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The meaning of the law of Archimedes for microscopic bodies is discussed. On the basis of
Boltzmann’s principle, it is determined that, in an external field (in particular, in a gravitational
field), an additional force, which is identified with the Archimedes force, acts on every molecule
of a nonideal gas or liquid. From Boltzmann’s principle and the universal character of the
Einstein relation between the diffusion coefficient and mobility, it follows that the drift velocity of
amolecule in an external field is determined not only by the external force, but also by the
Archimedes force. The general thermodynamic equations for the Archimedes forces acting on
molecules have been obtained for both one-component and also multi-component media. In the
case of a mixture of rarefied gases, the Archimedes forces are expressed linearly by the second
virial coefficients. It is shown that the Archimedes forces acting on the molecules of matter are
directly connected with the fluctuations of the number of molecules, and thereby with the
integrals of the functions describing the pair correlations of their positions.

1. INTRODUCTION. POSING THE QUESTION

In connection with the generally accepted formulation
of the law of Archimedes (... the buoyancy equals the weight
of the liquid or gas in a volume equal to the volume of the
body), a somewhat unexpected question arises: can one con-
sider every molecule of aliquid (gas) as a “body immersed in
this same liquid (gas)”’? This question is by no means trivial.
On the one hand, it is well known that the law of Archimedes
is formulated for macroscopic bodies in conditions when hy-
drodynamics is applicable, and therefore, it would seem that
it is not relevant to individual atoms and molecules, but on
the other hand, one can consider a molecule as a physical
body possessing a certain finite volume, and therefore, an
additional “‘buoyancy” must act on it in the presence of a
pressure gradient. The analysis carried out below shows that
thisis actually so, that there exists an entirely rigorous defin-
ition for the Archimedes force acting on individual mole-
cules of matter. At the same time, as will be clear from what
is said later on, the law of Archimedes for microscopic ob-
jects has a somewhat different meaning than in the case of
macroscopic bodies. Here the limits are established for the
applicability of the usual concepts of the law of Archimedes,
and the circumstances are determined which one must allow
for in the transition to fairly small bodies.

If aliquid (or gas) is located in an external force field, in
particular, in a gravitational field, then the pressure inside
the liquid (gas) depends on the coordinates. It follows from
the condition of mechanical equilibrium that the pressure
gradient equals the external force acting on a unit volume of
matter:

VP:fex(- (1.1)

Since different points on the surface of a macroscopic
body immersed in a liquid or gas are under different pres-
sures, there are acts on the body of the buoyancy
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Frr = -$PdS = —fVPdV. (1.2)
14

If the volume ¥ of the body is so small that one may
neglect the change of the pressure gradient inside it, then

Faen=~-W(VP) = —Vi. (1.3)

In a gravitational field, f.,, = pg, where p is the density
of matter and g is the acceleration of gravity.

Let us reduce the volume of the body. It is clear that as
long as this volume is still many times larger than the volume
of an individual molecule of liquid (gas), the Archimedes
force is described by the equation

FArch = _png (1'4)

which follows from Eq. (1.3). However, it is easy to under-
stand that, if the volume of the body becomes comparable
with the volumes of individual molecules or atoms of the
medium (in particular, if one discusses a single molecule of
matter), then first, the Archimedes force generally remains
nonzero, and second, it is already not described by the simple
Eq. (1.4). Actually, let us consider an incompressible liquid
as an illustration. The atoms of such a liquid do not fall,
although the force of gravity acts on them. Consequently, an
additional upward directed force, which balances the force
of gravity, acts on them. Of course, this is also the Archi-
medes force, but only with one important stipulation. It is a
fact that, besides the atoms or molecules in a liquid, there are
still also empty spaces between them, because of which the
mean density of a liquid is /ess than the mean density of the
matter inside the atoms'’ . Therefore, the “weight of liquid”
in the volume of an atom is less than the weight of the atom
itself, and the requirement for the mutual balance of the lift-
ing force and the force of gravity leads to the need for more
precise definition of the law of Archimedes.
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In order to understand how the expression for the buoy-
ancy changes as one goes towards microscopic particles, let
us consider for simplicity a model of the liquid in which all
molecules are hard, impenetrable spheres of radius R. Of
course, the presence of a body leads to the occurrence of a
volume that is inaccessible to the molecules of the liquid. For
R #0, this volume includes both the volume of the body and
also a certain additional volume adjacent to its surface. If
one denotes the indicated additional volume by AV then the
total volume which becomes inaccessible to atoms of the lig-
uid because of the immersion of a body in it will equal
V 4+ AV.

Let us show that this total volume specifically enters
into the expression for the buoyancy. To demonstrate this,
let us imagine that the body is raised by some height z. Then
an empty cavity whose volume equals ¥ + AV, is also raised
by this height, and the space which it occupied earlier is
filled by the liquid. If the mean density of the liquid equals p,
then, upon such a displacement, the potential energy
changes by the amount

Mgz — (V + AV)pgz, (1.5)

where M is the mass of the body and g is the acceleration of
gravity. From this, it follows immediately that the upward
directed Archimedes force is

Facn=p(V+ AV)g, (1.6)

i.e., the volume of the body Vin Eq. (1.4) is replaced by the
volume ¥ + AV “inaccessible” to molecules. It is clear that
the additional volume A ¥ plays no role for macroscopic bo-
dies, but may turn out to be important for sufficiently small
" bodies?’ . Specifically, this additional term provides for com-
plete balancing of the force of gravity when one discusses
individual atoms of an incompressible liquid. From what has
been said, a more precisely defined formulation of the law of
Archimedes follows for a model of hard, impenetrable atoms
(not necessarily spherical): on a body immersed in a liquid,
there acts a buoyancy equal to the weight of the liquid in that
volume which became inaccessible to its molecules because
of the presence of the body®’. Let us note that the energy
arguments used in deriving Eq. (1.6) also remain obviously
true in the case of a gas, in particular, of a rarefied gas.

If one discusses a sufficiently rarefied gas, then one may
easily obtain within the model of impenetrable spherical
molecules an explicit expression for the additional volume
AV. Actually, in this case, each collision of any molecule
with the surface of the body occurs independently of colli-
sions where other molecules participate. Then the volume
inaccessible to the molecules includes, besides the volume of
the body, a layer of thickness R adjacent to its surface. For a
sufficiently large body,

AV =3SR, (1.7)
where S'is the surface area of the body. For a spherical body
of arbitrary radius r, we have

Q=V+ AV=4—;'-(r+R)3. (1.8)

If the body under consideration is a gas molecule, then
r = R, and the inaccessible volume is eight times larger than
the volume of one molecule (also see Ref. 2). Let us also note
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that buoyancy also acts on point particles: at » = 0, the inac-
cessible volume Q = (47/3)R>.Y

2. THE ARCHIMEDES FORCE AND THE THERMODYNAMIC
PROPERTIES OF SLIGHTLY NONIDEAL GASES

a) The fact that an additional force having the meaning
of the Archimedes force acts on the molecules of a liquid or
gas in an external field is not connected with any definite
model; the existence of the Archimedes force by necessity
follows from general thermodynamic properties of liquids
and gases which are in thermal and mechanical equilibrium.

Let us first consider the simple case of a classical one-
component rarefied (slightly nonideal) gas. In the approxi-
mation when one may restrict oneself to taking into account
only independent pair interactions, the free energy of such a
gas has the structure (Ref. 3, Paragraph 74)

F=F, + X;yry;

(2.1

here Vis the volume occupied by the gas, N is the number of
molecules, T is the temperature, & is the Boltzmann con-
stant, .5 ,; is the free energy of an ideal gas with the same
values of &, V, and T, and b(T) is the second virial coeffi-
cient; the factor N2 in Eq. (2.1) is connected with calculat-
ing the number of possible pairs of molecules
(CH =4N(N—-1=iN?.

The free energy of an ideal gas is described by the
expression

F ., =NkT ln%-—Nh(T), (2.2)
where A (T) is a function of temperature that is unimportant
for us (one can find an explicit form of A(T), for example, in
Ref. 3, Paragraph 42).

Within the classical theory,

o1y =5 (1 - e VViTay, 23)

where U(r) is the potential energy of the interaction of two
molecules whose centers are separated by the distance r.”’

In accordance with Eqs. (2.1) and (2.2), the pressure
of the gas is

a

P=- (a—;",) = nkT + n*kTKT), (2.4)
TN

where n = N /Vis the molecular concentration. An expres-
sion for the chemical potential

y= (_g%) — kT In 7 + 20kTH(T) — K(T). (2.5)
Yng

is also necessary for us later on. Let us emphasize that Egs.
(2.1), (2.4), and (2.5) are valid in the rarefied gas approxi-
mation when the inequality

15(T)|n <<1.

is fulfilled. If the gas is located in a uniform field of gravity,
then the concentration depends on the height z; in addition,
one must add the potential energy of the molecule mgz,
where m is the mass of a molecule, to the right hand part of
expression (2.5) for the chemical potential.

For thermal equilibrium, the condition

(2.6)
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(2) = p + mgz = const, (2.7)

is fulfilled. Differentiating Eq. (2.7) with respect to z, we
find

AL S8 = — (mg+ 254TH(D)).

n dz (2.8)

Let us represent the dependence of concentration on height z
in the form

n(z) = n(0)exp (— é-(f)-) ,

iT (2.9)

where n(0) is the molecular concentration at z = 0. Accord-
ing to Eq. (2.8), the function 4 (z) satisfies the equation

%az—)=mg+ 290 Ti(Ty. (2.10)
z dz

In accordance with Boltzmann’s general principle, the
function A(z) which enters into Eq. (2.9) must have the
meaning of the work which the total force F,, acting on a
molecule performs as the force displaces it from a height z to
thez = Olevel. This force is obviously described by the deriv-
ative d4(z)/dz, i.e., with allowance for Eq. (2.10),

Fooi= mg-+ 254 TH(T) .11
(a positive sign for F,, corresponds to a downward directed
force). In the case of an ideal gas, when b(T) =0,
F,,, = mg, and A (z) = mgz, we arrive at the well-known
barometric equation. But the barometric equation is
changed for b(T) #0: already the force F,, is not reduced
only to the force of gravity mg, and 4 (z) # mgz. The addi-
tional term in Eq. (2.11) is nothing other than the Archi-
medes force acting on a molecule. Thus,

dn

Fare, = 2KTH(T). (2.12)

Here

A(Z)=mgz + fFAmh(y)dy =mgz +2 (n(z) - n(O)) kTH(T).
0
(2.13)

The second term in Eq. (2.13) is the work by the Archi-
medes force. The work A(z) differs from the work mgz by
the external force since, because of the hypothetical interac-
tion between molecules, the displacement of one of them by
the height z leads to some change of the configuration of the
other molecules. In the case of a classical, ideal gas, the mol-
ecules do not interact and there is no such change of configu-
ration.

With the approximation |b(7)|n <1, Eq. (2.4) for the
pressure gives

dP __ ,..dn
w= kT_d? (2.14)
With allowance for Eq. (2.14),
dpr
Faen = 2b(T)—d—z-, (2.15)
or, in vector notation,
F .o = —2K(T)VP. (2.16)

The corresponding work is proportional to the pressure dif-
ference:
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A aren = 2H(T) (P(2) = P(O))- (2.17)
According to Eqgs. (2.16) and (2.17), for b(T) >0 the Ar-
chimedes force is directed upward and its work is negative.

It follows from Eq. (1.1) that, in a gravitational field,
VP = mng; taking this into account, let us rewrite Eq.
(2.16) in the form

FArch == 2b(7')Pg'

By comparing Eq. (2.18) with Eq. (1.6), we come to the
conclusion that one can give the meaning of an effective “in-
accessible volume” to the quantity 26( 7). In the model of
impenetrable spherical molecules of radius R,

(2.18)

(2.19)

Then it follows from Eq. (2.3) for the second virial coeffi-
cient that

Q=2KT) =8 (%’—‘R’:‘) , (2.20)
i.e., that inaccessible volume is eight times larger than the
volume of an individual molecule, in complete agreement
with the geometric arguments (see Sec. 1). Atthe same time,
in the general case the concept of “inaccessible volume” is
conditional; in particular, according to Eq. (2.3), the second
virial coeflicient can be negative, and then the Archimedes
force acting on a molecule is directed not upward, as for a
macroscopic body, but downward.

By using an explicit form of the second virial coeffi-

cient, we can write

By = mn [ (67T nav]e 221)

Relation (2.21) has a simple physical meaning. Interac-
tion between the molecules leads to the situation that their
positions in space cease to be independent. In a rarefied gas,
the distribution of the distances » from the center of a certain
definite molecule to the center of another one is determined
by the Boltzmann factor exp( — U(r)/kT). Therefore, a lo-
cal departure of the gas density from its value averaged over
the entire volume arises near each molecule: a condensation
if the molecules attract each other, or a rarefaction for repul-
sion. The expression nf (e ~ Y"’*T — 1)d¥ for U(r) >0 has
a negative sign and describes a deficiency of molecules in the
local region around the molecule under consideration; for
U(r) <0, this expression is positive and describes an excess
of molecules in the indicated region. It turns out in the end
that the work by gravity not only connected with the weight
of a single molecule, but also that connected with the defi-
cient (excess) weight corresponding to rarefaction (or con-
densation) in the vicinity of the molecule, enters into the
barometric Eq. (2.9). This additional work is the work of
the Archimedes force. We emphasize that the energy ap-
proach discussed earlier also leads to the result of Eq. (2.21)
if one applies it to the case of a nonideal gas. What has been
said elucidates the true meaning of the Archimedes force;
the appearance of this force is determined by simple geomet-
rical arguments only in the particular case of impenetrable,
hard bodies.

b) Let us now go from a one-component gas to a mix-
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ture of two rarefied gases (the absence of chemical transfor-
mations of molecules is assumed here and from now on). Let
N, molecules of one type and &, molecules of another type
be located in a volume V at temperature 7. In the general
case, the interaction between the molecules is characterized
by three different potentials U,, (r), U,,(r), and U,, (r).
Here the free energy is
F=F0 +F@ + KL W25 (1) + N3byy(T) + 2N, Ny (T)),
(2.22)

where 7 {J’ and ¥’ are terms which coincide with the free
energies of an ideal gas for each of the components (see Eq.
(2.2)), and b,, (T), b,, (T), and b, (T) are the second vir-
ial coefficients:

b(n) = 3 (1 - e Tyay
by(T) = 5(1 — &~ "2 ay,
byy(T) =4 (1 = %O Tyqy, (2.23)

We emphasize that the free energy of a mixture of non-
ideal gases is not equal to the sum of the free energies of its
components; an additional term, proportional to
2N, N,b,,(T), is determined by the interaction between
molecules of different types and by the number of pair com-
binations for such molecules.

According to Eq. (2.22), the pressure of a mixture of
gases and the chemical potentials corresponding to the first
and second components, are described by the equations

9 NN, T

oy

= (ny + nYkT + (n?b),(T) + n2b,,(T) + 2n nyby ()T,

(2.24)
u aJ
1= N V.T
Vs

= kT'In n, + kT — hy(T) + 2(n,b, (T) + nyb, (T)AT,

(2.25)
- (2
#2= |oN,
N V.T

= kT In n, + KT = hy(T) + 2nyby(T) + n by (T))KT.
(2.26)

For thermal equilibrium in a gravity field, the equations

#, + m gz =const, u,+ m,g = const, (2.27)

must be fulfilled, where m, and m, are the masses of mole-
cules of the first and second kind.

Differentiating Egs. (2.27) with respect to z, we arrive
at the system of equations

d
kT—zl=—(mlg+ AT~ ! “(T)+2kT 12(T)) (2.28)

dn,
kT— = - (ng + 2kT b22(7') + 2kT ,2(7)) (2.29)

1000 Sov. Phys. Usp. 34 (11), November 1991

Just as in the one-component case, we represent the depend-
ence of the concentration on height in the form

A A
ny(2) = nl(O)exp(— —,;;i)) ny(z) = nz(O)exp(— ,ﬁﬁf’);

(2.30)

here, in accordance with Boltzmann’s principle, the function
A, 5, (2) denotes the work which the force acting on a mole-
cule of the first (second) type performs as the force displaces
it from a height z to the z = 0 level. From Eqgs. (2.28) and
(2.29), it follows that the total forces F, (z) and F, (z) act-
ing on molecules of the first and second type equal:

da,(z) dn, dn,
Fi(z)= Gz =met 2kT Tz-'b“(T) +—d7b12(T) ,
(2.31)
dA,(z

) dn, dn,

Fy(z) = = myg + 2kT Tz_bzz(T) + ?bn(T) .

We see that the forces £, and F, match the weights of the
corresponding molecules only in the case of a mixture of
ideal gases. The additional terms in Egs. (2.31) describe the
Archimedes forces. Considering the relative smallness of the
terms in Eqs. (2.28) and (2.29) that are proportional to the
virial coefficients, we can substitute into Eqs. (2.31) the ap-
proximate relations:

dn

1 dn,
kTE-z -mn,g, kTEz —m,n,g.

Then
Fin =F) = mg==2(p;5))(T) +p5,,(T))8,
(2.32)
Flo = Fy — myg = =2p,b55(T) + p18)5(T)8,

where p, = m;n, and p, = m, n, are the partial densities.
In the same approximation

A\(2) = mgz + 2P, (2) — P(0))b, (T)
+ 2(P,(2) — PoO)byT),

Ay(2) = mygz + 2(Py(z) — Px(0))b,(T)
+2(Py(2) ~ P1(0))8,5(T),

where P, = n kT and P, = n, kT are the partial pressure
values without allowance for interactions between the mole-
cules. It follows from relations (2.30) and (2.33) that the
presence of molecules of the second type affects the distribu-
tion in height of molecules of the first type, and vice versa.
Theresults obtained are easily generalized to the case of
a mixture which consists of any number of components. The
Archimedes force acting on a molecule of the ith type is
described by the expression (compare it with Eqs. (2.32)

5
Filo = —2 (l_zlplb”) &

where s is the number of components, and p, are the partial
densities of the components,

(2.33)

(2.34)

by=5J (1 = Ui/ My, (2.35)
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and U, (r) is the interaction potential between molecules of
the ith and /th types. In the model of impenetrable spheres,

4z

(R‘ + R,) 3,

Thus, in the case of an arbitrary mixture of rarefied (weakly
nonideal) gases, the force FY}, is made up of the Archi-
medes forces which refer to the components of the mixture,
to each of which its own effective “inaccessible volume” 2b;,
corresponds. We emphasize that if the second virial coeffi-
cients do not equal each other, the Archimedes force is al-
ready not proportional to the pressure gradient, as it is in the

one-component case (see Sec. 5b for more detail).

3.BOLTZMANN’S PRINCIPLE AND THE THERMODYNAMIC
EQUATIONS FOR THE ARCHIMEDES FORCE

As we convinced ourselves for the example of rarefied
gases, the Archimedes force acting on a molecule may be
introduced on the basis of the Boltzmann principle. Let us
now discard any kind of limitations of the type of inequality
(2.6) that are imposed on the gas density. If a one-compo-
nent gas or liquid is located in an external force field (not
necessarily gravitational!), then, according to Boltzmann’s
principle, the equation

ﬂv,' = Ftol >
n

(3.1)
must be fulfilled (compare it with Egs. (2.8) and (2.11)),
where F,, is the total static force acting on a molecule. This
force matches the external force only in the limiting case
where the molecules do not interact with each other (an
ideal gas). With allowance for interaction, F,, #F,,,; we
define the additional term as the Archimedes force:

=L 90— F,,. (3.2)
n

Focch =F o — F

From the condition of thermal equilibrium in an exter-
nal field (see Eq. (2.7)), it also follows that the external
force acting on a molecule equals the gradient of the chemi-
cal potential:

F,. =Vu= (‘-’E) Va. (3.3)
T

on

From this, the concentration gradient Vn
=VF,, /(du/dn) ;. Substituting this expression into Eq.
(3.2), we find

kT
FArch = (n(a”/an)T - 1) Fext‘

(3.4)
One can also obtain one more expression for the Archimedes
force. Actually, according to relation (1.1), in the case of a
one-component gas or liquid, the external force F,,, is pro-
portional to the pressure gradient:

_lyp_ (2P) Vn
F,, —;VP = (an) " (3.5)
T
Comparing Egs. (3.5) and (3.2), we have
kT
Froow = 1757 — M Fone (3.6)
Arch ((BP/an)T )

In a gravity field, F,,, = mgand
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Fren = (m,—"/g—m-— l)mg, 3.7
Egs. (3.4) and (3.6) are not independent; by virtue of the
well-known thermodynamic equation (du/dP) = 1/n
(see Ref. 3, Sec. 24), they are completely equivalent. With
allowance for expression (2.4) for the pressure of a rarefied
gas and condition (2.6), Eq. (3.7) leads to relation (2.18).
In the limit of a cold, incompressible liquid, when
kT /(AP /dn) 1 <1,

FArch == mg’

i.e., the buoyancy acting on a molecule almost completely
balances the force of gravity (see Sec. 1). For a classical ideal
gas, (P /0dn) ; = kT, and Eq. (3.7) leads to the natural re-
sult F,, ., = 0. In the general case, the value of (JdP/dn) ;
can be both larger and also smaller than k7. Therefore, the
force acting on a molecule can be directed not only upward,
but also down. At the same time, the force

kT

Fm( = FArch + mg =m (aP an)T

must be directed down (since the thermodynamic inequality
(0P /dn) + >0 is fulfilled). One must keep in mind, how-
ever, that this result applies only to the one-component case.

(3.8)

4. THE ARCHIMEDES FORCE AND THE EINSTEIN EQUATION

In connection with relations (3.1) and (3.2), which ex-
press Boltzmann’s principle in differential form, let us con-
sider the meaning of the well-known Einstein equation

D = akT 4.1

under conditions when the ideal gas approximation is inap-
plicable (here D is the diffusion coefficient and « is the mo-
bility; see, for example, Ref. 4, Sec. 60). Since the concentra-
tion gradient is non-zero in an external field (it equals zero
only in the limiting case of an incompressible liquid, when
(OP /3n) ; — « ), there arises a diffusion flux

Jye = —DVn. (4.2)

However, in thermodynamic equilibrium, the diffusion flux
must be balanced by a drift flux,

Jdr = nvy,, (43)
where v, is the drift velocity. Thus,
DVn = nv,, . (4.4)

On the other hand, according to Boltzmann’s principle (see

Eqgs. (3.1) and (3.2)), one can express the quantity Vz in

terms of the total force F,,, = F,,, + F,,, . This gives
D

DVn = nﬁ(Fex[ +FArch)' (45)

From this, with allowance for the Einstein Eq. (4.1), the

drift velocity is
Vor = A(Fo Faron ).

(4.6)

Thus, the universal character of the Einstein relation in
combination with Boltzmann’s principle by necessity lead to
the conclusion that, along with the external force, the Archi-
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medes force also enters into the expression for drift velocity.
And this is understandable; in a steady state, the drag force

1

= — — V4>
a

Fu (4.7)
which is proportional to velocity, must balance out the total
static force acting on the molecule: Fy, = — F,,, =

- (Fex( + FArch )

5. THE ARCHIMEDES FORCES IN MULTI-COMPONENT
MEDIA

a) For a mixture of several gases or liquids, Boltz-
mann’s principle gives
L
l

(5.1

where F{) is the total static force acting on a molecule of the
ith type, which includes both the external force F_!), and
also the Archimedes force. Then the Archimedes force act-
ing on the same molecule is

(@I )] ) _ kT (i)
FArch - Flol - Fexl - V - Fexl .
n;

(5.2)

The condition of thermodynamic equilibrium of the mixture
under consideration will have in an external field the form
Vu, =F2, i=1,2,..,o0r

é aufng, ny...ng
& on,

where y, is the chemical potential for the ith component® .
One may consider relation (5.3) as a system of algebraic
equations for the concentration gradients. Let us introduce a
symmetric matrix with the elements A4, = (Ju./dn,) r;
il=1,2,3,...,s” . From relations (5.3), there follows

, T
V’ll = Fc(;i:

(5.3)

S A
V"i = E (A_l),l Féi: Ed (54)

I=1

where 4 ~ ' is the inverse matrix of 4. It is easy to see that
o (s hy by T)
A7l =— —, 5.5

where the concentrations n; are considered as functions of
the chemical potentials and temperature. Substituting Egs.
(5.4) and (5.5) into Eq. (5.2), we find for the Archimedes
force acting on a molecule of the ith type

kT [on,
F{, = ~3,|Fo .
o, z[ [a,,,] }

In a gravity field,

3 an,
h o kT | 9%
Fa = 2 [_n.- [—a,‘,) - "u] mg.
T

In the one-component case, (In/du)=1/(3u/dn)
= n/(JP/dn) r, and expressions (5.6) and (5.7) transform
into Egs. (3.4), (3.6), and (3.7), respectively.

b) Let the interaction potentials be independent of the
type of molecules. Then, within the classical theory, even for

(5.6)

(3.7
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unequal masses of the molecules which make up the mixture,
those terms in the thermodynamic functions which are con-
nected with interaction must have the same structure as for
one-component matter with the number of molecules
N=Z,N, and concentration n = (N/V) = Z,n,. For the
free energy, we can write the expression

29’m + NQ(n, T) (5.8)

Then the pressure is

aQ(n,

=-[9%) = =
= (63)1. n'kT+Pim(n1 T)’ Pinl n an ’ (59)

and the chemical potentials are

3 i
"[ (aNg) —.ul(d) +.uin[(ny T))
v, T

g =kT In n; + kT — h(T),

Mine (0, T) = Qn, T) + naQ("’ T), (5.10)
where k,(T) are functions of temperature (see Eq. (2.2)).
From Egs. (5.9) and (5.10), there follows the equation

St (1, 1) _ 3Py (1, T) (aP) T

e . I (5.11)

In the case under consideration, to calculate the Archi-
medes forces it is simpler to start not from Eq. (5.7), but
directly from relations (5.2) and (5.3). It is easy to see that
here the Archimedes force is independent of the kinds of
molecules (although their masses may not be the same!),
and is proportional to the pressure gradient. Actually, Egs.
(5.2) and (5.3), together with Egs. (5.10) and (5.11), give

 uanD _ (kT \VP
FArch = - an Vn— ((6P/6n)1~_ 1) n ] (5-12)

where VP = 2, m;n,g. If, for this same equation, the masses
of all the molecules are the same (m;, =m), Eq. (5.12)
transforms, as was to be expected, into relation (3.7) for
one-component matter.®’

6. THE RELATIONSHIP OF THE ARCHIMEDES FORCE WITH
FLUCTUATIONS OF THE NUMBER OF MOLECULES AND
WITH CORRELATION FUNCTIONS

a) Let us show that, in the general case, the Archimedes
force acting on a molecule of gas or liquid is directly ex-
pressed by the fluctuations of the number of molecules, or by
functions which describe the pair correlations of their posi-
tions. Here the thermodynamic equations lead to the same
results as the energy approach described in Section 1.

Let us first consider a one-component gas (liquid). It is
easy to be convinced that, for a number &V of particles in any
macroscopic volume V' which is a small part of the total vol-
ume V,, the simple equation

kT _ (AN)z
n(au/ on)y N

(6.1)

is fulfilled. To prove it, let us use the Gibbs distribution with
a variable number of particles (see Ref. 3, Sec. 35):
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. (uN-PV - E{alN
W{aw=exp( 2 ; {a}N=1; (6.2)

here P is the pressure, u is the chemical potential, and {a}
are the quantum numbers which correspond to the possible
states of the system. The average number of molecules is

E
—PV/kTE 2 N exp (‘i‘_Iv__.Ll_) (6.3)

{a} N

Differentiating this expression with respect to 4 with con-
stant ¥ and T, we find

PV/kT
(ZA’ - Ty (N2+N_(__L’l)
o v,T {a} N
uN — E
X exp(———k—j,—@ﬂ). (6.4)

Let us now consider the well-known thermodynamic equa-
tion (see Ref. 3, Sec. 24)

~d(PV) = ST — Ndu, (6.5)
from which it follows that (J(PV)/du) + = N. Then
W) _ 15 ) (NP
(a;) kT ( - M) =S (6.6)
It is clear that
IN 1 14
N _ _ , 6.7)
(QM) V.T (a.“/aN)VJ (Oﬂ/an)r
where # = (N /V). From this,
14 = 1 = 1 = 2 (6 8)
N (ufon)y — n(uldn);— kTN '

By virtue of the equation n(du/dn) ; = (9P /3n) r, we can
also write

1 _(am?
(@P/ony; ~ kTN

(6.9)

Substituting Eq. (6.8) into the thermodynamic Eq. (3.4) for
the Archimedes force (or substituting Eq. (6.9) into Eq.
(3.6)), we find

(6.10)

2

Fpon = [M - l)mg- (6.11)
For an incompressible liquid, fluctuations of the number of
particles are lacking; consequently, we again obtain
F...n = —mg. In the case of an ideal classical gas,

(AN)? = N, and the Archimedes force equals zero. Let us
emphasize that, for a quantum ideal gas, (AN)2#N,i.e.,in
accordance with Eq. (6.11), in a gravity field the additional
force F,,., acts on the atoms of such a gas. The thermody-
namic relation (3.7) also leads to the same result if one con-
siders that P #nkT for an ideal quantum gas. Here an up-
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ward directed force F, ., acts on an atom of an ideal Fermi
gas, but the force is directed down for a Bose gas.

b) As is well known, the concentration of other mole-
cules in the vicinity of a specified molecule inside the matter
differs from the mean concentration n and depends on the
distance to the molecule under consideration. This depend-
ence shows up only at distances less than or of the order of
the so-called effective correlation radius r,, .

Let us denote the concentration of molecules in the vi-
cinity of the specified molecule by n(r). At distances
r>r..., the concentration n(r) equals the mean concentra-
tion n. We can represent n(r) in the form n(r) = nw(r),
where w(r) is a function proportional to the probability of
finding two molecules at a distance r from each other.

The average number of pairs of molecules in the two
small volumes d ¥, and dV, is (see Ref. 3, Sec. 116)

dN, = n%w(r)dV,dv,, (6.12)

Integrating Eq. (6.12) over dV| and dV, within the
finite volume ¥, we obtain an expression for the total number
of pairs

MDD _ 202 [ [w@aviav,, (6.13)
| 4

or

N2 =N =N =2 [ () - Dav,aw,, (6.14)
| 4

where N = nV. Let the volume V inside the matter and its
parts AV, have linear dimensions many times larger than a
correlation radius between the positions of the molecules.
Then the variances of the number of particles in different
parts of the volume are combined additively. Thus, if
V=23,AV,, then (AN)*=3, (AN,)> ~V. Consequently,
under these conditions the quantity (AN)%/N must depend
not on volume, but only on the concentration# = ¥ /¥. And
actually, by converting in Eq. (6.14) from integration over
d¥,dV, to integration over a coordinate of one of the parti-
cles and over the relative coordinate r = r, —r,,and allow-
ing for the rapid convergence of the integral, we obtain

N - N-N=Wnf @@ - Dd*. (6.15)

Since N2 — N2= (AN)?, we have
ANZ

i‘% ~1=nf (@@ - Dd*. (6.16)
One can rewrite the last equation in the form

AN2

2% 1 =dan| (w(r) - 1)PAdr. 6.17)

2 n f @@ - 1) (

From relations (6.11), (6.16), and (6.17), it follows that
the Archimedes force is'®

Faer = mngf(w(r) - Dd3r = 4erngf(w(r) — 1)2dr. (6.18)
)

For rarefied gases, o(r) =exp( —
(6.18) is the same as Eq. (2.21).

U(r)y/kT), and Eq.
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We see that, in the general case, the Archimedes force is
connected with the action of the force of gravity on an addi-
tional ““cloud”” which arises in the vicinity of the molecule
under consideration. In accordance with this, one can obtain
Eq. (6.18) directly from energy arguments by considering
the work which one must perform in raising this “cloud” by
a definite height (see the discussion of relation (2.21)).

¢) Let us now go to a mixture of several components.
On the basis of a Gibbs distribution with a variable number
of particles (see Ref. 3, Sec. 85), it is easy to be convinced
that the relations which generalize Eq. (6.1) are valid:

kT(0n _ NN, — NN, AN/ AN,
AT 0% _ NN Z N AN AN, (6.19)
n; | 0py T N N,

i

where N, and N, are the number of molecules of the ith and
Ith kinds in a volume ¥V»r 2., and AN, and AN, are the
corresponding fluctuations. If one substitutes Eq. (6.19)
into the thermodynamic relation (5.6), we shall find the fol-
lowing expression for the Archimedes force acting on a mol-
ecule of the ith kind:
s, (ANAN,
> =4, F2,
=1 ( N ]

() =
FArch =

(6.20j

which generalizes the result of Eq. (6.10). Here s is the num-
ber of components in the mixture. In a gravity field'"

s ° (AN-AN
FQ4 =121 ml(—-—j-v— L éu)& (6.21)
= !

d) Let the concentration of molecules of the / th kind in
the vicinity of a given molecule of the ith kind be described
by the function »n, (r) = n,@,; (r). The average number of
(1) pairs in the two small volumes d ¥, and dV, situated ata
distance r from each other is

dNY[% = nnw(rdV,dV, = npnw (r)dV,dv,.

It is obvious that the function @, is symmetric with respect
to transposition of the indices.

Let us now find the average number of pairs of mole-
cules in a finite volume F whose linear dimensions are con-
siderably larger than the effective correlation radii. For this,
let us integrate Eq. (6.22). If one discusses molecules of one
kind (i=/), then the average number of pairs is (see Eq.
(6.13))

(6.22)

— NS
N = .i_;__ =12 [ [ nav,av, (623)
| 4
Thus,
N -N-N=n2[ [ (@) - Dav,av, (6.24)
1 4

where N; = n; V. From this (compare with Egs. (6.14) and
(6.15))

MR, o @y
lﬁl '—Nl= ﬁ; "l="tf("’ﬁ(’)‘l)d3r. (6.25)

But if one discusses molecules of a different kind (i/#/), then
the average number of pairs is
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CNUD = ITNI= n,nlffw”(r)dvldvz, (6.26)
v
or
NN = NN =np [ [0 - av,av, (6.27)
v
It follows from Eq. (6.27) that, for i#/,
NN, NN, =, [ @yn) - Da. (6.28)
Consequently,
ANI.ANI 3
—5 - nf @) - D, (6.29)
Combining Eqs. (6.25) and (6.29), we find
AN AN
—:\T_l ~8,=n[ @) - Dér. (6.30)

Taking Eq. (6.30) into account, the expression for the Ar-
chimedes force acting on a molecule of the ith kind takes the
form

s ®
Fou=4x|3 mp [ @) - DPer|e (6.31)
I=1 0
where m, is the mass of a molecule of the / th kind. Just as in
the one-component case, the results of Eq. (6.31) can also be
obtained within the energy approach.

Let us emphasize that, in the general case, the correla-
tion functions w, (r) depend on the concentrations of all
components. At the same time, if the concentration of one of
the components (for example, the ith) is sufficiently small,
then the term with / = i drops out of Eq. (6.31) for the Ar-
chimedes force acting on particles of the i type, and the cor-
relation functions w, (r) cease to depend on the concentra-
tion n; for / 4. It is clear that the same result completely
applies also to any single particle. In particular, if a single
particle of type 1 is located in a medium formed by molecules
of type 2, then

[ -]
F,, = drmyn, f (@,() - D)rdr|g (6.32)
0

7. THE ARCHIMEDES FORCE iIN A WEAK SOLUTION

If one discusses a mixture of two components with the
concentrations n, €1, = n, and one can neglect interaction
between the molecules of the dissolved matter (the so-called
“weak solution”; see Ref. 3, Sec. 87), then the free energy
has the structure

F=FoN, v, T) +FL + N,G(n, T),

where &, (N,V,T) is the free energy of the pure solvent, and
G(a,T) is some function whose form is determined by the
specific properties of the solution.

Here the pressure in the solution is

P=Pyn, T)+n (kT+ nM) ,

(7.1)

r™ (1.2)
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and the chemical potentials of the dissolved matter and of
the solvent are

#,=G(n,T)+ kT In n + kT — h(T),

(7.3)

aG(n,
u=py(n, T) + n.——(a':,—T)-

Here P, and pu, are the pressure and chemical potential of
pure solvent which satisfy the thermodynamic equation
(Buo/3Py)+ = 1/n. According to Eqs. (5.2) and (5.3), the
Archimedes force acting on a molecule of dissolved matter is

= _ 96 Dy
on :

(7.4)

FA rch

With an accuracy to small terms of the order of n, /n, the
condition of mechanical equilibrium (Eq. (1.1)) gives

P,
VP = VPO =\on Vn = mng,
T

where m is the mass of a molecule of solvent.
From this,

Fun = —P028, (7.5)

-1
a-se.n D)
on on

here p = mn is the density of the solution. A comparison of
Eqgs. (7.5) with Eq. (1.6) shows that the quantity 2 has the
meaning of the effective volume that is “inaccessible” to
molecules of the solvent (calculated per molecule of the dis-
solved matter). Thus, in accordance with Egs. (5.2) and
(7.5), the dependence of the molecular concentration of the
dissolved matter on the height z is described by the equation

kr dny

T d —(Mg — mnQg),

(7.6)
where M is the mass of a molecule of dissolved matter. If one
can consider the values of () and # to be independent of z (the
approximation of an “incompressible” solution ), then, from
Eq. (7.6), there follows the barometric equation

n,(2) = n,(0)exp [- -]‘%(M - an)], (1.7)

which takes into account the law of Archimedes (see Ref. 3,
p- 389).'2
Let us suppose that one discusses such large molecules
of dissolved matter (or macroscopic particles) that one can
neglect the surface effects and dimensions of the solvent mol-
ecules. Then, in agreement with the usual law of Archi-
medes, the “inaccessible volume” {} must coincide with the
volume v, of a particle. Of course, this is also evident from
Eq. (6.32) for the Archimedes force acting on a single parti-
cle, if one considers that, in the case under consideration, the
correlation function w,, equals zero inside the volume of the
particle, and outside its volume v,, the function equals one.
The same result also follows from Eqgs. (7.5). Actually,
a combination of Eqs. (7.5) and (7.2) leads to the expres-
sion
_ (oP/ony), r kT. (7.8)
ndPy(n, T)/on
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For the pressure of a solution in the limiting case under dis-
cussion, one can write

P =n kT + Py(#, T). (7.9

Heren, kT is the pressure connected with the motions of the
particles of the dissolved matter (the same as for an ideal gas
with the same concentration n, ), and P, (#,T) is the pres-
sure of the solvent molecules, which is taken, however, not
for the concentration n = (N /V), but for another concen-
tration 7 = (N /V) corresponding to the volume V into
which the solvent molecules are *crowded out.” The total
volume of the macromolecules that are located in the volume
V which the solution occupies amounts to

AV = n,Vu, (7.10)
Consequently,
V=V-AV=v(1-nyp). (7.11)

From this, it is easy to obtain the relation between 7 and »n:

n=1—_;ITo=n+nnlvo. (7.12)
Allowing for the smallness of n,, we have
P, (n, T)
~ 0
Py(n, T) = Py(n, T) + on "Ml (7.13)

Substituting Eq. (7.13) into expression (7.9), we find
aPy(n, T) )
ol

P=P0(n,T)+nl(kT+n-—n--v

3 (7.14)

From Egs. (7.8) and (7.14), there follows the equation
sought

Q =y, (7.15)

As has already been said, the explicit form of the function
G(n,T) which enters into expression (7.1) is determined
both by the specific properties of the solvent, and also by the
properties of the molecules of the dissolved matter. In partic-
ular, by comparing Eqgs. (7.14) and (7.2), we arrive at the
conclusion that, in the limiting case of macroscopic impurity
molecules, the function G(n,T) is determined by the relation

aG(n, T) _  9Pp(n, T)
e (7.16)
It is easy to see that a closer connection is also valid:
G(n, T) = vyPy(n, T). (7.17)

Theresult of Eq. (7.17) follows directly from Eq. (7.16) and
the obvious condition

lim G(n, T) = 0.

n-+0
One more example of calculating the values of 2 and G will
be considered in the next section.

8. THE LAW OF ARCHIMEDES FOR NEUTRONS

In connection with a comment at the end of Sec. 6d, it is
clear that the result of Egs. (7.5) is valid for any foreign
particles suspended in a uniform gas or liquid, in particular,
for neutrons.
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As is well known, the average energy of interaction of a
thermal neutron with the molecules of a medium is deter-
mined from the equation (see Ref. 6, Secs. 142 and 151; Ref.
7, Sec. 90)

ra
U(n) = 2nH%n 3, 4 (8.1)
i )

where 7 is the number of molecules in a unit volume, 7, is the
number of nuclei of the /th type in a molecule, a, is the neu-
tron scattering length for a nucleus of the ith type, and
M, =m,m;,/(m, + m,) is the reduced mass of a neutron
and a nucleus. For the condition {U(n)|<€kT (which cer-
tainly is fulfilled at temperatures 7> 0.001 K ), one can use
thermodynamic perturbation theory (Ref. 3, Sec. 32), with-
in which the chemical potential of neutrons with the concen-
tration n, is determined from the first equation of Egs. (7.3)
with the function '

G(n, T) = U(n).

From this, according to Eqgs. (7.5), the Archimedes force
acting on a neutron is

(8.2)

F, = —PQ%,

A

where p = n3,m,, and

/M
Z(r lal i) UL’ )

= 2 ! _
Q=2 (@P/on); — n(oP/dn),

(8.3)

The question of the Archimedes force acting on a neu-
tron was considered earlier in a report by Pokotilovskii® by
invoking arguments® based on the theory of wave propaga-
tion in an elastic medium (Ref. 10, Sec. 22). Within such an
approach, the effective “‘inaccessible volume™ is determined
by the vector of the medium deformation « in the vicinity of
the neutron from the equation 2 = f div ud V. The final re-
sult has the form

U

2
PUsqy

Q=

) (8.4)

where vy, is the speed of sound in the medium, Which speed
of sound is discussed, the usual adiabatic one v,, or the iso-
thermal one v, is not precisely defined in Ref. 8. However,
it is well known that deformations have an isothermal nature
in the static case (Ref. 10, Sec. 3). Therefore, the isothermal
speed of sound v,,, = (9P /Jp) ¥* must go into the equation
for (). With allowance for this comment, the results, Egs.
(8.3) and (8.4), are completely consistent.

9.CONCLUSION

We have been convinced that the concept of an Archi-
medes force acting on microscopic objects (atoms and mole-
cules) is directly relevant to various problems of macroscop-
ic and microscopic physics. To the connections with
Boltzmann’s principle, the Einstein relation, the fluctu-
ations and correlations of the molecules of matter, and to the
properties of mixtures and solutions that have been consid-
ered above, one might have also added other questions (in
particular, one must note the role of the Archimedes force in
the operation of so-called semi-permeable barriers, which
are extensively used in the justification of thermodynamics).
It seems to be interesting and unexpected that a very old
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problem, and one that, at first glance, has been exhaustively
worked out long ago, turned out to be profoundly and or-
ganically connected with the structure and fundamental
principles of thermodynamics and statistical physics.

The authors are grateful to Yu. N. Pokotilovskii for
discussions and stimulating our interest in the questions
touched on in the present paper, and also to L. G. Zasta-
venko, M. I. Kaganov, A. L. Kuzemskii, V. B. Priezzhev,
and to Ya. A. Smorodinskii for useful comments.

U For the densest packing of a large number of identical spheres, empty
space takes up approximately 0.26 of the total volume.'

¥ The additional force acting on a microscopic body whose dimensions
are comparable with those of the atoms of the medium fluctuates in
time; for such a body, Eq. (1.6) and all subsequent analogous equations
determine only an average value of this force.

 In connection with the law of Archimedes, one usually speaks either of
the weight of liquid in the volume of a body, or of the weight of the
extruded liquid. Both statements are equivalent for macroscopic bo-
dies; they are different for sufficiently small bodies. Only the second
statement is valid in the model of spherical atoms, but it will become
clear below that, in the general case, it also is in need of further precise
definition.

“) In the case of a dense medium, expressions (1.7) and (1.8) are, strictly
speaking, incorrect, but they are probably suitable for approximate es-
timates of the Archimedes force based on Eq. (1.6). It is not impossible
that such estimates can prove to be useful in the centrifugal separation
of solutions of organic molecules, the complicated structures of which
lead to the appearance of a large additional volume inaccessible to mol-
ecules of the solvent.

) Expression (2.3) also applies to asymmetric molecules if one carries
out additional averaging over all possible orientations of their axes (see
Ref. 3, Sec. 74).

9 In the case of a mixture, the condition of mechanical equilibrium (Eq.
(1.1)) reads VP = Z,n,F}. Let us emphasize that, in the general case,
the pressure is not reduced to the sum of the independent partial pres-
sures of the individual components.

") The equation 4, = A,; is a consequence of the definition of the chemi-
cal potential

(8,4
B G/ P L P

®) Strictly speaking, this is true when one neglects the quantum exchange
interaction between identical molecules (see Ref. 5, Ch. 4).

® We note that, in the hard sphere model, the quantity (AN)?is not
directly connected with thermodynamic ideas and can be calculated by
means of purely combinatorial arguments, as this, in particular, has
been done in Ref. 2. On the other hand, (AN)?enters into the thermo-
dynamic relations (6.1), (6.9), (6.10), and (6.11). In accordance with
Ref. 2, for a set of spheres of radius R randomly distributed in space
with a low concentration,

(anp = -2

A thermodynamic approach (for example, a comparison of the expres-
sions (2.18), (2.20), and (6.11)) leads to the same result.

10 We note that, in an external field, the concentration n itself is a function
of the coordinates. It is significant that all the thermodynamic equa-
tions containing gradients of concentration and pressure that have
been shown earlier have meaning only for the condition |Vn|r.,, €1;
thereby, the external fields are assumed to be fairly weak.

'V A comparison of Eqs. (2.34) and (6.21) enables one to find easily the
correlations AN,AN, for a mixture of rarefied gases. In particular, in a
model of several types of hard spheres, we shall have

AN AW,

T=6u-%m(&-+ko’-

'2 Often the chemical potentials of dissolved matter and solvent are con-
sidered as functions of pressure, temperature, and of the relative con-
centration ¢, = (n,/n) (Ref. 3, Sec. 87):

s=kTing + WP, T), pu=i{P,T)— k¢,

The connection of ¥ (2, T) and f, (P,T) with the functions G(n,T) and
Lo (2,T) is given by the relations
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W(P, T) = G(n, T) + AT ~ h(T) + kT In n,
1 n aG(n,
AP T) = BPyy T) + (P — P = pn, T) + 4T + n 2K D),
Here, with an accuracy to terms of the order of (n,/n),

g d¥PT) 4T
aP _ m(aPlan);

For an incompressible solution

JW(P,
8=—3p
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