
Analytical methods of calculating correlation functions in quantum statistical
physics

M. F. Sarry

AU-Union Scientific-Research Institute of Experimental Physics, Arzamas-16, Nizhegorod Province
(Submitted April 18,1991)
Usp. Fiz. Nauk 161,47-92 (November 1991)

A brief but clear and complete account is given for two analytical methods of calculating
correlation functions in quantum statistical physics from first principles—the widely used
method of two-time temperature Green's functions (the GF method) and a new, "direct
algebraic" (DA) method. The mathematical and technical clarity and simplicity of the DA
method and its resulting practical value are demonstrated for the five most widely used models in
quantum statistical physics. Since the DA method is an exactly self-consistent method (in the
sense that the expansion coefficients in the equations of motion are chosen from the requirement
that the Jacobi operator identity be satisfied exactly), it in principle affords the possibility of an
internal check, which is not possible in the GF method. Like the GF method, the DA method
permits calculation of the spectra of possible elementary excitations and, hence, of the density of
single-particle energy states corresponding to them.

INTRODUCTION

One of the main tasks of statistical physics is to calcu-
late the correlation functions of the systems under study,
since they contain all the necessary information about their
observable properties. Therefore, the development of analy-
tical methods of calculating the correlation functions is al-
ways a pertinent and extremely important methodological
problem in statistical physics.

Of the more or less simple analytical methods of calcu-
lating correlation functions in statistical physics, the most
widely used is clearly that of the equations of motion for the
two-time temperature Green's functions (the GF method),
which was introduced by Bogolyubov and Tyablikov in
1959.' Mathematically this method is based on the equa-
tions of motion for the Fourier time transforms of the
Green's functions and the so-called "spectral theorem,"
which permits one to express the spectral intensity of the
correlation functions, which is all that is required for their
complete calculation, in terms of the boundary values of the
retarded and advanced Green's functions as their argument,
the complex energy, approaches the real axis from above and
below, respectively. In this theory the spectral intensity can
be expressed solely in terms of the boundary value of the
imaginary part of the retarded Green's function or solely in
terms of the boundary value of the imaginary part of the
advanced Green's function, and so in practical calculations
it is sufficient to use only the retarded two-temperature
Green's function, for example. From a technical standpoint
the Bogolyubov-Tyablikov method is always much simpler
than all the other methods of calculating correlation func-
tions in quantum statistical physics. However, it suffers
from a fundamental computational shortcoming, viz., that
within the framework of this method there is no systematic
way of breaking the ordinarily infinite chain of equations of
motion for the Green's function, and so there is no internal
way of checking the accuracy of the decoupling that is done.
Nevertheless, this method has come into widespread use as a
technically rather simple method, particularly after the re-
view by Zubarev2 and the papers by Hubbard3'5 stimulated
by it on the use of this method for quantitative analysis of the

model he proposed. However, it was the widespread use by
authors abroad of the method of two-time Green's functions
that revealed for the first time, the difficulties6"9 in using the
"spectral theorem" of this method in specific calculations.
The true cause of these difficulties was established by the
present author10 (who had discovered them independently
much later) as being due to the incorrect use of the "spectral
theorem" in this method (incidentally, this incorrect treat-
ment apparently sprang from the same widely cited paper by
Zubarev,2 who gave an example of its use in unrestricted
(and, essentially, incorrect) form, see Eq. (3.28) in Ref. 2).
In the same paper10 I also gave a critical analysis of the
different ways that had been proposed by various authors
abroad for overcoming these difficulties within the frame-
work of the GF method.

On closer inspection the GF method, besides lacking
regularity, is also asymmetric with respect to the use of com-
mutator or anticommutator Green's functions in it: the cor-
rect calculation of the spectral intensity of the correlation
functions sought always requires calculating the anticom-
mutator Green's functions,9'10 although there are cases
when it is sufficient to use just the commutator Green's func-
tions alone (these cases, however, can be identified only after
calculation of the anticommutator Green's functions). Con-
sequently, until a simple criterion is found for identifying
these cases, the correct use of the commutator Green's func-
tions for calculating the correlation functions in this method
will always be technically unfavorable, and therefore the
choice of the commutator or anticommutator Green's func-
tions for practical calculations is actually not solely a matter
of convenience. In Ref. 101 found a very simple, but unfortu-
nately only a necessary, condition for the nonclosure of the
GF method by the commutator Green's functions alone.
With the use of the anticommutator Green's functions the
GF method is always closed (i.e., just the anticommutator
Green's functions alone are sufficient for calculating the
spectral intensities of the correlation functions), but the cal-
culation is cumbersome if the commutators of the operators
used to construct the Green's function of the problem are
simple, in which case their anticommutators are complex.

To eliminate this asymmetry in the GF method I pro-
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posed10 to replace the Green's functions in the equation-of-
motion (EOM) method by the so-called "half Green's
functions: the introduction of the Green's functions in the
Green's-function EOM method was motivated by the fact
that ensuring the correct analytical properties of their Four-
ier time transforms also allows one to take into account auto-
matically the initial conditions on the temporal equations of
motion for the Green's functions, something that it seemed
to be hard to achieve in the equations of motion directly for
the correlation functions themselves. From this standpoint
the proposed replacement actually constitutes a transition
from analysis of the equations of motion for the Green's
functions to analysis of the equations of motion directly for
the correlation functions while preserving all the advantages
deriving from the analytical properties of the Green's func-
tions (incidentally, the spectral theorem in the method
based on the equations of motion of the half Green's func-
tions has an extremely simple form and is therefore impossi-
ble to use incorrectly).

The equation-of-motion method for the Green's func-
tions (GF EOM) or half Green's functions (HGF EOM)
works as follows:

1) the chain of equations of motion for the Fourier time
transforms is decoupled by some arbitrary simple procedure
without any very convincing justification, and the resulting
closed system of algebraic equations for these transforms is
solved;

2) their discontinuities across the real axis are calculat-
ed;

3) the spectral intensities of the correlation functions
sought are calculated from these discontinuities with the use
of the "spectral theorem;"

4) an inverse Fourier transformation using the calculat-
ed spectral intensities is done to obtain the ordinary correla-
tion functions.

For certain models (e.g., the Ising model) the system of
equations of motion breaks off by itself by virtue of the inter-
nal properties of the model, but this fact does not necessarily
attain the final goal of the EOM method: the resulting sys-
tem of equations for the desired correlation functions can
still turn out to be infinite. Ordinarily the EOM method
leads to an infinite system even for the equations of motion
themselves, and so one must decouple it in the first step; this
can give rise to various internal inconsistencies and contra-
dictions. To avoid difficulties of this nature, Hewson and ter
Haar" and (independently) Dembinski12'13 proposed the
following roundabout approach in the GF EOM method:
first perform correctly the necessary decoupling in the corre-
lation function itself which corresponds to the Green's func-
tion in the infinite chain of equations of motion for the
Green's functions where it is necessary to break a link, and
then use the "spectral theorem" to convert this decoupling
of the correlation function into the correct decoupling of the
Green's function corresponding to it. There are other rea-
sons as well why decoupling in the correlation functions
themselves is generally more acceptable than decoupling in
the intermediate functions used to calculate the correlation
functions.

In 1968, i.e., almost ten years after the paper of Bogo-
lyubov and Tyablikov,1 a very important paper was pub-
lished by Roth,14 in which she proposed a universal self-
consistent method for decoupling the infinite chain of

equations of motion for the Green's functions. Variational
arguments in favor of this decoupling scheme, in addition to
those given by Roth herself, were advanced by Sadawa15 and
Young.16 The principal shortcoming of this scheme is the
necessity of making additional approximations (i.e., going
beyond the inherent approximations of this scheme) which,
moreover, cannot be monitored within the scheme itself.

Around 1980 the present author began developing a
new analytical method of calculating the correlation func-
tions in quantum statistical physics that, like the Green's
function method, proceeded from first principles; this is the
so-called "direct algebraic" (DA) method.17"22 The DA
method, like the GF method, does not involve perturbation
theory; mathematically the DA method is based on the
"dressing-undressing" method and an exact self-consisten-
cy procedure.

The dressing-undressing method (in an extremely sim-
ple form this method was used by the present author much
earlier23) plays the same role in the DA method as do the
equations of motion in the GF method, but here it yields
algebraic equations for the desired correlation functions im-
mediately (i.e., directly, and hence the name). Thus the
dressing-undressing method completely exhausts all the cal-
culational possibilities of the method of the GF EOM meth-
od. The analytical basis of the dressing-undressing method is
the exact undressing formula using the F matrix of the prob-
lem.

The analytical basis of the second part of the DA meth-
od—the exact self-consistency procedure—is the Jacobi op-
erator identity. The procedure of making an exactly self-
consistent decoupling of the problem is completely
independent of the first part of the DA method, i.e., the
dressing-undressing method, and it can of course be used in
any other method of calculating correlation functions, in
particular, in the GF EOM method when the equations of
motion are "linearized" by the Roth procedure.

The main technical and fundamental differences be-
tween the DA and GF methods are as follows:

1) The DA method is airect and purely algebraic, i.e., it
deals only with operators, traces of their different zero-time
or two-time products (i.e., the usual zero-time or two-time
correlation functions), and algebraic equations for these
traces.

2) The DA method is extremely simple from the math-
ematical and technical standpoints, making it exceptionally
clear and very practical.

3) The DA method is exactly self-consistent in the sense
that it requires that the Jacobi operator identity be satisfied
exactly, and it is therefore regular (i.e., it in principle affords
the possibility of an internal check).

The DA method, like the GF method, can be used to
calculate not only correlation functions but also the energy
spectra of possible elementary excitations and, hence, the
densities of single-particle energy states corresponding to
them.

The main goal of this article is to demonstrate the ex-
ceptional simplicity, technical efficacy, and inherent capa-
bilities of the DA method for studying the most diverse prob-
lems of statistical physics. For the five most important
problems all the main correlation functions are obtained in
closed form. The subsequent use of these expressions for the
correlation functions is limited to analysis of particular cases
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for which simple analytical solutions can be obtained for the
physical properties.

This article is based primarily on the work of Bogolyu-
bov, Tyablikov, Zubarev, Roth, and the present author.

1. METHOD OF TWO-TIME TEMPERATURE GREEN
FUNCTIONS
1.1. Analytical formulation of the method

In this method the time dependence of the system oper-
ators is assigned in the Heisenberg picture

A [ t ] a exp(iHt)A exp(-iHt), (1.1.1)

and they therefore satisfy the equation of motion

%A[t} = [ A l t ] , H ] _ = i*Ht[A,H]_e-"n, (1.1.2)

and their average values

are independent of time by virtue of the cyclic in variance of
the trace, while averages of the form

</»[<2]X [*,]> = (BUM), t = t2-t}, (1.1.3)

are two-time correlation functions which for the same rea-
son depend only on the difference of the times at which these
operators are taken. The Hamiltonian of the system, which
is almost always most convenient to have in the representa-
tion based on the occupation numbers of single-particle
states, can include the chemical potential of the particles
being described.

The idea of the GF method is that the Fourier time
transform or, what is the same, the spectral intensity

(B[t}A)E*JBA(E) = ] (1.1.4)

of the ordinary correlation function (1.1.3) is expressed in
terms of the Fourier time transforms

Hm l f r (r>\ 1 + exp(-ff£')
•So ̂  L BA( } E-E'-ije d£

(1.1.5)

of the two-time temperature Green's functions (the commu-
tator or anticommutator Green's functions)

(1.1.6)

whose practical calculation, i.e., the calculation of expres-
sions (1.1.6) themselves or their transforms (1.1.5), is as-
sumed to be simpler than the direct calculation of the corre-
lation functions (1.1.3) or their transforms (1.1.4). This
idea is implemented with the help of the spectral theorem of
the GF method:

lim («£ [t} 12»|+,£ - ((B [t ] 12»f _,.) = CK «fl [<} | A))?

= 2i Im«*[t} |X>X*' = -2i Im«B[ t} \ A))^\ (1.1.7)

The Green's functions (1.1.6) or their transforms (1.1.5)
are to be calculated from their equations of motion. In prac-

tice it is ordinarily more convenient to use the equations of
motion for the transforms (1.1.5):

(1.1.8)

which have the same form for the retarded ( / ' = — ) and
advanced ( / ' = + ) Green's functions. The desired correla-
tion functions (1.1.3) are calculated from the formula for
the inverse Fourier transformation

oo

--1- fIn J
JBA(E)e~iEtdE, (1.1.9)

since the spectral intensity is now known from the spectral
theorem (1.1.7). To obtain the transforms (1.1.5) of the
Green's functions one needs a correlation function that is
transposed in comparison with (1.1.9). It is easily found
from (1.1.9) by making use of the cyclic invariance of the
trace of the product of operators. It gives

= ̂  f2n J (1.1.10)

Formulas (1.1.9) and (1.1.10) are sufficient for obtaining
(1.1.5) by proceeding from their definition

oo

«B[t]\A))E* f ((B[t}\A}yEtAt (1.1.11)

as Fourier transforms and from the definition (1.1.6) of the
two-time Green's functions. Here, however, one will obtain
integrals that do not exist in the strict sense. They are usually
evaluated in the Poisson-Abel generalized sense24

J f(x)dx -» lim J f(x)e~"dx.
E-+0

if the latter limit exists. From definitions (1.1.3) and (1.1.6)
we see that there is an important difference between the cor-
relation functions and Green's functions—the latter are not
defined at zero time argument, since there the Heaviside step
function is undefined. The spectral theorem of the GF meth-
od is easily obtained by using expression (1.1.5) and one of
the particular representations of the delta function25

1.2. Concerning the correct use of the spectral theorem

Ordinarily, without any reservations, formula (1.1.9)
is written with the help of the spectral theorem (1.1.7) in the
form

(see, e.g., Eq. (3.28) inRef. 2), which is, generally speaking,
incorrect.10 Indeed, suppose that

H = B ' s -HB.
f

Then it quickly follows from the equation of motion (1.1.8)
that the commutator Green's function
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I S--»- = O-C K « . . . »;=o- S;,) = 0, (1.3.1)

even though, for example, in the case of half-integral spin the
longitudinal diagonal zero-time correlation function is equal
to one-fourth. However, if we are interested in the transverse
correlation function, then formula (1.2.1), even for the case
of the commutator Green's functions, gives the exact result

The reason lies in the incorrect solution of algebraic equa-
tion (1.1.7) for the spectral intensity: its formal solution in
the case of the commutator Green's function in general re-
quires an additional term proportional to the delta function,
since one has identically (see Sec. 1 of the Appendix for
details)

Thus the correct use of the spectral theorem of the GF meth-
od for the case of the commutator Green's functions gives
the following formula for the spectral intensity:

which clearly turns the spectral theorem of the GF method
into a correct identity. If this expression is substituted into
(1.1.5), then one can obtain the limits9

£-(
(1.2.2)

i.e., the exact anticommutator Green's functions and com-
mutator Green's functions respectively do and do not admit
a pole at E — 0, and, according to (1.2.2), the residue of the
exact anticommutator Green's function at that point deter-
mines the unknown function fBA multiplying the delta func-
tion.9 In practice this refinement of the accuracy of the ana-
lytical properties of the exact Green's functions is very
important also because any of the approximately calculated
Green's functions can admit this pole. Then the pole in the
approximately calculated Green's functions must be re-
moved by imposing a suitable condition for this, and the
residue of the anticommutator Green's function at this pole
gives the coefficient multiplying the delta function in the
spectral intensity. The limit (1.2.2) is what makes the GF
method asymmetric with respect to the use of the anticom-
mutator or commutator Green's functions in specific calcu-
lations, since in actuality it is always necessary to know the
exact value of the limit (1.2.2) for the anticommutator
Green's function before calculating any physical properties
of the system under study with the aid of the approximately
calculated commutator or anticommutator Green's func-
tions. Thus the correct form of (1.2.1) is

s\ ^\ 1

(B[t]A) = ^(1 + l)fBA + the right-hand side of (1.2.1). (1.2.3)

1.3. Analytical continuation of the Green's functions

From expressions (1.1.5) and the equations of motion
(1.1.8) we see that the retarded and advanced Green's func-
tions can be combined into one generalized Green's function
of complex argument:

This Green's function by definition coincides with the analy-
tical continuation of the retarded (advanced) Green's func-
tion into the upper (lower) half plane if the argument of the
generalized Green's function takes on values in the upper
(lower) half-plane. The Green's function defined as in
(1.3.1) is analytic everywhere except the real axis.1 This
axis is outside of its domain of definition, and it is on this axis
that any poles or other singularities will occur, if at all. Gen-
erally speaking the retarded and advanced Green's functions
cannot be regarded as different branches of this generalized
Green's function, since they are not analytical continuations
of each other except in cases when the only singularities are
poles. If the Green's function (1.3.1) has singularities other
than poles, this means that the retarded and advanced
Green's functions have, as a minimum, complex poles in the
"wrong" half-planes. In specific calculations the equations
of motion (1.1.8) are most often written for the generalized
Green's function (1.3.1), although, as can be seen from
(1.1.7), one may use only the retarded or only the advanced
Green's function. Irrespective of this choice, the equations
of motion in practice admit an approximate solution. There-
fore, the Green's functions obtained in such a process can
have incorrect analytical properties, and then these proper-
ties must be brought into agreement with the above-noted
properties of the exact Green's functions by imposing suit-
able ancillary conditions on the approximate expressions ob-
tained for the Green's functions. This is one of the main
reasons for introducing the spectral representations of the
Green's functions—expressions of the type (1.1.5) and
(1.3.1), which thus play the role of a "procrustean bed" for
correcting the approximate Green's functions (generalized,
retarded, advanced) calculated by any possible means! For
example, in the trivial case considered in Sec. 1.2, the discus-
sion concerned the correct solution of the equation of motion
(1.1.8), which for the Green's function «S/~ [t }\S+)) +

has the form

with respect to this Green's function. Formally, the solution
of this equation is

(1.3.2)

Here, generally speaking, we must add a term
/s_s 8(z + AB) to the right-hand side of (1.3.2), as we did

when solving Eq. (1.1.7) for the spectral intensity, since
such an expression for (1.3.2) satisfies the preceding equa-
tion. However, the delta function of complex argument 8(z)
has two poles lying off the real axis [at the points z = + IE;
see expression (1.1.12) with the replacement S (x) -> 8 (z) ] ,
and therefore the coefficient fs-s + multiplying the delta
function must be set equal to zero. Otherwise the analytical
properties of the generalized Green's function (1.3.2) con-
structed in this manner would not correspond to the proper-
ties of the exact Green's function, which does not have singu-
larities off the real axis. Thus expression (1.3.2) for the
Green's function is correct. The limiting (on approach to the
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real axis £-» + 0) values of this Green's function, i.e., of the
function \/(E + AB + is), give the retarded and advanced
Green's functions of real argument. However, if the calcula-
tion is done using only the retarded (advanced) Green's
function analytically continued into the upper (lower) half-
plane, then obviously the delta-function term should again
be absent, since the the first (second) does not have singular-
ities in the upper (lower) half-plane. In the case of the solu-
tion of equation (1.1.7) for the spectral intensity the ques-
tion of whether or not to include a delta-function term must
be answered each time with the help of (1.2.2) or (1.4.7).

1.4. Method of half Green's functions

Instead of the method of two-time Green's functions,
which is internally asymmetric with respect to the anticom-
mutator and commutator Green's functions, the present au-
thor has proposed10 a method of half Green's functions:

(BltVtfi (1.4.1)

The Fourier time transform of these half Green's functions
coincides with (1.1.5) if the expression [1 =fexp( — f3E)}
in it is replaced by unity. The equations of motion for the half
Green's functions is

z(B[t]A)z = (BA) + (B[t], ff]_A)z. (1.4.2)

The "spectral theorem" here looks extremely simple,

CK(Blt]A)2 = -UBA(E), (1.4.3)

and does not need to be solved for the spectral intensity. The
ordinary time correlation functions are calculated by the for-
mulas

= i / e~'£fcK<Su]2)zd£, (1.4.4)

(1.4.5)

which follows directly from the "spectral theorem" (1.4.3)
and formulas (1.1.9) and (1.1.10), respectively. The identi-
ty (2.1.1) also implies the following relation among the anti-
commutator, commutator, and half Green's functions:

yv yv s*. s*, .̂ xv

(1.4.6)((Bit ]A)Y+ + ((Blt}\ A)y~ = 2(Blt [AYE,

which is why these are called "half Green's functions.
From (1.4.6) we readily obtain

£-0
(1A7)

If one insists on using the Green's functions rather than the
half Green's functions, this rule for calculating the function
fBA in practice is always significantly simpler than rule
(1.2.2), since, as can be seen from (1.4.6), the intermediate
calculations do not involve terms which are going to drop
out in the limit E->0 anyway.

1.5. On the postulate of correlation damping

Here we will discuss a new physical postulate, viz., that
the time correlations are damped; this postulate was ad-
vanced8 in order to overcome the difficulties of the GF
method (these difficulties actually stemmed from the incor-

rect use of the spectral theorem of the GF method; see Eq.
(3.28) of Zubarev's paper2). Analytically this postulate is
formulated as8

lim (Blt]A) = (A)(B). (1.5.1)

This postulate was used by the authors of Ref. 8 to determine
an additional term in their formula

__L f exf
~ 2n J 1 -

exp(-iEQd£

which can be compared with (1.2.3). The fact that this pos-
tulate is rather ineffective for these purposes can easily be
seen just by taking the discontinuity in the form10

CK«Blt]\A))t = aa(E)-
i

- ty

which is most often encountered in specific calculations.
What is more important and interesting, however, is

that this postulate is evidently responsible for the so-called
"Lebowitz zero" (Refs. 26-28). Essentially, the Lebowitz
zero consists in the following. According to Kubo theory,
the kinetic coefficients are of the form29

= £

Lebowitz calculates these coefficients analytically:

(1.5.2)

L* = V >«,•> = f lim
2 m—

(1.5.3)

by virtue of postulate (1.5.1). Lebowitz himself, according
to Norman and Polak27 (the original paper26 is quite diffi-
cult to get hold of), assumed that the quantities in (1.5.2)
are nonzero only in the thermodynamic limit. However, this
assumption of Lebowitz is at odds with the results of calcula-
tions of the kinetic coefficients by the same Kubo formulas in
the method of molecular dynamics (MMD), where, of
course, only finite systems are considered. Qualitatively the
difference between Lebowitz's and the MMD results were
attributed27 to the fact that Lebowitz's calculations were
done for reversible trajectories, whereas in the MMD, where
the calculations were done on a computer, it was necessary
to use trajectories that satisfied Newton's equations of mo-
tion only approximately. However, Norman and Polak27

did not report Lebowitz's indications of the particular place
in the chain (1.5.3) that he believed the finiteness of the
system is used (they also said nothing about this question),
nor did they give their own indications of where they be-
lieved Lebowitz used the reversibility of the equations of
motion in the chain (1.5.3). Without going into a detailed
discussion of Ref. 27, which in any case does not bear direct-
ly on the GF method, here I will only point out a general
inconsistency of postulate (1.5.1), which has a more direct
bearing on the GF method. The exact expression (1.1.9) is
first differentiated with respect to time and then integrated
over time from zero to infinity, the left-hand side of (1.1.9)
being transformed in the integration with the help of (1.5.1):
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W J

f (B[t \A)dt = lim ( f dB(t]A) = {A){B) - (HA).
*- T_^« *•

0 r~°° 0

The right-hand side of (1.1.9) is evaluated exactly:

Thus one obtains the result

(A}(B) - (BA) = -{BA},
s^ ys

which is true only in the particular case (A ) {B ) = 0. There-
fore, it is not ruled out that the true cause of the "Lebowitz
zero" is postulate (1.5.1). Incidentally, if the system under
consideration is such that postulate (1.5.1) nevertheless
does hold, then it follows from the last relation that the sys-
tem must lack not only kinetic processes but even such equi-
librium properties as magnetic order (if one takes (Sz

f) = 0
in the Heisenberg model), superconductivity (if one takes
(bk) = 0 in the BCS model), etc.

2. DIRECT ALGEBRAIC METHOD

2.1. /("matrix of the problem

The starting objects for the DA method are the opera-
tors of the system and its Hamiltonian, which may include
the chemical potential, and it is always more convenient for
practical calculations to have it in the representation of oc-
cupation numbers of single-particle states. It is assumed that
the commutation relations between operators, i.e., their
commutators or anticommutators, are specified. The rela-
tion between the commutators and anticommutators is given
by the identity

[A,. - [A, B}+, (2.1.1)

which is valid for any linear operators (which are the only
kind used in quantum mechanics).

The pairwise commutators of any three linear operators
are connected by a single relation: the Jacobi identity

[1 , [2 ,3J_]_+ [2,[3,1]_]_+ [3,[1,2]_L=0. (2.1.2)

Sometimes it is more convenient to have one of the mixed
commutator-anticommutator forms of the Jacobi identity

-[1,[2,3]_]++ [2,[3, l]+]_+ [3,[1,2]_]+ = 0,

which are obtained from the main identity (2.1.2) with the
help of (2.1.1) by successively replacing the commutator
that does not contain the first, second, and third operators in
pure form by the corresponding anticommutator.

Two more identities are very useful in practice:

[ 1 2 , 3 ] _ = l - [ 2 , 3 ] _ ± [l ,3]_-2.

The Bose and Fermi operators for the creation (annihil-
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ation) of particles in single-particle states satisfy the same
commutation relation as the occupation-number operators
for these states:

^ /v ^ /^ ^* ^
[ A f , nf,]_ = + Af6ff,, nf=A^Af

The basic consequence of the cyclic invariance of the
trace of a product of operators is the identity

(2.1.3)

which bears the main burden in the "dressing-undressing"
method. The process of "dressing" an operator A is to sub-
ject it to a nonunitary transformation of the form

exp(-/9fl)

and is effected, for example, as

]_-. . . (2.1.4)

(2.1.5)

where the shorthand notation A [ -\- if}} is introduced for

According to the equations of motion (1.1.2), the evo-
lution of an operator in time is determined by its commuta-
tor with the Hamiltonian of the system. Therefore, even the
relations between the commutator itself and its explicit value
are usually called equations of motion.

If in a system under study an operator A is found such
that it satisfies the two conditions

[A,H}_=BA,[B,H}_ = 0, (2.1.6)

then with respect to this operator the system is "operator-
oscillatory." A very important case is when B in (2.1.6) is
not an operator, i.e., B = B. Then A is called an "eigen"
operator of the system. In particular, all operators that com-
mute with the Hamiltonian of the system are eigen operators
for it. Of particular importance are eigen operators with
nonzero eigenvalues, since they create and annihilate ele-
mentary excitations of the system.30'31 The average values of
these eigen operators must vanish:

x^ ^\ /^
= 0.

There are no nonoperator-oscillatory systems of practical
importance, and one actually must deal with nonoperator-
oscillatory systems of a more general form:

[AJ,H]_ = '2,KffAr (2.1.7)
/ = !

A tenable way out of (2.1.7), at least in the zeroth order
approximation, might be to find a way of constructing the
shortest possible expansion (binomial), i.e., it would be nec-
essary to find a two-dimensional operator basis that is closed
with respect to the operation of commutation with the sys-
tem Hamiltonian.

It is known32 that such an expansion will be unique if
the set of operators in which the expansion is done is a linear-
ly independent system. Linear operators in a specific basis
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have the form of matrices. The set of matrices forms a linear
space.33 Therefore, the concepts of linear dependence (inde-
pendence) of matrices and, hence, of linear operators have
the same definition as the corresponding concepts for vec-
tors of a linear space.

If the K matrix can somehow be found, then one can
"linearize" any problem of quantum statistical physics:

1) by diagonalizing it, one can obtain the eigen opera-
tors of the system and their eigenvalues, which give the spec-
tra of possible elementary excitations of the system;

2) in the EOM method for two-time temperature
Green's functions the exact equations of motion (1.1.8) can
be "linearized" by replacing the commutator of the second
Green's function by the expansion (2.1.7);

3) the same can be done in the exact equations of mo-
tion for (1.4.2);

4) finally, in the "dressing-undressing" method one can
undress the dressed operator (2.1.5), i.e., one can obtain the
exact sum of the series (2.1.4) in closed form as a linear
combination of the "bare" operators of the basis of the ex-
pansion with the aid of the F matrix of the problem:

(2.1.8)

Here the operators that are most simply undressed are those
satisfying relation (2.1.6):

2&3] = exp(-/3fi)l (2.1.8')

At the present time the best-known method of calculat-
ing the AT matrix is the self-consistent scheme of Roth, which
has as its goal the unification of the decoupling of the equa-
tions of motion in the GF method by a suitable "lineariza-
tion" of the equations of motion themselves. Roth proposed
to calculate the K matrix in terms of two intermediate matri-
ces E and N according to the scheme

N~1KN, (2.1.11)

(2.1.9)

where (...) denotes a statistical or quantum-mechanical
averaging over the ground state of the system. In this scheme
the matrices E and N are self-adjoint, while the K matrix
may not be, but it is assumed (explicitly or implicitly) that it
can always be calculated exactly in the framework of (2.1.9)
(provided, of course, that the matrix Nis nondegenerate).
In practice, however, scheme (2.1.9) does not ordinarily
permit one to obtain "calculable" quantities for all E , with-
out additional approximations in these quantities them-
selves, i.e., without introducing an additional and almost
unmonitorable error in the K matrix that is sought, which
deprives this scheme not only of its inherent regularity but
also its self-consistency. In fact, the best thing about the
Roth scheme is the matrix relation

NK+ = KN, (2.1.10)

which follows from (2.1.9) but apparently went unnoticed
by Roth. Incidentally, relation (2.1.10) immediately implies
the curious similarity transformation

which will be useful later on.
It is pertinent to note here that instead of the "com-

plete" Roth scheme (2.1.9) one can just as successfully in-
troduce a "half scheme (in complete analogy with the
aforementioned possibility of introducing "half Green's
functions):

(2.1.12)

where the matrices E and N are also self-adjoint. Therefore,
if the matrix N of a system is positive definite then so will be
the matrix N. Definition (2.1.12) directly implies the matrix
relation

NK+ = KN, (2.1.13)

which is completely analogous to (2.1.10).
An exactly self-consistent scheme of calculating the K

matrix can be arrived at as follows. For simplicity and clarity
of exposition let us consider the two-operator case of expan-
sion (2.1.7); this is the most important and frequently en-
countered approximation in practical calculations. As a
rule, it is sensible to represent the commutator of any single-
particle operator A of a system with its Hamiltonian in the
form of an exact decomposition

[ A l , f f ] _ = K u A l + Kl^A2, (2.1.14)

where the coefficients ATn and K12 are known by construc-
tion. This expansion, except in rare specific cases, will be
nonlinear (the concept of "nonlinear equations of motion"
will be clarified later). We propose to "force fit" the commu-
tator of the second operator of this expansion into the exact
operator basis of the first commutator,

,,//]_ = (2.1.15)

and then to calculate the unknown coefficients K2l and K22

from the condition of exact satisfaction of the Jacobi opera-
tor identity. It is known that this imposes one (generally
speaking) operator relation on the pairwise commutators of
any three linear operators, and its use in expansion (2.1.15)
is therefore not only a natural and most suitable procedure
but is even simply indispensible. In practice this procedure
consists of substituting expansions of the type (2.1.14),
(2.1.15) into identity (2.1.2) to eliminate or at least reduce
the arbitrariness in imposing the "forced" expansion
(2.1.15).

If the two-operator basis is specified in a general form
(A i and A2) only two triples of operators are possible for
using^the Jacobi identity. These are the triples A},A2,H and
A i, A 2

+, H. The use of the first triple leads directly to the
result

i.e., the commutator of the basis operators is an eigen opera-
tor with an eigenvalue equal to the trace of the AT matrix. The
use of the second triple leads to matrix conditions (2.1.10)
and (2.1.13).19 Of particular importance from a practical
standpoint is the two-operator case in which both matrices N
and jVare real; then the AT matrix will also be real. In this case
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the matrix conditions (2.1.10) and (2.1.13) lead to two sim-
ple formulas for the unknown elements of the K matrix:19

_ if L— JV n —

; = *11 + Li2 r?

(2.1.16)

(2.1.17)

Here the trivial case in which both matrices N and N are
diagonal is excluded.

In considering specific problems (see, e.g., the analysis
of the BCS problem below) the number of substantially dif-
ferent triples can turn out to be much larger, even in the case
of a two-operator basis: the Jacobi identity is indeed a truly
indispensible instrument in practice for extracting a large
number of exact analytical relations inherent in a problem,
but because it is not at all obvious at first (or even second)
glance, it has remained "in the shadows" in other ap-
proaches.

2.2. Nonlinear "linearization"

The procedure of obtaining explicit expansions of the
type (2.1.14), (2.1.15) is usually called linearization of the
initial problem. By this convention the present procedure
should be called exact linearization, although it is more cor-
rectly called a scheme of exact self-consistency, since true
linearization presupposes that only terms which are linear in
some aspect are kept in the right-hand sides. This aspect is
apparently most reasonably taken to be the partial order of
the operator standing to the left in the commutator. How-
ever, such representations in the proposed method in general
cannot be called linearized, since in practice the operator
basis generally consists of operators of different order; other-
wise the decomposition of the first commutator cannot in
general be exact. Therefore, expansions of the type (2.1.14),
(2.1.15) actually contain something more than truly linear-
ized equations of motion.

How close the solutions of these nonlinear equations of
motion are to the exact solution of the original problem de-
pends on the method used actually to calculate AT21 and K22,
but the method should always permit one in practice to carry
out the exact self-consistency procedure to the end. Other-
wise the regularity is immediately lost if it was in fact, at least
in principle, present. This is what happens with the Roth
scheme in practice: it is impossible to carry out the entire
calculation exactly to the end (of course we mean "exactly"
in the framework of the scheme itself), even though, on a
fundamental level, the Roth scheme is regular (the latter is
due to the possibility of gradually expanding the operator
basis) and in a variational sense gives the best solution of the
eigenvalue equations of motion

[A, H}_ = wA,
^V

if the eigen operator A is sought in the form of an expansion
/v. /•>,
A = £ "A

/

in the operator basis that appears in expansion (2.1.7).14~16

At the same time, it is apparently always possible to achieve
exact satisfaction of the Jacobi identity, and since the basic
matrix condition (2.1.10) of the Roth scheme is a conse-

quence of the Jacobi identity,19 the solution obtained with
the help of the Jacobi identity cannot be inferior to the solu-
tion that could in principle be obtained from the Roth
scheme.

Here it is pertinent to ask whether it is possible in princi-
ple to obtain an exact solution of the original problem in the
framework of a finite operator basis, e.g., a two-operator
one, even though direct and formally exact calculations lead,
as they always do in the many-body problem, to an infinite-
dimensional basis. This question is justified by two facts:

1) The energy of interacting particles can be expressed
in the form of an exact formula using only a single-particle
Green's function (see, e.g., Ref. 34 for the case of the ground
state and Ref. 35 for the case of finite temperature); granted,
there is at present no analogous formula for the energy in
terms of the single-particle density matrix.

2) One can introduce a model system of noninteracting
electrons in an external local field, with an energy and elec-
tron density equal to those for the same system but with the
interaction turned on. This assertion forms the essence of the
so-called "electron density functional theory," which is
based on the theorem of Hohenberg and Kohn36 for the
ground state. In the case of finite temperatures the analogous
theorem for the thermodynamic potential was proved by
Mermin.37

In the first case, of course, the exact single-particle
Green's function, and in the second case the exact form of
the electron density functional remain unknown. But in the
case of an operator expansion of commutators it is unclear
even whether it is possible in principle for such an expansion
to be finite, to say nothing of how the coefficients of such a
finite expansion (if one is possible in principle) might be
calculated to obtain an exact solution.

The choice of the first commutator (2.1.14) of the sys-
tem under study cannot be made unique, but this shortcom-
ing is not specific to the scheme under discussion—this non-
uniqueness is always present in some form or other in the
theory of many interacting bodies. In fact, in an attempt to
use in a mathematically correct way the "working" methods
of solving classical (i.e., the simplest, original) problems in
problems pertaining to systems of many interacting bodies,
all that remains of these methods are only their former (clas-
sical) names. This is the case, for example, for the GF meth-
od in many-body theory, which has penetrated here from the
theory of linear differential equations, where the classical
Green's function satisfies specifically a linear equation of
motion, whereas in many-body theory the equations of mo-
tion for the "local" Green's functions are essentially nonlin-
ear (provided, of course, that the interaction of the bodies of
the system is taken explicitly into account). This is also the
case for perturbation theory (which, incidentally, is appar-
ently the mathematically most satisfactory method for ap-
proximate solution of problems in systems of many interact-
ing particles): in the classical theory of solving equations by
this method the zeroth order approximation is always
uniquely determined, since the means of choosing it is con-
tained within the method itself, whereas in many-body theo-
ry the separation of the Hamiltonian of the problem into an
unperturbed (zeroth order approximation) and a perturbed
part is far from being a unique operation (and the different
possible variants of such a separation are far from being
equally good from the standpoint of efficiency and correct -
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ness of calculating the concrete physical properties of a sys-
tem), and the name "zeroth order" approximation here is
justified only by the fact that, as in the case of the classical
theory, the "zeroth order" problem admits an exact solution
(in accordance with the terms of the separation). The same
is true for the procedure of exact "linearization"—for the
operator basis here one always chooses the exact basis of the
first commutator, i.e., the zeroth order approximation is ex-
act.

2.3. Some properties of the K matrix

The real parts of the poles of the Green's functions in
the GF EOM method give the energy of the possible elemen-
tary excitations of the system under study.2'35 The damping
of excitations due to the presence of an interaction in the
system is given by the imaginary part of the corresponding
complex pole. This microscopic information can also be ob-
tained directly from the K matrix: it is contained in its eigen-
values. Indeed, if the K matrix admits diagonalization by a
similarity transformation

p(E) = -; ~£k)

which, as we know from the theory of matrices,38"40 is possi-
ble only in cases where the original matrix has special prop-
erties (is either self-adjoint, unitary, or symmetric, or all its
eigenvalues are different), then, by transforming to the new
operators

one can see that these new operators are eigen operators,

and, hence, the quantities K j give the spectra of possible
elementary excitations of the system.30'31

The eigenvalues of a K matrix of order n are calculated
from the secular equation

det(A - K) s £>(A) = A" - E^n~l

+ £2A"-2-... + (-l)"£n = 0; (2.3.1)

where Ep is the sum of the principal minors of order/? of the
K matrix. The number of these minors is C^. It should be
recalled that E, = SpK, Ea — detK, and the characteristic
polynomials det(A — K) and det(K — A) are related by

det(/f - A) = (- l)"det(A - K).

For a K matrix of order two, Eq. (2.3.1) has the form

A2 - n + D = 0,

and the eigenvalues are

AI ) 2 = ̂  (T ± K) m 4-". (2.3.2)

Having the spectra of possible elementary excitations,
one can in principle calculate the corresponding densities of
single-particle energy states by proceeding from their defini-
tion

(2.3.3)

where cok is the cell proper (i.e., the first Brillouin zone) and
\a>k | is its volume.

For a matrix of order three the secular equation (2.3.1)
takes the form

A3 - TA2 + EJi - D = 0. (2.3.4)

It is unprofitable to write out the formulas for the eigenval-
ues (and hence for the spectra of possible elementary excita-
tions) in general form for this case because of their awk-
wardness. It is simpler to obtain them as needed from
(2.3.4) for each specific case.

Assuming (and this is not a very strong assumption)
that the "true" matrix N is positive definite, one can obtain
the important result that in this case all the eigenvalues of
the K matrix must be real-valued,41 i.e., in such a system
damping is absent completely. Indeed, by applying the fol-
lowing perfectly obvious elementary transformations

K-X = V2(^"2&V-"2-A)^-"2

to Eq. (2.1.12), written in matrix form

we see that the secular equation for the K matrix is the same
as the secular equation for the self-adjoint matrix
N ~ l/2EN ~1/2, since £ is a self-adjoint matrix.

Further, by successively taking the determinant and
trace in matrix relations (2.1.10) and (2.1.13), we obtain
the completely general result that the determinant and trace
of the K matrix must always be real-valued provided_pnly
that the determinant of the matrix N (and hence det N) is
nonzero.

2.4. The F matrix of the problem

A fact that is of fundamental importance is that for any
finite number of terms in expansion (2.1.7), one can easily
find the exact form of the F matrix that performs the "un-
dressing" in Eq. (2.1.8). Therefore, the dressing-undressing
method itself is an exact analytical method of calculating the
correlation functions, and all the approximations, if any
were made in solving the problem, reside only in its K ma-
trix. The analytical formulation of the dressing-undressing
method is extremely simple. In fact, suppose the dressed op-
erator (2.1.5) is undressed according to formula (2.1.8),
where the K matrix is known from expansion (2.1.7). Then,
using the dressing-undressing method, we can readily obtain
an exact and closed algebraic system of equations directly
for the desired correlation functions by the following proce-
dure:

1) first the "bare" operator is "dressed" according to
(2.1.5) by making use of the cyclic in variance of the trace of
a product of operators, as expressed by relations (2.1.3);

2) then the "dressed" operator is quickly "undressed"
by using the "undressing" formula (2.1.8), which gives
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(2.4.1)

This relation is a system of algebraic equations with
respect to the desired correlation functions, since the matrix
elements F, will be known if the matrix elements K.., ap-
pearing in expansion (2.1.7) are known. The system of equa-
tions (2.4.1) will, of course, always be finite and closed if
expansion (2.1.7) is finite.

The case when the desired correlation functions are
time-dependent will clearly not require introducing any ad-
ditional changes in this method of calculation, except for the
conversion of 0 into (3'.

For the case of a two-operator expansion (2.1.14),
(2.1.15), i.e., for the case ofaK matrix of order two, the F
matrix has the form18'19

= exp( - 2

and its matrix elements are therefore

•ch i , (2.4.2)

= ch i/JK +

$0T]F12=-1

exp I j £Tj F22 = ch I 2 PR) - Q sh I ± /

For this matrix it is easy to find its trace directly:

(2.4.3)

In these formulas we have used the notation

T = SpK,Q= (K22 -Xl,)/?-',

In order to give the reader a clear understanding of the
technical and computational efficiency of the dressing-un-
dressing method, even at this early stage in the discussion,
we need only calculate some correlation function of a nono-
perator-oscillatory system (any system in which the interac-
tion is not taken into account explicitly) by any of the famil-
iar methods and by the method under study. One can also
look at the very detailed comparative calculation of all the
correlation functions of the Ising model by the GF (or
HGF) EOM method and the dressing-undressing method in
Ref. 18.

The F matrix itself is very simply expressed in terms of
the A" matrix (see Appendices 1 and 2 of my earlier paper20) :

F(P; K) = exp(-/3K). (2.4.4)

This yields the important practical formula42

det F = exp(-/3sp /Q. (2.4.5)

In the general case for the trace of the F matrix there is no
such simple formula as there is for its determinant (2.4.5),
but an integral representation in terms of the trace of the

auxiliary matrix (z — K) ' can be written

Sp F - Sp e~PK =
1

Wi
1

z-K
(2.4.6)

here the integration contour encloses all the eigenvalues of
the K matrix, which should remain to the left as they are
passed around. This integral representation, which, by the
way, can also be useful in a direct calculation of the partition
function, i.e., the trace of the operator exp( — /3H), follows
from the general formula43

(2.4.7)

obtained with the use of the residue theorem for the case of
the exponential function of a matrix argument (see Appen-
dix). Experience in actual calculations shows that this for-
mula provides the simplest way of obtaining the matrix ele-
ments of the F matrix:

(2.4.8)

and is especially valuable in the case of an operator basis of
order three or higher. In the two-operator approximation
the auxialiary matrix is

z-K,22
-K,

D(z) = z2~Tz + D = det(z - K) = det K(z) = det(/f - z).

In the three-operator approximation it is

D(z)K~l(z)

I

V

~K22 ~ K32

K2lK3l

K22 K32

K\2K32
K13K33 ~

Z - K U - K ,
~K\3Z~ K3:

- zK31

~*,2*-

-*13 - *

*!.-*

^13^23

23

\

- K.21
- K.22

•zE2 - D

where

D(z) = z3 -

= det(z - K) s det K(z) = -

•K,

-z).

E2 ~ K\1K22 ~ K\2K2\ Mr

In practice the inversion of a given matrix is done in
three steps:

1) the matrix A'(z), which is the transpose of K(z), is
written out;

2) each element K~, (z) is replaced by its algebraic com-
plement;

3) a factor \/D(z) is appended to the resulting matrix,
where D(z) is the determinant of the matrix K(z}.

It quickly follows from (2.4.5) that the determinant of
the F matrix will be real. Finally, it is easy to show that in this
case the trace of the .F matrix will also be real, since it follows
from (2.4.4) and (2.1.11) that the similarity transformation
(2.1.11) is also valid for the /"matrix, so that its trace will in
fact be real.
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2.5. Regularity of the method

Formally the regularity (i.e., the possibility of making
an internal check) of the DA method derives from its exact
self-consistency. In fact, if a method is exactly self-consistent
through the use of some universal analytical condition (such
as the Jacobi identity), e.g., in a two-operator basis, then in
principle one can expand the original basis to a three-opera-
tor basis and again achieve self-consistency with the help of
the same condition, since it is universal. Then the first equa-
tion of motion remains unchanged, the second equation of
motion is represented in the form of an exact expansion in
three operators now, the first two of which formed the basis
for the two-operator expansion, and the third equation of
motion is fitted into this three-operator basis, which is exact
for the first two equations of motion by construction, with
the help of the Jacobi identity.

In the case of nonoperator expansions (e.g., expansion
of an arbitrary state vector in an incomplete basis), an analo-
gous gradual enlargement of the incomplete basis leads to a
strictly monotonic approach to the exact results correspond-
ing to expansion in the complete basis. This statement is the
content of the Hylleraas-Undheim-MacDonald "separa-
tion theorem" (see, e.g., Ref. 44). It is reasonable to expect
the same result in the case of operator expansions, since they
are ultimately just another way of writing the same proce-
dure for solving the Schrodinger equation.

Thus, as desired (or as necessary) one can refine the
physical results of the exact two-operator self-consistency,
i.e., at a fundamental level the proposed scheme of exact
"linearization" admits a regular means of estimating the ac-
curacy of a chosen operator approximation; this possibility
is not afforded by the EOM method for the two-time tem-
perature Green's functions (and this is its principal compu-
tational shortcoming) or even by the constructive scheme of
Roth (since it is not possible in practice to calculate exactly
the E matrix of that scheme).

3. EXAMPLES

3.1. Bogolyubov model

For studying the ground and lowest excited states of a
slightly nonideal Bose gas, Bogolyubov proposed to use the
Hamiltonian34

Hk s (ek + NVk)nk + ̂  NVk(aka_k + a^flj), (3.1.1)

which admits an exact analytical solution. The solution is
ordinarily constructed with the aid of canonical transforma-
tions of the initial operators to new operators and is called
upon to reduce (3.1.1) to diagonal form. For this problem
the DA method is doubly favored, since the basic equations
of motion turn out to be linear from the start, i.e., it is easy to
write the exact K matrix for (3.1.1) and so it is not necessary
to carry out the most complicated and laborious part of the
DA method, viz., the exact self-consistency procedure.
Thus, the basic equations of motion here have the form

ft,

where we have introduced the Kittel notation34

Thus the K matrix is of the form

Here it should be emphasized once again that even though
the exact form of the K matrix of the problem is known, the
Bogolyubov method nevertheless requires a canonical trans-
formation, whereas the DA method allows one to calculate
immediately all the necessary correlation functions by the
dressing-undressing method if the K matrix is known. First,
however, one can extract the possible spectra (2.3.2) and
then, using them, find the corresponding densities of single-
particle energy states (2.3.3). The spectrum in this case has
the form

while the integral (2.3.3) for the density of states cannot be
evaluated in terms of elementary functions. Using formula
(2.4.1) we can easily write algebraic equations for any corre-
lation functions. For example, for the main correlation func-
tions these equations have the form

<nk) = (a£ak) =

We can now easily find the diagonal correlation function

(3.1.2)

In working with formulas for the average occupation
numbers it is useful to keep in mind the identities

The off-diagonal correlation function is

The overall temperature dependence of the number of parti-
cles of the condensate is obtained from (3.1.2):

For the case of an ideal Bose gas this formula gives

(3.1.3)

The critical temperature of an ideal Bose gas is determined
from the condition that below the transition point the left-
hand side of (3.1.3) is finite:
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3.2. Ising model

The familiar Ising model in the spin deviation operators
is conveniently reduced to an expression in the creation and
annihilation operators of fictitious fermions at the lattice
sites1.18,20

(3.2.1)
fj

Further, it is convenient to introduce the operator
Ok (k = 0,1,2,...,z), which is the sum of the C* products of
operators n, taken A: at a time from among the z occupation-
number operators of the sitesy (j = 1,2,...,z) nearest to the
investigated site/. The use of Ok allows one to reduce consid-
erably the number of unknown correlation functions and,
hence, the number of equations for them, except for the case
of the one-dimensional model (e.g., 8 instead of 10 for a
square lattice and 12 instead of 18 for a close-packed lattice),
since here there can only be correlation functions of the form
(Ok)and(nfOk).

The first equation of motion for (3.2.1) is

(3.2.2)

Therefore, the commutator of order k is of the form

f]_ = (B-k +

Thus in the basis afOk = d (
f

k ) it is easy to calculate the exact
AT matrix. However, it does notpermit one to calculate corre-
lation functions of the form (Ok), and therefore the system
of equations obtained for the correlation functions (hfOk}
will not be closed.

Returning to the equation of motion (3.2.2),

we write the second equation of motion as

[2/>/n_=X2,a/+X22a/>

(3.2.3)

(3.2.4)

and find the coefficients K2, and AT22 from formulas (2.1.16)
and (2.1.17),_for which purpose we must calculate the ma-
trices TV and N in the basis af, df:

(3.2.5)

It can be seen that these second-order matrices are the corre-
sponding upper left-hand corners of the same matrices in the
basis dfk\ i.e., of the matrices

,+ i \ = ,

whereas the K matrix (3.2.3), (3.2.4), as will be seen from
the following formulas (3.2.6), (3.2.7), is not the upper left-

hand corner for the K matrix in the same basis.
Substituting matrix elements (3.2.5) into formulas

(2.1.16) and (2.1.17), we can obtain

V21 (3.2.6)

(3.2.7)

These expressions contain four correlation functions of dif-
ferent types:

(Oi), (Oj, <flf>i), (nf>2).

These correlation functions can be calculated by con-
sidering the following correlation functions in the dressing-
undressing method:

The second of these three correlation functions gives two
independent equations, since it contains two different basis
operators.

Thus the first correlation function gives the equation

From which we find the two correlation functions

Fn+{Ol)Fl2 + dciF
*> r ~ 1 + sp F + det F '

Similarly, for the other correlation functions

These equations lead to the expressions

det

3.3. Heisenberg model

The EOM method applied to the Heisenberg model
with the widely known Tyablikov decoupling of the equa-
tions of motion35 enables one to calculate the magnetization
of the system quite simply, but great difficulties are encoun-
tered when one attempts to calculate the specific heat.45

This is because the Tyablikov scheme permits calculation of
only the transverse correlation function, but in order to cal-
culate the internal energy in this method one also needs to
know the longitudinal correlation function. It turns out that
this difficulty can be overcome by appealing to the so-called
longitudinal Hartree-Fock approximation to the Heisen-
berg Hamiltonian.46 It has been shown46 that this approxi-
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mation corresponds exactly to the Tyablikov approximation
in the case of a ferromagnetic version of the Heisenberg mod-
el and to the Ginzburg-Fam approximation47 for an antifer-
romagnetic version.

The ferromagnetic version of the Heisenberg model is35

H=-\
' M

'ff

The longitudinal Hartree-Fock approximation is of the
form46

/^ /^ ^

here we have introduced the notation

(3.3.1)

f-f

Itcanbeseen immediately from (3.3.1) that for calculating
the internal energy of this system it is sufficient to know only
the transverse correlation function and the magnetization.
For calculating the transverse correlation function one
needs the commutator

Vf, ]_ = ±xSf+Sz/ (3.3.2)

On the next application of the longitudinal Hartree-Fock
approximation the operator of the longitudinal component
in (3.3.2) should be replaced by its average value, i.e., one
must use the commutator

]_ = ± (« -

where we have used the notation

(3.3.3)

y-k^k3

Using (3.3.3) together with formula (2.1.8'), we immedi-
ately find the transverse correlation function

>tL*it'/= = -

Since the commutator (3.3.3) vanishes to the right of the
transition point, the longitudinal Hartree-Fock approxima-
tion can be used to study the problem only to the left of this
point. This also pertains to the antiferromagnetic version of
the Heisenberg model. If we now use the relation

(3.3.4)

we can construct the entire thermodynamics of the Heisen-
berg ferromagnet in this approximation (which coincides
completely with the Tyablikov approximation).

The antiferromagnetic version of the Heisenberg model
is conveniently taken in the form34

SJ-S7 + StS7), Iff < 0.A h h h 'ii

The longitudinal Hartree-Fock approximation for this
Hamiltonian has the form46

(3.3.5)

where we have introduced the notation

Xt&AB + J^Sj), /-1,2.

The Hamiltonian (3.3.5) gives the commutators

ISf (k), HSF ] _ = + *25f (k) * /k<^)%(k),

[Sf (k), H'^ ] _ = * xt%(k) * ft(Sz
f)Sf(k).

(3.3.6)

Here the second equation of motion is obtained from the first
by the replacement 1-̂ -2. Making use of the commutators

[Sz
k, S± ]_ = ± Sjf+k,, [Sjf, %, ]_ = ± 2Sk+k,

and the lattice transforms

we can easily calculate the transverse correlation functions
from the equations of motion (3.3.6) by the dressing-un-
dressing method. Relation (3.3.4) can then be used to calcu-
late the sublattice magnetizations. The internal energy of the
antiferromagnet can be calculated from (3.3.5) after a lat-
tice Fourier transform is taken. This approximation coin-
cides completely with the Ginzburg-Fain theory.47

3.4. Hubbard model

Here we will consider a generalized (degenerate) Hub-
bard model, which differs from the ordinary (nondegener-
ate) Hubbard model only in the possible values of the spin
index of the operators—it can now take on more than two
values. The most important application of this model is in
the theory of transition metals, where it allows one to take
into account rather simply the degeneracy of the 3d levels of
the atoms of these metals.48 In this case the spin index will
take on ten values, i.e., the 3d electrons are treated as fer-
mions with spin 9/2, and so their energy in the band will be
degenerate not only with respect to the true spin but also
with respect to the magnetic quantum number.

Thus we are considering the model

H

where we have used the notation

(3.4.1)

Expression (3.4.1) will of course go over to the ordinary
(nondegenerate) Hubbard model if the index v takes on only
two values. The physical justification of this version (3.4.1)
of the Hubbard model lies in the fact that the "distance"
between bands corresponding to atoms with different
numbers of 3d electrons is in general much larger (these
"distances" are of the order of tens of eV) than the widths of
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these bands themselves (which are generally not more than
teneV;Ref. 4).

1) From the one-electron commutator

we see that it is convenient to deal with the lattice Fourier
transforms of the operators

i.e., with the commutator

[<L, #]_ = <kc, +/2, (3.4.2)

Then the second, three-electron commutator must be ex-
panded in this basis:

&&, H}_ = K^ + K222kv, (3.4.3)

and the coefficients of the expansion must be calculated ac-
cording to formulas (2.1.16) and (2.1.17), since the K ma-
trix is real-valued. Now it remains to calculate the matrices
N and N, in order to have the possibility of using formulas
(2.1.16) and (2.1.17). Straightforward calculations give

(3.4.4)

under the obvious condition

which follows from the condition that such anticommutator
relations hold in coordinate space. Here it is noteworthy that
the anticommutators (3.4.4) turn out to be independent of
the quasi-momentum. The averaged values of these opera-
tors are

' n - nv,

(3.4.5)

Thus the N matrix of this version of the Hubbard model has
the form

(3.4.6)

the N matrix is also easily calculated by the dressing-un-
dressing method. It is more convenient to calculate Nl{ and
N2I first. To do this we must consider the system

Solving these equations with allowance for the second anti-
commutator (3.4.6), we obtain

det/)(l + SpF+tetF)~l,

•• FnK - F2l XI + Sp f + det FT1,
(3.4.7)

1 - (n J = (1+ ̂ 22 ~ Xv^1 + Sp F + det JO'1-

Now it remains to calculate 7V12 and N22 from the equations

These equations, with allowance for the third anticommuta-
tor (3.4.6), give

1(1

F + det.

- yvF2, ](1 + Sp F +detJ

From the first of relations (3.4.7) it is easy to obtain the
principal two-site correlation function

since in the presence of translational in variance the correla-
tion functions are diagonal with respect to the quasi-momen-
tum:

ff

i-f

The two-site correlation function of higher order (Cjvd ?v)
is obtained in an analogous way using the first of expressions
(3.4.8). Further, since

we can also calculate the principal single-site correlation
function

k v

Now, using the second formula in (3.4.5), we can easily cal-
culate the quantity

(3.4.11)

(3.4.12)

(where as the N matrix one can take either of the two matri-
ces TV and N), to which the matrix relations (2.1.10) and

Finally, it is useful to give the relation

!-*ll)- 2̂2*12 =
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(2.1.13) reduce in the case when the matrices in them are
real; explicitly:

a) for the Nmatrix Eq. (3.4.12) takes the form

V21 -*22); (3.4.13)

b) for the N matrix Eq, (3.4.12) becomes

10'O+'n
(3.4.14)

The determinant of system (_3.4.13), (3.4.14) does not coin-
cide with the determinant N^N12 —NnNl2, since in Eq.
(3.4.14) atermyv.F12Ar21 = yvF2iKl2 has canceled out. In-
cidentally, it was from formula (3.4.12) that we obtained
formulas (2.1.16) and (2.1.17). The expressions for
Nn = N2} have a different appearance but are actually iden-
tical.

2) For model (3.4.1) we can examine the atomic limit

(3.4.15)
> /

which is obtained by letting t , -»f0<5.,, where

is the average value of sk in the band. For model (3.4.15), as
for the Ising model, we can find the exact form of the K
matrix if we take as the basis the operators NfCJv, k = Q, 1,
2,..., 10:

(3.4.16)

In the case when the spin index assumes only two values, the
system of equations of motion (3.4.16) is closed already in
the second step:

Here this K matrix can also be obtained easily from the
general formulas_(2.1.16) and (2.1.17) with the help of the
matrices Nand N.

3) In this paragraph the K matrix

^21 *22j

corresponding to expansions (3.4.2) and (3.4.3), where

<**2 vexpf*tf-/)]
and t... is the energy of transition of an electron from sitey to
site/, will be replaced by the limiting expression for I-> <x>,
i.e., by the matrix

(3.4.17)

Here it is assumed that the remaining ratios stay finite in this
limit, while the first ratio goes to zero. The solutions ob-
tained using (3.4.17) will be local, since the dependence on

the quasimomentum has completely dropped out because of
the assumption Kl, = 0. Physically this case corresponds to
replacing the band by a level (the atomic limit), and math-
ematically it corresponds to replacing the operator
[ ( 1 / N ) ~Lk ] by unity. The first analytical consequence of the
purely local approximation is the equality

<%> = < "V

The main benefit of this approximation is that it affords the
possibility, and again only for certain particular cases, of
carrying out analytical manipulations to the end, and this in
turn makes it extremely easy to see the role of degeneracy of
nonspin origin in the onset of magnetic order. This requires
comparing the solutions of the nondegenerate and degener-
ate versions, where the first is obtained from the second by
the simple substitution

(3.4.18)

The/"matrix (2.4.5) corresponding to the investigated
limit (3.4.17) is of the form

2_
R

(3.4.19)

At the same time, relation (3.4.13) also simplifies:

The matrix (3.4.19) has only two nontrivial forms: the first
corresponds to the condition

11/2A..OT A^I r

and the second to the condition

Jt ± K22 > 0.

Here we will consider only the first and a particular case of
the second, when K22 = 0.

Thus if we adopt the first condition, the K matrix will
have the form

o !)•
and therefore

1-
For this F matrix formula (3.4.11) leads to the curious equa-
lity KV = yv, and formula (3.4.9) for the average values
gives

2n_ — n-a' 2n.. -y,V'

These equations have only symmetric solutions
«_„.=«, , = 1/3 and n~ = n+ = 5/11, respectively, and
these solutions are possible only for one value
n = n_a+na= 2/3 and « = «~ + « + = 10/11, respec-
tively (here n ± = 2^ nv) .

If we adopt the second condition, then the K matrix
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assumes the form I-n* 19/20* 0,35

and therefore

•n

Now formula (3.4.9) gives the equation

„ -i/1 -A-N
"v-2 ( l ~ x l /2)-

For the nondegenerate case it becomes

(3.4.20)

and has only the symmetric solution n _a =na = 1/4 for
« = 1/2. For the degenerate case Eq. (3.4.20) contains two
unknown quantities, nv and xv, and we must solve the sys-
tem

y.In.. = 1 -

2*v = :

,1/2'

(v -x1/:
uy v

The second equation of this system is obtained from (3.4.11)
after it is rewritten in the more symmetric form

(3.4.21)

The second equation of this system can be simplified to

*v=*y2+T 5 ov - «y2)=*y2 -1 wo - ̂ r ••
(3.4.22)

by using the expression for HV from the first equation:

Now (3.4.22) can be rewritten as

(1 - «>„ + (i -:

or as

(l-2«v)2 = (l-2n)2(l-4<?)-1
SQ, (3.4.23)

The quadratic (in «v) equation (3.4.23) has the solution

«i'/7 = ̂ (l±Q1/2). (3.4.24)

The most interesting case physically is when these roots are
nonnegative and different, i.e., when 0 < Q< 1. The quantity
Q can be calculated from the equation

(1 - 2n)2Q-1 = 1 - Ag

= 1 -4

FIG. 1.

which is the definition of Q according to (3.4.23). By substi-
tuting roots (3.4.24) into this equation we can obtain an
equation for Q:

02(20/1 - 19)2 - 2Q(1 - 2n)2(20n - 19) + (1 - 2n)4

= [(1 - 2«)2 + Q2 + 2Q(1 - 2n) ](10 - 2p)2Q, (3.4.25)

which in the general case is a cubic equation. It goes over to a
quadratic equation in two cases, which we will examine here.
The first case corresponds to n = 1/2, and here (3.4.25) be-
comes

Qi/Z = 9(10 - 2p)~' -» Q = 81(10 - 2p)~2, 1 < p < 5.

This value of Q for 1 </>< 5 gives only one non-negative root
according to (3.4.24). The second case corresponds to the
condition/) = 5. Then the right-hand side of (3.4.25) goes to
zero, and we obtain a quadratic equation for Q that has one
multiple root:

Q = (1 - 2«)2(20n - 19)-'.

The function Q(n) is shown schematically in Fig. 1. Thus
the condition 0 < g< 1 is satisfied for values (19/20) < n<5.
Since we are still considering the case/>2 =/>, =5, the fol-
lowing condition should also hold:

P\nl + P2n" = « - s(nl + «") - «•

which implies that n = 5 and therefore Q = 1. Here the roots
(3.4.24) are n\ = 1; «" = 0- The filling schemes of the sin-
gle-electron states are shown in Fig. 2 (only the schemes
which are physically different in regard to the magnetic mo-
ment are given). The three other possible schemes are ob-
tained by mirror reflection of the left- and right-hand parts
of these schemes with respect to the plus/minus line separat-
ing them, followed by an interchange of the sign + *->• — .
Finally, it should be noted that in this case the principal
single-site correlation function (3.4.10) is equal to

Sn? +5/7?

FIG. 2.
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3.5. Bardeen-Cooper-Schrieffer (BCS) theory

Here the DA method is applied to the BCS model Ham-
iltonian. To avoid excessive complication of the already
complex procedure of actually carrying out an exact "linear-
ization," here we will from the start consider only the case of
a local interaction of electrons (in coordinate space the po-
tential is proportional to a delta function—a contact interac-
tion). What is extremely important here is that such a poten-
tial permits carrying out exact self-consistency to the end,
and therefore the local BCS model is exceptionally impor-
tant for demonstrating the DA method. Moreover, the final
analytical results of the BCS problem for the gap, critical
temperature, etc. are ordinarily given for a potential of just
this form.

The BCS model Hamiltonian is of the form31

k,k'
(3.5.1)

The operators b £• obey rather complicated commutation
relations

We see from the last anticommutator that these operators
can, if desired, obey mixed Bose-Fermi commutation rela-
tions if discussion is limited to configurations of the elec-
tronic system which are such that any two paired one-elec-
tron states are simultaneously either filled or empty. This
restriction actually would make sense, since (3.5.1) does not
mix such configurations with configurations that also con-
tain half-filled paired one-electron states. Here, however, we
will not impose this condition.

In the contact approximation Eq. (3.5.1) becomes

"=2ek(«* + "-*) + ;£^> (3.5.2)

and it is this Hamiltonian that we will use everywhere below.
It is obtained from (3.5.1) by the substitutions

, ^-ki^lk^-kt i A, V,

where N is the number of cells in the sample.
It turns out30'31'34 that the results of the original BCS

theory can be obtained very simply if the the exact equations
of motion

[Ck,H}_ • - r rC 4

(3.5.3)

are linearized by the Valatin scheme

A *.

/\ yv /\
(3.5.4)

To this system of equations of motion it is helpful to add two
more:

[C_t, tf ]_ « ekC_k - % ACJ * Kn(-k)C_k + *12(-*)<t

(3.5.5)

*K2l(-k)C_k

the exact expressions for which are
/\

/\ /•> " . 'V *l 1 ̂ —t ~~ Kl •

[C_* *T]_ = ekC_k - *12C+A = » * Jj

From a comparison of (3.5.3) with (3.5.6), we see that this
problem has the symmetry properties

fn(~*) = *n(*) = *n» *i2(~*) = ~Kw (3.5.7)

Thus for Hamiltonian (3.5.2), the K matrix linearized
by the Valatin scheme is

•> 
-̂K 11

(3.5.8)

The eigenvalues of this matrix give the energy spectra of the
possible elementary excitations. For excitations with posi-
tive energy this spectrum is of the form

(3.5.9)

Now it is easy to obtain the basic equation of the BCS theory
for the gap |A|2 by the "dressing-undressing" method. For
this it is necessary to calculate the correlation function (bk).
Using (3.5.4) and (3.5.5), we can write successively

^ /\ /\ y\

> = (C.kCk) = (Cktf}C_k) = Pn(CkC_k) + Fn(C±kC_k),

(3.5.10)

) = F2l(CkC_k) + F22(C+_kC_k).

The solution of this system gives

l+F,11 l+F,11
+ Sp F + det F 2 + SpF

(3.5.11)

(3.5.12)

Equation (3.5.12) directly yields an equation for the gap

(3.5.13)

and an equation for the critical temperature
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These equations agree completely with the equations of the
BCS theory. The "dressing-undressing" method can also be
used to calculate very simply the other correlation functions,
such as

(3.5.15)

In the exactly self-consistent approach the first equa-
tion of the exact system (3.5.3) remains unchanged:

(3.5.16)

and the expansion coefficients of the three-electron commu-
tator

ID., #]_ K22Dk (3.5.17)

in the exact basis of the first commutator are found with the
help of the Jacobi identity (2.1.2).

The symmetry properties (3.5.7) of the K matrix,
which in the Valatin scheme are taken directly from the ex-
pansions (3.5.4) and (3.5.5), are determined here from gen-
eral analytical arguments, since the expansion (3.5.17) is
now unknown. The first line of (3.5.5) is, of course, valid
here too.

If we use the triple \ = C_k, 2 = Dk, 3 = H, then
(2.1.2) yields

[A, H}_ = Kl2(nk - n_ FA,

while the triple 1 = Ck,2 = D^k,3 = H leads to a diiferent
result:

[A, H ]_ = ~Kn(nk - n_A)A + TA.

From these two equations we get two new equations:

(nk - n_A)A = 0 -* Kn(-k) = -K21,

[A, H]_ = TA - T = 0 -K22 = -Klv

i.e., the K matrix, as in the Valatin scheme, is again traceless.
Thus to complete the exact self-consistency procedure

it remains only to find the form of the element K2J of the
desired K matrix. This is most simply done by introducing
the N matrix

AT.22 ' C,D+U=<A+S>+<«-*; - n., - ,
k'

*-*

and using formula (3.4.12). This gives

Here it should be noted that if the Jacobi identity (2.1.2) is
written for the triple I = Ck,2 = D £ ,3 =H, then by com-
paring the result with (3.5.18) one can obtain the interesting
relation

If instead the^Jacobi identity is written for the triple
l = C_k,2 = D+k,3=H and the result is compared with
a relation analogous to (3.5.18) but obtained for the N ma-
trix in which the substitution k— —k has been made, we can
then obtain

which, by the way, follows directly from the previous rela-
tion, since (3.5.2) is invariant with respect to the substitu-
tion yt-> — k if £ _ k = £k, as we are assuming. The last two
relations imply that the correlation function is real:

Thus the final form of the K matrix in the exactly self-consis-
tent scheme is

(3.5.19)

(3.5.20)

and the gap correlation function is calculated from the two
equations

/ V / \ x \ / V / \>^ /S ^

Now instead of (3.5.9) we obtain a spectrum

It turns out to be

<A+A>; 1. (3-5.21)
k

/v s\
At m (n_k[l - 2 (nk, - n_k, - 1)]} + <A+A>. (3.5.22)

k'

Formula (3.5.11) actually remains unchanged in its
outward form:

\"±i/ ~ 2 + Sp F 2 + Sp F"

but here Ek is taken according to (3.5.20). Expression
(3.5.22) can be reduced to the form

Ak = <A+A) + (1 - n)Nnk, (3.5.23)

where N is the number of sites in the sample, and n is the
electron density

1 T"* .^ v .

# z,«n*> + <V) = «t (3.5.24)

the physical values of which for the model under study (the s
band) lie on the segment 0<n<2. In obtaining (3.5.23) we
have used the correlation functions

**'"-*

Fi2F2l ,
J + Sp/)2 •*"
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The second of formulas (3.5.15) remains valid here, but now
^"21 7^*2. since K21^Kf2, and therefore this correlation
function is no longer equal to \bk |

2.
Thus the basic equation (3.5.21) for the gap now has

the form

»* +(!-») -HSp/T1]. (3.5.25)

The structure of this equation is radically different from that
of the Valatin equation (3.5.12), which can be rewritten as

AIl-X^P + SPT1]-0. Fl2~**lr (3-5-26)
k

In fact, in this equation one cannot directly set A = 0 in
order to calculate the transition temperature: here one must
first move to the left from the neighborhood of the transition
point and then divide both sides of this equation by the now
supposedly nonzero A, and only then obtain an equation for
the behavior of the gap as a function of temperature, tacitly
assuming that this equation still applies in the immediate
vicinity of the transition point and therefore, ultimately, can
be used to determine the transition temperature itself by for-
mally setting A = 0. That this may not be so is indicated by
the aforementioned impossibility of directly setting to zero
the gap in the truly original equation for it, i.e., in Eq.
(3.5.26), both sides of which contain this parameter A as a
factor. In contrast, Eq. (3.5.25) fully admits a simple setting
of the gap {A + A) to zero for directly obtaining the transi-
tion temperature itself, since its structure is such that it does
not require first making a leftward excursion from the neigh-
borhood of the transition point. In addition, this equation
yields in a natural way two relations for the behavior of the
gap as a function of temperature: one for the immediate
neighborhood of the transition point, and another for the
rest of the temperature interval to the left of this neighbor-
hood. This is a consequence of an interesting analytical
property of Eq. (3.5.25): its left-hand side is proportional to
TV2 and its right-hand side is proportional to N. Therefore, to
the left of the transition point but outside its immediatexv *x
neighborhood (where {A + A) ̂  0) only the left-hand side of
(3.5.25) remains, while in the immediate vicinity of the tran-
sition point, including the transition point itself, only the
right-hand side remains. The left-hand side of (3.5.25), after
a factor <A + A)^Ois divided^out^ leads to a BCS tempera-
ture dependence of the gap (A + A). In contrast, the right-
hand side of (3.5.25)

Spf)~1] = 0 (3.5.27)

tion point) we obtain an equation determining the transition
point:

(3.5.29)

which outwardly agrees in form with the equation (3.5.14)
of the Valatin scheme. However, in (3.5.29) the potential is
different.

The left-hand side of^3.5.25), which determines the
temperature dependence {A + A) ( T ) outside the neighbor-
hood of the transition point has a solution only for V < 0 and
0 < /z < 2. Equation (3.5.29), on the other hand, which is valid
only in the neighborhood of the transition point, has a solu-
tion in the case V < 0 for 1 < n <2; for n < 1 there is no solution
in this case, but for n < 1 and V> 0 there is a solution, al-
though the physical meaning of this case is not clear.

Since Eq. (3.5.14) has the solution49

1 (3.5.30)

where WK the half-width of the j band, solution (3.5.29)
can be written (where | V \ = U):

(I 1 n+ l\
\2pVn-\)

1 1 «-3

(3.5.31)

The dependence of the transition temperature on n is shown
in Fig. 3. For the case n = 1 there is nevertheless a complete-
ly determinate value of the transition temperature—it is zero
for any sign of V. This is a well-known result for the s band in
the Hubbard and Heisenberg models,51 but for the BCS
problem it is apparently obtained here for the first time. We
see from the plot of the dependence of the transition point on
« that high transition temperatures can be associated with
cases n > 3, as is possible, for example, if the s states are
replaced by 3d states and it is assumed that the structure of
formula (3.5.31) is basically preserved, as is in fact the case
in the nondiagonal Hartree-Fock approximation for the
nondegenerate (0<n<2) and degenerate (0<M<10) Hub-
bard models.49 Incidentally, the nondegenerate Hubbard
model

ff = U-

JJ'O

(3.5.32)

which is obtained from (3.4.1) if the index v takes on only
two values, has become widely employed of late in connec-
tion with high-temperature superconductivity, and the opin-
ion exists that it is the coordinate representation of the BCS
model (3.5.2). This is not the case. These models are related

y^ /**>.

gives a new temperature dependence of the gap (A + A) in
the neighborhood of the transition point. This dependence
can be rewritten as

1 = -— y -N k n

el Si \ 1 ih(pEj2)
•s|-1fa4g&l+«-l «*

(3.5.28)

By directly setting the gap to zero in this equation (since it is
valid precisely in the immediate neighborhood of the transi-

V<0

01/31 £ 3 4 5 6 n

FIG. 3.
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in the same way as are the Brillouin-Wigner and Rayleigh-
Schrodinger expansions: in the solution of problem (3.5.2),
for example, by ordinary perturbation theory the contribu-
tions from the perturbation vanish in all orders in the ther-
modynamic limit, whereas in problem (3.5.32) they remain
finite. Indeed, in the quasimomentum representation the
Hubbard Hamiltonian (3.5.32) has the form

One can extract the BCS Hamiltonian (3.5.2) from this
expression, but only one value (zero) of the quasimomen-
tum transfer (Q = 0) must be takeninto account:

The inverse transition into the coordinate representation
here gives (3.5.32) but with a factor of l/N in front of the
single-site part (in making this transition one must remem-
ber that in the Hubbard model it has been assumed that
U... = US...).]] 11

At this point in the discussion it is appropriate to point
out that at the present time no one has yet proposed a math-
ematically correct means of describing a transition from a
"normal" state to an "abnormal" (magnetic, superconduct-
ing, superfluid) state. Therefore, by proceeding from the so-
lution of a problem formulated for a "normal" state no one
has yet managed to obtain a solution that would describe the
transition to an "abnormal" state and the properties of the
"abnormal" state itself. For now one can only try to turn a
necessity into a virtue by reversing the direction of study.
The BCS Hamiltonian was written with precisely this cir-
cumstance in mind—it originates in an "abnormal" state.
Therefore, its solution should be analyzed starting from the
lowest temperatures and moving to the right, toward higher
temperatures. Only such an analysis is admitted by Eq.
(3.5.26) of the original BCS theory. Therefore in this theory
the transition point can only be taken as the temperature at
which the gap vanishes, i.e., this temperature describes the
transition only from the "abnormal" to the "normal" state.
The distinctive property of (3.5.25) is that it can work in
both directions, i.e., it also works for describing the transi-
tion proper from the "normal" to the "abnormal" state, even
though this equation was obtained from a formulation of the
problem in the "abnormal" state. Therefore it also permits
the introduction of the concept of the temperature at which
the gap appears, and in the present case this temperature
agrees with the temperature at which the gap vanishes, since
in moving from right to left in Eq. (3.5.25) first only the
right-hand side exists (since here by assumption
(A + A) =0). In Eq. (3.5.26), however, moving from right
to left is not possible at all, since in this case it has the form
0 = 0. In principle the temperatures T £ and T f can be dif-
ferent, as could be the case if one recognizes the possible
existence of a supercooled "normal" and a superheated "ab-
normal" state, and the true Tc would lie somewhere in be-
tween them.

Finally, let us say a few words concerning the result of
the analysis of the BCS problem by the exactly self-consis-
tent method. It would be simplest, of course, to reject this
result if only because it differs from the original BCS result,

which is commonly regarded even as being exact (in the
thermodynamic limit). But in the present case I do not be-
lieve that it can be dismissed so simply on such grounds, for
at least two reasons. First, in this approach there are no am-
biguities and/or arbitrary actions—a novel, mathematically
exact procedure is carried out from start to finish. Second,
the problems of statistical physics can admit several exact
solutions: the simplest and best-known example of this is the
Hartree-Fock problem. Therefore it seems to me that it is
not only rightful but also even expedient to publish this re-
sult.

APPENDIX

1. In theoretical calculations of the properties of many-
body systems it is often necessary to do a Fourier time trans-
form as an intermediate step, since this ordinarily leads to
algebraic equations of the form

«(£)*>(£)-J%E) (Al )

for the unknown function <$>(E). A formal solution of such
equations is simple to find:

(A2)

However, this solution is generally not complete, since Eq.
(A1) will be just as well satisfied by a solution of a different
form:

(A3)

(A4)

<P

in view of the identity

?>(£)(<V(£)) - 0,

which applies on the assumption that <p(E) has zeros at sev-
eral values E = Ej,j — 1,2,... . Thus the most complete solu-
tion of (Al) should be a solution of the form (A3),and that
is what should always be used. This solution contains an
unknown function A(E), the specific form of which can or-
dinarily be established on the basis of the analytical proper-
ties of the function $>(E) in the complex energy plane. The
functions of the energy representation are ordinarily inter-
mediate and are used in obtaining the final results in the
integrand. Incidentally, relations containing the delta func-
tion, i.e., relations of the type (A3), necessarily presuppose a
subsequent integration over the independent variable of its
argument.

Integration of relations of the type (A3) are most con-
veniently done in the complex energy plane with the help of
the residue theorem. Since in practice <p(E) most often has
only simple zeros, in this case, as is well known,25 the delta
function can be represented concretely as

y-i
:0. (A5)

Using this expression and analytically continuing all the
functions of relation (A3) into the complex energy plane
(for this it is sufficient to make the substitution E-*z every-
where, since a function of the complex variable z = x + iy is
analytic if it depends on x andy only in this combination, i.e.,
if it is a function of only one independent variable z), we can
do the integration by the residue theorem. The singularities
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FIG. 4.

of the integrands will consist of the zeros of<p(Ej), which lie
on the real energy axis at the points E = Es and have residues
Fj/(p'j, and singularities of the delta function S(E — £,),
which lie in the complex energy plane at points Zj = Ej + is
[see formula (1.1.12) for the delta function]. Now one or-
dinarily makes two additional assumptions which almost al-
ways are justified in practice. First, if the functions F /q> and
AS(<p) taken as a whole have singularities in addition to
those mentioned, they will be of a pole type. Second, the
contour of integration along the real energy axis can actually
be closed in either the upper or the lower half of the complex
energy plane, i.e., so that the contribution from these semi-
circles should vanish for \z\ -> oo. The contours used in the
integration are shown in Fig. 4.

Thus, the integral of relation (A3) is given by

c1

T
(A6)

On the other hand, by taking the integrals only along the E
axis =C ± one can obtain

(A7)

and this result must be equal to the previous result if the
contribution from the large arcs vanish. Equating the two
results gives the value of the integral along the E axis in the
Cauchy principal value sense:

9O

V.,J
<p(E)

I
(A8)

In concluding this paragraph of the Appendix it is use-
ful to note the following fact. In the literature one encounters
(separately) two expressions for the derivative of the delta
function,

x8'(x) = -d = -*'(*), (A9)

which, were it not for the previous material in this Appen-
dix, could be shown to be identical. However, in view of
identity (A4), the first formula of (A9) does not imply the
second formula but rather the more general formula

(A10)d'(x) = - ^&- + const-<J(x)

because of the identity xS(x) =0. Therefore, it is important
to ascertain which of the two formulas in (A9) is the origi-
nal; if it is the first, then the second formula is incorrect, and
if it is the second, then the first is correct also. Direct differ-
entiation of the generally accepted expression25

6(x) & lim —-= ~
e-+0 * x2 + e2

unexpectedly leads to two different expressions:

(Al l )

— — lim •

2xe

2xe = x

(x2 + 2ixe)(x2 - 2ixe)

where in the first case we have dropped the e4 term and in the
second we have dropped the e2 term in each of the cofactors.
Since this result uniquely implies the formulas

(A12)

it is easy to verify which of these two formulas corresponds
to the basic meaning of the relations containing the delta
function and its derivatives: the integral of the two sides of
any such relation should give the same result. This condition
is satisfied by the second formula in (A12). Thus the second
formula in (A2) is the original, and so (A 10) should be
rejected. Finally, it should be noted that of the two formulas
in (A9) the second is important in practice, since it enables
one to replace the hard-to-integrate function S(x)/x by the
easily integrable (by parts) function S'(x), and formulas
(A9) are more correctly written

(A13)

.A* /*-.

2. The operator B=f(A) is considered to be a function
of the operator A if their eigenvalues are related by the same
functional dependence as the operators themselves, i.e.,

W. (A14)

where *„ is the common eigenfunction of these operators. A
function f ( A ) of operator argument A has meaning (is de-
fined) only for those eigenvalues An of the operator A for
which the function f(An) of the nonoperator argument An

has meaning (is defined).
The derivative of an operator with respect to a nonoper-

ator argument on which it depends explicitly is defined in the
usual way:

A(p') - A(p) (A15)

According to this definition the product of operators is dif-
ferentiated according to the same rule as for the product of
nonoperator quantities, but with the original order of the
operators in their product preserved in the differentiation.

In quantum theoretical physics all the functional de-
pendences on operators (even among those which are for-
mally admissible) are encountered by no means equally of-

978 Sov. Phys. Usp. 34 (11), November 1991 M. F. Sarry 978



ten. The most important and frequently used is the
exponential dependence on an operator. For example, the
statistical operator—the basic operator of quantum statisti-
cal physics—is just such an operator. It therefore makes
sense to obtain a formula for the derivative

(A16)

of such an operator with respect to a parameter when f ( A ) is
the exponential function:

fi(A) • expO^C*)). (A17)

It is for this case (and for handbook purposes) that the in-
convenient and asymmetric expressions in the form of "left"
and "right" derivatives are presented in the literature [cf.
Ref. 52, (p. 329 in Russian original) ].

By direct calculation one can verify the auxiliary for-
mula

(A18)
m=l

which gives a rule for differentiating a power-law function of
operator argument, which, in turn, is a function of a nono-
perator argument A.. Now, using (A18), we can easily obtain
the desired formula for differentiating an exponential func-
tion:

n=0 ' m=l

^ /*.
If dA /dA commutes with A, this leads directly to the usual
formula

£«p0fi)-^|f=/J$A (A20)

In quantum statistics it is very often necessary to differen-
tiate not the statistical operator itself but only its trace. Since
the trace of a product of operators does not change upon
cyclic permutations of those operators, here, generally
speaking, we do not need to pay attention to the noncommu-
tative property of an operator and its derivative, and we can
write the derivative (A19) immediately in the form (A20).
As an example that is of interest from the standpoint of ap-
plications one can obtain an analog of the Feynman theorem
for the thermodynamic potential. In quantum mechanics the
Feynman theorem has the form52

**^Wdu. (A21)

The thermodynamic potential is52

/3Q = -In Sp{exp[-/3(# +^]}, (A22)

and then in quantum statistics the Feynman theorem be-
comes

OQ ,dH.
(A23)

where (...) denotes statistical averaging.
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