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Current ideas on the interaction between magnetic and superconducting states in strongly
magnetized systems are discussed in terms of the Hubbard model and its limiting case in the form
of the t — J model. Two approaches to the problem are compared, namely, those of weak and
strong Coulomb repulsion, i.e., U< Wand U> W, respectively, where U is the repulsion and W
the electronic band width. The dynamic magnetic susceptibility of the system is analyzed in both
cases, and different types of magnetic instability are identified. Spin fluctuations that grow near
the instability boundaries of the paramagnetic phase give rise to Cooper instability. The role of
longitudinal and transverse spin fluctuations in the evolution of the superconducting state in a
magnetically ordered phase is also investigated. Particular attention is devoted to the two-
dimensional model near half-filling. Analytic studies based on the generalized random phase
approximation are presented. In addition, a detailed review is given of numerical calculations that
involve a single hole in the antiferromagnetic phase and are based on the Monte Carlo method and
the exact diagonalization of small clusters. The problem of two interacting holes is also examined.
Such studies may provide the conceptual basis for magnetic (correlational) mechanisms of high-
Tc superconductivity in copper oxide compounds.

1. INTRODUCTION TO THE PROBLEM

1.1. Fundamental models in the theory of strongly correlated
systems

The media in which the characteristic Coulomb inter-
action energy of electrons is greater than or of the order of
the bandwidth are called strongly correlated systems. They
have attracted exceptional interest in recent years in connec-
tion with searches for nonphonon mechanisms in high-T^
superconductors such as the copper cuprates. It has become
clear from current experimental data and ab initio calcula-
tions of the band spectrum that these materials belong to the
class of strongly correlated systems. This correlation is indi-
cated by the proximity of superconducting compositions to
the metal-insulator and antiferromagnetic transitions, and
by the presence of localized magnetic moments in copper.
There are quite a few hypotheses that associate high Tc with
manifestations of strong electronic correlation.

It is well known that strongly correlated systems have a
tendency toward magnetic and superconducting ordering,
so that the superconductivity problem for such systems must
be considered in the context of studies of magnetic states. It
was shown well before the discovery of high- Tc supercon-
ductivity that the indirect interaction between electrons near
a ferromagnetic instability in a metal gives rise to a repulsion
in the singlet channel and to an attraction in the triplet chan-
nel.1 Much later it was shown2 that the potential experi-
enced by electrons in a singlet pair near an antiferromagnetic
instability is also repulsive although this may be accompa-
nied by the onset of superconductivity with anisotropic d-

wave order parameter. This type of behavior of itinerant
magnets in the paramagnetic phase with respect to Cooper
pairing is fully consistent with the well-established fact that
the interaction between electrons via magnetic fluctuations
(spin waves) in a magnetically ordered state is repulsive in
the singlet channel and attractive in the triplet channel.3'4

The above results1'2 were obtained for systems with
weak Coulomb interactions. The situation is much more
complicated in the case of strongly correlated systems be-
cause localized magnetic moments that can give rise to pair
breaking5 can then appear in the system for a certain partic-
ular electron concentration. The connection between mag-
netic and superconducting states can be investigated most
completely in terms of the Hubbard model.6

The Hamiltonian for the Hubbard model contains only
two parameters, namely, the transition matrix element t be-
tween the nearest-neighbor sites and the Coulomb repulsion
parameter U of electrons on a given site. In the second quan-
tization representation, the Hamiltonian can be expressed in
terms of the Fermi annihilation and creation operators cia

and c,+ of an electron on site / with spin a:

# = -<2<&>+ ££Xt' i<i5 (U)
i,j,a i

where nia = c£ cia is the number of electrons with given spin
cr on a given site.

The system as a whole is characterized by a further pa-
rameter, namely, the electron concentration n (number of
electrons per site) which ranges from 0 to 2. Half-filling
(n = 1) is a special case because an insulating state with
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long-range magnetic order can occur for certain ratios of t
and U. It is convenient to take the bandwidth W = 2zt as the
parameter characterizing the first (band) term in the Ham-
iltonian, where z is the number of nearest neighbors. The
most interesting parameter range in which one finds magnet-
ic ordering, the metal-insulator phase transition, and so on is
the intermediate region U~ W which is relatively inaccessi-
ble to analytic investigation. It is therefore usual to examine
two limiting cases, namely, U^ W, which corresponds to the
usual Fermi liquid, and C/> W, which corresponds to a
strongly-correlated system. A perturbation theory in the ap-
propriate parameter can be developed for each of these lim-
its. The usual Fermi operator technique is used for the weak
Coulomb interaction, but perturbation theory is not as tri-
vial in the opposite limit (see, for example, Ref. 7). Since
Hubbard's work, the single-site energy is treated in this case
as the zero-order approximation and the kinetic term is re-
garded as a perturbation.

Thus, when U<^ W, one starts with the basis of itinerant
(band) electronic states whereas for £/> W the basis of local-
ized states is employed. In the intermediate region, the sys-
tem exhibits features of both bases, which are analogous to
the usual quantum-mechanical wave-particle dualism of mi-
cro-objects. Hubbard has put forward an interpolation
scheme for the description of the intermediate region, but
this is found to be too approximate for the description of
cooperative phenomena such as the phase transition to a
magnetic, superconducting, or insulating state. Regular per-
turbation theory in the parameter U / WOT W /U, followed by
extrapolation to U~ W, is therefore preferable. Indeed, this
is the approach adopted by most researchers motivated by
the idea of nonphonon mechanisms for high- Tc supercon-
ductivity.

In the case of strongly correlated systems (£/> W), it is
convenient to start with an effective Hamiltonian and not
the original Hamiltonian (1.1). Excluding states with two
electrons per site, i.e., 'pairs', we can show that in second-
order perturbation theory the Hamiltonian corresponds to
the so-called t - /model8'9

<V>

(1.2)

where 5, is the electron spin operator, «, = 2CT«1CT is the op-
erator representing the number of electrons per site /, and
/ = 4t2/ U is the effective exchange integral between nearest
neighbors. The kinetic term acquires factors of the form
(1 — « , - _ _ „ . ) which prevents electrons from reaching sites
that are already occupied. The kinetic term vanishes in the
case of half-filling, and the Hamiltonian 3f reduces to the
Hamiltonian for the Heisenberg antiferromagnet with spin
S = 1/2. It is clear that this is an insulating state.

Thus, different models with Hamiltonians (1.1) and
(1.2) must be used for weak and limiting strong Coulomb
interactions, respectively. The same statistical mechanics
problem must nevertheless be solved in both cases, e.g., we
have to construct the diagram of state on the (t /U,n) plane
or, in a more complete form, within the volume (t/U,n,T).
In this review, we shall confine ourselves to a part of the
general problem, namely, the magnetic and superconduct-

ing phases in the itinerant model and to the interrelation
between them.

The problem has two aspects, namely, a general aspect
that involves the examination of the three-dimensional mod-
el in a wide range of electron concentrations, and a special
aspect that covers known high- Tc superconductors and in-
volves studies of the two-dimensional model near half-fill-
ing. We shall try to examine both these aspects, but will con-
centrate our attention on the two-dimensional Hubbard
model near half-filling. Before we turn to a rigorous discus-
sion of this problem, we present some qualitative ideas on the
behavior of holes implanted in an antiferromagnetic lattice
at half-filling.10'11

1.2. Qualitative description of the motion of a hole in a
ferromagnetic matrix

Simple considerations suggest that holes can form a
bound state in the antiferromagnetic phase near half-filling.
Figure 1 shows two configurations containing two holes. In
one case, the holes are nearest neighbors whereas in the other
they are a certain distance apart. It is clear that the separa-
tion of holes produces a sequence of overturned spins that
requires an energy proportional to the length of the se-
quence, i.e., the separation between the holes. It follows that
the magnetic order gives rise to an effective hole interaction
potential that is responsible for the confinement of the holes.
At the same time the hole pair can move freely through the
lattice without losing energy by deforming the magnetic
structure.

If we wish to model this potential, we must remember
that the t — J model involves two time scales, namely, rh

which is a measure of the time spent by a hole on a site and rm

which is the lifetime of a spin fluctuation. These two param-
eters are given by

Th ~ ft/(' Tm ~ ft/4<2/£7. (1.3)

When U$> t, we have rm > rh, so that the motion of the hole is
fast in comparison with the fluctuation relaxation time. This
means that a moving hole produces a sequence of overturned
spins over a length I~rmvF where VF is the velocity on the
Fermi surface. The second hole (with the opposite spin)
then experiences an attractive potential v(r) that rises lin-
early over a segment of length /. This potential can be ap-
proximately represented by

J
mt°«mt I ' t i tW't
tw twn t J tm tm
FIG. 1. Spin configurations containing two holes: a-nearest neighbors, b-
holes separated by a certain distance.
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•-&'-*>> r<l>
0, r>l;

(1.4)

where a is the lattice constant. Of course, the total effective
potential must include the radial centrifugal potential

Kl+D.

where / is the orbital angular momentum of the particle pair.
The total potential veff(r) =v(r) + v, (r) is such that a
bound state, namely, a Cooper pair, can be formed in the
potential. Since, for a singlet state, the orbital part must be
an even function, / can correspond to a s-wave state or a d-
wave state. We choose the latter because the wave function
of the pair then vanishes at r = 0, which is in agreement with
the fact that two holes cannot occupy the same site.

Despite its primitive character, the above model (or,
more precisely, heuristic) approach does describe the over-
all evolution of the superconducting state in the t — /model.
In particular, it outlines the necessity for the close coupling
of charge and magnetic degrees of freedom, the special role
of the d-wave symmetry of the superconducting order pa-
rameter, and the importance of antiferromagnetic ordering.
The theory of superconductivity based on the t — J model
must be constructed with allowance for these trends and
must thus be freed from two coarse asumptions, namely, the
ad hoc introduction of a pairing potential and the Ising-like
antiferromagnetic state. The inclusion of transverse spin
components in the analysis extends the basis of spin configu-
rations that must be introduced to describe the perturbation
of magnetic order by the moving hole.

In any search for possible pairing mechanisms for real
high-rc materials, we must concentrate our attention on the
properties of the two-dimensional t — /model near half-fill-
ing (low hole concentration n h ) . In this situation, we know
the ground state of the system that is taken as the zero-order
approximation: it is the antiferromagnetic insulator. An in-
dividual hole is found to be localized in this system as can be
seen from Fig. 1. Several theoretical problems arise at this
point, the most important of which are as follows:
(1) How (i.e., for which hole concentration) does metalliza-
tion of the system occur?
(2) What is the dynamic character of a hole in the form of a
quasiparticle with a cloud of magnetic-structure deforma-
tion (magnetic polaron) ?
(3) What is the lifetime of this quasiparticle, and can the
metallized hole collective be described by the Fermi liquid
picture?

These are, of course, problems encountered in the de-
scription of the normal state of a metal. The second level of
problems is concerned with the onset of superconductivity
and can be reduced to the problem of a bound state of holes
and the evaluation of Tr.

1.3. Two approaches to the problem of strongly correlated
systems

We have thus shown that the most interesting param-
eter range U~ W can be approached in two ways, namely,
either via perturbation theory in the small parameter U/W,
using the Hubbard model with the Hamiltonian (1.1), or via

the t — /model in which the opposite small parameter W/U
has already been used. Accordingly, our review consists of
two parts. The first part deals with the idea of an itinerant
magnet in which the antiferromagnetic state arises near
band half-filling as a result of the nesting of the Fermi sur-
face (the dimension D = 3 or 2 does not then have any fun-
damental significance). In the random-phase approxima-
tion (RPA), we investigate the interaction between
electrons via spin fluctuations in the paramagnetic phase of a
metal near the antiferromagnetic instability in the general
case, and in the antiferromagnetic phase in the two-dimen-
sional system near half-filling. The RPA approximation,
and also numerical methods, are used to investigate the qua-
siparticle lifetime, and it is shown that the Fermi liquid pic-
ture of carriers remains valid near band half-filling up to
U~W.

The other part of our review is concerned with the op-
posite limit, namely, that of strongly correlated systems
within the framework of the t — J model. As in Part I, here
we investigate the interaction of electrons via spin fluctu-
ations in the paramagnetic phase near the antiferromagnetic
instability, using the generalized random phase approxima-
tion GRPA.12 However, most of our material refers to the
problem of holes in the two-dimensional t — J model near
half-filling. This problem is much more complicated for the
t — J model than the analogous problem in the case of the
weak Coulomb interaction. One of the basic questions is the
ground state of the two-dimensional t — /model at half-fill-
ing. Here, we shall confine our attention to only one line of
investigation in which it is assumed that a Neel antiferro-
magnetic state exists. However, there is the alternative An-
derson hypothesis13 of a new type of ground state, i.e., that
of resonating valence bonds (RVB). This is now an enor-
mous (and independent) field of research that is close to the
problem of anion superconductivity.14 It will require a sepa-
rate review.

Copper-oxide cuprates constitute a separate subject in
which the electron mechanisms of high- Tc superconductivi-
ty in real media are discussed. Any analysis of correlation
effects, based on the nondegenerate single-band Hubbard
model and its derivative, i.e., the t — J model, can only be
conceptual in character. Extended Hubbard models that
take into account at least two electron bands (genetically
related to the d-wave electrons of copper and the p-wave
electrons of oxygen) are used for real high-rc materials and
take into account the degeneracy of these electron states, the
symmetry of the lattice, and the Coulomb interactions on
neighboring sites. This gives rise to a large number of var-
iants with different ratios of the numerous parameters that
define the physical content of the different models. The dis-
cussion of these models in the context of experimental data
and the electronic structure of copper cuprates can also be
the subject of a separate review.

A few years ago we published in this journal a review of
the magnetic aspect of the high- Tc problem15 that covered
both experimental data and the corresponding theoretical
approaches. In the three years since that publication, the
subject has developed along three lines, one of which is cov-
ered in this review. The other two (the RVB state and ex-
panded models) will also require a systematic presentation
and a critical analysis. These three directions constitute the
modern magnetic aspect of high- Tc superconductivity.
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1. APPROACH FROM THE SIDE OF WEAK COULOMB
INTERACTION

2. TYPES OF INSTABILITY IN THE NORMAL PARAMAGNETIC
PHASE OF A METAL

2.1. Instability with respect to the formation of a spin density
wave

Under certain specific conditions, a weak Coulomb re-
pulsion on a site (J7< W) can give rise to a magnetically-
ordered state. The possible types of magnetic order are de-
termined by the properties of the dynamic susceptibility
^(q,w) where q is the wave vector and co the frequency. For
the paramagnetic phase of a metal, the random phase~ap-
proximation (RPA) can be expressed in terms ofthe dynam-
ic susceptibility %o (Q»«) of free electrons16

') (2.1)

where

•te A3' (2.2)

and/(fk) is the Fermi distribution function.
Two types of instability follow from (2.1) in the static

limit. One of them is the instability with respect to the forma-
tion of a homogeneous ferromagnetic state. Actually, it fol-
lows from (2.2) that^0 (QiO) is equal to the density of states
p(fj.) on the Fermi surface, so that the magnetic susceptibil-
ity diverges as ^->0 and the Stoner factor vanishes:
l-Up(fi)=0.

The other instability arises when there is a nesting of the
Fermi surface with wave vector Q:

u = -(ek-u). (2.3)

We then have

W exp( - (2.4)

defines the magnetic transition point or the chemical poten-
tial fi for T= 0 for which a spin-density wave (SDW) state
with wave vector k0 = Q appears.

Thus, magnetic ordering will appear in the system ei-
ther if the Coulomb repulsion is strong enough or nesting
occurs on the Fermi surface. We shall assume that nesting
occurs, so that a SDW state is produced in a certain region of
the phase plane (T,(j,) or (T,n), or for T = 0 on the plane of
the parameters of the system. A sharp increase in magnetic-
order fluctuations arises near the boundary of these states.
These fluctuations convey the indirect interaction between
electrons and, possibly, give rise to another type of instabil-
ity, namely, instability with respect to the formation of a
condensate of Cooper pairs. Let us examine this problem in
greater detail.

*(<?)= O + O-O + O--O-O
(2.5)

where the solid line with a black or white arrow represents
the electron Green's function (the color of the arrow repre-
sents the electron spin) and a broken line represents Cou-
lomb repulsion. The electron Green's function

G<7(k,T) = -<rcka(T)cj^(0)> (2.6)

is the standard Matsubara Green's function18 with imagi-
nary time r. In the zero-order approximation,

(2.7)

where k = (k,/<an) is the four-momentum with an imagi-
nary fourth component.

In the zero-order approximation in U, the magnetic sus-
ceptibility is given by

(2.8)

which after analytic continuation mn -*a> + iS leads to the
well-known expression (2.2).

The infinite series (2.5) includes dynamic magnetic
fluctuations in the system, generated by electron-hole pairs.
The effective interaction between electrons in the singlet Fs

and triplet V1 channels can be readily expressed in these
terms, using the following definitions:2

V* =

(2.9)

where the double dashed lines represent infinite series with
even and odd number of loops:

(2.10)

(2.11)

and the dashed vertex part represents the infinite series of
antiparallel ladders:

2.2. Instability in the Cooper channel

To calculate the electron pairing potentials, we start by
recalling the graphical interpretation of magnetic suscepti-
bility (2.1). This classical result is represented by the follow-
ing sum of loop diagrams:17

i + i I i +
•\ /-+~^^\

(2.12)

In the Cooper channel (ingoing particle momenta k and
— k; outgoing momenta k' and — k"), the interaction ma-
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trix elements Vs = V\ + V\ and V1 in the singlet and triplet
states are obviously given by2 K0<*' - *)

r, (2.13)

(2.14)

We now construct the equation for the vertex part in the
Cooper channel. For example, for the singlet state, this has
the standard form18

-fr—
r?

- h
Tc

— b—

(2.15)

where F° is the effective interaction Vs defined by the
graphical series (2.10) and (2.12) or the analytic expression
(2.13). Equation (2.15) without the inhomogeneous term is
the linearized equation for the superconducting order pa-
rameter and can be used to determine Tc. In strong coupling
theory, the intermediate Green's functions in (2.15) must be
taken to be the renormalized Green's functions with the self-
energy part

(2.16)

which is obtained by the closure of the intermediate lines in
the graphical expressions (2.9) for V\ and V1.

Equations (2.15) and (2.16) form a closed set of equa-
tions for rc and 2. As usual, it is convenient to introduce the
two quantities q>(k) and Z(k). The former is determined by
the vertex Fc for zero total momentum

rc(A, «-*;«-*', *')|9=0 = ?(*) = ?(k> *»„), (2.17)

and the latter is given by the expression for the renormalized
Green's function

<?(*) = (2.18)

where E(k) =£k — /i is the energy of the electron measured
from the chemical potential. This leads to the following set
of coupled equations for <p(k) and Z(k):

•-L 2VZ(kk',«0n-

k',w'

(2.19)

(2.20)

where the matrix elements Vz and Fare given by
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lfy>(*' ~ '

(2.21)

(2.22)

Equations (2.19) and (2.20) have the standard form of the
equations of the theory of superconductors with strong cou-
pling.19 The equation for <p(k) has a solution for Tc if the
matrix element V is positive, which corresponds to attrac-
tion. However, it is clear from (2.21) that Fis in fact nega-
tive because both terms are proportional to the magnetic
susceptibility which should be positive in the paramagnetic
phase. It follows that the interaction between electrons via
magnetic fluctuations is repulsive in the singlet channel, in
accordance with the well-known result that the interactions
between electrons in this channel via spin waves in the mag-
netically ordered phase is repulsive.3

Despite the repulsive character of the effective interac-
tion (2.21), Cooper pairing is nevertheless possible for an
anisotropic superconducting order parameter if the system
exhibits antiferromagnetic instability.2 If we apply the stan-
dard treatment to (2.19) and (2.20) in the spirit of the inter-
mediate coupling approximation, we can seek the solution of
the equation for q>(k) in the form

K*)=VXk)A/a>), (2.23)

where if>, (k) is the basis function of the irreducible represen-
tation of the point group of the crystal and A, (<y) depends
only on frequency. Equation (2.20) then leads to the follow-
ing expression for Tc of the /-type superconducting state:

1 + A (2.24)

where a>m is the limiting frequency of spin fluctuations and
Az and A./ are the total and partial coupling constants, de-
fined by

A,=

(2.25)

(2.26)

The double angle brackets represent averaging over the
momenta k and k' on the Fermi surface; p (/j.) is the total
density and p, (fj,) the partial density of states on the Fermi
surface. The coupling constants are thus averages of the two
interactions Vz and Fat zero frequency, as in the usual elec-
tron-phonon model of superconductivity.19 Both Kand Vz

are proportional to the magnetic susceptibility x(q} which
has a peak near the wave vector 0 or k0 in the case of ferro-
magnetic or antiferromagnetic susceptibility (Fig. 2).

The coupling constant /lz is positive. The expression for
Tc given by (2.24) is meaningful only if A, is also positive.
As already noted, the quantity V that determines A, is nega-
tive, so that A, can be positive only for a basis function with
an alternating sign. For example, for the simple cubic lattice,
tpi(k) is given by the following expression in the nearest-
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FIG. 2. Magnetic susceptibility near a ferromagnetic (a) and an antiferro-
magnetic (b) instability.

2.3. Properties of the two-dimensional model

Consider a square lattice with the electron dispersion
law

(2.30)ek = -2<(cos kx + cos k).

Figure 3 shows its Brillouin zone in which the thick line
represents the isoenergy surface ek = 0 corresponding to the
half-filled band. In the case of exact half-filling (« = 1), we
have perfect nesting of the Fermi surface with wave vector

The density of states has a logarithmic singularity near

neighbor approximation for / with s-, p-, and d-wave symme-
try2

Y>s(k) = cos kx + cos k + cos kz,

VpiOO = sin kx, Vp2(
k) = sin *,• V-p3(k) = sin *2,

Vdl(k) = cos kx - cos ky, YtoOO = 2 cos kz ~ cos kx ~ cos *y

Vd.1(k) = sinAJt-sinA:),, Vd-2(
k) = sin Vsin *z. (227)

At half-filling in the simple cubic lattice, nesting occurs for
Q = (7r,fl-,7r) (lattice constant a set equal to unity), so that
the SOW state with wave vector k0 = Q is produced. At the
same time, the basis functions (2.27) have the property

Q) = - r = s, d. (2.28)

It follows that for states with d-wave symmetry, the expres-
sion for A, given by (2.25) can be rewritten in the form

- k' - Q; (2.29)

where the integration with respect to k and k' is carried out
over the two Fermi surfaces shifted by the vector k0. Since
the interaction V(k) is proportional to j(&), and the latter
has a narrow peak near k = Q in the case of SDW instability,
the quantity |k — k'| is small and the integration in (2.29) is
performed over a certain region near the line of intersection
of the two Fermi surfaces.

Comparing (2.29) with the original (2.26), and recall-
ing the properties of magnetic susceptibility near the boun-
daries of the magnetic phase transition, we see that the A,
have different signs for ferro- and antiferromagnetic instabi-
lities. The structure of (2.29) suggests that A, may be nega-
tive for the antiferromagnetic instability. Numerical evalua-
tion of A/ has confirmed this.2 It was found that for fillings
corresponding to the boundary of existence of the SDW
phase, A, is positive and much greater when the order pa-
rameter has the d-wave symmetry; A, is negative for s-wave
symmetry and negligible for p-wave symmetry (triplet pair-
ing). The numerical magnitude of A, for d-wave symmetry
does not exceed 0.1, so that Tc due to the spin fluctuation
mechanism does not exceed a few degrees Kelvin.

so that the magnetic susceptibility %0 (q,ea) has singularities
as a function of temperature and chemical potential. For
H = 0 (half-filled band), we then have20

(2.32)

(2.33)

Because of these singularities, the equation
1 — UXQ (q,0) = 0 always has a solution either for finite T
with n = 0 or finite /z with T = 0. For a half-filled band, an
SDW state is produced in the system with wave vector
ko = Q and magnetic transition point20

When 4f >// > t, we have

- 0) ~ yln^, *o(Q. 0) - jln2|.

1/2

(2.34)

Numerical solution of these equations in the two-di-
mensional case shows that a superconducting state arises in a
certain limited range of hole concentrations near the bound-
ary of the transition to the antiferromagnetic state. Figure 4
shows a typical phase diagram. Superconductivity increases
as the boundary of the magnetic phase is approached, but the
magnitude of Tc remains exceedingly low. For example, for
U/t= 1.2, the maximum value is r c ~2xlO~ 3 t . If we
choose the parameters so that for [i = 0 (half-filled band),
Tm = 250 K (for which 4?~6600 K), then Tc <2.5 K. As
the ratio U/t increases, the region occupied by the super-
conducting state expands and Tc increases, but does not ex-

FIG. 3. Brillouin zone for a square lattice.
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FIG. 4. Phase diagram on the (7» plane for U/t = 1 (Ref. 20). Solid
line-magnetic ordering temperature Tm, dashed line-superconducting
transition point. The dotted line represents Tc without the electron self-
energy correction.

ceed a few degrees Kelvin. Superconductivity does not occur
at all for U/t~0.6. We also note the importance of the self-
energy correction to the spectrum, which reduces Tc very
considerably despite the fact that the attractive potential for
electrons via spin fluctuations diverges for T = Tm.

In contrast to the electron-phonon model of supercon-
ductivity, in which vertex corrections as measured by the
adiabatic parameter (/w/Af)1/2 are small (Ref. 19), in the
Hubbard model these corrections are not small a priori so
that their contribution to Tc may turn out to be significant.
The vertex corrections to the electron-spin-fluctuation inter-
actions were first taken into account in Ref. 21 in which their
effect on Tc and other parameters of the system were investi-
gated.

Actually, the expression for 1, given by (2.16) should
include corrections for scattering with spin conservation and
with spin flip. However, the analysis given in Ref. 21 in-
cludes only the corrections to the vertex part that do not
contain transverse spin fluctuations. The correction to the
Green's function for paramagnetic states [the quantity
Z(k,icon)] is determined in a self-consistent manner. The
following simplifications are used in the numerical calcula-
tions: the frequency and momentum dependence of Z and <p
are only partially taken into account, i.e., their dependence
on a>n is neglected, but the dependence on k is retained.

A numerical solution of the equations for Z and <p
shows that corrections to the vertex parts have no effect on
the qualitative conclusions about superconductivity in the
system due to spin fluctuations: superconductivity is found
to persist near the transition to the antiferromagnetic state
and the superconducting order parameter has the d-wave
symmetry, but the critical temperature Tc is significantly
renormalized. Vertex corrections give rise to two opposite
processes that affect the magnitude of Tc. On the one hand,
they produce an increase in the effective mass (through the
increase in Z) that significantly reduces Tc. On the other
hand, the vertex corrections lead to an increase in the ampli-
tude for the scattering of electrons by spin fluctuations for
scattering vector Q = (ir,ir), which enhances the pairing-
interaction kernel in the equation for <p. The combined effect
of these two processes is that Tc increases by several times as
compared with the RPA approximation.

3. PAIRING OF ELECTRONS VIA SPIN FLUCTUATIONS IN THE
ANTIFERROMAGNETIC PHASE

3.1. The concept of the spin bag

We have seen that the interaction between electrons via
spin fluctuations in the paramagnetic phase near the phase
transition to the antiferromagnetic state can lead to super-
conducting pairing in which the order parameter has the d-
wave symmetry. Studies of this pairing mechanism in sys-
tems with existing long-range antiferromagnetic order or
sufficiently extended short-range magnetic order have as-
sumed considerable importance in connection with the prob-
lem of high-temperature superconductivity. If the magnetic
correlation length is significantly greater than the correla-
tion length I" of the superconductor, then the presence or
otherwise of long-range magnetic order is unimportant for
the evolution of the superconducting state. We can then in-
vestigate the effect of electron pairing via spin fluctuations in
terms of the two-dimensional Hubbard model in which there
is no long-range magnetic order, but the magnetic correla-
tion length can be sufficiently long. It is then convenient to
assume that the system behaves as if there was long-range
magnetic order.

Effects associated with the influence of antiferomagne-
tic order on superconducting pairing can be included by tak-
ing into account the change in the electron spectrum pro-
duced by antiferromagnetic ordering. We know (see, for
example, Ref. 4) that magnetic ordering splits the original
electron band and the band gap appears precisely at the
boundary of the magnetic Brillouin zone. If the Fermi sur-
face lies near such boundaries, the change in the spectrum
becomes very significant for all the physical properties of the
system. This is precisely the situation in the two-dimensional
Hubbard model with a half-filled band (n = I ) . A gap A
then appears on the Fermi surface which coincides with the
boundary of the magnetic Brillouin zone, so that the metal
becomes an antiferromagnetic insulator.

Schrieffer et a/.22 have investigated the behavior of
holes in the lower (valence) quasiparticle band by including
the effects of their interaction with magnetic fluctuations.
Each hole partly destroys the antiferromagnetic order in its
immediate neighborhood and becomes localized in this dis-
turbed region, displacing the deformation cloud during its
motion. The magnetic polaron produced in this way is re-
ferred to by these workers as a 'spin bag'. If there is a second
hole with its own spin bag, the overlap between the deformed
magnetic structure regions produces an interaction between
the holes, and a common bag may be formed with an atten-
dant reduction in total energy. This is the origin of the effec-
tive attraction between holes that can lead to Cooper pair-
ing.

In the mathematical implementation of this scheme, we
have to solve two series of problems: (1) we have to intro-
duce new quasiparticles that take into account the motion of
electrons in the antiferromagnetic lattice and (2) we have to
calculate the magnetic susceptibilities of the system and ex-
press them in terms of the effective quasiparticle interaction,
and then find the effective interaction between the implanted
holes in the Cooper channel. The successive stages of this
theory are briefly presented below.22

We assume that a Neel ground state with wave vector
k0 equal to the nesting vector Q = (ir,ir) is produced in our
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square lattice at half-filling. Spontaneous symmetry break-
ing leads to a change in the electron spectrum that is readily
determined in the mean-field approximation. We now re-
place the Hamiltonian (1.1) with the quadratic form

'let ~ck+Qi "M> (3.1)

in which the parameter A is found from the self-consistency
condition.

The diagonalization of ̂ MF is achieved by the canoni-
cal transformation to new Fermi operators that mix the elec-
tron states with momenta k and k + Q:

(3.2)
: "kck«'

0

where the real coefficients uk and yk satisfy the condition
"k + "k = 1. « and /3 are the spin indices, and a* is the
Pauli matrix (z is the direction of the spontaneous magnetic
moment of the sublattices). In terms of the new operators,

k,<z

where

(3.3)

(3.4)

in variance means that x should depend on the two momenta
q and q'.

The self-energy correction must be calculated for the
electron in order to take into account fluctuation effects in
the sublattice magnetization. We shall take it in the follow-
ing form (for example, for an electron with spin T )

(3.7)

where the double dashed line represents the effective interac-
tion via the electron loops whereas the double shaded line
represents the sum of all the antiparallel ladder diagrams.
The first graph is thus seen to describe processes with the
conservation of spin whereas the second describes processes
with spin flip due to the interaction with longitudinal and
transverse (spin wave) fluctuations above the SDW state.
The effective interaction lines have analytic expressions for
V2 and V + ~. They, and also the susceptibilities jrz and

X + ~, are functions of the two momenta q and q', but y** is
diagonal whereas V + ~ contains an off-diagonal contribu-
tion due to the term^Q which is an odd function of a and
is therefore small for small (o< A. If we neglect this contribu-
tion, we obtain the following expressions for the longitudinal
and transverse effective interactions:

Vz(q, o>) = • (3.8)

(3.9)

In one of the two bands, namely, the conduction band (with
the operator f), the quasiparticle energy is Ek whereas in
the other band, namely, the valence band (with the operator
f), the quasiparticle energy is — Ek (Fig. 5). The prime on
the sum over k represents summation over the magnetic
Brillouin zone lying inside the region

—n < kx < n, — n (3.5)

that occupies an area smaller by a factor of two than the
original Brillouin zone (see Fig. 3).

For a half-filled original band (n = 1), the valence
band is completely filled whereas the conduction band is
empty, so that the system is an insulator with a gap 2A. It is
clear from (3.4) that A is the gap in the spectrum of the
single-particle excited state that is either a hole in the valence
band or a particle in the conduction band. The size of the gap
is found from the self-consistency equation

1 1 1
(el + A2)1/2 (3.6)

Collective excitations of the system are determined by
the poles of the magnetic susceptibility %. In the RPA ap-
proximation, x is found by summing over the same loop dia-
grams that arose in the evaluation of the susceptibility in the
paramagnetic phase [see (2.5)]. For the magnetically or-
dered state, there are two differences: first, the Green line
loops correspond not to electrons but to quasiparticles with
energies Ek and — Ek and, second, the loss of translational
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in which the upper sign in front of A2 is taken for the compo-
nent x*o an<3 tne lower for Xo ~ •

Conduction
band

FIG. 5. Quasiparticle energy spectrum in the SDW state.
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We now turn to the interaction between two holes in a
half-filled band. In the static approximation, this interaction
is described by (3.8) and (3.9) with ca = 0. The effective
interaction Hamiltonian for holes in the longitudinal and
transverse channels is determined in accordance with the
expressions23

(3.11)

(3.12)

k,k',q

„+ ~+

where a + = a* + iay. We now perform the reverse trans-
formation in (3.2), from the electron operators to the quasi-
particle operators. The Hamiltonian written in the terms of
the operators f and 7° contains different contributions, in-
cluding interband transitions. Since, the valence and con-
duction bands are separated by the large gap 2A, interband
transitions can be neglected. We then obtain the following
expressions for the hole Hamiltonians describing interac-
tions via longitudinal and transverse fluctuations in the Coo-
per channel (total momentum of a pair q = O)23

_L V' y
AfJ Zj t-l
™ k,k' a,a'fa

- k' + Q, <

(3.13)

k.k'

Q,
(3.14)

where we have introduced the so-called coherence factors

m(kk') = ukvk, + ukuk,, p(kk') = ukuk, - »kuk,,

/(kk1) = wkKk, + vkvk,, rc(kk') = ukuk, - vkvk,. (3.15)

The expressions in parentheses in (3.13) and (3.14) repre-
sent the effective interactions of quasiparticles in the valence
band via longitudinal and transverse spin fluctuations. In
addition to the two interaction channels Hz and H + __ be-
tween holes via spin fluctuations, there is also the channel
Hc in which the interaction takes place via charge fluctu-
ations. This channel is omitted here because the energies of
the corresponding collective modes lie much higher than the
energies of the spin modes, so that this particular channel is
ineffective in the pairing interaction between the holes.21

When the hole concentration is very low, the Fermi sur-
face obviously lies near the magnetic Brillouin zone where
Ek = 0, so that uk ~vk x 1/V2. The consequence of this is
that /?2(kk')ssn2(kk')s;0. This does not mean, however,

that the matrix element of the effective interaction via the
spin waves is small, as was initially assumed in Ref. 22. This
is not the case because V + ~~ has a singularity. Let us there-
fore separately examine the effects of each of the terms H2

and H + in the pairing interaction between holes.

3.2. Allowance for longitudinal magnetization fluctuations

We begin with the interaction due to longitudinal fluc-
tuations.22 The expression given by (3.13) contains only the
static interaction. To take the dynamic character of the in-
teraction into account we have to investigate its frequency
dependence. The function Fz(q,<y) is proportional to the
longitudinal magnetic susceptibility xz* (Q><y) • It does not di-
verge in the SD W state for momentum q = Q as is the case in
the paramagnetic phase, but numerical calculations22 show
that, for this wave vector, xzz(q,a>) is largely confined to
frequencies not exceeding 2A, so that we have to introduce
the corresponding cutoff frequency taa ~ 2A. This cutoff cor-
responds to a momentum cutoff, so that the matrix element
for the singlet channel in (3.13) must be taken to be

(-m2(kk')^Vz(k - k' + Q, 0)

+ /2(kk')I/Vr(k - k', 0))

(3.16)

where 0 (x) is equal to 1 for x > 0 and 0 for x < 0. Since k — k'
is bounded by a small Fermi surface (in the case of a low hole
concentration), the second term in (3.16) can be neglected,
and it is then clear that Fkk, is negative, which corresponds
to attraction.

Attraction between the holes gives rise to a supercon-
ducting gap that can be found from the BCS theory and is
given by

-YX 1/2- (3.17)

Since the pairing interaction Fkk, is anisotropic, the solution

of this equation for Ak is also anisotropic. To determine the
symmetry of the solution, i.e., the superconducting order
parameter, we have to take into account all the symmetry
properties of the pairing interaction. It is found to be antip'"'-
iodic in reciprocal space:

>er-

*W--i k,k'+Q -V,k+Q,k'> (3.18)

which follows from the properties of the coefficients of the
u — v transformation: uk + Q = v, ,vk + Q = uk. This leads to
the antiperiodicity of the order parameter itself:

Ak = -2 (3.19)

This condition shows that Ak should have zeros in the mag-
netic Brillouin zone. However, it does not signify that the
gap Ak on the Fermi surface must necessarily vanish. Every-
thing depends on the type of the Fermi surface. When the
hole concentration is low, the minimum quasiparticle-hole
energy should lie at a symmetric point on the boundary of
the magnetic Brillouin zone, so that the most probable var-
iants of the Fermi surface are as shown in Fig. 6. The differ-
ence between them is that, in case a, all four parts of the
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FIG. 6. Two variants of the hole Fermi surface: a-singly connected, b-
doubly connected, leading to d-wave and p-wave symmetry of the super-
conducting order parameter.22

Fermi surface can be made coincident on a single closed sur-
face by shifting them by the reciprocal magnetic lattice vec-
tor Q. This closed surface can then be placed at the center of
the magnetic band by a change of its origin. A superposition
of pairs is possible in case b, so that the Fermi surface con-
sists of two unconnected surfaces.

The signs + and — indicate the antiperiodicity (3.19)
of the superconducting order parameter. In case a, only low
momenta k and k' participate in the solution, so that the
pairing potential Fkk, can be approximated by a constant.
Since this is negative, equation (3.17) yields a solution that
is homogeneous in the neighborhood of the Fermi surface.
Well away from it, Ak can vanish on the dashed lines, but
these are the lines representing the boundary of the magnetic
Brillouin zone (after the origin has been shifted from the
center to a corner). However, a large gap due to the SOW
state is present on this line. It follows that Ak does not vanish
at any point on the Fermi surface, so that we do not expect in
this model to have superconducting variables that are func-
tions of powers of the temperature. A similar conclusion can
be drawn for the other variant of the Fermi surface (see Fig.
6b). In the latter case, we must remember that the supercon-
ducting order parameter may be degenerate. In addition to
the state shown in Fig. 6b, there is another possible state that
can be obtained from it by rotation through 90°. Analysis
shows that a p-symmetric superconducting parameter ap-
pears in the case of a singly connected Fermi surface, and a
d-symmetric parameter is obtained in the case of a doubly
connected surface.22

It is a striking fact that, in this case, the order parameter
has no zeros on the Fermi surface although the d- and p-
symmetric functions must vanish at certain points in the
Brillouin zone. In view of the foregoing, the superconduct-
ing order parameter obtained in this model has many of the
usual properties typical for s-wave symmetry.

We also note that the order parameter (y^ ft^ ) corre-
sponds to a mixed state that includes a singlet and the z-
component of the triplet. This occurs because the pair wave
function cannot be written as a product of functions of the
coordinates alone and of the spin alone, since the orbital
functions for spin T and spin i are different (electrons with
opposite spins in the SDW state belong to different sublat-
tices).

The d-wave superconducting parameter is obtained in-
dependently in a number of papers.24"27 The possibility of p-
wave symmetry is demonstrated in Ref. 28.

Similar questions are discussed in Ref. 29 and in other
publications by this author. The results reported in these
papers are reviewed critically in Ref. 22. The change in sign
of the superconducting order parameter in different energy
ranges or different regions of k-space is discussed in Refs. 30
and 31.

3.3. Allowance for transverse spin fluctuations

We now recall that our calculations included only part
of the effective interaction between the holes, namely, the
interaction via spin fluctuations. Spin bag theory is based on
this idea.22 We must now take into account the other part of
the interaction of holes H + _ via spin waves.

The spin-wave spectrum is determined by the poles of
the transverse magnetic susceptibility. The poles of the ini-
tial susceptibility (3.10) give a continuum of two-particle
excitations (hole in the valence band and particle in the con-
duction band), and it is clear from (3.10) that this spectrum
begins for frequencies ea > 2A. The collective branch of the
spectrum (the spin wave) lies precisely in this gap32 (Fig.
7). In the limit in which [/> /, the spin-wave spectrum coin-
cides with the spectrum obtained in the Heisenburg mod-
el."

Let us now consider the matrix element of the hole in-
teraction H+ _ via the spin waves. When the hole concen-
tration is low, wk ~yk sr 1/V2 so that the coherence factors
/?(kk') and n(kk') tend to zero, but, as noted in Ref. 23, the
matrix element V + ~ has a singularity that compensates the
low values of the coherence factors. Suppose that the hole
Fermi surface lies near the point (ir/2,ir/2) and its equiva-
lent ( — 7T/2, — 7T/2). For small deviations from it,
8k. = kx — TT/2 and 8k., = k., — ir/2 we have

P
2(kk'). Q. °) ~ tt

(3.20)

where q = k — k' is a vector that is small in comparison with
the reciprocal lattice vector. For intermediate values of the
parameter U/t, the two interactions are comparable in mag-
nitude, but the interaction via the spin waves begins to pre-
dominate as U/t increases.

n/z

FIG. 7. Spectrum of two-particle excitations and spin waves for the SDW
state for U/t = 4 (Ref. 32).
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Analysis of the pairing potentials Hz (r) and H + (r)
corresponding to (3.13) and (3.14) in real space, shows that
the longitudinal part of the potential predominates for small
•U/t and leads to a singlet Cooper pairing inside the Neel
antiferromagnetic ordering. An increase in U/t is accompa-
nied by a rise in the transverse part of the potential, which
leads to a helical distortion of the Neel structure in which the
rotation of the spins occurs in the (x,y) plane. The pairing
potential is weakened and thereafter the increase in U/t
should be accompanied by the establishment of the normal
helical phase.

Since there is no long-range magnetic order in the two-
dimensional Hubbard model at finite temperature, the above
theory, which presupposes the existence of long-range mag-
netic order, must be understood as referring to the limit
/m >£m, where lm is the correlation length for the SDW state
and

(3.21)

is the coherence length, i.e., the size of the region around the
particle hole in which long-range magnetic order is de-
stroyed and which moves together with the particle.

When the above inequality between the two lengths /m

and £m is not satisfied, we have to approach the problem
from the side of the paramagnetic phase and take account of
the structure of magnetic susceptibility, which reflects the
fluctuations in magnetic order in the system in greater detail.
The essential point is that we have to take into account the
rapid increase in ^(q,<u) at momentum q = Q. If we then
calculate the correction to 1, in the form of a graph from
(3.7), we can evaluate the density of states near the Fermi
surface. It has been found34 that there are two peaks for free
electrons above and below the Fermi level, which corre-
spond to two types of quasiparticle, but between them there
is a finite density of states that increases with increasing U/t.
This means that instead of a gap on the Fermi surface, re-
vealed in the state with long-range SDW order, we now have
a pseudogap. For a fixed U, the pseudogap depends on the
chemical potential and its depth increases as the hole con-
centration tends to zero. An increase in U is thus seen to
produce a crossover from the usual Fermi liquid behavior of
the system [with one peak in p(«) near the Fermi level] to
p(co) with a gap in the SDW state via an intermediate state
with the pseudogap.

As in the case of the SDW state, the pairing potential
Fkk, between two spin bags in the case of short correlation
lengths lm is attractive for the transition momentum
q = k — k', which is less than J" m ', due to the fact that two
holes prefer to produce a common bag and reduce the energy
thereby. However, for large q=:Q, the potential Fkk, is re-
pulsive as in the case of the SDW state because spin-fluctu-
ation exchange is known to lead to repulsion in the singlet
channel. This means that, if the Fermi surface consists of
four pockets at ( + -rr/2, + -rr/2) in the magnetic Brillouin
zone, then the superconducting gap in each of them will be
nonzero, but its sign will alternate as we pass from one pock-
et to the next because this is accompanied by a change in
momentum by the vector Q. Thus, as in the case of the SDW
state, the superconducting gap does not vanish anywhere on
the Fermi surface but the superconducting order parameter
has overall p-wave symmetry. In the other case, when we

have a single-sheet Fermi surface, we are entitled to expect a
more usual behavior for the d-wave superconducting gap.

Only qualitative conclusions were drawn in Ref. 34
about the nature of the pairing potential, but the theory is
not good enough at present to enable us to estimate the su-
perconducting transition temperature. It must also be re-
membered that the cutoff" frequencies in the longitudinal and
transverse parts of the interaction should be different in the
SDW phase because of the difference between the nature of
spin fluctuations in this phase. In the case of the H + _ term,
we have spin waves, i.e., satisfactorily propagating excita-
tions, whereas for the Hz term we have nondispersive diffu-
sion modes.

Superconducting pairing via spin fluctuations is thus
more likely for small values of U/t for which the contribu-
tion of longitudinal fluctuations is predominant. An increase
in U/t is at first accompanied by predominant repulsion in
the singlet channel via the interaction with the spin waves,
which has long been established within the framework of the
s — d exchange model of a metal.4 The possible existence of
the superconducting state is therefore determined by a bal-
ance between two opposing contributions. Finally, further
increase in U/t should give rise to helical magnetic ordering
as noted above. However, here we enter the strong coupling
regime for which RPA ceases to be valid. In this situation,
we have to start with the opposite limit, i.e., £//?> 1, which is
equivalent to using the t — J model. It is within the frame-
work of this model that the existence of the helical phase was
first established.35'36 We shall return to this question in the
second part of this review.

There are several publications37^14 that discuss the ap-
proach from the side of U<g. W and report more accurate
determinations of magnetic states in the two-dimensional
Hubbard model near half-filling. A fundamental analysis of
the ground state is reported in Ref. 37 in which it is shown
that the antiferromagnetic Neel state with long-range order
is unstable against the formation of an antiferromagnetic
state with short-range order and helical magnetic structure
when the hole concentration is low. Hole density fluctu-
ations generate fluctuations in helical order, and the correla-
tion between these magnetic fluctuations behaves exponen-
tially over distances of the order of the mean hole separation.
A similar behavior of magnetic fluctuations has been ob-
served in high-Tc materials (see the review in Ref. 15). The
hole Fermi surface is formed around the points
( + 7T/2, ± -rr/2), which leads to />-wave symmetry of the
superconducting order parameter.

The helical structure is not the only type of instability of
the Neel state that is found to be present when holes are
introduced. Variational methods and the Hartree-Fock ap-
proximation are used in Refs. 40-42 to show that the antifer-
romagnetic domain structure with periodically distributed
domain walls (soliton lattice) has a lower energy that the
Neel state. A variational Monte Carlo method is used in Ref.
40 to show that this occurs for U = 4t — 10?. The hole distri-
bution should not be homogeneous in this structure. In fact,
it is found that holes tend to congregate near domain walls,
which gives rise to one-dimensional polarization of the me-
dium. It is also found that the incommensurate antiferro-
magnetic phase is unstable with respect to superconductivi-
ty.

Moreover, the fundamental study reported in Ref. 43
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shows that the magnetic structure of the ground state may
turn out to be much more complicated than any incommen-
surate phase in the two-dimensional Hubbard model near
n=\. It is found that the solution of the Hartree-Fock
equations leads to a dense set of localized states that includes
magnetic polarons, domain walls, and vortices with very
similar energies. The authors of Ref. 43 maintain that the
large number of almost degenerate solutions of the Hartree-
Fock equations is a specific property of the two-dimensional
Hubbard model near half-filling. These solutions corre-
spond to metastable states. For intermediate values U~ W,
the system can be described as a liquid with a strong interac-
tion between nonlinear structure elements. The most likely
conclusion is that, in this regime, the liquid is unstable
against Cooper pairing. For high J7> W, the system is best
described in terms of vortices with a small core and low mo-
bility due to transverse spin fluctuations. If allowance for
fluctuations beyond the limit of the Hartree-Fock approxi-
mation does not remove the above degeneracy of metastable
spin and charge fluctuations, the system may be found ex-
ceptionally difficult for analytic and even numerical investi-
gation, which is analogous to the situation in the case of spin
glasses.

Thus, as we go into the theory of the two-dimensional
Hubbard model near half-filling, it becomes evident that the
ground-state problem is very complicated even for low and
moderate values of the Coulomb repulsion U^W. This ap-
plies not only to the superconducting state problem, but also
to the magnetic structure. Different answers are obtained for
the structure of the magnetic state of the system, depending
on which approximation is employed. In this situation, nu-
merical methods that do not use what is essentially a pertur-
bation theory in the parameter U/Wassume particular im-
portance.

4. MOTION OF A HOLE IN A TWO-DIMENSIONAL
ANTIFERROMAGNET WITH HALF-FILLING

4.1. Perturbation theory results

Although we have already investigated (in the last Sec-
tion) the interaction between holes in the SDW state of the
system for the half-filled initial band, we must now turn to
the single-hole problem and examine in greater detail the
properties of the single-particle state such as damping, effec-
tive mass, and coherent state intensity. The last of these is
particularly important in connection with the Fermi-liquid
picture of implanted holes, i.e., essentially the Fermi surface.
This was implicitly assumed in our discussion of hole inter-
action effects.

There are two approaches to this problem: one is based
on perturbation theory in the parameter U/t from which the
results are usually extended to the region U~t without any
particular justification; the other approach uses numerical
simulation in which one considers the intermediate region
U~ t. We shall examine these two approaches in the present
Section, leaving the strong coupling regime U/t> 1 to the
second part of our review. We begin with perturbation theo-
ry.

We must explicitly investigate the corrections to the
self-energy of electrons that are due to the interaction with
spin fluctuations in the SDW state. Magnetic order in the
system at half-filling was taken into account in the mean-
field approximation, and the electron Green's function de-

pends on two momenta because of the change in the transla-
tional symmetry introduced by antiferromagnetic order. It
takes the form of a 2X2 matrix:32

1
(4.1)

The first row of the matrix corresponds exactly to the
expression for G°aB(kk';co) whereas the second row corre-
sponds to the expression for (j^(k + Q,k';<y) that takes
into account the fact that £k + Q = £k. The fact that the result
is diagonal in the spin indices a, f3 has also been taken into
account. Although this function is defined for real electrons,
it also describes the motion of quasiparticles with energy Ek

in the conduction band and energy — Ek in the valence
band. Figure 5 shows the structure of the spectrum in this
approximation.

The interaction between electrons and spin fluctuations
leads in the RPA to the self-energy correction ^(k.a) rep-
resented by the graphs of (3.7). The improved Green's func-
tion G "(k,&») will now be found from the Dyson equation

k, to) - 2a(k, i (4.2)

where each term is a 2 X 2 matrix in reciprocal space. It is
readily verified that, if we write down the analytic expression
for 2°Xk,<u), we find that it does not depend on the spin
projection a. The spectrum £k, the damping constant Fk,
and the intensity ak of the single-particle peak are described
in the following way in terms of 2 + = 2n +212 where
1,a/3 is the matrix element of the self-energy part:

u> •• A + Z+(k, a.), (4.3)

rk--ImZ+(k,«)- 1-
d Re 2+(k, a*)

da,

-l

a Re 2+(k, eo)
do.

-l
(4.4)

(4.5)

Numerical calculations of these quantities for a number
of points in the magnetic Brillouin zone demonstrate the
existence of well-defined quasiparticles. The intensity of the
quasiparticle peak falls substantially with increasing U/t
because of the contribution of incoherent states that are not
taken into account in this analysis. For U/t = 10 we already
have Zk =4.5 [the energy at (77/2,77/2) is £k = 0.897* ]
whereas for U/t = 80 we have Zk = 200 [ek = 8.487? at
(ir/2,77/2)]. As far as the damping constant is concerned,
this is also small in both these cases and its order of magni-
tude is Fk ~ 10 ~ 3r.

We therefore conclude that satisfactory quasiparticle
properties of the holes persist in a wide range of values of U /t
for low hole concentrations.

The other important conclusion from these data is that
the energy minimum lies at (77/2,77/2). This means that
when the system is doped, the hole Fermi surface is formed
around the points ( + 77/2, + vr/2). Calculations show that
a closed Fermi surface that is highly elongated along the
band boundary evolves around the point (7r/2,7r/2). Similar
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surfaces appear around other equivalent points. Hence, the
Fermi surface has a multivalley topology for low hole con-
centrations. A singly-connected surface with the center at
(0,0) appears at a certain energy (ek = 0.248?). This limit-
ing surface encompasses roughly 85% of the area of the Bril-
louin zone, from which it follows that the topology of the
Fermi surface should undergo a change for hole concentra-
tion nh =0.15.

The conclusion that the quasihole energy minimum lies
at (77/2,57/2) was deduced in Ref. 32 by numerical methods
and was then confirmed by analytic calculations in the limit
as U-* oo. However, this conclusion is in conflict with the
predictions reported in an earlier paper,44 which indicate
that the minimum should be at (77,0). We recall that a mini-
mum at (77/2,77/2) gives rise to the p-wave symmetry of the
solution of the BCS equation for the superconducting gap. It
is therefore clear that the hole Fermi surface in this model
and, hence, the symmetry of the superconducting order pa-
rameter, require further elucidation.

4.2. Numerical calculations by the quantum Monte-Carlo
method

In the intermediate regime U~ t and for high values of
the Coulomb repulsion parameter, direct numerical meth-
ods provide more reliable information. The two-dimensional
Hubbard model was recently investigated in detail, using a
specially developed quantum Monte-Carlo method
(QMCM) .45'46 One of the general limitations of this method
in relation to Fermi systems is that the temperature must be
sufficiently high. The authors of Ref. 45 and 46 succeeded in
developing algorithms that can be used only for cluster sys-
tems of the order of 10-100 sites on a lattice.

Comparison of calculations made for clusters of differ-
ent size (6x6,16x16) demonstrates the stability of the
physical results for such cluster dimensions. The calcula-
tions were performed for electron concentrations n = 1 and
0.5 and also for certain intermediate values at T= t /6 and
different values of U/t. Among the characteristics of elec-
tron states that were investigated were the particle momen-
tum distribution, energy gap, damping constant, and mag-
netic structure. The last of these can be described by the
magnetic structure factor

(4.6)

where m] = «,-, — «a is the spin density on the lattice. The
results can be summarized as follows.

At half-filling (n = 1), the function S(q) calculated for
an 8 X 8 cluster has a well-defined peak for Q = (77,77) (Fig.
8), which suggests an implicit magnetic short-range order at
a finite temperature. As the filling is reduced (n =0.83), the
peak shifts along the line (77,77 — A#), where A^ = 0.3, or in
the equivalent direction (77 — A^,77). The height of the peak
becomes several times lower. For « = 0.72, the peak is lower
still and broader, and is found to be shifted in the same direc-
tion by the amount A^ = 0.4. The structure factor peak is
thus seen to shift not along the diagonal of the reciprocal
lattice cell, but along its edge. This agrees with the RPA
predictions and numerical calculations performed in Ref. 47
by a different method. Of course, it would be desirable to
know whether this peak diverges for n < 1 as the cluster size

FIG. 8. Magnetic structure factor for the two-dimensional Hubbard mod-
el with n = \, U/t = 4, T = 6/t (Ref. 46).

is allowed to tend to infinity and the temperature to zero, i.e.,
whether there is a an incommensurable magnetic SDW
phase for fillings other than half. The calculations cannot,
however, be performed at low temperatures.

Long- or short-range antiferromagnetic order produces
a radical change in the spectrum of electron states whose
characteristics were calculated for two electron concentra-
tions, namely, « = 1 and n = 0.5. One of the characteristics
of single-particle states is the particle momentum distribu-
tion «k. This was found by direct evaluation of the single-
particle temperature Green's function

(4.7)

using the well known relation18

The results are shown in Fig. 9 (dotted lines). The solid
curves in this figure show the Fermi distribution function for
noninteracting particles

where the chemical potential fj, is obtained from the condi-
tion that n must be equal to 1 or 0.5. It is clear that the
distribution has a Fermi-like character, but is quite different
from the free-particle distribution, especially at half-filling.
This difference is due to the appearance of the gap on the
Fermi surface due to magnetic order. Actually, for n = 1 in
the mean-field approximation, we have the following parti-
cle momentum distribution in the SDW state:

1/2
(4.8)

For the parameter values corresponding to Fig. 9, the gap
equation (3.6) shows that A = 1.38? for which (4.8) gives
the distribution nk that is in good agreement with the
QMCM calculations.

At the same time, when n = 0.5, the system does not
have a well-defined magnetic structure factor, so that (4.8)
cannot be applied to this case. The distribution «k might be
obtained by considering the correction to the electron self-
energy due to the Coulomb interaction, using perturbation
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FIG. 9. Particle momentum distribution for n = 1 (a) n = 0.5 (b)
U/t = 4, r=«/6(Ref. 46).

rt

theory. In the lowest order in U, the correction

(4.9)

leads to very good agreement with the QMCM data shown in
Fig. 9. This shows that when the band filling is very different
from 1/2, there appears to be a Fermi liquid state. More
direct information on this is provided by direct self-energy
calculations using the formula

2(k, (4.10)

where the Green's function G(Vi,ia)n) is found numerically
by the QMCM method. The imaginary part of 2 that gives
the structure density of single-particle states is shown in Fig.
10.

It is clear that a gap appears on the Fermi surface at
half-filling due to antiferromagnetic order in the ground
state. Let us compare this result with perturbation theory
predictions. In the mean-field approximation,22

(4.11)

If we now place the vector k on the Fermi surface, we have
£k = 0 for n = 1, so that Im 2(kF, /Vyn) = — A2/<yn. It is
precisely this type of relation that is produced by the QMCM
calculations. On the other hand, well away from half-filling,
the behavior corresponds to the usual Fermi liquid: the fre-
quency dependence of Im 2 (kF ,/&>„) has a negative slope on
the Fermi surface (see Fig. lOb). The calculated curve is in
good qualitative agreement with perturbation-theory calcu-
lations that include only the correction (4.9).

It follows that QMCM calculations of »k and
Im 2(k,/«n) confirm the presence of a gap on the Fermi
surface at half-filling, whereas well away from half-filling
(n = 0.5), the system behaves as an ordinary Fermi liquid
and is characterized by a Fermi surface. For n = 0.87 there
is also no trace of a gap in the spectrum. Figure 11 shows the
particle momentum distribution for a 16x16 lattice. The
black squares represent the k-points for which nk > 0.5 with
U/t = 4,T=t/6. The solid line drawn through these points
represents the Fermi surface for noninteracting electrons
(C/= 0) with « = 0.87. Hence it is clear that, for a small
deviation from half-filling, the system behaves like a Fermi
liquid. Unfortunately, the QMCM calculations have been
confined to moderate values of U/t( U/t = 4). They show
that the result obtained in the mean-field approximation for
the gap and the particle momentum distribution, using per-
turbation theory in the parameter U/t, are in satisfactory
agreement with numerical calculations. However, for very
strongly correlated systems (f/> t), this is still an open ques-
tion. Moreover, the above calculations were performed for
relatively high temperatures (T= W/4&) because QMCM
is difficult to implement at lower temperatures.

A short paper47 presents a new numerical method for
the investigation of the two-dimensional Hubbard model.
The method is based on the evaluation of the energy func-
tional of the system, using a particular approximation that
ensures that the particle number, energy, momentum, and
other variables are microscopically conserved. The different
correlation functions are then calculated by variational dif-
ferentiation with respect to external potentials. The authors
of Ref. 47 maintain that the method can be used to examine
large cluster systems and at low temperatures. By using stan-
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FIG. 10. Imaginary part of the self-energy as a function of frequen-
cy for (a) n = l , kF = (»r/2,7r/2), kF = (0,?r), (b) n = 0.5,
kF = (jr/4,ir/2). Parameter values: U/t = 4, T= t/\1 (Ref. 46).
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FIG. 11. Particle momentum distribution for a 16X16 lattice with
n = 0.87, U/t = 4, T= t /6. Dashed line shows the Fermi surface for non-
interacting electrons with n = 1 (Ref. 46).

dard results for the effective interaction between holes via
spin and charge fluctuations to calculate the energy, these
authors succeeded in constructing the phase diagram on the
hole concentration versus temperature plane. We note that
the antiferromagnetic state appears near half-filling for hole
concentrations nh <0.06 whereas for 0.06<«h <0.18 there
is a superconducting state with d-wave symmetry (for
U/t = 4). The maximum Tc is of the order of O.Olr which
amounts to 15 K for an initial band width 8t = 1 eV. This
type of phase diagram occurs in model high-temperature su-
perconductors in which superconductivity exists outside the
region of antiferromagnetic order, but in the immediate
proximity to it.

Another interesting result reported in Ref. 47 is the fre-
quency dependence of the imaginary part of the magnetic
susceptibility, which was used to find the dispersion law for
spin excitations (paramagnons). Their velocity in the (11)
direction is of the order of 0.35fa which amounts to lAt A
for lattice constant a = 4 A.

A similar phase diagram is reproduced in the detailed
investigation reported in Ref. 48. It is shown there that the
inclusion of parquet diagrams leads to quantitative agree-
ment with the numerical QMCM results for intermediate
values of U/t.

II. APPROACH FROM THE SIDE OF LIMITING STRONG
COULOMB INTERACTION

5. THE f-JMODEL IN THE GENERALIZED RANDOM-PHASE
APPROXIMATION

5.1. Magnetic states in the t—J model

One of the main manifestations of electron correlations
under the conditions of strong Coulomb repulsion (t/>?) is
the splitting of the initial electron band into two Hubbard
sub-bands, where the lower sub-band is associated with sin-
gle-particle states and the upper with two-particle states of
'pairs' on single sites. The separation between them is of the
order of U, so that at half-filling or less than half-filling
(« < 1), the upper band can be neglected. The spectrum of
electrons in the lower band (in the paramagnetic phase) in
the limit as £/-» oo is then determined by quasiparticle ener-
gies [1 — (n/2) ]ek where the factor 1 — (n/2) represents
correlational band narrowing. This result is approximate
and is probably interpolational in character. The corre-

sponding approximation is referred to as Hubbard-1.6

For strongly correlated systems (t/M), regular pertur-
bation theory should be constructed in the parameter t/U,
i.e., the Coulomb interaction on a site should be included in
the zero-order Hamiltonian, with the kinetic energy treated
as a perturbation. The most convenient dynamic variables in
this situation are the Hubbard operators6 describing transi-
tions between possible electron states on a given site. For
example, the t — J three-term model Hamiltonian
<#* = ̂ 0 + ^"kin + <^eff is then written in the form

kin

!'2<*r+*H-A-*f(A

(5.1)

(5.2)

and the single-site energy ̂ 0 is a linear form in the Hub-
bard operators.

Since there is a Wick theorem for Hubbard operators,
we can construct for the Hubbard model a perturbation the-
ory in the form of a diagram technique (the most complete
description of this is given in Ref. 7). In the case of the t — J
model, when the perturbation is taken to be
J?"int = ^kin + Jfr'eff, this procedure is a special combina-
tion of the diagram technique for Fermi systems and for spin
operators.7 Its elements are the fermion Green's function
Ga(k) (they will be represented by solid lines with white
and black arrows representing the spin projections) and bo-
son Green's functions D(k) represented by broken lines.
Wavy and dotted lines represent the 'interactions'

(5.3)

In standard perturbation theory in the small parameter
U/t, which is employed in Part I, we widely use the random-
phase approximation that involves the summation of loop
diagrams. The generalized random-phase approximation
(GRPA) was proposed in Ref. 12 for the t — /model. As in
the case of small U/t, here again we sum all the possible loop
diagrams of which there are four types, namely,

n o
A = O

*-o, (5.4)

The fermion lines correspond to the electron Green's func-
tions in the Hubbard-1 approximation:

(5.5)

In the GRPA approximation, the magnetic susceptibil-
ity of the paramagnetic phase is given by12

XW-7TT
*o(*)

(1 - A(*))(l - Q(k)) + *<,(*)(*(*) + /GO)'
(5.6)

where the 'bare' susceptibility contains localized and collec-
tive contributions
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T°-V0
(5.7)

The factor «0 depends on the ratio ju/T, where «0 = 0
for T = 0 and n <«c, and «0 = 1 for n>nc, where nc is the
critical concentration for which localized magnetic mo-
ments appear in the system. It is found that the chemical
potential /* changes sign at this point. It is possible that this
approximation, which leads to a much too rapid variation in
MQ, is too coarse, but the result given by (5.6) and (5.7)
shows that there is a crossover in the system from itinerant to
localized magnetism. We therefore conclude that for « < nc,
the system behaves as an itinerant magnet whereas for n > «c

it displays simultaneously the properties of itinerant and lo-
calized magnets. In (5.7) this corresponds to two contribu-
tions to the magnetic susceptibility, namely, the Curie-
Weiss and the Pauli contributions.

Analysis of (5.6) for the three-dimensional case leads
to the magnetic phase diagram shown in Fig. 12. The antifer-
romagnetic phase A is characterized by the vector
k,, = (ir,ir,ir); it occurs for large enough values of the effec-
tive exchange integral and in the concentration interval adja-
cent to the n = 1 edge. We note that, at the point of intersec-
tion of the ferro- and antiferromagnetic instability lines, we
should take into account the interaction between order pa-
rameters, which modifies the phase diagram in the neighbor-
hood of this point.

5.2. Cooper pairing via spin fluctuations in the paramagnetic
phase

The effective interaction between electrons in the sing-
let channel is described by the following contributions in the
GRPA approximation:

(5.8)

t/v

0,5

FIG. 12. Magnetic phase diagram for the three-dimensional t — /model
on the (t/U,n) plane with T= 0 (Ref. 12). The diagram shows the para
(P), ferro (F), and antiferro (A) phases.

The last four graphs describe interactions via spin fluctu-
ations with spin flip (first pair of graphs) and with spin con-
servation (second pair). The shaded four-particle and three-
particle vertex parts are taken in the GRPA approximation,
i.e., they are represented by chains made up of the loops in
(5.4). The dashed line in the first and third graphs, repre-
sents the transverse and longitudinal spin Green's functions.
Finally, the first graph in the first part represents the bare
interaction corresponding to the Hamiltonian
of/? i qt/3
Jt kin + ^Z eff •

rMf

(5.9)

At the same time, we must write down the self-energy
part due to the interaction with spin fluctuations. For exam-
ple, for an electron with spin T,

L \

(5.10)

There is a definite correspondence between the expressions
for T° given by (5.8) and (5.10) and expressions (2.9) and
(2.16) describing the situation with U<£t. In the case of
strong correlation, there are two additional graphs in the
expressions for T° and 2 that are due to the appearance in
the system of localized spin states [first and third graphs in
(5.8) and (5.10)]. The remaining pair of graphs (second
and fourth) represents the interaction between electrons via
fluctuations in the itinerant states. It is precisely this type of
graph that is present in the theory of superconductivity in
itinerant magnets.2 Spin fluctuations in such systems (para-
magnons) mediate the interaction between electrons. The
shaded lines in the second and fourth graphs in (5.8) and
(5.10) correspond to the paramagnon propagator. The es-
sential difference between the systems with strong and weak
Coulomb interactions is still the type of bare vertices. Thus,
in the procedure involving the Hubbard operators, we have
vertices with three fermion lines [ cf. the expression given by
(5.9) ], which is typical for all systems described by opera-
tors for which the commutator or anticommutator is not a
C-number.

We must now construct the equation for Fc in the Coo-
per channel, using the bare vertex F°. This has the same
form as (2.15) that we first encountered in the theory with
weak Coulomb interaction. In the graphs of (5.8) and
(5.10), the thick intermediate lines correspond to the renor-
malized Green's function (2.18) where 2i(k) now repre-
sents the energy of the electron in the lower Hubbard band
[see (5.5)]. We thus arrive at two coupled equations for
Z(k) and cp(k) (the latter represents the vertex part in the
Cooper channel) that have the standard form of the equa-
tions of the theory of superconductivity with strong cou-
pling, i.e., (2.19) and (2.20). In this case, the pairing inter-
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action V and the total interaction Vz consist of two
contributions50

'cO
1 - (nil) + A

(5.14)

where
P = T- (5.15)

(5.11)

All the quantities in (5.11) and (5.12) are evaluated for the
argument k — k'.

The denominator in (5.11) is identical with the de-
nominator in the expression for the magnetic susceptibility,
and the entire expression for Vm must be treated as the con-
tribution to the effective interaction due to magnetic fluctu-
ations whereas Vc is the contribution due to charge fluctu-
ations in the system. The quantity tf>(k) is the initial
dielectric susceptibility and Fc in (5.12) is equal to the de-
nominator of the dielectric susceptibility. The charge term
can be neglected near the boundary of the phase transition to
the magnetically ordered state, so that V2 ~ Vm and
V— — Vm. Since the strong interaction must be positive, we
see that the 'pairing' part of the interaction mediated by the
magnetic fluctuations is in fact repulsive, as in the case of the
weak Coulomb interaction.

It is shown in Ref. 2 that an anisotropic superconduct-
ing order parameter can appear in the repulsive pairing po-
tential when C/4Z. It can be shown that this can also occur
for [/> t although the situation is then much more compli-
cated because localized magnetic moments are present in the
system.

The integral equations given by (2.19) and (2.20) with
the kernels (5.11) and (5.12) are very difficult to treat ana-
lytically. We shall therefore confine ourselves to the simplest
situation that will enable us to establish the basic tendencies
in the structure of the solutions. In particular, we shall ex-
amine the weak-coupling limit by analogy with the electron-
phonon model of superconductivity.

First, we note that the expression for XQ (k,ian ) con-
tains the quasiparticle term ~6<Bn,o associated with localized
magnetic moments. The effective interaction must therefore
also contain the quasistatic and dynamic contributions,
which we shall denote by Vs' and Fdyn. The latter is due to
itinerant states. The static contribution can be readily sepa-
rated out in (5.11) and (5.12). If we suppose that the Fermi
liquid picture is valid for our system, then the equations for
Z and <p can be averaged over the Fermi surface. We then
obtain the following equation for Tc in the intermediate cou-
pling limit:

(5.13)

in which, as before, cam is the limiting frequency of the spin-
fluctuation spectrum, Az, A,, rjz, rj, represent the effective
interactions at zero frequency, averaged over the Fermi sur-
face and given by

Ar = «v*"o*'.0)>V>. ^((vxk^y^kk'.ow)))^,

(5.12) (5.16)

(-(tyOOV^kk',

(5.17)

where

in which «...» represents averaging over momenta k and
k', and A, and 77, are coupling constants for the supercon-
ducting order parameter with /-wave symmetry when the
solution of the equation for <p(k) is sought in the form of
(2.23). The separation of the interactions (5.11) and (5.12)
into Kst and Kdyn can be readily achieved by using (5.7) for
Xo-

The formulas given by (5.13) and (5.14) are meaning-
ful only if A, >0 (the total coupling constant A is always
positive). The coupling constant A then determines the su-
perconducting transition temperature due to pairing medi-
ated by dynamic spin fluctuations. Equation (5.13) has the
same form as the corresponding equation for superconduc-
tors with magnetic impurities5 and describes pairing due to
the appearance of localized magnetic moments for n > nc

when T/2 and rj, are nonzero. In the case of itinerant magne-
tism (n > nc), the parameters 77., and 77, vanish identically,
and Tc is given by (5.14).

We thus see that the most favorable conditions for the
existence of a superconducting state in the t — / model (in
the paramagnetic phase of a metal!) are realized in the case
of itinerant magnetism (n<nc) near the antiferromagnetic
instability line (line a in Fig. 12). As for U4t, and despite
the repulsive nature of the electron interaction mediated by
spin fluctuations, the quantity A, can be positive near this
line when the order parameter has d-wave symmetry. How-
ever, the corresponding concentration interval lies well
away from half-filling, and it is precisely this region that is
relevant for the description of practical high-7; materials.
Since an antiferromagnetic state appears in the t — J model
for n > nc (this is already clear from the phase diagram of
Fig. 12, obtained in GRPA approximation), the present
problem is to investigate the possibility of a superconducting
state in the antiferromagnetic phase. We saw in Section 3
that, in the case of a weak Coulomb interaction, the pairing
potential mediated by spin fluctuations gives rise to a much
stronger potential in the antiferromagnetic phase as a result
of the spin-correlation mechanism. The immediate problem
for the theory of strongly correlated systems is that of a hole
(magnetic polaron) in an antiferromagnetic matrix in the
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context of the t — J model, followed by an examination of
the pairing hole interaction mediated by magnetic fluctu-
ations.

We now return to the main topic of this Section and
note that the matrix element (5.11) of the effective interac-
tion between electrons mediated by spin degrees of freedom
corresponds in the lowest-order approximation to the so-
called kinematic pairing52'53 (see also Ref. 54). This mecha-
nism arises when we retain only the first graph in the expres-
sion for the effective interaction (5.8) and discard all other
terms that give an interaction mediated by fluctuations. It is
clear from (5.11) that, in this approximation, a pairing po-
tential arises for n > «c. However, fluctuations produce a
greater renormalization of this potential and suppress super-
conductivity by the parallel mechanism of pairing by local-
ized magnetic moments, which is turned on precisely for
n>ne. The same conclusion about the kinematic interaction
is reported in Ref. 55.

6. A HOLE IN THE /-./MODEL WITH ANTIFERROMAGNETIC
ORDER

6.1. Qualitative picture in the Ising limit

Well before the recent publications on the motion of a
hole in the antiferromagnetic state of a strongly correlated
system, there were three papers56"58 that provided a funda-
mental contribution to our understanding of this problem.
They examined the state of a hole in a Neel antiferromagnet
described by the t — J model in the Ising approximation for
the exchange-interaction Hamiltonian. A qualitative analy-
sis of the motion of a hole, which we investigated in Section 1
in connection with the dynamics of a hole pair in a two-
dimensional antiferromagnetic matrix (see Fig. 1), was first
given in Ref. 57. The motion of a hole in a two-sublattice
three-dimensional Neel antiferromagnet is always accompa-
nied by an irregular distribution of spins along its trajectory,
which requires the expenditure of energy ~ Jl where / is the
length of the trajectory. The motion of the hole is thus ener-
getically unfavorable, and it becomes auto-localized. The
auto-localization center of the hole (or extra electron) is the
site occupied by the hole for which the ideal antiferromag-
netic distribution of spins is preserved. This state is the ana-
log of the three-dimensional oscillator formed by the particle
moving not in the usual quadratic potential but in a linear
potential. A bound state with energy ~ (Jz/t)

2/3t, measured
from the bottom of the band, is formed in this potential. The
quasi-oscillator state is significantly different from the po-
laron state in which the deformation of the antiferromagnet-
ic structure is transported by the hole (or electron) through-
out the lattice, even when the effective mass is high. In the
quasi-oscillator state, the resulting local deformation of
magnetic structure is not transported over the lattice if we do
not introduce the transverse spin components in the Heisen-
berg exchange-Hamiltonian. These components allow pro-
cesses involving spontaneous spin flip, so that the deforma-
tion of the structure can relax and the motion of a hole is
allowed.

The translational motion of a hole is therefore impossi-
ble in the Ising limit (the effective mass is infinite) and the
spectral density of a hole, A (k,a>), with a certain fixed wave
vector k does not have a quasiparticle peak signaling a coher-
ent state of the hole. The spectral density corresponding to

the hole has an incoherent character.58 More precisely, it is
shown in Ref. 58 that the antiferromagnetic state at exact
half-filling (« = 1) has the density of correlated single-par-
ticle states occupying the energy band between — w0zt and
w0zt where w0 s;0.75. We thus have a 25% correlational
narrowing of the original band ( — zt,zt). The introduction
of the hole produces a spreading of the lower edge of this
band, i.e., a tail on the density of states that is typical for the
theory of impurities in a metal.59 This tail corresponds to the
incoherent contribution to ̂ 4 (k,&>) that arises from the inter-
action between the hole and magnetic order fluctuations.

The above quasi-oscillator picture is corrected in Ref.
62. It is found that if the hole executes a loop and hops over
neighboring sites forming a square cell of two-dimensional
lattice (see Fig. 1), and if it runs around it one and a half
times, then it ends at the opposite end of the diagonal of the
square, so that no changes are produced in the antiferromag-
netic lattice. This means that the hole can move over the
magnetic lattice without losing energy by lattice deforma-
tion. The contribution of this type of trajectory (Trugman
loop) obviously leads to a finite hole mobility even in the
Ising limit.

As already noted, the introduction of transverse spin
components leads to finite hole mobility. The effective mass
of a hole is determined by scattering by spin fluctuations
(spin waves). At low temperatures, only the emission of
low-energy spin waves is possible. If the density of states in
the spectrum of low-energy spin excitations is low, we may
expect the presence of well-defined coherent states of holes
as quasiparticles near the bottom of the hole spectrum, with
finite but not too short lifetimes. There is more scattering at
higher energies, and the quasiparticle peak broadens. The
self-consistent theory of the quasiparticle state of a hole was
developed in Ref. 44 in which it was shown that a quasiparti-
cle peak in the spectral density A (k,«) is present in the two-
dimensional model. This paper, which will be examined in
detail below, was preceded by studies of one-dimensional60

and two-dimensional61'62 models.

6.2. Self-consistent theory of the quasiparticle state

To include the Ising limit in the theory that we have just
examined qualitatively, let us consider the anisotropic mod-
el with two exchange parameters, namely, Jz (for the term
S* Sj) and JL (for the transverse spin components). We
now introduce the corresponding changes into the exchange
part of the Hamiltonian (1.2) for the / — /model, and also
neglect the Coulomb term. Consider the system at half-fill-
ing (Neel ground state) into which one hole has been intro-
duced. To find the principal characteristics of the hole inter-
acting with spin fluctuations, we construct the effective
Hamiltonian &? = ̂ 0 + %f-ml where J^0 is the spin-wave
term and <^"int describes the interaction of the hole with spin
waves

• c.c.

(6.1)

(6.2)
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where /?„ is the Bose magnon anihilation operator, /k is the
Fermi hole anihilation operator, £„ is the magnon energy,
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and Mq and yq are the coefficients of the transformation that
diagonalizes the exchange Hamiltonian in the spin-wave ap-
proximation. We have

where a = JL /J2 is the exchange anisotropy parameter. The
effective Hamiltonian (6.1)-(6.2) arises from the following
representation of the initial Fermi operators c£ in terms of
the auxiliary Fermion operator / and the boson operator
b£:c£=ftb£.

Let us now examine the Green's function G(k,a) of a
hole, constructed from the operators/ and/,+. In the spirit
of the approximations that we have already used many
times, we take the self-energy part in the form

(6.3)

where the double solid line is the self-consistent hole Green's
function and the double dashed line is the spin-wave Green's
function. This means that, in the approximation denned by
(6.3), we neglect the renormalization of vertex parts of the
hole-magnon interaction (6.2). The Green's function is thus
determined from the corresponding self-consistent integral
equation

G(k, a>) =
, q)G(k - q, co -.

(6.4)

where the square of the amplitude of the electronmagnon
interaction is given by

:-q" (6.5)

The quasiparticle properties of a hole are determined by
the size of the pole contribution to the Green's function
which we write in the form

G(k, w) = —^— + G,_.fk. a). (6.6)

where the second term represents the incoherent state. The
pole eak is found from the equation

0»l, k, cuk), (6.7)

and the residue at the pole ak is given by (4.8) which can be
written in the form

1

1 + (6.8)

andin which we use the dispersion relation between Re '.
Im 2 where T(k,s) = (l/V)Im 2(k,e).

In the Ising limit (a-»0), equations (4.4) and (4.5)
give ak->0, i.e., there are no quasiparticle states, which
means that this spectrum is incoherent.44 For finite but
small a, all the quantities can be expanded in powers of a < 1,
and this leads to the following estimates for the strength of

the coherent state ak, the width S Wof the hole band, and the
effective mass m in the two-dimensional model:

•^, &W~ (6.9)

Thus, even for/, <^ t, there are hole quasiparticle states. They
form a band near the beginning of the spectrum at about
— zt, which has a width of the order of JL. Most of the hole

states are incoherent and the spectrum of these states ex-
tends over an energy interval of the order of zt above the
band of quasiparticle states.

We now turn to the isotropic case (a = 1) for which
Jz — JL = J. There is no gap in the spectrum of spin excita-
tions. Low-energy excitations have an imaginary dispersion
law, so that, in the two-dimensional case, the density of
states in the spin-wave spectrum is also an imaginary func-
tion of energy. The result of this is that the scattering of the
hole by spin waves does not destroy the quasiparticle state.
At high hole energies (<y &/), the large number of spin exci-
tations ensures that the hole spectrum becomes incoherent.
It is clear from these considerations that for hole energies
o> S/we may suppose that the pole contribution to the hole
Green's function (4.6) will be predominant. We can then
determine the residue ak by substituting for G(k,<o) in (6.3)
the expression given by (6.4) with 2 replaced with its pole
part. This leads to the inequality

at<

.<0:1 +

from which it follows that, for D = 2,

(6.10)

(6.11)

which confirms the existence of the quasiparticle peak. The
consequence of this is that the incoherent part of the spectral
function remains equal to a constant over a wide energy
range of the order oft: A (k,<u) ~ l/t.

The above discussion thus shows that, for a two-dimen-
sional Heisenberg antiferromagnet described by the t — J
model, the hole is a coherent quasiparticle with peak intensi-
ty ~J/t. This peak is localized at approximately the edge of
the original band — zt(z = 4) and its width is of the order of
J. A band of incoherent states with a width of the order of t
lies just outside this peak.

6.3. Numerical calculations based on exact diagonalization

All these important theoretical predictions57'58'61'62 re-
quire confirmation by numerical calculations because they
rely on approximations that are not readily controlled. How-
ever, numerical studies of this problem are also very diffi-
cult. There are two main methods, namely, the Monte Carlo
technique and exact diagonalization of the Hamiltonian.
However, in the Monte Carlo method, it is difficult to exam-
ine low temperatures and sufficiently high impurity concen-
trations because of the 'sign problem' in the determinant for
Fermi particles. These difficulties are not encountered in the
exact diagonalization method, but in practice the method
has to be confined to small clusters because the number of
variables characterizing the state of a cluster increases ex-
ponentially with increasing number of particles (3^ for the
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t — J model and 4^ for the Hubbard model). A complete
calculation is therefore possible in the t — J model for the
4x4 two-dimensional cluster.

The first publications reporting work by independent
groups63'64 on 4x4 clusters containing one hole confirmed
many of the basic predictions of the theory such as the pres-
ence of the quasiparticle peak near the bottom of the hole
spectrum, the wide band in the incoherent spectrum above
this peak, and the high effective hole mass due to its interac-
tion with magnetic order. Calculations showed that the qua-
siparticle peak appeared for moderate values of the param-
eter J/t >Jc/t = 0.075 (Ref.67) for which the ideal system
(in the absence of a hole) has an antiferromagnetic ground
state; in the presence of a hole, the total spin of the state is
S2 = 1/2. For lower values of J/t, the ground state of the
cluster has spin Sz = 15/2, indicating the onset of saturated
ferromagnetism in accordance with Nagaoka's theorem.69

In the ferromagnetic state, the ground-state momentum
(which can be ascribed to the hole) is k = 0, whereas in the
state with spin 5Z = 1/2 the momentum is nonzero:

; = (± T, ± T), k = (7t, 0), k = (0, Jt). (6.12)

The degeneracy is probably due to the high symmetry of the
cluster. It is remarkable that if we include only the Ising part
of the interaction in the Heisenberg Hamiltonian, then the
results are different: the ground state with spin Sz = 1/2 has
momentum k = 0. This means that quantum fluctuations
due to the transverse spin components play a significant part
in the behavior of a hole. We also note that the finite momen-
tum of the ground state with Sz =1/2 was obtained in Ref.
61 in the spin-wave approximation using the variational
method.

The cluster dimensions were also varied in the publica-
tions cited above and it was shown that the main physical
conclusions about cluster dimensions were stable, so that the
data obtained for the small 4X4 cluster may well have been
valid for an infinite system. The reason for this was that the
perturbation of the antiferromagnetic matrix introduced by
the hole was highly localized.

The most complete set of results was obtained in Ref. 70
which was also concerned with the 4x4 cluster with period-
ic boundary conditions. We shall now review some of the
results of these calculations. First, we note that the hole
spectral density A(k,co) was calculated for a wide range of
values o f j / t . A typical spectrum is shown in Fig. 13. As J /t
increases, the main peak shifts to the right and its height
increases. At the same time, the fine structure of the two
different sets of points vanishes and only two low-intensity
peaks remain. For 0.2<///<1.0, the position of the first
three peaks (I, II, III) varies with J/t as follows:

I. Eh = -3,17 -I- 2,83(//Oa<, « = 0,73,

II. Eh = -3,13 + 5,36(J/t)at, a = 0,70,

III. Eh = -3,23 + 6,26(//Oa<, « = 0,63.

(6.13)

For wave vectors k = (77/2,0), (7r,7T/2), (ir,0), and (0,0)
we again have a pov.'er-type law with similar values of a < I.

This power-type dependence of peak position on J/t
may be due to discrete states of the hole in the linear poten-
tial (quasi-oscillator model57) when only the Ising part of

20
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FIG. 13. Hole spectral density for k = (j7/2,»r/2) and J/t = 0.2 (Ref.
70).

the exchange interaction is taken into account. A discrete set
of levels is then found to arise and is given by the eigenvalues
of the Airy equation44'57'61

Eh = -2zl/2t + an(/2/0
2/3'- (6.14)

The first three values of an (2.33,4.08, and 5.52) are in good
agreement with the coefficients of (J/t)a in (6.13) and
a s; 2/3. This is surprising because one would expect that the
transverse part of the Heisenberg exchange should spread
the potential well produced by the hole due to the Ising part.
However, this does occur: comparison of calculations based
on (6.13) with the theoretical formula (6.14) for the t — J
model shows good agreement at least for the first few levels
of the quasi-oscillator. For Jz = 0, (6.14) gives the position
of the lower edge of the quasiparticle spectrum as — 2z1/2/,
which was obtained in Ref. 58 as the result of correlational
narrowing of the band [it is shown in Ref. 44 that the factor
(z - 1)1/2 in Ref. 58 should be replaced with z172].

The width F of the quasiparticle state corresponding to
the first peak is practically a linear function of J/t:

r/<=-0,14+l,97(//0°'98, 0 , ls / /<sO,4, (6.15)

which agrees with theoretical calculations.44'71 The peak
height ok ~ ( J / t ) 0 5 differs from the prediction in Ref. 44,
i.e., ak ~J/t, but is in good agreement with the prediction
reported in a recent paper.71

Summarizing the above results, we may conclude that
numerical calculations confirm the quasiparticle properties
of a hole in the / — /model, as derived in Ref. 44. However,
these calculations have not revealed an incoherent contribu-
tion to A(]s.,o)), although they have confirmed the Ising
character of the quasi-oscillator state. Instead of the inco-
herent background, we obtain the fine structure of the spec-
trum. This result is unexpected because spin fluctuations in
the Heisenberg model (spin waves) should on the face of it
broaden all the closely spaced peaks and thus produce an
incoherent background. It will therefore be necessary to ver-
ify these calculations for clusters larger than 4X4.

In conclusion, we present a calculation of the total den-
sity of states p(a>) = 2k^(k,<y) in the hole spectrum (Fig.
14). As can be seen, there is a well-defined fine structure.
The peaks labeled I, II, and III correspond to contributions
with the following wave vectors, respectively: (ir/2,-rr/2),
(17/2,17-), (ir/2,0), (0,0), and (ir.ir). It is therefore difficult
to speak of an incoherent hole spectrum if we judge this from
the results obtained for a small cluster.

The same paper reported a study of the original Hub-
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bard model, using the exact diagonalization method. Be-
cause the number of states per site was large, the authors of
this paper were forced to consider smaller clusters with
N — 8 and 10. In the limit of large U, the results were found
to be in qualitative agreement with numerical calculations
based on the t — J model. For moderate values of U, quasi-
particle peaks were found near the bottom of the band of hole
states.

Calculations based on exact diagonalization7 are in
good agreement with the Monte Carlo results72 for interme-
diate values of U. Several papers have since appeared on this
topic.73"76

6.4. Bound state of holes

Several authors64'77'80 have succeeded in obtaining evi-
dence for the formation of bound states of holes. The calcula-
tions were performed for 4x4 clusters containing several
holes in different configurations. It was found that small
hole separations were predominant, with holes forming
bound states. This is not in itself surprising because an isolat-
ed hole disrupts four exchange bonds in the lattice. Conse-
quently, for two nearest-neighbor holes there are seven
broken bonds instead of the eight when the holes are at a
large distance from one another. These results were con-
firmed by 8 X 8 calculations. When the hole concentration is
high, energy minimization also leads to distributions for
which the holes form an individual hole cluster.

The dynamic pair susceptibility of holes was investigat-
ed in Ref. 80 by considering the spectral density of the corre-
lator <A,+ (t) A, (0)}, where

is the creation operator for a Cooper pair with /-wave sym-
metry. A sharp low-lying coherent peak with d-wave sym-
metry was shown by 4 X 4 calculations to be present for a
wide range of values ofJ/t in which the single-particle elec-
tron density of states also had a peak at the bottom of the
Hubbard band. For p-wave symmetry, there was also a
closely lying peak of lower intensity. However, the s-state
behavior of the Cooper pair was different, i.e., there was no
quasiparticle peak. Thus, at least for low hole concentra-
tions, the s-type superconductivity was strongly suppressed
and d-wave pairing predominated.

An unexpected result was obtained for clusters contain-
ing N= 18 and 20 particles in the case of moderate hole
concentrations.75 Two holes in such clusters correspond to
concentrations «h = 10— 15%. It was found that the Fermi
surface (which separates points in k-space with fillings nk

greater than and less than 1/2) does not have the form of
hole pockets near the points (-rr/2,ir/2) and (-rr/2,0). In-
stead, we have an electron-type Fermi surface whose size
and shape are the same as for the surface for noninteracting
electrons (Luttinger's theorem). These results are in agree-
ment with Monte Carlo calculations using the Hubbard
model with small U (Ref. 46). Of course, it is impossible to
exclude hole Fermi surfaces for low hole concentrations be-
cause the clusters have finite dimensions. For the same rea-
son we cannot determine whether there is a jump in «k on the
Fermi surface, or the system is a marginal Fermi liquid.

Calculations have also shown that the excited states of a

-6-4-2 a 2

FIG. 14. The density of states in the t — J model with one hole for
J/t = 0.2 (Ref. 70).

cluster fit into the excitation scheme for a Fermi liquid, i.e.,
there are hole-like and particle-like states with band width of
the order of/and effective mass m*/mxl.5t/J. Of course,
these results do not show that the system has Fermi-liquid
excited states because this would require us to show that the
width of the single-particle peaks in the thermodynamic lim-
it (N-> oo) tends to zero as co2 (or, at least as aAnco for the
marginal Fermi liquid) when w —0. Nevertheless, this leads
us to hope that a strongly correlated system can be described
by the Fermi liquid picture under certain specific conditions
(for moderate hole concentrations). In particular, this
would justify the use of this description in the superconduc-
tivity problem, as was done in Section 5.

/.CONCLUSION

Our main conclusion in this review is that, at present,
the problem of the interaction between magnetic and super-
conducting states in the Hubbard model is far from solution
despite the efforts of a large number of researchers working
in this field (about 100 theoretical papers were published on
this subject during the last two years). The problem is much
more complicated than was believed at the beginning be-
cause a small parameter is not available in the most interest-
ing region U~ Wand because of the essentially many-parti-
cle character of the ground state near half-filling, although
in the latter case there is small parameter, namely, the hole
concentration. Nevertheless, examination of the two limit-
ing cases U^W and £/> W has led to a number of general
conclusions.

(1) For both itinerant (C/< W) and localized (t/> W),
magnetism it is possible to describe the antiferromagnetic
state of the system near band half-filling. The mechanisms of
magnetic instability are: nesting of the Fermi surface, which
leads to the SOW-type long-range order for £/< Wand indi-
rect antiferromagnetic exchange, producing a Neel state for
t/> W. In both cases, a rise in the hole concentration is ac-
companied by a reduction in spin correlations, which is par-
ticularly dramatic in strongly correlated systems. A band
appears in the electron spectrum in both cases because of the
reduction in the translational symmetry of the system. Near
half-filling, this gap falls on the Fermi level, giving rise to the
insulating ground state.

These results correspond to the self-consistent field ap-
proximation. The simple picture is corrected when spin fluc-
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tuations are taken into account. Fluctuations in longitudinal
and transverse spin components in the state with broken
symmetry lead to different effective spin interactions. These
additional interactions produce a distortion of the SDW or
Neel state. A helical phase appears in both limiting cases
when there is a deviation from half-filling. Moreover, the
stratification of the magnetic system into different
phases81"83 has been discussed for finite hole concentrations.

Numerical calculations performed for small clusters in
the two-dimensional model reveal the magnetic-structure
peak that corresponds, at least, to a well-defined short-range
or long-range magnetic order. Such calculations also suggest
the possibility of a periodic domain structure and other non-
linear structures such as vortices. It follows that the magnet-
ic phase diagram in the Hubbard model is not as yet estab-
lished near half-filling. All that can be said with certainty is
that, at half-filling, the structure is antiferromagnetic, but
may become distorted for a finite hole concentration. It ap-
pears that there are many magnetic phases with similar ener-
gies, which replace one another as the hole concentration
increases.

(2) The indirect electron interaction mediated by spin
fluctuations can lead to Cooper pairing. In the paramagnetic
phase, the fluctuations produce a repulsion in the singlet
channel. Despite this, there may be superconductivity with
an anisotropic order parameter. Actually, in the case of cu-
bic (square) lattice near antiferromagnetic instability, fluc-
tuations give rise to Cooper pairing with d-wave symmetry
in both cases, i.e., £/< Wand £/> W. However, in the latter
case, localized magnetic moments appear in the system and
give rise to pairing processes. It is then difficult to imagine
high Tc being produced by the spin fluctuations mechanism
in the paramagnetic phase.

Near half-filling, longitudinal spin fluctuations in the
antiferromagnetic phase give rise to the Cooper instability in
the singlet channel, but transverse spin fluctuations (spin
waves) produce a repulsion in this channel. As U/W in-
creases, the contribution of transverse fluctuations begins to
predominate, and the superconducting state within the new
antiferromagnetic phase should be replaced by the normal
state with helical magnetic structure. It follows, that under
certain definite conditions a superconducting state is possi-
ble in a magnetically-ordered phase (the most rigorous theo-
ry is based on the summation of parquet diagrams84), but a
theory of the superconducting phase itself, that would en-
able us to calculate Tc, does not as yet exist. The most likely
scenario is that high Tc will be due to the magnetic fluctu-
ation mechanism in regions with strong correlation (t/> W)
in which magnetic order is present. A magnetically ordered
state (at least with short-range order) is essential to ensure
that the pair breakdown mechanism is turned off on local-
ized magnetic moments.

Numerical calculations for small clusters have, so far,
led to contradictory results about Cooper pairing of holes.

(3) The most important component of the problem of
magnetism and superconductivity in the Hubbard model
near half-filling is the theory of the single-particle hole state.
In the case of weak Coulomb interaction, t/5 W, analytic
studies and numerical cluster calculations show that the
hole is a well-defined quasiparticle with a clear coherent
peak in the spectral density. We can therefore retain the Fer-
mi liquid picture for finite hole concentrations.

For strongly correlated systems (£/> W), a hole in the
antiferromagnetic matrix can be described in terms of the
quasi-oscillator, i.e., a particle that is auto-localized in the
linear potential produced by a deformation of magnetic
structure. This quasiparticle is mobile although it has a high
effective mass. Its finite mobility is due to the transverse spin
components in the exchange Hamiltonian (and also the con-
tribution of states described by the Trugman loops). Nu-
merical calculations performed for clusters confirm this pic-
ture, indicating the existence of a narrow coherent peak
against the wide incoherent background in the spectral den-
sity of the single-particle state for a wide range of values of
the parameter U / W> 1. The behavior of a collective of holes
with finite hole concentration presents a very difficult prob-
lem. Cluster calculations show that, when U/Wis not too
large, the Fermi liquid picture of the behavior of holes seems
to be valid. However, it is not at all certain that it will contin-
ue to be valid for strongly correlated systems (£/> W). This
makes the theory particularly difficult in this limit.

A satisfactory theory of superconductivity in the Hub-
bard model near half-filling will have to await a more de-
tailed study of the hole problem and of the interaction of
holes, as well as the successful development of the magnetic
phase diagram on the W /U, n plane. This concludes our
review of this very topical part of the theory of condensed
matter. We emphasize once again that we have confined our
attention to aspects associated with the assumption of a Neel
ground state of the two-dimensional itinerant antiferromag-
net, and have completely ignored the alternative possibility,
namely, the RVB ground state.

In conclusion, we draw attention to a number of the
most recent references on the problem under discussion.8
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