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The physical picture of the properties of light in squeezed and in other nonclassical states is
presented and compared with the properties of light in the classical coherent state. The theoretical
basis of the description and the generation of squeezed light is presented, and a practical scheme
for obtaining light in other of its nonclassical states is discussed. The general nature of the
phenomenon is emphasized, as well as the possibility of its transfer to other fields such as
acoustics, mechanics, and various Bose fields.

1. INTRODUCTION

One of the most important events in the field of optics in
recent years has been the experimental observation of
squeezed states of light.1'2 Even though these states were
predicted theoretically a long time ago, the full importance
of this event may perhaps be appreciated if one recalls that it
was widely held among researchers in optics that the quan-
tum nature of light gives rise to only small, noise-related
corrections to phenomena that are described by the non-
quantized Maxwell's equations. In essence, this point of
view is the cornerstone of the so-called semi-classical theory,
in which matter is treated quantum mechanically, while the
field is not quantized, and to which laser optics and nonlin-
ear optics in general are indebted for many successes. Now,
with the observation of squeezed states it is quite clear that
allowance for the quantum mechanical nature of light leads
to qualitatively new phenomena similar to the squeezed
states.

This methodological note is not intended as a review of
work in the area of squeezed light (see the reviews in Refs. 3
and 4). Rather, it is focused on the physical picture of
squeezed light, its theoretical descriptions, and, briefly, pos-
sible applications. By dealing principally with these topics, I
had hoped that the reader might become aware on the one
hand of the simplicity of this phenomenon, and on the other,
of its extremely general significance. Indeed, the substance
of this paper deals mainly with the states of the quantum-
mechanical harmonic oscillator, and of course, is valid for
any oscillator whose quantization is carried out according to
the Bose scheme. Consequently, squeezed states can be
found not only in optics, but in such widely separated fields
as elementary particles (tr0 mesons), acoustics (phonons),
and even mechanics (mechanical vibrations). One might
therefore anticipate the observation of squeezed sound as
well as squeezed light (although there may be difficulties in
doing so; see the end of Section 4). In principle, squeezed
states are even possible in the oscillations of such well-
known and even ordinary objects such as pendulums and
strings. Therefore, I have attempted to concentrate on the

physical nature of the phenomenon of squeezed states, dis-
pensing with a great deal of technical and mathematical de-
tail.

2. QUANTUM MECHANICAL HARMONIC OSCILLATOR

The harmonic oscillator plays an enormously impor-
tant role in quantum electrodynamics. The reason is that the
Maxwell's equations that describe the electromagnetic field
in a vacuum are linear, and because of this linearity, the
electromagnetic field in vacuum can be considered as a col-
lection of linear, or harmonic oscillators, for example, plane
waves. The electromagnetic field retains its linear properties
up to extremely high field strengths, where effects due to
scattering of light by light, involving the creation of virtual
electron-positron pairs, become significant.

Modern laser technology has shown that it is possible to
excite one individual oscillator of the field, a single mode, in
optical cavities. Because of the interaction of the field with
the mirrors of the cavity the region of linearity of the oscilla-
tor is narrower than in free space, but nevertheless'it is still
very great. The range of applicability of the theory of the
harmonic oscillator is thus very broad.

Let us consider free oscillations of a classical, unquan-
tized field by means of the diagram shown in Fig. 1, which is
convenient for going over to the quantum mechanical case.
This diagram shows the probability of observing a particular
value of the field at a particular time. Mathematically, this
probability (strictly speaking, the probability density) is de-
scribed by the quantity

I V(£) 12 - d(E - E0 cos (cot + <p))t (1)

which can be called the modulus squared of the "classical"
wave function. The delta function in the expression allows
the exactly determined quantities of the classical theory to be
described in the language of probability, which is inherent to
quantum mechanics. In fact, at a particular time / it is possi-
ble to observe only a single value of the potential,

E = En cos (<ot + IP), (2)
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FIG. 1. Distribution of the possible values of the electric field in the classi-
cal case (7) and in a coherent state (2).

in which, as in Eq. (1), there are three parameters that de-
scribe the field of the classical harmonic oscillator, the am-
plitude E0, the phase <p, and the frequency co. Thus, the dis-
tribution of Eq. (1), shown in Fig. 1, moves to the right and
to the left sinusoidally with an amplitude E0 and frequency
K>.

It is well known that in going over to quantum mechan-
ics, such classical quantities as the coordinate and momen-
tum, which had taken on specific values, lose their determin-
acy and are described by certain distributions. These
distributions are described mathematically by the squared
modulus of the wave function. For subsequent discussions
the Gaussian form is important

= A exp{- [E - E0 cos (cat + (3)

as shown in Fig. 1 by curve 2. The factor^ is a normalization
constant and D is that new factor that embodies the quantum
mechanical description. It is the dispersion, that is, the rms
spread of possible values of the electric field. The distribu-
tion (3) moves as a function of time just as distribution (1):
to the right and to the left with an amplitude E0 and frequen-
cy co. If the dispersion D is small, then the situation is not
very different from the classical situation.

Both theoretically and from the point of view of appli-
cations an entity that plays an important role is the so-called
coherent state" for which

(4)

In this state both the electric and the magnetic fields have
constant and small indeterminacies and therefore the coher-
ent state is very similar to the classical state (1).

Let us discuss briefly the usual quantum mechanical
interpretation of the distribution (3). It is assumed that in
measurements on an oscillator in this state it is possible to
obtain any value of the field. However, if many measure-
ments are carried out with many identically prepared oscil-
lators, then the results of the measurements will be described
by the distribution (3). Repeated measurements on the same
object is a much more complicated matter: it is one of the
most difficult problems in the interpretation of quantum me-
chanics. It is not possible to proceed very far in this direc-
tion, but fortunately, these difficult problems can be set
aside.

To do so we recall that the variance

is equal to the difference between the mean value of the
square of the electric field and the square of the mean value
of the field. Now, writing Eq. (5) as

: <£>2 + fl2; (6)

we interpret the three terms in the following way (ignoring
unimportant numerical factors): {E2) is the total energy of
the electric field, (E }2 is the classical part of the energy of
the electric field, and D2 is the energy of the quantum noise
of the electric field. This energy interpretation of relation
(6) greatly simplifies the matter, since energy characteris-
tics are familiar and relatively easily measured.

In the case of the coherent state the energy of the quan-
tum noise is generally negligible. For example, if the energy
stored in an oscillator is one joule, this gives the ratio

10-19 (7)

However, as we shall see later, for nonclassical states of the
field this ratio can be completely different; in particular, it
can be equal to unity.

Coherent states of the electromagnetic field apparently
are obtained in lasers. This permits the wide use of the so-
called semiclassical theory, in which the field is not quan-
tized. The semiclassical theory has been the basis of all the
progress attained in laser optics and, in particular, in nonlin-
ear optics. It has been widely believed that the quantum the-
ory of the electromagnetic field can give only small noise-
related corrections, and that it is important only at low
intensities.

However, the facts are quite otherwise. The equations
of the quantum theory are vastly more complicated than the
classical equations and it is naive to think that the only solu-
tions that these equations have are those similar to the classi-
cal solutions. It is obvious that there must be solutions that
are qualitatively different from the classical ones, including
solutions in a macroscopic region; that is, at high energies.
This can also be seen from the diagram of Fig. 1. Actually, it
is a radical step from the S function in the classical theory to
the continuous distribution of the quantum theory, although
the radicalness of this step is at first concealed by the sharp-
ness of the continuous distribution in the coherent state, and
by the consequently small difference of this state from the
classical state. It is not necessary, however, that this state be
narrow, and moreover, it can be arbitrary at the initial in-
stant of time, / = 0. Subsequent development of the state, of
course, is governed by the Schrodinger equation, while at the
initial instant of time it is arbitrary. If this initial state is
expanded in a basis set

(8)

then the coefficients cn are defined that characterize the
state i/f(E). These coefficients are in general infinite in num-
ber, and they all may be involved in some physical phenome-
na. Thus, in addition to the three parameters, amplitude,
phase and frequency, which characterize the field in the clas-
sical theory, we have an entire Hilbert space of parameters
that also characterize the same field. Consequently there is
an immeasureable increase in the set of possible physical ef-
fects in the quantized field. The Hilbert space of parameters
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mentioned above is, of course the well-known Hilbert space
of the states of quantum mechanics.

We can therefore conclude that there exists a great mul-
titude of quantum-mechanical, nonclassical states of the
electromagnetic field. In this sense the observation of
squeezed states is only the first swallow of summer; it is clear
that in future the variety of nonclassical states will be consid-
erably expanded.

In this connection it is relevant to recall the nonclassical
states of the field, which have been known since the appear-
ance of quantum mechanics. Their incorrect interpretation,
however, was an obstacle to their identification as nonclassi-
cal states. The situation involved the so-called stationary
states of the quantum mechanical harmonic oscillator,
whose wave functions are shown in Fig. 2. It is easy to see
that since the function \i/>n (E) \2 is symmetric, positive and
negative values of the field are equally probable, and conse-
quently the average value of the field E in this state is zero.
This is a true sign that for the states that are close to the
classical states the field strength must be proportional to the
square root of the energy of the field. A state of this kind can
moreover be a macroscopic state, since its energy is equal to

H) fia> (9)

and, by virtue of the factor (« + 1/2) it can assume macro-
scopic values; for example, it can be equal to one joule

Pauling and Wilson in 1935 claimed that this state cor-
responds to the classical free oscillations of an oscillator on
the basis of the observation that for large « the envelope of
the probability distribution (Fig. 3) is similar to the function

•%-= a"1,,/, (10)d? ">(<7o - 9 ) '

for a classical oscillator, which defines the time that a classi-
cal oscillator spends in a small part of its trajectory; here q is
the coordinate of the oscillator

I = g0 cos <ot, (11)

The quantity W(q) is sometimes taken to be the probability
of observation of the oscillator in a particular point of its
trajectory during classical motion, but this idea is, of course,
wrong—the classical process is entirely deterministic and

FIG. 2. Stationary states of an oscillator.
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FIG. 3. Analogy between stationary states and classical oscillations.

the notion of probability does not arise. The similarity be-
tween the envelopes of the probability distribution (Fig. 3)
and that of Eq. (10) is insufficient to reconcile the quantum
mechanical and the classical pictures. First of all, the coordi-
nate does not depend sinusoidally on the time in the quan-
tum mechanical state. Moreover, it is easy to see that the
indeterminacy in the coordinate and the momentum in the
nth stationary state are equal, respectively to

I(2n +

and

Ap = [(2« +

and their product is

In this relation, taking the limit as #-»0 (since plassically,
nonquantized systems can have a finite energy, we must let
n -» oo since E = rrfia) = const) it is clear that the product of
the indeterminacies

•• Eloi

while for any classical motionremains finite as fi
A? = A/> = 0.

Finally, as pointed out above, we have the coherent
state, whose properties are very much like those of classical
oscillations and which formally goes over into the classical
states as -R-+Q. However, the incorrect ideas of Pauling and
Wilson have penetrated into textbooks,5'6 and held up for a
long time the correct understanding of this state. Only in
recent years has the issue been raised concerning the excita-
tion of stationary states of the field regarded specifically as
nonclassical states.

A short discussion of the mathematical apparatus for
the description of the quantized harmonic oscillator is ap-
propriate. The Hamiltonian of the oscillator has the form

H = \ (p2 + «V) , (12)

where p and q, the momentum and position operators, re-
spectively, obey the commutation relation

gp — pg = ifi. (13)

With the use of the annihilation and creation operators
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-^ (<oq + ip), a+

this Hamiltonian can be written as

H=fio> la+a + ̂  1 . (15)

The steady states of the oscillator, shown in Fig. 2, are desig-
nated by the conventional Dirac notation | n) (or {n \, where
n is the number of photons in the oscillator). For these states
the following relations hold:

-0,

1>, (n!)
10), (16)

where |0> is the ground, or vacuum state of the oscillator,
which contains no photons.

The coherent state

lz> = exp ~»

(17)

is a special form of superposition of stationary states, where
for free oscillations

* = V>*. (18)

The average value of the coordinate q in the coherent state is

/2*\1/2

<9> - \~\ IV cos (tat + ?), p = arg z0; (19)

(20)

and the dispersion of q

»-frT\2ca)

is equal to the dispersion of the coordinate in the vacuum
state |0). An important property of the coherent state is that
it is an eigenstate of the annihilation operator a

a\z) = zlz)

with an eigenvalue equal to the parameter z. Another impor-
tant point is that in the coherent state the uncertainty rela-
tion is a minimum, that is,

Ap-A<? = 2'^-

In quantum mechanics the momentum and coordinate
are mutually conjugate variables. The coordinate of the elec-
tromagnetic field is the vector potential, which in the case of
a plane wave has the form

/ \ l / 2

A(r, 0 = (^-j (a**** - * + ™~M + '> ' (22)

where e is the polarization vector, which is orthogonal to k,
and Fis the volume occupied by the wave. The momentum
that is conjugate to it is the electric field

/„ , \ i / 2
E(r, 0 » -il^l (a***-* - a<rfa"4'kr)e. (23)

At time t = 0 and at the origin of the coordinate system,
these quantities can be written

/ ,\ 1/2
A(0)0)=[^J (a+ + a)e.

(lirfu>\ .. 4.

s, E(0, 0)

However, in experimental investigations in quantum
optics, the vector potential (and the magnetic field) are not
of any importance. Therefore, in the published literature the
conjugate variables are ordinarily taken to be the two values
of the electric field at different times such that the phase shift
between the two is tr/2. It is easy to see that one of these
values of the field is exactly proportional to the vector poten-
tial. These two values of the field have been identified by the
terminology "quadrature components." The convenience of
the term quadrature components is due to the wide use of
phase detection in experimental physics, which separates
one of the quadrature components from the total signal.

3. SQUEEZED STATES

Squeezed states were discovered theoretically in 1970
by Stoler,7 although they were in fact involved in the scien-
tific literature beginning with the work of K. Husimi9 in
1953. As I have noted above, the probability distribution at
the initial instant of time can be arbitrary in shape. For the
case of the coherent state it is a Gaussian distribution with a
variance equal to the variance of the vacuum state. There-
fore it is legitimate to ask how the state will develop that is
described, as is the coherent state, by a Gaussian distribution
but with different parameters.

The elegant mathematical apparatus, also developed by
Stoler, has played a not insignificant role in the populariza-
tion of the topic of squeezed states, and eventually their dis-
covery. According to this mathematical method, a squeezed
state is defined as the eigenstate of the operator b

that is related (as is the conjugate operator b +) to the anni-
hilation and creation operators a and a + by

„+ A-+- ^ .,*„ j_ „•/,-»•• va

(21) where
:- I v l 2 = 1.

(2)

(3)

It is easy to see that like the operators a and a +, the opera-
tors b and b + satisfy the commutation relation

- b+b = 1. (4)

Along with the introduction of the operators b + and b
comes the temptation, in complete analogy with the opera-
tors a + and a, to treat the state |f} as the coherent state of a
different oscillator, an oscillator with a different frequency
(i)'^=(o. However, this interpretation is correct only if we con-
ceive of an oscillator with a complex frequency. This point is
particularly clear if we transform to the coordinate represen-
tation. First, let us construct the coordinate representation
of a coherent state. By definition we have

V I

alz) = zlz) ,

where z is an arbitrary complex number and

(5)
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1/2

(2*»)' (6)

Multiplying (5) from the left by the vector (q\, an eigenvec-
tor of the operator q, we obtain the equation

At/t

h-j*- + <0<Pi>t = (2*») 1/2zVz, V-, - ViOf) » <<7lz> • (7)

Solving this equation, we have

1/2 _ 2

(8)

where A is a normalization constant. In this expression the
only term that can be complex is the one that is subtracted
from q, while the coefficient in front of the square brackets is
always negative (o» 0).

Now let us construct the coordinate representation of a
squeezed state. Multiplying Eq. (1) from the left by the same
vector (q\ we obtain the equation

(9)

(10)

fi(H - v) •

Solving this equation, we have

where A is also a normalization constant. For the squeezed
vacuum, (g = 0) the normalization constant is

Ivl) 2 11/4

w*

As we see, fi and v are complex numbers, and consequently
the factor in front of the square brackets is also complex, so
that Eq. (10) is quite different from Eq. (8). It will be shown
below that the phases of the parameters /u and v can vary
with time. Therefore, let us find the conditions for which the
factor (fj. + v)/(fi — v) can be real. Let us write the factor
in the form

\H\ + lvle~»o 'ft' + lv' cosVp ~ *'»' siny0

ilvl sin V0 '

(11)

(12)

where

The argument ^ in expression (11) is determined by the
relation

(13)
- lv!2cos2V0- Ivl2sin2V0

= -21/d Ivl siny>0.

Therefore the condition that expression (11) be real is

V0 = wr, n = 0,1,2,... (14)

When this condition is satisfied, the squeezed state, which is
defined by Eq. (1), can be represented as the coherent state
of an oscillator that is different from the initial oscillator
(with frequency ca).

Let us consider now the temporal development of the
squeezed state defined by Eq. (1). For this purpose we take it
as the initial state and investigate how it is transformed with
time. At time t the state has the form

m\

+ v*, V***«iOj>.

(15)

It can thus be seen that the state \g(t)) retains its identity as
a squeezed state, since it remains coherent in the new basis

set b' and b'+, and only the coefficients n and v are modified
1 ve,-tot (16)

while preserving relation (3).
The state

(17)

that enters into Eq. (15) is the vacuum state for the opera-
tors b'+ and b'. It is obvious that we have the result

= 0;

(18)

which shows that |06, > is the vacuum state of the operators
b'+ andfc'.

Let us calculate further the variance of the squeezed
state and its time dependence. The variance is defined by the
equation

-<<>2-^
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Since

(a+ + a)2 = H- (a+2 + a2 + 2a+a)

and

(20)

(21)

<rfl
:-/*VA2 + ( l / < l 2 + lv!2)i+* + I v l 2 ,

averaging the operator a' "a over |f} we have

<a+2 + a2 + 2a+a> = ((fi - v)V2 + («* - v*)2*2

+ 2(« - v) (M* - v>+*> + 2 l v l 2 - fiv* - ft*v

= ((?- v£* + (/** - v*£l2 + 2 l v l 2 - nv" - fv .

(22)

It is readily seen that the expression in the square brackets is
simply the average value of the operator a + + a; that is,
when the subtraction is carried out in (19) the square brack-
ets disappear. It is thus clear that the variance of a squeezed
state is the same as the variance of the vacuum state in the
basis b. Thus, the square of the variance is

-^- 1+2M*-,

Ivl'

-(^-v)(^-v*

2(0
cosv0 (23)

Let us now recollect that/z and v vary with time accord-
ing to Eq. (16). For the square of the variance we have

• — F l ^ l 2 + I v l 2 - 2 l / / l l v l cos(V0

(24)

Therefore, the variance takes on minimum values

. l v l \ 2 (25)

twice in a period at the times given by the relation

V0•+ 2cot = 1m , (26)

and maximum values

- l v l \ 2 (27)

(28)

also twice per period, for

V0 + lent = (2n + l>r

It should be noted that the times of the minimum and the
maximum variance coincide with the times [Eq. (14)] when
the squeezed state |f ) can be considered as the coherent state
of an oscillator. The frequencies of these oscillators are

Q' Iv l ) 2 u>

(\n\ - \v\y
(29)

Q" =o>( l^ l - Ivl)2 CO

(\ft\ + Iv l ) 2

As we see, the minimum variance corresponds to the higher
frequency H' and the maximum variance to the lower fre-
quency fl":

Q'>£u>£i". (30)

As will be shown subsequently, the function (24) is de-
termined experimentally and indicates the presence of
squeezed states, since the minimum variance can be less than
the variance of the vacuum or the coherent states.

The expression for the average value of the field is

\ l / 2

1/2
I [1^1 cosCV^ - (vv-

(31)

The time dependence in this expression can be taken
into account if for i/>^ we substitute ̂  + at and for i/>v, we
substitute i/>n — at. In this way the time dependence of the
average value is sinusoidal. From relation (31) it can be seen
that the maximum and minimum values of the variance can
be obtained at any phase of the harmonic oscillations of the
electric field. If we set ̂  = — ̂ v = i/>', then

<£)- cos \-7?n — • I I I '*•— I v l cos \-~-) (32)

since here we have the free parameter ^, then for a given
difference ̂  — i/>v that determines the position of the maxi-
mum and the minimum values of the variance, the phase of
the field can vary arbitrarily.

Ordinarily, a squeezed state is characterized by the
squeeze factor

A,, (D_

D D.min
+ Ivl . (33)

This factor varies from unity for the coherent state (| v\ =0)
up to large values (in principle, up to infinity) for strongly
squeezed states (| v| -> oo). There are, however, energy limi-
tations on this factor, since for a given average energy of the
oscillations, the squeeze factor cannot assume values that
are greater than some maximum value. To find this maxi-
mum value of the squeeze factor, we calculate the average
number of photons in the squeezed state

N--

- lvl)2cosV] +

(34)

It can be seen from Eq. (33) that the greater is the value of
[v| the greater is the squeezing. For a given number N of
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photons the quantity |v| is a maximum for |£ |2 = 0, that is,
in the squeezed vacuum state. Then

and

(35)

(36)

which is also the maximum possible squeeze factor. For
large values of N^> 1, we have approximately

*maxa'2"1/2- (37)

In the optical region, with an energy of the order of 1 J in the
cavity, the squeeze factor can have values of the order of
10'°. This is dramatically different from the experimentally
obtained values. At the present time the squeeze factors that
have been obtained have been from a few per cent greater
than unity to several times greater than unity. The reasons
for this discrepancy are still not clear.

As noted above, the maximum value of the squeeze fac-
tor is obtained for |f | =0; that is, in the case where there are
no oscillations of the field, (E) = 0. These states are usually
called the squeezed vacuum state. It should be remembered
that the squeezed vacuum state has little in common with the
vacuum state (the lowest state). The squeezed vacuum state
can be a highly excited, high-energy state.

These arguments lead to a graphic picture (Fig. 4). Fig-
ure 4a shows the oscillations for the coherent state of the
field; the thickness of the line indicates the time-invariant
variance. As usual, for macroscopic energies the variance is
small compared to the amplitude. Figure 4b shows the oscil-
lations in the case of squeezed states of the field. Here the
thickness of the line is comparable to the amplitude of the
oscillations and changes with the time. The point with the
lowest variance can have any phase relative to the oscilla-
tions of the field. Figure 4c shows the "oscillations" in the
squeezed vacuum state. The word oscillations is in quotation
marks, since now there are essentially no oscillations at the
fundamental frequency ca. There is only a variation of the
variance at double the frequency.

In the calculations of the squeezed states the unitary
operator introduced by K. Stoler that transforms the coher-

/\ /\

ent state into the squeezed state plays an important role. This
operator has the form

(38)

where z is an arbitrary complex number. It is easy to show
that the annihilation and creation operators are transformed
by this operator in the following way:

b' = U(z)aU+(z) = a cosh r + a+e~hl' sinh r ,

i'+ = U(z)a+U+(z) = afl> sinh r + a+ cosh r
(39)

where r=\z\ and i[> = arg z. As we see, this transformation is
a special case of the transformation (2), which leads to
squeezed states and corresponds to tp^ = 0. It can be seen
from the following argument that the operator C/(z) trans-
forms a coherent state into a squeezed state. Let |cr) be a
coherent state, that is, an eigenstate of the operator a. Writ-
ing the equation (39) in the form

U(z)a = b'U(z),

it is easy to see (U(z)a\<r) = aU(z)\<r) =b'U(z)\(r)) that
the state |f > = U(z) \cr) is an eigenstate of the operator b,
that is, a squeezed state.

Let us note some important features that squeezed
states introduce into the polarization structure of light.8

Consider a plane wave

E(r) = X[ex " + h.c.) + •+h.c .)] (40)

in which the oscillators a and b are in coherent states \g,ij)
with parameters g and 77, respectively. Then the field E(r)
can be expressed in terms of the polarization vectors

FIG. 4. Oscillations and indeterminacy of the field in a coherent state (a)
in squeezed light (b), and for the squeezed vacuum state (c).

+ ' » 7 l 2 r ' ) . (41)

of two orthogonal and in general elliptical polarizations

E(r) = ,4[(e-''krc+i1 + h.c.) + (e~ikrd+\2 + h.c.) ], (42)

where

c+ = (|a+ + t}b+)N, d+ = (-fa* + ?b+)N , (43)

are the creation operators for photons of elliptical polariza-
tion. It is now easy to see that the initial coherent state is an
eigenstate of the annihilation operators c and d with eigen-
values (|| 2 + |»7|2)1/2 and 0. This means that when the
states of polarized oscillators are coherent the total field can
be reduced to a single excited oscillator, where the fields are
calculated by the parallelogram rule.

A completely different picture emerges when the field
oscillator is in the squeezed vacuum state. To demonstrate
this, we use again expression (42) for the field, but assume
now that g and rj are not related to the state of the field, but
are simply parameters that determine the representation of
the field in the form (42). Ordinarily the polarization state is
analyzed with phase plates and polarizers: the phase plate
converts the elliptical polarization to linear polarization,
which is easily discriminated with a polarizer. Let us consid-
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er to what extent this procedure is effective when the field
oscillators are in the squeezed vacuum state.

After passing through the phase plate the wave (42) has
the form

E(r)

(44)

where S is the phase introduced into the polarization by the
phase plate. We obtain the wave transmitted through the
polarizer by projecting (44) on the direction of transmission
of the polarizer, defined by the vector

Cj = ex cos a - e sin a , (45)

where a is the angle between el and the x axis, and

El (r) = A{ [(<r*r+*'c+(r cosa - if sin a) + h.c. ]

- [<rtod+ft cos a + £ sin a) + h.c. ]}JV . (46)

The intensity of the transmitted light is

/ = A2N2{(c+c + cc+) [ 1112 cos2a + I r, 12sin2a

— (|*>7 + fy*) sin a cos a ]

+ (d+d +dd+)[\£\2sin2a + Ij;l2cos2«

+ (£*?; + £»;*) sin a cos a ]

- [e**c+£/(£* cos « - »/" sin «)(»;* cos a + «•* sin a) + h.c.)} .

(47)

In averaging over the squeezed vacuum one must keep in
mind that the operator c+d(c= /n* c' — vlc' + ,d = fJ.*
d' — v2d'+) operating on the squeezed vacuum state gener-
ates a state that is orthogonal to the latter, since c + and d
operate on different components of the state |0,0). There-
fore, the average value of the terms in the last square brack-
ets in Eq. (47) is equal to zero. Consequently, the intensity
of the light transmitted through the polarizer is

{/) = A2N2{(2\vl\
2 + I)[lfl2cos2« + Ij7l2sin2cr

— (£*»/ + £17*) sin a cos a ]

+ (2lv2l2 + I)[l£l2sin2a + Iql2cos2a

+(£> + £7') sin a cos a ]} (48)

and is independent of the phase S introduced by the phase
plate. An interesting point is that if oscillators c and d have
an equal number of photons,

I v , l 2 = Iv 2 l 2 = Iv l 2 (49)

the intensity no longer depends on the angle a of rotation of
the polarizer

1), (50)

that is, the signal transmitted through the polarizer does not
depend on the angle of rotation of the latter. This same situa-

tion is encountered in the circular polarization of ordinary
light, but in that case there is a dependence on S; when S is
changed the intensity again depends on a. In squeezed light,
on the other hand, no change in S can restore the dependence
on a. The situation is similar to that for unpolarized light.
However, this similarity is found only for changes over long
periods of time, longer than the coherence time of the unpo-
larized light. For times less than the coherence time the po-
larization structure of ordinary light of necessity shows up.
The polarization situation for squeezed light is therefore to-
tally unusual. In the literature this light has received the not
very apt name "scalar light."8 An important consequence of
this analysis is that in squeezed light it is not possible for two
polarized oscillators to be reduced to a single one, and the
parallelogram rule is not valid. It is also to be noted that
other nonclassical polarization states are also possible.8

4. THE EXCITATION OF SQUEEZED STATES

The simplest means of exciting squeezed states, at least
in principle, is parametric excitation of a harmonic oscilla-
tor. This is made possible by the existence of an exact, in a
certain sense, solution of the corresponding mathematical
problem (the meaning of these words will be revealed later).
Let us first analyze this problem.

Parametric excitation is, by definition, the excitation of
oscillations in an oscillator by varying (periodically, as a
rule) one of its parameters such as the frequency. Therefore,
the mathematical problem is reduced to solving the time-
dependent Schrodinger equation with a time-dependent
Hamiltonian

This equation has the solution9'10

V(<7, T) =

1/2

«2
£* l« l 2

where e ( t ) is the solution of the equation

that satisfies the initial conditions

e(0) = l, 4(0)-«0, (4)

where no is a characteristic (e.g., average) frequency of the
oscillator. It is readily seen that the quantity

- ee* = (5)

is independent of the time for this particular solution.
Therefore, solution (2) is an exact solution of Eq. (1).

However, the function e ( t ) appears in it, and is a solution of
Eq. (3), and the explicit form of this function is unknown.
Nonetheless, solution (2) is very important. Indeed, it con-
vinces us that the most subtle quantum mechanical part of
the solution contains no uncertainties. Equation (3) has
been well studied (for a periodic function f l ( t ) it reduces to
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the Hill or Mathieu equations) so that we do not overlook
any essential features if we use its approximate solutions.

If we introduce the parameters

i(^ + e)- V = i(^~ (6)

that manifestly satisfy relation (3.3), then the state (2) is
brought to the form (3.10), which is characteristic of a
squeezed state. At time t = 0, v = 0, and, consequently, at
time t = 0 state (2) is the vacuum state. From relations (6)
and (3.23) it follows that the variance of the state (2) is

^= JL|e(OI2. (7)
/&10

Let us return now to the solution of Eq. (3), using as
fl2(t) the function

• a sin (at) ; (8)

For this choice, Eq. (3) is the well-studied Mathieu equa-
tion. It is well known that depending on the parameters a
and a> the solution of Eq. (3) can be bounded or increasing
with time. The corresponding regions are shown in Fig. 5,
where the hatched region is the most interesting one for our
purposes. Here the solution is an increasing one, or more
precisely, there are two independent solutions, one of which
grows and the other decays.

Let us examine the region of small a, near <y=2fl0- In
this region we can use perturbation theory and find approxi-
mate solutions of Eq. (3) in explicit form. According to the
Floquet theorem the solution of Eq. (3) has the form

(9)

where u ( t ) is a periodic function with the same period as the
driving force (8) and thus can be expanded in a Fourier
series (9). The parameter /I is a function of a and co. An
important question is whether it is purely real or it has an
imaginary part. In the former case the solution is bounded,
and in the latter case it grows or decays with time. Substitut-
ing solution (9) into Eq. (3) and setting the coefficients of
the harmonics separately to zero, we obtain the system of
equations

[1 - (A 0, (10)

which determine the coefficients en. The determinant of this
linear homogeneous system must be zero, and provides the
equation for the determination of A.

For small a and <a close to 2ft0,

to = 2Q0 + Aw (11)

we can separate out the case where only two coefficients are
important: £0 and e,. Here the parameter A must be close to
-1,

A = -1 + AA, (12)

where AA is a small quantity. Then the system of equations
(10) assumes the following simple form

2AA-e0 + y e, = 0, yeQ + 2(AA + Ao>)e, =0. (13)

Setting the determinant of this system equal to zero, we
obtain the possible values of AA:

1/2

— i
(14)

From this result it can be seen that in the sector
| Aw | < a/2, A/I is complex, and, consequently, there are two
solutions, one of which grows with time and the other de-
cays. However, outside of this sector, where | A<a| > a/2, the
solution is oscillating and bounded.

Substituting (14) into (13) we find the coefficients £0

and e! corresponding to the two values of A/I and thus be-
longing to the two independent solutions of Eq. (3):

e'=AT<1/4>*sinQ0i, e" = B«t1/4><* cos QO< . (15)

The solution that satisfies conditions (4) is obtained as a
linear combination of the solutions (15):

sin I sin i

(16)

For the variance of state (2) at time t we find, according to
Eq. (7), the expression

20, "V-40- sin!

(17)

It is easy to see that the variance varies from the minimum
value

to the maximum

(18)

(19)

twice a period. The squeeze factor therefore increases expon-
entially with the time

FIG. 5. Region of excitation of a parametric oscillator.
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Consequently, parametric excitation of a harmonic os-
cillator does in fact generate a squeezed state with a squeeze
factor that increases with time. In actual situations there is
no need to restrict a to small values. The qualitative behav-
ior of the parametric oscillator is the same over the entire
hatched region in Fig. 5. It must be noted, however, that this
theory is highly idealized. It does not take into account such
important factors as the presence of losses in the harmonic
oscillator or the reverse action of the oscillator on the pump-
ing source. Both of these factors can cause the squeeze factor
to saturate; that is, it will cease to increase after attaining
some limiting value. As has been pointed out previously,
there is a considerable difference between the possible values
of AT and those actually attained. It is possible that this dis-
crepancy is due to just these factors that were ignored.

We should point out the important role of the initial
state in parametric excitation of squeezed states. The
squeezed vacuum state is generated only if the initial state is
the vacuum state. If, however, the initial state is a coherent
state, then it will develop further as a coherent state, increas-
ing in amplitude. In optics, the initial state is automatically
given as a vacuum state, since at room temperature fua^kT,
and other states are simply not populated. It is another mat-
ter for the low-frequency regions, for example, in acoustic or
mechanical oscillations. There, any state in thermodynamic
equilibrium is a mixed state, and this can cause a definite
complication in the generation of squeezed states.

The parametric generation of squeezed states of light
has been achieved by a group of investigators at the Universi-
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ty of Texas.2 Although this method was not the first one—
squeezed states had previously been observed in a number of
laboratories—in the opinion of the present author the meth-
od that they used is technically the most promising, and I
will give a short description of it. The experimental appara-
tus is shown in Fig. 6. It consists of three main parts, a source
of parametric pumping, the parametric oscillator itself, and
a detector-analyzer of the squeezed state. The first two parts
in their important aspects duplicate the device used in the
first experiments on parametric oscillation.11 The detector,
however, is especially designed for the analysis of squeezed
states. The theory of its operation is quite complicated, and
will not be described here. It should only be noted that it
operates on the principle of a stroboscope, and measures the
variance of a light signal excited in the parametric oscillator
only at those times that are close to the peak of the reference
signal. Figure 7 shows the results of the observations. As we
see, the variance of the signal varies twice over a period of the
light field; the period of the variation of the variance is IT and
not 2w. It can be seen also that for some values of the phase 6
of the signal the variance becomes less than the one that
corresponds to the vacuum state (the dashed line). This is
sure evidence that the light is in a squeezed state.

5. POSSIBLE APPLICATIONS OF SQUEEZED LIGHT

The applications of squeezed light have been discussed
in the reviews of Refs. 3 and 4. By way of illustration three
examples of these applications, involving interference mea-
surements,12 nonlinear phenomena,13'14 and information
transmission15 are presented in this section. Considering the
multitude of forms of interference phenomena, nonlinear
phenomena, and information transmission lines, the exam-
ples quoted here will be very simple ones, but nonetheless,
examples that bring out the fundamental advantages of the
use of squeezed light.

5.1. Suppression of noise in a Mach-Zehnder interferometer

A diagram showing the principle of operation of the
interferometer is shown in Fig. 8. Under ordinary conditions
of operation, that is, without noise suppression by means of
squeezed light, monochromatic light enters into the interfer-
ometer in channel b (for example, laser light in a coherent

FIG. 6. Experimental setup for excitation and analysis of squeezed light.
/) Ring laser with second harmonic generator for pumping; 2) polarizer;
3) optical parametric oscillator; 4) reference signal in a coherent state; 5)
light signal in a squeezed state; 6) photodiode; 7) noise spectrum analyz-

0 -

FIG. 7. Dependence of the variance on the phase 0.
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[] []
m,

r
FIG. 8. Mach-Zehnder interferometer.

g = e^(ieP sin a- a + cos o-b),
f = e~%(cos a-a + ie~'l> sin o-b),

where
1

(4)

(5)

The currents in the detectors are proportional to the
number of photons in arms g and/; for the photon number
operators we have

i a+a cos2a

+ i(a+fcr*> - ab+<*>) sin a-cos a + b+b sin2a,

ffg = g+g = a+a sin2a

- Ha+be'V - ab+tP) sin a-cos a + b+b cos2a. (6)

state). The semitransparent mirror m, splits the light into
two beams which propagate along the arms of the interfer-
ometer as far as the semitransparent mirror m2. The optical
lengths of the two interferometer arms are different, and the
phase difference generated in the arms is created ordinarily
by the object studied and is the measured quantity. Passing
through the semitransparent mirror m2, the beams are inci-
dent on the detectors Fand G; the current of the photodetec-
tors is amplified and fed into a difference circuit.

Squeezed light, by means of which the noise in this de-
vice can be reduced, is fed into the free channel a of the
interferometer. The transmission of the beams of light
through the semitransparent mirrors (50% transmission) is
described by the relation

(1)

where a, b, c, and d are the annihilation operators for pho-
tons in the corresponding beams of light (Fig. 8). It is easy to
see that if we forget that these quantities are operators, then
relation (1) is just the classical relation that connects the
fields on the two sides of the mirror. In this relation the
unimportant total phase shift of the light in the mirror is
omitted, and only the phase difference 2p is retained. The
unimportant total phase shift is also' omitted in the subse-
quent equations.

The amplitudes c and d in the transmission through the
arms of the interferometer acquire additional phase shifts i/>
and — i/>, as described by

£)
(2)

The transmission of the light beams through the semitrans-
parent mirror m2 is described by the relation

(3)VT l-l e-V\ U'

which is analogous to relation (2); the operators g and/are
the annihilation operators of photons in the corresponding
arms. Multiplying out the matrices, we obtain for g and/ the
following expressions:

The difference in the number of photons is

= (a+a - b+b) cos 2cr + 2i(e~if>a+b - <*>ab+) sin 2* .

(7)

To average these and the other operators over the squeezed
light in arm a we introduce the operators A and A +; see Eq.
(3.2):

a + =M + -vM, a--vA++t**A, \fi\2 - I v l 2 = 1,

(8)

where the coefficients fi and v characterize the squeezed
state |f) in arm a. Now, bearing in mind that the light in arm
a is in the squeezed vacuum state (£ = 0), while the light in
arm b is in the coherent state |z>, we find the average value of
the various operators

(a+a) = Ivl2, (a7) - -n*a, <a+2> = -fiv*, (9)

<*+*)= Izl2, <a+aa+a) = Ivl2(2l^l2 + Ivl2).

In this way, the interference pattern, which is defined as
the dependence of the difference of the average number of
photons in arms/and g on the phase a is described by the
expression

!- Izl2)cos2<7, (10)

(see Fig. 9). Since the intensity of the squeezed light is al-
ways low, then |v|2<|z|2 (where |v|2and |z|2are,respective-
ly, the number of photons in arms a and b), and the squeezed
light has little effect on the interference pattern. For the
noise, however, the picture is completely different.

The intensity of the current noise is proportional to

D - (AJV2) - <

According to Eq. (7), we have

(a+aa+a - 2a+ab+b + b+bb+b) cos22a

• - a+a - b+b) sin22(7.

(12)
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FIG. 9. a) Noise in the interference pattern without squeezed light in arm
a; b) with light in the squeezed vacuum state in arm a.

Averaging this expression over the initial states and sub-
tracting from it (AN2), we obtain

v!2+ Izl2)cos22a

+ I z l 2 ( l v l 2 l z l ~ 2 + 2 l v l 2 + 1 + 2 1 / 4 1 - I v l cos V) sin22a ,

(13)

where

V = 2p - 2\l>1 - ̂  + yv .

In taking into account the time dependence, it must be
kept in mind that $z contains the term — cat, ̂  contains the
term — cat, and i[iv contains the term cot. Thus, the phase i/>
does not depend on the time, and is a free parameter that can
be controlled at the will of the observer by, for example,
delaying the squeezed light relative to the coherent light.

Let us consider the noise at the points where the inter-
ference pattern, expression (10), has zeros, i.e., where
cos 2cr = 0. The first term in (13) is zero and plays no role.
In the second term, sin 2a= ±\, and, consequently, the
amount of noise can be reduced by an appropriate choice of

the phase rfr in the coefficient of sin22cr. Since the first three
terms in this coefficient are positive, the term is, obviously, a
minimum for cos if/ = — 1. Then the round brackets in this
coefficient can be written as

5 = ( I v l 2 / l z l 2 ) - lv l ) 2 = ( l v l 2 / l z l 2 ) + (l//Q2,

(14)

where

\H\ + \v\ = l/(l/*l - I v l )

is the squeeze factor of light in the arm a (the ratio of the
variance of the vacuum state to the minimum variance). The
coefficients |v|2 and K2 are related by

- K2/4.

Therefore, as K increases, the first term in 5 increases and
the second term decreases. The quantity 5 is a minimum for
AT2 = 2|z ; here 5min = l/|z|. Since 5= 1 in the absence of
the squeezed light; that is, when | v = 0, it can be seen that
the noise power decreases by a factor of \z = N1/2, where N
is the number of photons in arm b. The optimum number of
photons in arm a is

Thus, the overall pattern of the noise in the case of inter-
ference is shown in Fig. 9. In the absence of squeezed light in
arm a the noise power is the same at each point of the inter-
ference pattern. However, with squeezed light in arm a with
the proper phase and amplitude, the noise power near the
zeros of the interference pattern is significantly reduced, so
that it is possible to measure with greater precision the spac-
ing between the zeros, and, consequently, the phase differ-
ence of the two beams. These arguments were verified in the
paper by Kimble and his coworkers.16 In their experiment
they measured the noise power at the frequency 1.6 MHz
with a channel frequency width of 100 kHz. They turned on
and off the high-frequency modulation of the phase in one of
the arms of the interferometer at a frequency of 50 Hz. When
the modulation was turned on the signal was fed to the detec-
tion circuit. The results of the measurements are shown in
Fig. 10a,b. Figure lOa corresponds to the case where there is
no squeezed light in arm a. It can be seen that the noise is at
the level of the vacuum fluctuations (the dashed line). Fig-
ure lOb corresponds to the case where light in the squeezed

FIG. 10. Experimental observation of the
suppression of noise in an interference pat-
tern.

Off
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vacuum state is present in arm a. It can be seen that the noise
is considerably reduced and the signal-to-noise ratio has in-
creased.

5.2. Squeezed light in nonlinear phenomena

The generation of optical fields in squeezed states may
have a large influence in nonlinear optics. To show how this
is so, let us consider the nonlinear polarization of matter in a
field in a squeezed state.13'14

It is well known that the polarization of a material is a
nonlinear function of the field and can be represented as a
series

P(E)=alE + a2E
2 + a3E

3 + ... = '2ianE
n, (15)

n
where an are coefficients that characterize the nonlinear me-
dium. The item of interest is the 2N th harmonic of this polar-
ization. This harmonic can arise from the term

P2N(E)^a2NE2N d6)

of the expansion given above. For simplicity, the field will be
considered as a single-mode field. Then the electric field is

E = fi(a+ + a).

To calculate the 2Nth harmonic it is necessary to know the
quantity

where

where | £} is the squeezed state. Since the operators a + and a
are related to the operators b + and b by relation (3.2), we
have

0<*-i (17)

and the time dependence of the squeezed state will be taken
into consideration if the parameters// and v are taken in the
form

ve,-tsu

Since the squeezed state |f) is an eigenstate of the oper-
ator b, the average in expression (17) can be easily per-
formed if we carry out the normal ordering of the operators
b + and b in the operator

•(?- (yb+ + y*A)2N

(18)

where y — f*ein' — ve '"'. The average value of the normal-
ly ordered expression (18) is simply the 2Nth power of the
expression

where <p = arg f.
The operator BM can be written in the form of the nor-

mally ordered series
BM =

0, 2j>M.

This expansion can be easily verified for small M, for exam-
pie

:(yb+

B3 - :(yb+ + y*A)3:

+ y>,

etc.

and for large M it can be demonstrated by induction.
Averaging B2N over the squeezed state, we obtain

N
(19)

l-o

It should be mentioned that in the coherent state (that is,
without squeezing), the 2Nth harmonic can be obtained
only in the first term of expansion (19), since in this case y*y
does not depend on the time ( \ /u\ = I , v = 0), while the pa-
rameter /?,, which is time dependent, appears in all terms but
the first in powers lower than 2N. In the squeezed states,
however, the factor y*y depends sinusoidally on the time,
and, consequently, the 2Nth harmonic appears in all the
terms of expansion (19). As we shall see later, in the
squeezed vacuum state the most important term is not the
first, but the last term of the expansion (19).

Let us express the quantities y*y and pl of expansion
(19) in terms of the squeeze factor AT. It is easy to see that

So that

! + *-2)

P l =± l£ l [(* + *-

where

-(*-. '-*•"+ex.],

Consequently (B2N) takes the following form:

N

W-fi'. \w-n
J iS i j [(* + *-»

+ (K-

Let us separate out in this expression the terms with the
frequency 2MI:
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N

• 2 <y-o
'i \'H

-(K- + c.c.

(20)

We shall consider the cases of the coherent state (K = 1)
and the squeezed vacuum state
(AT = (N + 1)l/2 + N 1/2, |f | = 0). It is clear that in the first
case only the first term in Eq. (20) remains:

In the case of the squeezed vacuum state, only the last term
in (19) remains:

r, -|W

<*2*>ajr = (1*- i)H|i(K2 - *~2) I i + C.C.).

The quantities |f 2 and -^ (K2 — K 2) can be expressed in
terms of the average number of photons in the cavity

n0.

Therefore, for the same average number of photons in the
cavity (in other words, for the same energy stored in the
cavity) the 2Nih harmonic in the squeezed vacuum state is
generated by a factor (2N — 1)!! more efficiently than that in
the coherent state.13

This result may be of great significance for nonlinear
optics and, in particular, for the generation of the higher
harmonics. At the present time harmonics up to and includ-
ing the 33rd have been obtained.n Consequently, the gain in
efficiency of generating them may be very high. Of course, it
must be remembered that the coefficients aN fall off rapidly
with increasing N. Which factor is the more important one—
the advantage obtained from the squeezed states or the de-
crease in the coefficients a^—is a question that can be re-
solved only with appropriate experiments. We recall, how-
ever, that the generation of the higher harmonics is
associated with a certain expectation of obtaining coherent
short-wavelength radiation up to the soft x-ray region. The
use of squeezed light may revive some of these expectations.

Janszky et a/.14 have studied the multi-photon absorp-
tion of light in squeezed states. It is well known18 that this
absorption is proportional to (a + NaN). Those authors14

have shown that in the squeezed vacuum state the absorp-
tion is a factor of (2^— 1)!! greater than in the coherent
state, a result similar to that described above.

In connection with the advantage afforded by the use of
squeezed light in nonlinear phenomena, for example in har-
monic generation, it is necessary to say a few words about the
relation between the classical and quantum phenomena. The
point is that in the case of classical fields, where the field is
nonmonochromatic, and consequently in the case of ran-
dom, phase relations between the components is also sto-
chastic, there is also a gain in the harmonic generation com-
pared to monochromatic light by a factor of ml, where m is

the index of the harmonic. Therefore it is tempting to consid-
er squeezed light as a kind of stochastic light. This is also in
accord with the terminology that has evolved, where the
quantum-mechanical indeterminancy is called noise. How-
ever, this is only a superficial analogy. There is a great differ-
ence between squeezed light and stochastic light. Squeezed
light can occur in the context of a single oscillator (or mode)
whereas stochastic light is necessarily the superposition of
several modes with various frequencies and random phases.

5.3. Squeezed light In communications systems

The use of squeezed light in communications systems
has been the subject of many (until now, theoretical) publi-
cations.15 It should be noted that squeezed light does not
greatly extend the information capacity of a channel; the
maximum increase is a factor of two. This is because in the
usual information channels, without dividing the signal at
the detector into quadrature components, the detector re-
cords only the amplitude variations. However, in systems
with phase detection, the phase channel is also a carrier of
information.

However, the capacity of an information channel is not
the only important characteristic of a communications sys-
tem. A very important factor is the probability of error, espe-
cially in computer communication lines. The advantage in
the use of squeezed light in this application can be demon-
strated in the example of a line in which the binary signals 0
and 1 are coded by signals that are shifted in phase by w (Fig.
11). In the case of the coherent state (Fig. 11 a), the signal is
described by relatively broad distributions, the overlap of
which can give rise to quantum errors. In the case of
squeezed light (Fig. 1 Ib) of the same intensity the overlap of
the distributions is considerably less. Calculations show that
the probability of error in the coherent and squeezed state
are

where (N) is the average number of photons in the signal;
that is, with squeezed light the probability of error is much
lower.

6. CONCLUSIONS

The squeezed states of light, as well as many other non-
classical macroscopic states of light, are new and important
objects of quantum optics. The properties of light in such
states, as well as its interaction with matter, have important
special features, and can have a great influence in the field of

x.

O

FIG. 11. Distribution of possible values of the field in the case of phase
coding (a) in a coherent state, and (b) in a squeezed state.
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optics. Important events would be the observation of
squeezed and, in general, nonclassical states in acoustics and
mechanics.

I am grateful to A. M. Prokhorov, F. V. Bunkin, N. V.
Karlov, V. I. Tatarskii, A. A. Rukhadze, N. B. Delone, S. A.
Akhmanov, B. M. Bolotovskii, V. A. Shcheglov, V. I.
Man'ko, A. V. Masalov, V. P. Karasev, 1.1. Tugov, and Yu.
Ya. Yushin, for discussions of this work and for their assis-
tance.
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