |u , ) , then vmn and
•Amn (Y|V, ) are real and coincide with the analogous quanti-
ties of the collision integrals in the equations for the number
of particles pa (rvt),j = m, n.

A remarkable feature of the problem of broadening of
spectral lines consists of the fact that one must deal in it with
an "extremely inhomogeneous" problem. Actually, in the
linear approximation, e.g., the excitation has the form

tfmnC^O * Q exP ['(ta- - «01. (73)

that is, it has a fine spatial inhomogeneity with the scale
A = 2-rr/k~ 10 ~ 4 cm. We can represent the solution of Eq.
(69) as:

r' -a>t')]dr'dv'dt'. (74)

Here-Fmn (r\t r'y't) is the Green's function, which satisfies
the equation

(-(at

• <5(r - r'>5(v - v'>5(< - t'). (75)

Thus, to calculate pmn (rvf) by Eq. (74) we must actually
know the function, which in the initial stage of its evolution
is 5-shaped in rv-space, and find its Fourier transform. Con-
trary to this, in problems of the populations, one often en-
counters spatially homogeneous conditions, and one deals
only with migration in velocity space, and the calculations
are substantially simplified.

The space and time dependence of an excitation of the
type of (73) is characteristic of single-photon processes of
emission and absorption. In the case of multiphoton excita-
tion of coherence, the combination 2, ( + k,) r with the wave
vectors k, of the interacting waves appears in qmn (rvt) in-
stead of kr. Here the sign is chosen according to whether the
photon ;' is emitted or absorbed. In certain combinations of
the vectors k, the inhomogeneity can prove to be large-scale.
In the other, spectral language this implies a substantial mu-
tual compensation of the Doppler shifts of the frequencies of
the different waves.

Let us return to the problem of the diffusion approxima-
tion with respect to pmn (rvt). We note in advance that the
properties of the cross sections crmn (u |u , ) and the kernels
Amn ( v | V [ ) have been studied considerably less fully than the
analogous quantities for the populations. Evidently
crmn (u |u , ) is a complex oscillating function of the scattering
angle for the case/mm (n|u,) J=fnn (u |u , ) . If/mm (u|u!) and
/„„ (u u , ) differ strongly enough, then generally we can drop
the integral term in Eqs. (69) and (15). Physically this is an
obvious result: the large difference between fmm ( u | u , ) and
/„„ (u u , ) implies a large difference of the scattering phases
in the states m and n, i.e., a large collisional difference of the
phases of the atomic oscillator; in other words, the lifetime of
coherence arises from phase memory, and the evolution of
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pmn (r\t) in velocity space is no longer significant. However,
a number of contrary cases exist in which the migration in v-
space has time to be manifested within the phase-memory
time, and we must keep the integral term in Eqs. (69) and
(75). Of especial interest from this standpoint are the spec-
tral characteristics of ions and their Coulomb scatter-
ing.19'28'29 The point is that, in the case of Coulomb interac-
tion, the scattering amplitudes are the same for all j, and
hence there are no phase effects.

A small value of the parameter (wb/m)1/2#d (owing to
9A, or mb/m, or both) allows one to use the diffusion ap-
proximation for calculating the coherence in full analogy
with the cases discussed above of the populations. In going
over to the differential form of the collision operator, one in
fact uses the dependence of amn ( u | u t ) only on the scattering
angle and u (but not on the azimuthal angle), and also the
fact ihatAmn (v |v , ) depends on v and v, via the factor

Wi ~ ui>- (76)

The same properties were important also in the case of the
populations. Therefore the Fokker-Planck equation for
pmn (rvt) has the standard form

(9
(Tt

(77)

Here the complex tensor E™p is calculated by Eqs. (7) or
(43), but with the use of the kernel Amn (v |v , ) . What we
have said implies, in particular, that the microscopic theory
(but not phenomenological considerations) imply the possi-
bility of introducing into Eq. (77) the concept of the density
of collisional coherence flux in v-space:

and the vanishing of this flux density in the case of an equilib-
rium velocity distribution pmn(n/t). Caution in using the
general phenomenological considerations developed in ap-
plication to the properties of distributions of particles is obli-
gatory, since the quantity pmn (rvf) itself serves as a charac-
teristic of nonequilibrium: a system with nonzero coherence
is statistically not at equilibrium. Nevertheless, if pmn (m)
has a Maxwellian velocity distribution, then the elastic com-
ponent of the collision integral in the kinetic equations (69)
and (77) can give only the very simple relaxation term
(vmn — Vmn )pmn> which reflects the role of phase jumps of
the atomic oscillator in collisions.

The general ideas and concrete situations discussed
above have shown, I hope, rather graphically the existence of
really distinctive, unusual conditions under which the mi-
gration of particles in resonance interaction with laser radi-
ation occurs in a gas. In many of their properties the phe-
nomena being discussed are close to those that occur in
beams, or perhaps more precisely, in gas jets having a degree

of collimation of the order of T/kv. The Bennett structure
can be treated as a sort of beam or jet in velocity space. In one
Cartesian coordinate—the projection of the velocity on the
wave vector of the active wave—the jet is sharply bounded
by an interval of the order of T/k-^v, while in the two or-
thogonal components it possesses an almost Maxwellian dis-
tribution. The overall picture of the relaxation of the Bennett
structure corresponds more to the beam ideology than to the
standard pictures developed in application to transport phe-
nomena.

I think that precisely by the unusualness of the situation
and by its contrast with the prevailing canons can one ex-
plain the following curious historical fact. The existence of
the Bennett structure was first established in 1962.30 How-
ever, only after 17 years31 were its mechanical consequences
acknowledged; Bennett jets (or beams) of atoms on two op-
tically combining levels are braked by the buffer gas in equal
measure, whereby the gas as a whole acquires a macroscopic
mechanical motion. This phenomenon, which has been
called light-induced drift, proved to be the beginning of a
new field-gas kinetics in the field of laser radiation, with
interesting consequences with regard to atomic and molecu-
lar physics, technology, astrophysics, and other fields.9* I
mention this problem, not at all in order to discuss its essence
to any extent whatever, but exclusively to stress the impor-
tance of the methodological aspects in the systems of our
knowledge and their dependence on "typical physical condi-
tions".

I take pleasure in thanking M. I. D'yakonov, V. I.
Perel', A. M. Shalagin, and D. A. Shapiro for interesting
discussions, useful to me, of the questions touched upon
here.

The velocity as a fundamental variable seems to us more convenient
than the frequently used momentum.
The buffer gas, by assumption, exists in a state of statistical equilibrium.
In the converse case, parallel with the problem of migration of the parti-
cles, one must study the evolution of the buffer toward an equilibrium
state.
One can explain the need to keep the terms containing the first and
second derivatives of p and va also in another way. The diffusion term
leads to a broadening of the region of localization of the particles in v-
space. Dynamic friction acts in the opposite direction. The mutual com-
pensation of diffusion and friction ensures the stability of the equilibri-
um distribution, as stated by Eq. (9).
An exception are the light gases at low temperatures.10

For isotropic scattering (tr(u|u) = const) we have a ( 2 > = (2/3)<7'",
andinEq. (21) we obtain a "> - (3/4)er(2) = (1/2)a ">. As regards
the integral over i?, it is always positive.
Of course, we have in mind spatially homogeneous conditions. Cold or
hot walls or other forms of artificially maintained substantial spatial
inhomogeneity can lead (and actually do so in many cases) to a sharp
breakdown of equilibrium between the different components of the gas
mixture and the various degrees of freedom.
Reference 17 gives a one-dimensional analog of the Green's function of
(59).
This circumstance has been emphasized also in Ref. 18.
Material of review character on light-induced drift and associated prob-
lems can be found in Refs. 32-35.
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