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This survey is devoted to the current state of theoretical studies of two-dimensional dipole
systems. Systems of hydroxyl groups on the surfaces of oxides have been the most experimentally
studied systems. The article examines the orientational states of isolated radicals in local
potentials of hindered rotation, various types of orientational ordering of dipoles in two-
dimensional lattices, and the appearance of the dipole glass phase in a system with arbitrary filling
of lattice sites by particles. Proof is presented of the existence of long-range order in two-
dimensional dipole systems, as well as estimates of phase transition temperatures. There is a
discussion of the theory of the vibrational spectra of ordered and disordered systems of dipole
radicals in various orientational phases. Experimental data are presented on the infrared
spectroscopy of surface hydroxyl groups. The data verify theoretical results. Unresolved
problems are indicated as well as the prospects for further studies of two-dimensional dipole
systems.

1. INTRODUCTION

Ever increasing interest in two-dimensional systems is
based on the tempestuous development of studies of solid
surfaces and their many applications. Interest has also been
stirred by the properties of non-three-dimensional phase
transformations. The ability of a surface to adsorb a large
number of extrinsic particles leads to the statement of new
problems on the behavior of extrinsic two-dimensional sub-
systems with direct and indirect (through the substrate) in-
teractions between particles.' The problem arises of order-
ing dipole particles on the surface, which is a
two-dimensional analog of the same problem of noncentral
ions in crystals.2

Hydroxyl groups on the surfaces of oxides have been the
most studied two-dimensional dipole systems.3 8 This is due
to their special chemical activity compared to nucleophilic
and electrophilic substitution reactions, which make it pos-
sible to solve many practical problems in the modification of
surfaces to obtain new promising adsorbents, fillers, and
thickeners for dispersed media. High-frequency OH stretch-
ing vibrations are easily recorded in infrared absorption
spectra, and this yields information on the states of systems
of OH groups and on the bonds between this system and the
substrate. The presence of a rotational degree of freedom and
dipole-dipole interaction has appeared experimentally in
specific thermoactivation broadening of the spectral in-
frared absorption lines of OH stretching vibrations in high
temperature regions. Additional spectral lines of composite
frequencies10"12 are due to the low-energy spectrum of hin-
dered rotation,13 and may lead to orientational cooperative
effects.14 The correlated orientations of dipole moments are
the source of strong electric fields, which may affect the ad-
sorbent capacity of the surface.15'16

The issues associated with the reorientations of surface
OH groups were examined in earlier publications17'18 and
led to a number of problems on local and quasi-local vibra-
tions of structurally ordered or disordered systems of dipole
radicals, and on orientational phase transitions in two-di-
mensional dipole systems with full accounting for the long-
range and anisotropic dipole-dipole interaction.19 These

problems are topical in other two-dimensional dipole sys-
tems, including the dipole heads of phosphorolipidous mole-
cules of biological membranes and dipole organic molecules,
which are introduced in van der Waals intervals of stratified
inorganic matrices (so-called intercalated compounds).

Actually, it is noted in Ref. 20 that the P ~ ...N + dipole
of phosphorylcholine has a dipole moment of about 3 D and
is oriented parallel to the plane of the two-dimensional lat-
tice (lamellar plane). In this plane there is hindered rotation
of the dipole with a rotational correlation time estimated on
the basis of the Overhauser effect at 1.4-10 ~ 9 s. Intermole-
cular hydrogen bonds and dipole-dipole interactions may
limit the rotational mobility of the dipole, which leads to an
orientationally ordered system. The ground state and the
spectrum of orientational vibrations of dipoles in a two-di-
mensional model of a lipid monolayer were calculated in
Ref. 21.

References 22-24 are devoted to studies of intercalated
semiconductor compounds. In these publications it is shown
that in the absence of screening by free electrons, long-range
dipole-dipole interaction of introduced molecules leads to a
concentration and temperature dependence of the charge
transferred from the molecule to the matrix layer. This effect
is in many ways analogous to the concentration change in
the effective charge of atoms in submonoatomic layers.25 It
was predicted in Ref. 22 that it would be possible for several
phases to exist in semiconductor intercalated compounds.
These phases differ in the period of the superlattice and are
characterized by a two-dimensional miniband electron spec-
trum. This was experimentally proven in Refs. 23 and 24 for
compounds of Pb I2 quinone and Pb I2 aniline. It is noted in
these publications that the mechanism of observed phase
transitions may be associated with orientational ordering of
the dipole moments of embedded organic molecules. This
was theoretically studied in Refs. 26-28. This mechanism is
especially likely for the compound PbI2 -aniline because ani-
line is characterized by a large dipole moment and has in this
compound two easy axes of rotation along the P-N and N-C
bonds.24

Thus, the theory of orientational states of two-dimen-
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sional dipole systems, which was initially developed for sur-
face OH groups, was found to be applicable to a rather broad
class of objects. This survey discusses the main results of the
theory of vibrations and orientational states in arbitrary
two-dimensional dipole systems, and is applied to an expla-
nation of the observed patterns in the most studied two-di-
mensional dipole system, surface OH groups. For conve-
nience of exposition section 2 presents experimental
characteristics of the vibrational and orientational states of
this system, which made it possible in subsequent sections to
illustrate the theoretical material with corresponding esti-
mates. The logic for the construction of these sections is
based on step-by-step inclusion of dipole interaction in the
examination of the dipole interaction which forms the orien-
tational conformations of the system and leads to collectivi-
zation of vibrational states of individual polar molecules.

Section 3 presents the structure of the vibrational and
hindered-rotation spectra of isolated (that is, in the absence
of dipole interaction) surface OH groups with analysis of the
effect of various perturbations on these spectra. The main
results discussed in this section consist of establishing the
dominant role of the reorientational mechanism of homoge-
neous broadening of the spectral lines of molecules with sev-
eral equilibrium orientations. This differs from the out-of-
phase mechanism of anharmonic bonding of stretching
vibrational and orientational states, not in a Hamiltonian
system, but in a dipole moment operator. In turn, the out-of-
phase mechanism considers the anharmonic bond (of order
4) of a high-frequency vibration with degenerate low-fre-
quency librational vibrations of the molecule in a weak ex-
change of energy with a thermostat.30 This mechanism pro-
vides a good description of the one-sided temperature
broadening of the spectral lines of complexes with a hydro-
gen bond observed in various systems.31'33 For diatomic
groups which have a strong bond of only one heavy atom
with a solid matrix, a nontrivial dependence of the tempera-
ture shifts of the local oscillation frequencies on the mass of
the light atom was obtained. This explains the observed
spectral patterns in isotopic exchange.34'35

Section 4 contains an analysis of the orientational or-
dering of dipoles in various two-dimensional lattices, as well
as in a two-dimensional system with random filling of the
sites of a lattice of adsorption centers. Here results are pre-
sented of calculations of characteristics of the ground states,
their stability relative to thermodynamic fluctuations, esti-
mates of the temperatures of orientational phase transitions,
areas where paraelectric and ferroelectric phases, and the
dipole glass phase exist for a two-dimensional disordered
system, with accurate accounting of long-range dipole-di-
pole interactions. Fundamentally important results of this
section are proof of the existence of long-range orientational
order in two-dimensional lattice dipole systems36'37 and sub-
stantiation of the effectiveness of the chain representation of
dipole interactions for calculations of the characteristics of
the ground state and phase transition temperatures.37'38

After a discussion of the spectral characteristics of iso-
lated dipoles and their orientational conformations, which
arise due to dipole-dipole interactions, section 5 discusses
dipole renormalization of the vibrational spectra of polar
molecules in various orientational phases. Results are pre-
sented on dynamic and static renormalizations of the fre-
quencies of stretching and torsional vibrations caused by dy-

namic and static dipole interactions. The orientational
disorder of dipole moments and the disorder of their ar-
rangement on the surface causes an inhomogeneous broad-
ening and asymmetry of the spectral lines.

The last section, section 6, discusses solved and un-
solved problems in the theory of two-dimensional dipole sys-
tems, interpretation of experimental data, and prospects for
future research.

2. INFRARED SPECTROSCOPY OF SURFACE GROUPS OF
ATOMS WITH ROTATIONAL DEGREES OF FREEDOM

The main information on vibrational and orientational
states of surface groups of atoms is provided by infrared
spectroscopy. The volume concentration of these objects
needed for measurements (~102 0cm~3) is obtained in
highly dispersed samples with a large specific surface
(~200 mVg). The low-energy orientational states lead to
clearly observable temperature dependences of the charac-
teristics of spectral lines of stretching vibrations, and to ad-
ditional lines of composite frequencies. Reference 29 dis-
cusses the results of Refs. 39—42, in which the observed
temperature dependences of the line widths of valency vibra-
tions of CO groups in a scaffold position on the surface of
Ni( 111) and of SiH groups on the surface of Si( 100) are
linked with low-frequency torsional or flexure vibrations of
these objects. These dependences are interpreted on the basis
of a three-dimensional out-of-phase model. However, it is
shown in section 3 of this article that these and other experi-
mental patterns are described better by a reorientational
model of the broadening of spectral lines.'9 To avoid a priori
refraction of experimental data through the prism of some
model, the authors preferred to present in this section a sur-
vey of the experimental characteristics of the vibrational and
orientational states of the most studied two-dimensional sys-
tem of surface OH groups, separately from theoretical inter-
pretations, and to give them a detailed exposition in subse-
quent sections in the discussion of the results of the
corresponding models.

References 4 and 5 present comprehensive experimen-
tal material and attention is focused on the classification of
OH groups by their arrangement on oxide atoms with var-
ious coordinations, by their stability relative to conditions of
thermovacuum processing, by their ability to enter some
chemical reaction or to change the frequency of vibrations
when affected by adsorption agents. In the overwhelming
majority of publications the spectra are taken only at room
temperatures, and with a resolution which makes it possible
to solve the problems listed above. However, these condi-
tions are insufficient to analyze the orientational states. The
necessary experimental information on the rotation mobility
of surface OH groups can be found in several articles, and we
discuss the results of these publications here.

The first infrared absorption spectra with good resolu-
tion of the stretching vibrations of OH groups on a dehydro-
genated surface of SiO2 over a wide range of temperatures
T = 100-1000 K were obtained in Ref. 9. It was found that
the frequency of the maximum of a band &>max (in cm ~ ' ) is
described with good accuracy by a linear law:

co = 3753,3 ± 0,2-(1,74 ± 0,05)-10-2r, (2.1)
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band at its half-height A«1/2 (measured from the perpendic-
ular to the tangent background from the maximum to the
high-frequency branch) satisfies Arrhenius' law at T>400
K:

lnAw,/2 = 2,10±0,08 - (442 ±35)7"- (2.2)

from which the value of the rotation activation energy was
obtained: A£rot —39 meV. At T>400 K, A<u,/2 reaches a
constant value A<u 1/2 ~2 cm ~ '. The number of temperature
points for the spectra taken in Ref. 9 was of the order often.

Analogous measurements with a large number of tem-
perature points (from 15 to 31 for various samples) at
T = 300-800 K for OH and OD groups on a dehydrogenated
surface of SiO2 described in Refs. 17 and 43, yielded the
following results:

W2£ = 3753-93 ± 0,15 - (1,56 ± 0,05)- 10"2r,
(2.3)

cyOD = 2768,82 ± 0,04 - (1,70 ± 0,02)- 10~2r,

In Aw°^ = 2,10 ± 0,06 - (477 ± 34)7-',

In A«°R = 2,35 ± 0,03 - (618 ± l*)T~l.
(2.4)

Equation (2.4) occurs at r>400 K. At T>600 K these
same experimental values of A&>1/2 for OH and OD groups
are described well by a linear equation

, = (6 ±2). (2.5)

As an example we present one spectrum recently ob-
tained on a JRS-113V Fourier spectrometer produced by
Bruker. The spectrum is of the OH groups of a dehydro-
genated SiO2 surface on which the relaxation of band inten-
sity was recorded at room temperature after holding the
sample in vacuum for 50 hours (curves 6 and 7 in Fig. 1).

In addition to the main stretching vibrations of surface
OH and OD groups one also observes their overtones. Refer-
ence 44 presents the frequencies for the transitions from the
ground state of the oscillator to the first («01 ) and second
(«02) excited states. In the case of a SiO2 surface, these
values are

"01
; = 3749cm-1,

£00,° = 2761 cm-1,

= 7326 cm'1,

= 5431 cm-'.
(2.6)

In a number of publications, additional wide bands are
observed near an intense absorption band at O-H(D)
stretching vibrations. References 10 and 11 record the bands
at 3650 and 3850 cm"1 for OH groups in silica samples.
These bands are about 100 cm "' from the central band at
3750 cm -'. Bands were also found at 2690 and 2830 cm "',
which are 70 cm " ' from the central band at 2760 cm ~ ' for
OD groups. The intensity of high-frequency lateral bands
exceeded the intensity of low-frequency bands. These high-
frequency components were also observed in Ref. 12 with
analysis of their perturbation by various factors: adsorption
of CO and immersion of the sample in liquid oxygen and
nitrogen. It was found that these perturbations decrease the
frequency of stretching vibrations by tens of cm " ', but in-
creased the gap between the high-frequency and central
bands by a factor of 1.5-3.5. There was virtually no shift in
the band at 38.50 cm ' in the unperturbed sample when the

3780 3760 3740 3720 3700 ta, cm~

FIG. 1. Temperature and relaxation changes in the infrared absorption
spectrum of OH groups on a dehydrogenated surface of highly dispersed
silica after 50 hours in vacuum (10 ~ ' mm Hg). 1. 780 °C; 2. 720 °C; 3.
470 °C; 4. 360 °C; 5. 140 °C; 6. 25 °C; 7. 20 °C.

temperature was dropped to 77 K. When cooled by liquid
helium, cuvettes with a SiO2 sample in a mixture of helium
and hydrogen shifted by 30 cm -' toward the high frequen-
cies.12 In the case of adsorption of water at the low-frequen-
cy shoulder of the 3750 cm "' band, an additional small peak
was observed45'46 at 3740 cm"'.

In virtually all observed spectra, the 3750 cm "' band is
asymmetrical. The asymmetry increases as the temperature
at which the spectrum is taken decreases. The band appears
in the slope of the low-frequency shoulder (see, for example,
the spectra in Ref. 9 or in Fig. 1). In Refs. 47-49 the shape of
this band is described well by artificial separation of the band
into three component Lorentzian lines.

The infrared absorption spectra of highly dispersed sili-
ca with surface OH groups contain a set of peaks in the long-
wavelength region at 100-300 cm"1 (Fig. 2). In Ref. 50 a
peak was observed at 150 cm -'. In the spectra of inelastic
scattering of neutrons on silica gels bands with centers at
300, 200, and 80 cm "' were also observed.51

200 mo co, cm~

FIG. 2. Long-wavelength infrared absorption spectrum of dehydroge-
nated highly dispersed silica relative to the tangential background (tem-
perature 20 °C, vacuum 10 ~ ] mm Hg).
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The distribution of OH groups on the surface of SiO2 is
determined by the fact that they may bond only with every
other surface atom of silicon, which are separated by 5 A and
form a likeness of a two-dimensional triangular lattice.5"4

If every other surface atom of Si does not contain an OH
group, the average distance between successive ones will ex-
ceed 5 A. Thus, according to data in Ref. 53, the average
distance between OH groups is 6-7 A, which corresponds to
the following probability C of filling of a surface atom of
silicon: C= 0.5-0.7. Here we digress from the possibility
(discussed in Ref. 55) of the existence of double OH groups
on one atom of silicon, with distances between groups of less
than 3 A. The dipole moment of an OH group on a SiO2

surface was estimated56 to be 2.5 D.
The infrared absorption spectra in the region of the

stretching vibration frequencies of OH and OD groups on an
A12O3 surface exhibit a set of spectral lines: 3700, 3733,
3744, 3780, and 3800 cm -' for OH groups, and 2733, 2759,
and 2803 cm"' for OD groups.57 Information about addi-
tional spectral lines observed in these frequency ranges, and
their interpretation based on the dependences of the frequen-
cies of O-H(D) stretching vibrations on different coordina-
tion of aluminum and oxygen atoms is found in the review of
Ref. 58.

In addition to infrared spectroscopy data, dielectric and
calorimetric studies are also promising in the study of orien-
tational phase transitions in two-dimensional dipole sys-
tems. A survey of the dielectric properties of noncentral ions
in KCl:Li, NaBr:F, KC1.-OH, and RbChOH systems
showed2 that the volume concentration of these ions,
~ 3 • 1018 cm ~3, is completely sufficient to obtain a tempera-
ture dependence of excess permittivity. The use of a double
calorimeter to measure the heat capacity of O2 molecules
adsorbed on a graphite surface59'60 makes it possible to ana-
lyze a system of 1021 molecules with a heat capacity resolu-
tion of up to 10 ~2 J/K. The volume concentration of surface
OH groups in samples of highly dispersed silica reaches 1020

cm ~3, so dielectric and calorimetric studies of these systems
should not present special difficulties.

3. STRUCTURE OF VIBRATIONAL AND ORIENTATIONAL
STATES OF AN ADSORBED DIATOMIC MOLECULE

Theoretical description of the vibrational and orienta-
tional states of adsorbed molecules, independent of the na-
ture of the adsorption bond (physical adsorption with ener-
gies less than 0.5 eV, chemical adsorption or the strong
chemical bonds of structural groups of surface atoms) in one
form or another operate according to a general Hamiltonian
system:19

H = n.Ph #:.. (3.1)

in which H0 are the nuclear degrees of freedom of the ad-
sorbed molecule, Hph are the vibrations of the substrate
atoms, and //int is the interaction of the molecule with phon-
ons or the stationary force field of the substrate. The explicit
form of the Hamiltonian H0 depends on the type of adsorp-
tion bond. For the case of physical adsorption, one can use a
Hamiltonian of a gas phase molecule for H0. The quantity
Hint can be used to describe the perturbations introduced in
adsorption. For example, in Ref. 61, H0 included the rota-
tional degrees of freedom of a diatomic molecule, and Hint

formed the potentials outside and inside the planar hindered
rotations arising in physical adsorption. The energy spec-
trum of hindered rotation which was obtained was used for
numerical calculations of heat capacity, and the calculations
agreed with calorimetric studies.62

For chemosorbed molecules or structural groups of sur-
face atoms, the Hamiltonian H0 should include the effective
force field of substrate atoms fixed in equilibrium condi-
tions. The quantity //int should include interaction with cor-
responding shifts. Let us examine the structure of the vibra-
tional and orientational states of an OH group strongly
bound by an oxygen atom to a surface atom, forming an
oxide.19 The equilibrium positions of the hydrogen atom are
defined by the radial distance r0 ~ 1 A relative to the oxygen
atom, by the polar angle 60 ̂ 90° reckoned from the normal
to the surface, and by several values of the azimuthal angle
<Pj = <Po + (lirj/n), where7= !,...,«, « is the number of
symmetrically arranged neighboring atoms of oxygen in the
substrate. Rather rigid fixing of a hydrogen atom relative to
variables r and 6 is combined with hindered rotation in the
plane of the surface, which is described by variable <p. Due to
the small mass mH of the hydrogen atom, its movement pa-
rameters differ greatly from the characteristics of other
atoms in the system. A one-particle Hamiltonian H0 in a
harmonic approximation of stretching and deformational vi-
brations acquires the form17'19

"0 = - ̂  + \kr(r - 'o>2 + lV« ~ *o)2 + <%>)• (3.2)

where A is the Laplace operator, m = mHm0/(mH + m0)
is the reduced mass of the OH system, and kr and ke are the
corresponding force constants,

Vo)l} (3.3)

is the nth potential well of hindered rotation with a reorienta-
tional energy barrier A £7^.

The energy levels of the system in the examined approx-
imation are equidistant sets with gaps ha>r, ha>0, where
cor = (fcr/m)1/2, cog = (ke/I)

in are the frequencies of the
stretching and deformational vibrations (/ = mr^ is the mo-
ment of inertia) and the spectrum of hindered rotation Efa

the characteristic form of which is shown in Fig. 3 and is
defined by the value of the reduced barrier p = LU<f/
h(ov = (2I^Ur)

l/2/nh.Atp^ I, the levels of hindered rota-
tion can be classified by a quantum number/= 0, 1,...,
which at the limit p > 1 describes the levels of the harmonic

-P 6
1 0 -

r ?(-;)-

a K-D-
oo-

Aw,

FIG. 3. Schematic of the position of low energy levels of the hindered-
rotation spectrum and allowed dipole transitions (additional transitions
with regard to the case n = 2 value of a = — 1 and the transition marked
by a dashed arrow arises at n = 3).
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oscillator ef = ho}f (f+ 1/2) with a frequency of torsional
vibrations a>v = n(AJ7^/2/)' /2 and an integral translation
quantum number a with a main region of n values:
— w/2 <cr<«/2. The lowest energy levels are split into the

value

(3.4)
1, n - even ,
3/4, n = 3,

while the frequency of transition from the group of levels
/= 0 to/= 1 is approximately equal to

'10' (3.5)

In the opposite limit case (/><!) we have the spectrum of a
planar free rotator ea = h 2a2/2I, a = 0, + 1,...

The shape of the infrared absorption spectral lines is
determined by the frequency dependence of the imaginary
part of the system polarizability tensor, which is expressed
by a commutator of Cartesian components of dipole moment
operators averaged over a Gibbs distribution at diiferent
times. The vector of the dipole moment jl of an isolated sur-
face OH group can be written as the product of the eifective
charge q and radius vector r from oxygen atom to hydrogen
atom. Then, all spectral characteristics of the isolated OH
group will define a retarded Green's function63

a,p — x, y, z, (3.6)

where 6( t) is a theta function equal to 1 at /> 0 and 0 at t > 0.
Expanding the vector r in terms of the stretching Ar and
deformation A<9 shifts we obtain:

r = A')<> - ('o (3.7)

where kz = (0,0,1) and e^ = (cosip,sm<p,0) is the unit vec-
tor of the orientation of an OH group in the surface plane.
The desired Green's function can be expressed by the
Green's function of the stretching deformational, and hin-
dered-rotation states, which are defined analogous to Eq.
(3.6) with substitutions of r for Ar, A#, and ef. As a result,
the spectral lines of deformational and composite stretching-
deformational vibrations at cor > o)e will be proportional to

Im g"(oj) =

1 -e-to/71

x [ 6(u> — o> — i

r

-tuojT
d(o> — i

(3.8)

where <yrot =h/(2I) is the quantum frequency of free rota-
tion. Here and below, with the exception of numerical esti-
mates, the temperature T will be measured in energy units.

The long-wavelength infrared absorption spectrum is
proportional to the imaginary part of the Green's function of
hindered rotation:

fofo'

£L' n • + «V)ls
(3.9)

a, /? = x, y, <afa,Ja = (efa, - efa)/R,

fo

The approximate expression in Eq. (3.9) describes the most
intense bands with frequencies A«0 and a>m ^co^ (see Fig.
3), which also appear in the region of valency vibrational
frequencies:

Im

cu J-^j.,, -to/rw. -fo /T.wf (1 - e ' )(1 - e f )

x [<5(co — u>r — co ) + e f d(<a — tor -

' = x, y. (3.10)

The unit vectors e and ex inEqs. (3.9) and (3.10) are orient-
ed in the surface plane along and transverse to the equilibri-
um O-H bond.

Equations (3.8)-(3.10) define the general structure of
the bands of infrared absorption of a surface OH group.
Sinceur -3750> ae ~ 1000> a>v ~200> wrot ~20cm~', at
room temperatures hat^ ~ T. In addition to the main bands
at frequencies a>r, coe, and co^, one should also observe less
intense bands at composite frequencies ar + a>g and
cor + 0)^, which were recorded12 for OH(D) groups on the
surface of SiO2 and at frequency10'1' cor — ta^ with an inten-
sity which depends strongly on temperature.

Using the unapproximated expression in Eq. (3.9) for
the spectrum of hindered rotation, one can verify that the
band at frequency cor has a fine structure of spectral lines
shifted by the tunnel splitting value A£O//J (see Eq. (3.4)).
Resolution of this fine structure depends on the width of the
corresponding spectral lines. The same is true of the compos-
ite frequencies cor ± cav due to the set of dipole transitions
grouped in the spectrum of hindered rotation near frequency
<V

The first calculations of the hindered-rotation spec-
trum for OH groups on the surface of SiO2 were done in Ref.
13. Table I indicates the values of the frequencies of allowed
transitions between low levels shown in Fig. 3 for various
values of the reorientation barriers of OH and OD groups for
n = 2 and 3. Asterisks mark barrier values for A12O3 and
SiO2 substrates, for which the following observed transition
frequencies were obtained: 3700, 3733, 3744, 3780, and 3800
cm -' for OH groups, and 2733, 2759, and 2803 cm ~ ' for
OD groups on a surface of A12O3 (n = 2). The quantum-
chemical calculation of the barrier65 also coincides:
At/p = 54.7 meV for a SiO2 (n = 3) surface. There is also a
correspondence with the rotational activation energy
Af^-AC/p - (A^/2)~39 meV found in Ref. 9. The
quantity At^ ~ 54.7 meV corresponds to the frequency of
torsional vibrations <a? ;208 cm-1, «°D

01=;] cm"
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TABLE I. Values of the reorientation energy barriers A£/v and corresponding frequencies <u,0,
A<u0, A<a, of allowed dipole transitions (see Fig. 3) for OH and OD groups in two-well (n = 2)
and three-well (n = 3) azimuthal potentials (Eq. (3.3)) for 7OH = 1.48-lO'40 g-cm2,
7OD =2.80-10-"°g-cm2 (Refs. 13, 19,64) (p = (2/OH(D)A£/ )'/2/nA is the reduced barrier).

P

n-2:
0

0,707
1,118
1,541
2,236
n-3:

0
0,745
1,246
1,610
2,210

OH groups

AC/,.
meV

0
4,70

11,75'
22,4
47,0

0
11.7
32,8
54,7'
103,2

<t>tt<
cm-'

18,9
30,0
51,1
83,6
145

75,6
88,9

146
210
324

A«V
cm-1

18,9
11,2
4,99
1,96
0,19

18,9
14,9
5,9
2,2

0,34

Aa>t,
cm-'

56,7
46,7
34,9
21,2
4,56

94,5

—
—

32,9
—

OD groupsAtv-
meV

0
2,48
6,21

11,78'
24,8

0
6,2
17,3
28,9
54,6'

<°»
cm"'

10,0
15,9
27,0
44,2
76,5

40,0
47,0
77,3

111
171

A«.0,
cm-'

10,0
5,92
2,64
1,04
0,10

10,0
7,9
3,1
1,2

0,18

A*,,
cm''

30,0
24,7
18,4
11,2
2,41

50,0

—
—
—
4,4

while the experimental values11'12 are approximately equal
to 100 and 75 cm~'. This divergence is removed when one
considers the shift in frequencies due to dipole-dipole inter-
action66 (see section 5).

One should also consider the fact that the frequencies
(Oy of torsional vibrations of surface OH(D) groups fall in
an area of the continuous spectrum of acoustic vibrations of
substrate atoms. Thus, these torsional vibrations are quasi-
local, and the corresponding unit-normalized spectral func-
tion of the square of the frequency has a nonzero width even
in the harmonic approximation:19

S(a,2)

(3.11)

here M is the effective mass of an elementary cell of a crystal
containing an extrinsic group with reduced mass m, and
ps(co2) is the distribution function of the squares of frequen-
cies (density of states) of substrate phonons. The function
Ps(co2) is expressed throughps(ca2) in the following way:

(3.12)a.2-w2 '

In the Debye approximation

<WD + co
- 1

(3.13)

at cdy <£>D (<OD is the Debye frequency) we obtain the fol-
lowing asymptotic behavior for the maximum and half-
width of the spectral line of quasi-local vibrations:19

3n
4 'Dl V

(3.14)

that is, the spectral line has a small half-width and is near co^.
In the region of frequencies 0.2 < «/&>D < 1 the function

P(ct)2), in silicon, for example, undergoes a number of sharp
breaks with a rather large amplitude of the change in the
function, due to which several quasi-local vibration frequen-
cies may arise.67 An analogous situation may also be real-
ized for a real spectrum of surface vibrations in the area of
frequencies near the Debye frequency, which explains the set
of easily distinguished peaks in Fig. 2 in the 200-300 cm ~ l

region.
A homogeneous broadening of high-frequency spectral

lines of stretching vibrations of isolated OH(D) groups may
be associated with the anharmonic decay of the high-fre-
quency excitation of 5-7 low-frequency substrate phon-
ons;68 however, the calculated broadening is extremely
small and may not be observed. Another broadening mecha-
nism is associated with a stochastic process of reorientation
of OH(D) groups, which is examined with different levels of
rigor in Refs. 14, 17,43, and 69. We present the most rigor-
ous result of Ref. 69, in which it is shown that d'Alambert
inertial forces due to phonon bursts of the substrate have the
primary effect on reorientation. The desired rate of reorien-
tation is defined by the expression

.,4nva.
(3.15)

where for OH groups on a SiO 2 surface, w=:1.67-10 gis
the mass of a reorienting atom, <y^~3.77-1013 s"1 (200
cm"!) is the frequency of torsional vibrations, p=± 2.2 g/cm3

is the density of substrate material, c=;5.6-105 cm/s is the
average speed of sound. Identification of the probability of
transition into the first excited state of torsional vibrations
with the rate of reorientations, which is actually represented
by Eq. (3.15), is explained by the fact that for a given system
ha>v ~ A Uv and the examined transition is accompanied by
reorientations.
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In the region of room temperatures, w(T)
<xexp( — hcOy/T), which agrees with the experimental
equations (2.2) and (2.4). At T ^>hcolf,/kB -288 K
w( T) ~ 10 ~ 2 cm ~ ' T, and we obtain the experimental equa-
tion (2.5). For the values of parameters taken in Eq. (3.15)
and for T= 300 K we obtain the theoretical value
w ̂  4.4 • 101J s ~ 1 (2.3 cm ~ l ) , which agrees well in order of
magnitude with the experimental value 2A<a,/:2 =3.0 + 0.4
cm"'.

In the region of low temperatures (kB T~ Ae0 ^hco^,)
reorientation becomes a quantum (wave) process in which
the main role is played by transitions between low tunnel-
split levels in the phonon field of the substrate (tunnel relax-
ation in a phonon field70 ). In Ref. 19 it is shown that for the
systems examined here one-phonon relaxation is realized at
T<T*~30 K, and two-phonon relaxation at
r*<r<r**~170K, whiie at T> T** the thermoactiva-
tion mechanism begins to dominate (Eq. (3.15)). Broaden-
ing of spectral lines of surface OH groups due to tunnel re-
laxation ( ~ 1 0 7 cm~ ' at T=T*) is many orders of
magnitude less than A£O//J, and this broadening mechanism
is negligibly small compared to inhomogeneous broadening
by static electric fields in disordered systems of dipoles (see
Sec. 5).

Let us now focus on the fact that the reorientation
mechanism of broadening, which is due to the relation be-
tween vibrational and orientational variables in the dipole
moment operator, is not accompanied by out-of-phase va-
lency vibration, which is examined in Refs. 29, 39-42. Thus,
Eq. (3.15) can be written in the following form for the full
width of the spectral line: w = rjn(colf,), 77 = 2A<w1/2 (A<y1/2

is given by Eq. (3.14) and n(ct)lf,) is a temperature-depen-
dent factor of Bose-Einstein statistics which enters into Eq.
(3.15)). This diifers from the result of the out-of-phase
model w = 2(8(o)2n(a}/f) + l)rj~ ' which holds true29 for
77 > Sco, where 5co is the coefficient of an anharmonic fourth
order connection between valency and torsional vibrations.
It is interesting that the estimates of parameters presented in
Ref. 39 So} ~ 1 cm ~ ', rj ~ 30 cm ~ ' for CO groups in a scaf-
fold position on a N i ( l l l ) surface cannot satisfy the ob-
served broadening w~ 10 cm ' of the spectral lines of CO
vibrations, which are described well by approximately the
same values dco ~ r/ ~ 30 cm ~ ~ ' with cov — 220 cm ~ ' (Refs.
39-41). At Sa — rj the reduced result of the out-of-phase
model (which holds true only for rj^Sco), which is accurate
except for the cofactor n(a)<p) + 1 — 1, goes over into Eq.
(3.15) for a reorientational broadening mechanism. If we
consider that the experimental points in the temperature re-
gion 100-300 K can be described by factors «(&>,,) and
n(a>q,)(n(a>p) + 1) with equal success, then the broadening
of bands of CO and SiH stretching vibrations observed in
Refs. 39-42 are apparently exactly the same as for OH vibra-
tions9'17'43 associated with the reorientations of the studied
objects. This mechanism is characterized by only one pa-
rameter, rj, and the estimates of this parameter agree well
with experimental data.

The out-of-phase broadening mechanism becomes
dominant when the coefficient of anharmonicity 8u> substan-
tially exceeds the energy exchange rj of low-frequency modes
of the object with thermostat phonons. This situation is real-
ized for various complexes with hydrogen bonds in which

the high-frequency (cor) oscillation is anharmonically
linked with several degenerate (with multiplicity / — 4 ) li-
brational modes of the low frequency a>v. As a result, one
observes a strong one-sided temperature broadening in
which the one-sided shift in the maximum of the band is
proportional to its width, and at sufficiently high tempera-
tures (T>ha)ip), the shift increases linearly with tempera-
ture.31'33 The shape of the one-sided broadened band of a
complex with a hydrogen bond is described by the following
spectral function:30

(3.16)

Equation (3.16), in addition to the linear law for the in-
crease of the width of the band with temperature and a shift
in its maximum of the order of 100 cm ], gives yet another
coefficient of proportionality between them. The coefficient
was found experimentally in Refs. 31 and 32, and is equal to
1.4 at / = 4. When the energy exchange rj increases, the band
constricts. This agrees with the results of a phenomenologi-
cal model of random frequency modulation.71'72

The potential of OH(D) stretching vibrations is ap-
proximated well by the model of a Morse oscillator44 mak-
ing it possible to link the force constant kr and the coeffi-
cients of anharmonicity ar,(ir in the expansion

U(r) = U(r0) + \kr(r - rQ)2 - ^r(r - rQ)3 + ̂ r(r - rQ)4

(3.17)

with the experimentally measured transition frequen-
cies34'73 (Eq. (2.6)):

-co02)2a858N/m,

! = 2,83-1013

-<u02) = 4,84-1023N/m3,
(3.18)

Due to the cubic anharmonicity of ar, the frequency of vi-
brations is dependent on the external electric field E applied
to an oscillator with a static dipole moment fi (Stark vibra-
tion effect74):

£r= [1 - (artrE/r0fy]a>r. (3.19)

If the dipole oscillator has a reorientation degree of freedom,
the orientation of fi along vector E is energetically favorable
in a perturbing electric field E. The average value of the
cosine of angle tp between vectors ju and E, considering the
interaction with the substrate thermostat, yields the equa-
tion14

cos f> = /, (z)//0(z), z = juE/T, (3.20)

where /„ (z) and I{ (z) are Bessel functions of imaginary ar-
gument of the first type. The quantity cos cp in Eq. (3.20) is
positive; thus, the perturbation of a reorienting group de-
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creases (according to Eq. (3.19)) the frequency of stretch-
ing vibrations.

On the other hand, the same perturbation should in-
crease the frequency of torsional vibration

«V-[«* + &«£/7)]1/2. (3.21)

These ideas, which were presented in Ref. 73, explained the
patterns observed in Ref. 12 in the shifts of infrared absorp-
tion bands of OH(D) groups on a SiO2 surface for various
perturbations. We note that according to the results of Ref.
64, these very perturbations greatly distort the lateral spec-
tral lines at frequencies cor + A£0//7 and may lead to a lack
of spectral resolution of the fine structure of the band at u>r.

To interpret the linear temperature dependences (Eqs.
(2.1) and (2.3)) of the frequencies of OH(D) stretching
vibrations, Refs. 34 and 35 examined a model of a diatomic
anharmonic oscillator (with the potential of Eq. (3.17) and
atomic masses m, and m2) bound to the substrate with po-
tentials Ui and U2 (Fig. 4). In the limit case t/,, U2 <^U,
(oD<£cor, and at T^,hca0, the relation co,(T) is linear and
determined by the parameters in Eq. (3.18), by the masses
m [ and m2, and by the ratio of the binding energies of the
two atoms with the substrate x=U2/Ul. The relation con-
tains an average over the inverse squares of the frequencies
(«v~2(q)} of the phonon spectrum of the substrate:

do>r

~df
= 9(V«1)

8l/(rQ)

1/2

/M,
(3.22)

«3.

Numerical estimation of parameter y corresponds to the
Debye approximation for acoustic vibrations of a crystal.

In Eq. (3.22) there are two contributions which are
proportional to xe ~1/2 and £3/2. The first is associated with
the direct effect of substrate phonons on atom m2, and thus
decreases as m2 increases. At £ 4,1 and x ~ 1, the first contri-
bution is dominant. The second contribution arises due to
the d'Alambert force of inertia acting on atom m2 in the
noninertial reference frame of atom mt, which is subjected
to phonon bursts.69 It increases as m2 increases, due to a
corresponding increase in the d'Alabmert force. This leads
to an intensification of the indirect effect of phonons on m2.
For an OH(D) system bound to the substrate through an
oxygen atom, x~Q.Q\ ̂  1 ((7, ~ 5 eV is the binding energy
of atoms in a solid, U2 ~0.1 eV is the van der Waals interac-
tion) and the contributions XE ~1/2 and £3/2 are almost iden-
tical, which yields a weak dependence on £ in experimental
values of dear/dT (Eqs. (2.1) and (2.3) at e = 1/16 and
1/8.

When one considers the quantities in Eq. (3.18), the

o
\U,
I

-O
I

to
I

FIG. 4. Model of a diatomic oscillator coupled to a substrate.
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dimensional cofactor in Eq. (3.22) is found to be equal to
— 0.0166 cm ~ 1K~ \ The two unknown parameters 7and K

may now be found from experimental data in Eqs. (2.1) and
(2.3) at £=1/16 and 1/8: 7 = 4.3 ±0.2,
x = 0.013 +_ 0.002, which agrees well with the order esti-
mates. At £ = 3/16, which corresponds to a "heavy" hy-
droxyl group with tritium, we obtain the predicted esti-
mate:34'35 Acor/AT= - (2.2 + 0.3)- IQ-'cm-'K-1.

Reference 75 examined the lifting of degeracy of energy
levels of two-dimensional deformation vibrations of the oxy-
gen atom of a surface OH group. The degeneracy is caused
by the force field of the substrate. Reference 75 also exam-
ined the interaction of the degeneracy with split tunnel levels
(Eq. (3.4)) of hindered rotation of the hydrogen atom. The
results were used to interpret the observed temperature man-
ifestation of the fine structure of infrared absorption spectral
lines of highly dispersed silica at 900-1000 cm"'.

The theoretical ideas about the vibrational and orienta-
tional states of an isolated surface OH (D) group presented
in this section provide a completely satisfactory description
of the available data of infrared spectroscopy. Nonetheless,
because the average distance between neighboring OH
groups on a SiO2 surface is 6-7 A, the energy of their dipole
interaction V = /i2/a3 ~ 10 meV is of about the same order as
the reorientation barrier At/,, or the energy kBT at room
temperatures, and a consideration of dipole interaction in
these systems is necessary even from general considerations.'

4. ORIENTATIONAL ORDERING IN TWO-DIMENSIONAL
DIPOLE SYSTEMS

The most studied systems in the theory of phase transi-
tions are systems with short-range interactions, which is due
to the need to describe the ferromagnetics with an exchange
interaction of spins, and with great simplification of the
problem using the nearest-neighbor approximation. A two-
dimensional degenerate system of moments with short-
range Heisenberg interaction has unusual properties. In this
system there is no long-range order;76 however, there is a
transition into a phase with short-range order, called the
Berezinskii-Kosterlitz-Thouless phase77'78 which is char-
acterized by power-law behavior of the moment correlator
due to spin-wave or vortex excitations. The addition of a
weak dipole interaction to the strong ferromagnetic interac-
tion stabilizes the long-range order.79'80

Two-dimensional systems in which long-range dipole
interaction plays a significant role are interesting from var-
ious points of view. First, they differ from two-dimensional
degenerate systems with short-range Heisenberg interaction
in that they have an orientational long-range order for any
two-dimensional Bravais lattices (except a square one) ,36'37

In a disordered system with disordered filling of the lattice
sites by dipoles, a two-dimensional phase of dipole glass
arises.81 Second, anisotropic dipole interaction may lead to
complex configurations of dipole moments in the ground
state at T = 0. These calculations, which are of interest in
and of themselves, have been made using various methods in
Refs. 21, 27, 28, 66, and 82-87. Third, the discussed systems
are part of a rather broad class of objects (dipole radicals
with a rotational degree of freedom on the surface of ox-
ides19 or dipole heads of phosphorolipidous molecules of
biological membranes20 introduced into the interstices of
intercalated compounds.23'24 Vibrational excitations in
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these objects have been experimentally observed and their
characteristics depend on the type of ordering.

The first step in studying the orientation ordering of
two-dimensional dipole systems consists of an analysis of the
ground state. If the orientation of rigid dipoles is described
by two-dimensional unit vectors er lying in the plane of the
lattice, then the ground state corresponds to the minimum of
the system Hamiltonian

r,r'
(4.1)

in which r = «,a, + «2a2 (
n\ >n2 — 0> + !>••• ,^i < f l2) are

the sites of a two-dimensional Bravais lattice, and the tensor
Fa/3(r), in the case of dipole-dipole interaction, is defined by
the equation

-, K = '

(4.2)

(// is the dipole moment). Here and below twice repeated
Greek superscripts a, (3 = x, y of the Cartesian coordinate
axes indicate summation. The total energy and the periodic
structure of the orientations of N dipoles in the ground state
are defined by the equations:38'88

• i-
/=!

(4.3)

y = i , 2 ,

here F, = min F, (k), where F y (k) (with F, (k)<F2 ( k ) )
and J}(k) are the eigenvalues and vectors of the Fourier
components of the tensor of dipole interaction:

quantities is minimal, or (for a lattice with symmetry axes
above the second order) two equal values
F! (b, /2) = F, (b2/2). These considerations show that the
Luttinger-Tisza method is burdened by independent mini-
mization variables, while analysis of the values of the Four-
ier components F, (k) makes it possible to exclude immedi-
ately no less than half of the variables and obtain a result
much more quickly. Degeneracy of the ground^state occurs
either due to coincidence of minimal values of F, (k) at two
boundary points of the first Brillouin zone k = b, /2 and
k = b2 /2, or as a result of the equality Vl (k) = F2 (k) at the
same point k = h/2. The natural consequence of degeneracy
of the ground state is the presence of a Goldstone mode in the
spectrum of orientational vibrations.88

Let us present the characteristics of the ground states of
dipoles (with dipole interaction, Eq. (4.2)) in square, trian-
gular, rectangular, and rhombic lattices. The ground state of
a square dipole lattice was first established by the Luttinger-
Tisza method in Ref. 84, and by minimization of F, (k) in
Refs. 27 and 28. The energy of this state in the calculation for
one dipole is H0 = (1/2) F, (b,/2) = (1/2) F, (b2/2)
= - 2.5495 F, which is about A#0 = 0.291 F lower than

the energy of the ferroelectric state. The corresponding con-
figurations of dipoles have a microvortex structure with a
period 2a and with degeneracy in angle a (Fig. 5a). The
expansion of Fourier components of the tensor of dipole in-
teraction near the minimum point at the boundary of the
first Brillouin zone, when the Cartesian axes Ox and Oy are
respectively chosen along bt and b2 (Fig. 5b), has the form

_ /6.033 0
0 -5,099

-1,333 0
0 1,7

-1,170 0
0 0,145

(4.5)

(4.4)

The "star" of the L wave vectors k, corresponds to the de-
generate (a tL> 1) minimal eigenvalue F, (k , ) .

The unit length of all vectors |, (r) for an arbitrary
anisotropic interaction significantly limits the possible peri-
odic configurations of dipole moments in the ground state,
which, except for multidomain structures, may be only ho-
mogeneous, and also with a double or quadruple period of
the lattice: k, = h/2, h/4, where h = h, b, + h2 b2 is an arbi-
trary vector of the reciprocal lattice38

(a,by = 2Tr6iJ,hl,h2 = 0, + 1,...). For lattice systems with
dipole-dipole interaction the arbitrary minima F, (k) with
k^h/2 are absent and the search for configurations of di-
poles in the ground state is sufficiently limited by values
k = 0, b, /2, b2/2 (b, + b2 )/2. This corresponds to minimi-
zation of Eq. (4.1) with respect to the orientations of er in
four sublattices examined in the two-dimensional analog84

of the Luttinger-Tisza method.82 The quantities F, (k),
generally speaking, cannot be identical to the four listed vec-
tors k = h/2. Only two cases are possible: when one of these

b

E

FIG. 5. Ground state for a square lattice of dipoles. a. Orientations of
dipole moments; b. wave vectors of the structure in the first Brillouin
zone; c. and d. orientations of dipole moments in infinitely small and large
external electric fields, respectively.
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where <? = /ta<l, a = a ,=a 2 , and the expression for
2>ap(k + b2/2) follows from Eq. (4.5) with the substitu-
tions qx-^+qy and xx++yy of matrix components. The eigen-
vectors in Eq. (4.4) and the coefficients Cj, in Eq. (4.3) are
defined as follows:

f2(V2)=l- = (Q, i),

(4.6)

An infinitely small electric field E at an arbitrary angle <pE to
the Ox axis removes the degeneracy of the ground state and
leads to a stratified (with period 2a) structure of dipole ori-
entations along one of the axes of the lattice. This is the
largest angle (that is, in the interval from 45 to 90°) with a
field vector89 (Fig. 5c). In this phase the energy of the
ground state is quadratic in the field. When the following
approximate equation is satisfied

1 — sin <pE

cosVE

AHQ, 0 < <pE s 45°, (4.7)

the system switches to a ferroelectric phase with orientation
of the dipoles along the field (Fig. 5d). The energy of the
ground state decreases linearly as E increases. The metasta-
ble states of this system were studied in Ref. 90. Thus, in
contrast to the usual situation, when the external field
orients the dipole moments along itself (for example, in fer-
roelectrics), in this case the perturbing field causes trans-
verse orientations of dipoles along the axes of the lattice.
Moreover, sufficiently weak fields (E~hH0/fi<^H0/[j.
~atomic fields) may regulate the abrupt change in the
structure of dipole orientations.

The ferroelectric ground state in a triangular lattice
with degeneracy along the angle of inclination of the dipoles
to the axes of the lattice was established in Refs. 27 and 28.
The characteristics of this state are given by the following
equations (see also Ref. 66)

Ho = H<°> = I^(°) = -2,7585V,

D^k) « -£>0 + 0,2633«72, D2(k) « -DQ + (4jt/SZ)q,

(4.8)
—/ .-̂

£>„ = 5,517, f[(0) = (cos a, sin a), T2(0) = (-sin a, cos a),

C — c = l11 — *"»i *»

where q = ka<g. 1. The full dependences Z>y (k) along sym-
metrical directions of the first Brillouin zone for square and
triangular dipole lattices were calculated in Ref. 66 and are
presented in Fig. 6. In an approximation of the circular (ra-
dius qm = 3.733) first Brillouin zone of a triangular lattice,
the following analytical expression was obtained:66

D,(Q, *) = -D0(1 - || ? - |f ?cos 6*) ,

•q — _2_> <j) _ angle q, Ox, (4.9)

24 _ . 108
D2(g, *) = -/>„ [1 - y ?+ if ?0 + f cos 6*)] -
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FIG. 6. Eigenvalues of the Fourier component of the dipole interaction
tensor in two-dimensional infinite lattices. The solid lines are for a trian-
gular lattice, the dashed lines are for an analytical approximation (4.9),
and the dotted lines are for a square lattice.

which correctly reflects the topology of the surface Dj(q)
and is sufficiently accurate in the long-wavelength region
q4,1 (compare the dashed and solid curves in Fig. 6).

Coincidence of minimal values F, (b,/2) = K, (b2/2)
for a square lattice and the satisfaction of the equality
V, (0) = V2 (0) for a triangular lattice leads to degeneracy
of the ground states and the emergence of a Goldstone mode
in the spectrum of orientational dipole vibrations.38'88 If one
of the possible configurations of the ground state is chosen to
be the configuration of dipole orientations along some lattice
axis, then the main contribution to dipole energy is made by
intrachain interactions:

-2V ^ n~3 = -2V£(3) « -2,404V,
n=l

(4.10)

while interchain interactions fall off exponentially as the in-
terchain distance z increases:66

[8x2V/(z/a)1/2 ]exp(-2xz/o)cos(2n&a/a), z>a,

(4.11)

rrint
^0

where a is the distance between chain sites, Aa is the shift in
sites in neighboring chains. For a triangular lattice
z — (v3/2)a, Ao = a/2 and the negative value
//I,1" = — 0.354V indicates the ferroelectric ordering of di-
poles in neighboring chains. For a square lattice z = a,
Aa = 0 we obtain a positive value //gnt = 0.146 F, which
changes sign in antiferroelectric ordering of dipoles in neigh-
boring chains, which corresponds to the ground state.

Two-dimensional Bravais lattices with axes of symme-
try of no greater than second order are characterized by an
undegenerate dipole ground state. In a rectangular lattice
the dipoles are oriented along the chains with the least inter-
site distances a, with antiferroelectric ordering in neighbor-
ing chains. For example, for the rectangular lattice exam-
ined in Ref. 21 with a2 = \f5al, the energy of the ground
state is defined with an accuracy of up to 0.1 % by intrachain
interaction (Eq. (4.10)), because.//;,1" = 10~3F.

The ground states of rhombic lattices with an arbitrary
rhombic angle a were studied using the Luttinger-Tisza
method in Ref. 19. A description of these states using a chain
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FIG. 7. Configurations of dipole moments in a two-di-
mensional rhombic lattice.

distribution of interactions (suchasEqs. (4.10) and (4.11))
was presented in Ref. 19. Figure 7 presents different configu-
rations of dipoles which satisfy conditions of periodicity
with k = h/2. The dependences of the corresponding dipole
energies H0 / V on the rhombic angle a are given in Fig. 8. At
a<60" the ground state is a diagonal ferroelectric phase DF
with orientation of the dipoles along the minor diagonals of
the rhombi (Fig. 7b). The axis line between the phase curves
DF and DAF corresponds to the contribution of intrachain
interactions — g (3)/[4sin3(a/2) ]. Fora triangular lattice
(a = 60°) the values of the energies of phases DF, F, and
DF, coincide, so the parallel orientations of the dipole mo-
ments may form an arbitrary angle with the axes of the lat-
tice. In the range of values 60°<« 5 80° the ground state is
also ferroelectric, but with orientation of the dipole mo-
ments along the major diagonals of the rhombi (phase DFt

in Fig. 7c). Finally, at 80°5a<90° the antiferroelectric
phase AF is favorable in terms of energy (Fig. 7d). Let us
turn our attention to the intersection of curves AFand V, as
well as DF, F, and DF, at point a = 90°, which indicates the
degeneracy of these groups of states for a symmetrical square
lattice.

In the general case of arbitrary two-dimensional Bra-

SBft, degrees

vais lattices (not rectangular and rhombic), the ground
state, depending on the lattice parameters (x0 and.y0 in Fig.
9), is characterized by ferroelectric (0.25 5x0<0.5) or
stratified bisublattice antiferroelectric ordering
(0<x0 50.25). The parallel or antiparallel orientations of
dipoles to each other may form certain angles 6F or 6A with
the Ox axis of the lattice, which is drawn along the chains
with the smallest intersite distances38

(G! <a2< a, — a2 |<|a[ + a 2 1 ) . The energies of these
ground states can also be conveniently calculated in a chain
representation with expressions which are somewhat more
awkward38 than Eqs. (4.10) and (4.11).

Thus, in studies of the properties of dipole systems, the
most fruitful representation is the representation of chain
interactions, which, first, reflects the tendency toward or-
dering of dipole moments along the axes of chains with a
small ratio of interchain interactions to intrachain interac-
tions. Second, this type of representation makes it possible to
use analytical equations with great accuracy. These equa-
tions sum the interaction with all dipoles of the lattice.
Third, there are grounds for the use of the generalized ap-
proximation of an interchain self-consistent field presented
in Refs. 91 and 92 to describe the orientational phase transi-
tions.

Ferroelectric ordering in determinate infinite two-di-
mensional lattices is due to the long-range contribution of
dipole forces. Thus, it is not surprising that in limited two-
dimensional lattices numerical calculations of dipole inter-

FIG. 8. Dependences of the dipole energies of various orientation states
(see Fig. 7) on the rhombic angle a.

FIG. 9. Two-dimensional Bravais lattice with basis vectors a,, a2, and
reciprocal lattice vectors b, , b2. The solid and dashed arrows at angles 0F

and 6A give the ferroelectric (k = 0) and antiferroelectric (k = b,/2)
configurations of dipoles in the ground state.
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actions lead to the replacement of ferroelectric states with
macrovortex states85 that are approximated to ferroelectric
states far from the center of the limited lattice (coinciding
with the center of the macrovortex).

Analysis of the ground states of two-dimensional dipole
systems might be a purely methodological problem with no
practical value if the thermodynamic fluctuations which
arise at infinitely small (but nonzero) temperatures could
disrupt the orientational ordering. This situation arises, for
example, in a one-dimensional Ising model93 with the inter-
action V(r) <x r~3. Proof of the stability of the ground state
and the existence of long-range order at low temperatures in
two-dimensional systems with dipole interaction and arbi-
trary (degenerate) dipole orientations in the plane of the
lattice was presented in Refs. 36 and 37.

Let us decompose the unit vectors of dipole orientation
er along the vectors f, (r) and |2 (r) of tne ground state,
which are denned by Eq. (4.3)

er = £J(r)cos <ft + f2(r)sin <pr. (4.12)

Then the angles <pr can be seen as fluctuations with respect to
the ground state. At low temperatures, cp, are small, and in a
Gaussian approximation of long-wavelength fluctuations of
the angular Fourier components ^(k), the Hamiltonian of
(Eq. (4.1)) is equal to

(4.13)

where

'00 = 2 C2/^(k + h//2)|2«(h//2)|/(h/2) - V,.
I

In this approximation the parameter of long-range order 77
acquires the form

., T ̂  1
7

2 = lim(cos(y>r+r-vpr)): '/(k)) (4.15)

and the presence of long-range order (77/0) depends on the
convergence of sums over k of / ~~' (k).

Anisotropic dipole interaction in two-dimensional lat-
tices with a symmetry axis of order no greater than two leads
to the fact that the function /(k) does not go to zero at any k.
Actually, in this case in Eq. (4.14) 1=1,
F2(h1/2)>F1(h, /2) and

~ (k + h,/2)sin2ak + V2(k + h,/2)cos2ak - K,(h,/2),

(4.16)

'00'

where ak is the angle between the vectors |2 (k + h, /2) and
|2(h,/2). A t _ k = 0, a k = 0 and
j(0) = F2(h,/2)- F,(h,/2)>0. At k^O, due to the in-
equality F2(k + h1/2)>F1(k + h1/2)>F1(h,/2), we
also have/(k) > 0. Thus, at the sites of the examined lattices
the dipole interaction forms local potentials (proportional
to (l/2)/min<p I at small <pT), which stabilize the long-range
order. One cannot examine the thermodynamics of the
transfer of orientations of dipoles at large angles between the
local equilibrium positions which are formed, because from
the limit case of an exactly solved two-dimensional Ising
model with short-range action there should also be long-
range order.

If a ferroelectric ground state is realized in a two-di-
mensional lattice with a symmetry axis of order higher than

two (which occurs in a triangular dipole lattice) the long-
wavelength asymptotic behavior of the tensor Fa^(k) can be
written in the form (see Eq. (4.8))

«*~2. (4.17)

(4.18)

and, according to Eq. (4.14)

/(k) = K,(*) - F, + <?2(*) - K,(*))(kf2(0))2*-2.

In the approximation of a circular Brillouin zone the desired
sum over k in Eq. (4.15), after integration with respect to
the angle between k and |2 (0), acquires the form36

- *-
JLy _L__^0 f kdk
N % /(k) * 2* J {[vi(k) - yt }[v2(k) - K, ]J"2

(4.19)

(S0 is the area of the elementary cell). An analogous integral
arose in Ref. 19 for the correlator component transverse to
an external electric field E

kdk
}-V, V2(k)- V,]

(4.20)

For isotropic short-range interactions F, (£) = F2 (k)
~ F, +yk2, and Eq. (4.20) switches to the well-known
equation94

r*m' j > « | •
Jo

kdk (4.21)

proving the absence of long-range order in a two-dimension-
al system with short-range Heisenberg interaction76 (since
only as ij -»0 can one eliminate the divergence which arises
as E->0 of the integral in (ip J), which is bounded by defini-
tion). For £->0, and rj^Q the integral in Eq. (4.20) coin-
cides with Eq. (4.19), and its convergence signifies the pres-
ence of long-range order.

For a triangular dipole lattice the long-wavelength
asymptotic behavior of F, (k) and F2 (k) is defined by Eq.
(4.8). The presence of a linear dependence of F2 (k) after
substitution of Eq. (4.8) intoEq. (4.19) leads to the fact that
the denominator of the integrand is proportional to k3/2, the
integral converges, and the ferroelectric ground state is sta-
ble36'37 (r/^O).

In the case of a square dipole lattice, one must substitute
Eqs. (4.5) and (4.6) into the general equation (4.14):

'00
= K[l,786(92;sin2a + ?2cos2a) + 0,145(02cos2a + 02sin2a)].

(4.22)
The asymptotic behavior of/(k) in the case of a square lat-
tice leads to a logarithmic divergence of the exponent in Eq.
(4.15). Thus, there is no long-range order in this system
(rj = 0), and the correlator <cos(«pr] + r — <p^)} depends on
a power of r, and at a = ir/4 (see Fig. 5a) the decrease in the
correlations of angles is least. The power-law decrease in the
correlator is characteristic for a phase with a short-range
order of the Berezinskii-Kosterlitz-Thouless type,77'78

which should also be realized in a square lattice with degen-
erate dipole orientations.36'37

Ferromagnetic ordering of two-dimensional systems
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with dipole-dipole and exchange interactions in the approxi-
mation of a spherical model was examined in Ref. 95. The
main simplifying assumption of the spherical model is the
replacement of the condition er | = 1 on the orientation vec-
tors with the weaker condition 2reJ = N, which leads to
incorrect conclusions about the absence of long-range order
in two-dimensional dipole systems with a continuously de-
generate ferromagnetic ground state (which is indicated in
Ref. 37).

Based on an examination of the partition function in-
volving the dipole orientations in the functional of electric
fields, which takes into account only the long-wavelength
asymptotic behavior kake/k

2 of the dipole interaction ten-
sor in a triangular lattice, and which corresponds to a contin-
uous approximation, Ref. 96 erroneously concluded that
long-range order was absent in arbitrary two-dimensional
dipole systems. First, the latter are characterized by another
long-wavelength asymptotic expression of the type of
kakp/k, and second, the ground state in these systems can
correspond to wave vectors k at the boundary of the first
Brillouin zone, and in spite of all the elegance of the formal-
ism of field functionals for dipole systems one cannot get
around the discrete nature of the lattice.37

The presence of local potentials such as hindered-rota-
tion potentials (Eq. (3.3)) in addition to dipole interactions
of (Eq. (4.1)) immediately stabilizes long-range or-
der.19'36'37 The limiting case of two or four discrete orienta-
tions of dipoles in the plane of the lattice, with a considera-
tion of only nearest-neighbor dipole interactions, makes it
possible to reduce the problem of calculating the statistical
sum to an exactly solvable two-dimensional Ising mod-
el.26'27 For example, for a square lattice with two allowed
orientations of dipoles along some axis of the lattice, or four
orientations along the bisector of angles between the axes
(a = 0 and Tr/4 in Fig. 5a), the transition temperatures will
be respectively Tc = 3.282 or 1.641F (the difference of a
factor of two in these values reflects the transition from a
one-dimensional to a two-dimensional orientation space).

The description of phase transitions in a two-dimen-
sional dipole system with exact accounting of long-range di-
pole interaction and the arbitrary barriers A Uv of local po-
tentials (Eq. (3.3)) was presented in Refs. 27 and 28 in an
approximation of a self-consistent field. The characteristics
of these transitions were found to be dependent on At/v and
the number n of local potential wells. At n = 2, Tc varies
from | K, |/2 to |F, | as At/^ increases from 0 to oo. At n = 3
the transition to the ferroelectric phase is a type I transition
(in contrast to all other cases with type II transitions). The
heat q and temperature Tc of the transition vary in the fol-
lowing ranges: q = 0 to F, |/8, Tc = ((Fj/2) to (3JFJ/8
In 2) as At/ varies from 0 to oo. For n>4 and for arbitrary

^-—AC/p Tc = | F, |/2, however, the dependence on &.Uf is still
preserved in the coefficient in front of r/4 of the Landau ex-
pansion when n = 4.

It is well known that the self-consistent field approxi-
mation overestimates the transition temperatures. Refer-
ences 36 and 37 obtained estimates of the lower limit of Tc

for a triangular dipole lattice with degenerate orientations
(AC/p =0): Tc >0.693F, which is about a factor of four less
than the estimate of the self-consistent field approximation,
Tc = 2.7585 F. The lower phase transition temperatures in

two-dimensional dipole systems may be explained using a
chain representation of interactions (Eqs. (4.10) and
(4.11)). The strong intrachain dipole interaction cannot in-
sure long-range order in an isolated chain, so low phase tran-
sition temperatures are caused by the small value of inter-
chain interactions. Good estimates of transition
temperatures Tc which consider the small value of inter-
chain interactions may be obtained using a generalized ap-
proximation of an interchain self-consistent field91'92 in
which an exact solution of a one-dimensional Ising model
with short-range action H^ = — 2F is used. The quantity
Tc is a factor of two smaller for two-dimensional dipoles
than for one-dimensional dipoles, so according to Refs. 91
and 92

„ 2F
(4.23)

Substituting herein values of H'™ we obtain really low values
T^ssl.lS and 0.76F for triangular and square lattices re-
spectively.37 Reference 87 uses the Monte Carlo method to
establish the phase transition temperature Tc sO.75 F for a
square dipole lattice. In the rectangular dipole lattice exam-
ined in Ref. 21 with a2 = V33a^ the phase transition, accord-
ing to Eqs. (4.11) and (4.23) occurs at TC~0.26F. For the
values of parameters /j, = 25 D, al = 5 A taken in Ref. 21, we
obtain the estimate Tc ~94 K. The asymptotic behavior of
Tc in lattices with large interchain distances (z>a) directly
follows37 from Eqs. (4.11) and (4.23):

T «-J

c n . (4.24)

A full accounting of intrachain interactions, including the
contribution of neighbors which are not the nearest neigh-
bors in chains, and interchain interactions, is included in the
self-consistent field, and leads to an increase in the transition
temperatures in Eqs. (4.23) and (4.24) by a factor38 of
f (2) = 1.645.

Let us turn now to a description of orientational states
in spatially-disordered two-dimensional systems of dipoles,
that may occupy sites of a triangular lattice of adsorption
centers with a probability c. The T-c phase diagram for
orientational states was examined in Ref. 81 in a simple self-
consistent field approximation, and is presented in Fig. 10.
To construct it, the thermodynamic average value of orien-
tation (K,)E = (cos(pr )(E/E) in an external electric field E,
which is defined by Eq. (3.20), was averaged over random
fields acting on a dipole and produced by its disordered
neighbors (both near and far):

•r>E' (4-25)

where P(E) is the distribution function of the random fields.
The quantity ij is the long-range order parameter of the fer-
roelectric phase (F). An analogous average of the square of
<er )E defines the order parameter of the dipole glass phase
(G):

(4.26)

in which the orientations of dipoles are "frozen in" and there
may be no spontaneous polarization (77 = 0). The transition
temperatures from the paraelectric phase (P) to the ferroe-
lectric phase TF and to the dipole glass phase Ta correspond
to infinitely small quantities 77 and A, which are linked with
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FIG. 10. Phase diagram of orientation states of dipoles, with probability c
of filling the sites of a triangular lattice).

the first moments P(E) by the equations

» = 5,517V5fc, /«2<AE2> = 15,94V2(A2 - a,2)c. (4.27)

Insmallfields (e,)ExfiE/2T andfromEqs. (4.25)-(4.27)
we obtain equations for the transition temperatures which
do not depend on the explicit form ofP(E):

, = l,966c1/2K (4.28)

The critical probabilities of filling c* and the temperature T *
for the coexistence of three phases are found from the condi-
tion TV = Ta = T*, which yields c* = 0.5237,
T* = 1.445 V. To calculate the dielectric susceptibility of the
system %( T) near the PG line of phase transitions one must
take into account the next terms of the expansion of {er} E in
terms of the field. When these terms are considered the mo-
ment <E4) appears, which depends on the type of distribu-
tion P(E). As a result the temperature dependence ^(7") is
written as follows:81

(4.29)

f(T)
T*TC,

T<TG,

where y = (c/c*)1/2 and the numerical coefficient u depends
on the explicit form of P ( E ) , which goes to zero for a two-
dimensional Gaussian distribution, and is positive if P(E)
has a characteristic "trough" at small E (P(0) = 0, Ref. 2).
Thus, the slope of j( T) atT<Ta near the vertex T = Ta is
equal to zero only in theories with a Gaussian distribution of
random variables. The dependence of the type of P(E) func-
tion on the orientation correlations and the means of prepar-
ing the G phase may also affect the form of^(T) (which is
observed experimentally in spin glasses97"99). The line of
coexistence of phases F and G also depends on the form of
.P(E). In Fig. 10 the dashed line was calculated from Eqs.
(4.25)-(4.27) for a two-dimensional Gaussian distribution
of random fields. Taking into account the De Almeida-
Thouless instability100 one can confirm that the real FG
curve will begin at the same point (T*,c*), but will pass
somewhat right of the dashed curve, extending to the point
(0,1).

Let us estimate the characteristic dipole energies and
phase transition temperatures for a system of OH groups on

a SiO2 surface. At fj. = 2-2.5 D and a = 5 A
y = (j,2/a3 = 20-31 meV, T0 - V/kB = 230-360 K. If one
considers the attenuation of dipole interactions due to the
static permittivity of the substrate £s=;3.5,
y= [2/( 1 + es) ]/^2/a3 = 9-14 meV, T0 = 100-160 K. At
c^O.5, Tf ^Ta ~T*~ 1.4ro = 140-220 K; however, due
to the overestimation by a factor of two of the transition
temperatures in the self-consistent field approximation,
7 * ~ 70-110 K. Thus, the lower boundary of the estimates of
phase transition temperatures in the system of surface OH
groups still substantially exceeds the characteristic transi-
tion temperatures (~ 1 K) in the dipole glasses which are
now being widely studied.2 By chemically replacing OH
groups with nonpolar radicals one can easily change the con-
centration parameter c. This yields a system of surface OH
groups which are a convenient object for experimental stud-
ies of the dipole glass phase. The dielectric susceptibility
(Eq. (4.29)) yields a temperature-dependent contribution
from the subsystem of surface OH groups to the full permit-
tivity of the sample. A highly dispersed silica may be expedi-
ently used for this purpose. Introducing the ratio of the den-
sity of silica to the density of quartz p/p0 and the ratio for the
adsorption lattice constant to the average radius of a globule
of silica a/R, we easily obtain an estimate of this contribu-
tion:81 te(T)~S.6cl/2(p/p0)(a/R)f(T), which at p/Po

and a/R~Q, 1 yields a value which is completely sufficient
for an experimental observation Af(D ~ 0.05-0.1.

Taking V~ 10 meV as the dipole energy per dipole we
obtain the following order of magnitude estimate for the
contribution of dipole interactions of radicals to surface en-
ergy: <7dip ~ V/a2~ 10 mJ/m2. Characteristic values of the
coefficients of surface tension of solids are <rs ~ 100 mJ/m2.
Thus, the ratio trdip/crs is of the order of 10% and the orien-
tational phase transitions in the system of surface radicals
may be fixed using the temperature dependence of the coeffi-
cient of surface tension. One way of determining the coeffi-
cient of surface tension of a fine film using ultrasonic mea-
surements was proposed in Ref. 101. The dynamics of the
motion of polar molecules of a gas in strong surface fields
was examined in Refs. 15 and 16. The source of these strong
surface fields may be the orientationally ordered phase of
surface dipole radicals.

The orientational ordering of surface radicals may also
explain the abrupt formation of associates from particles of
highly dispersed silica at certain temperatures. As the silica
particles approach each other the contribution of dipole in-
teractions between radicals on the surfaces of neighboring
particles increases, so the characteristic energy Fand transi-
tion temperatures may increase severalfold. The orienta-
tional mobility of radicals insures the attractive character of
dipole forces. Thus, a transition to an orientationally or-
dered phase at a higher temperature may be the source of the
spontaneous appearance of attraction between particles.

5. VIBRATIONAL SPECTRA OF DIPOLE MOLECULES IN
VARIOUS ORIENTATIONAL PHASES

Dipole-dipole interaction of extrinsic polar molecules
with rotational degrees of freedom has a dual effect on the
state of the system. First, orientational phases of dipole mo-
ments are formed. These were examined in the preceding
section. Second, there is collectivization of the vibrational
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states of individual molecules, and this depends on the struc-
tural arrangement of absorbent molecules on the surface of a
solid and on the type of orientational phase. The simplest
case which allows classification of the vibrational spectra by
a wave vector is realized for lattice structures of molecules
with dipole moments ordered by orientation. In the absence
of orientational ordering, as well as for random molecular
filling of the sites of a lattice of adsorption centers or in the
case of topological disorder, the description of the vibration-
al spectrum of the system encounters characteristic difficul-
ties.102'104 These difficulties are further complicated by the
need to take into account the anharmonic nature of vibra-
tions that makes a substantial contribution to frequency
shifts (of the type of Eqs. (3.19) and (3.21)) under the ac-
tion of static electric fields of neighboring dipoles, and the
inhomogeneous broadening of spectral lines. The analysis of
the shape of the spectral lines near the points of orientational
phase transitions today still remains an overly complex task.

The first impetus for the analysis of the effect of dipole-
dipole interactions on the vibrational spectra of absorption
molecules was provided by the experiments of Eischens,
Francis, and Pliskin,105 who discovered the dependence of
the position of the band of infrared absorption by stretching
vibrations of CO molecules on the filling factor of a platinum
surface. The equations obtained in Ref. 106 for the frequen-
cy shifts of the maxima of the bands in a harmonic approxi-
mation assumed the orientational ordering of molecules
along the normal to the surface, and a lattice structure of the
arrangement of molecules on the surface. Analogous equa-
tions which consider the contribution of the electron polar -
izability of molecules to frequency shifts of the maxima of
bands and their intensities were deduced in Refs. 107 and
108 and were discussed in detail in Refs. 19,29, and 109. The
effect of random filling of the sites of an adsorption center
lattice with molecules (of the same or different isotopic com-
position) on the spectrum was studied in Ref. 110 in the
framework of a coherent potential approximation. The con-
tribution of orientational disorder in this same approxima-
tion was analyzed in Ref. 66.

A very simple model, which takes into account stretch-
ing and torsional anharmonic vibrations of an arbitrary sys-
tem of molecules with dipole interactions with one another
and with rotational degrees of freedom, is characterized by
the Hamiltonian19'111

H
•*?

+ y i^ + i+ L \ it + "•\*w
"fr (5.1)

where *, and <pj are the radial and angular displacements of
the/h molecule with reduced mass m, moment of inertia
/= mr^, force constant kr, coefficient of cubic anharmoni-
city ar, and frequency of isolated torsional vibrations ta^p*,
and pvj are the corresponding generalized momenta. The
dipole moments ftj can be expanded in terms of small Xj and
q>j in the following manner:

here q = n/r0 is the effective charge of the atoms of a mole-
cule with an equilibrium length r0 and an equilibrium dipole
moment yU. The unit vectors f v and f 2j give the equilibrium
orientation of the radical and the orientation perpendicular
to it, along which the torsional vibrations occur. For a lattice
system at low temperatures the vectors |\y and |j/ coincide
with the vectors of dipole orientation £, (r) and £2(r) in the
ground state, and the expansion of e,- with respect to these
unit vectors in Eq. (5.2) is analogous to Eq. (4.12). In the
general case, the unit vectors f,, and J2j > which are perpen-
dicular to each other, may have random orientations corre-
sponding, for each dipole, to n equivalent minima of the local
potential of hindered rotation (Eq. (3.3)).

After substitution of the expansion in Eq. (5.2) into the
initial Hamiltonian in Eq. (5.1), one can isolate two inde-
pendent Hamiltonians of stretching and torsional vibra-
tions, each of which is written in the same form (which is
standard in studies of the spectra of disordered systems102):

n
4/wn

(5.3)

where Val3(r...) is the tensor of dipole-dipole interaction in-
troduced in Eq. (4.2a), and b;

+ and bj are Bose operators
for the creation and annihilation of vibration excitations of
the/h radical.

For stretching vibrations in a Hamiltonian like Eq.
(5.3) (obtained in Ref. I l l ) we have

1/2

(5.4)

/(*/)

The second term in Eq. (5.3) is responsible for the dynamic
renormalization of the frequencies of dipole interaction,
while the term which is proportional to x leads to static re-
normalization of frequencies, which is due to the effect of the
static electric fields of neighboring dipoles (the Stark vibra-
tion effect74).

Generally speaking, we note that the substrate has dif-
ferent effects on static and dynamic interaction of dipoles.
Static interaction has a screening factor like 2/( 1 + £s) (ss

is the static permittivity of the substrate), while in dynamic
interaction this factor is absent due to the approximate equa-
lity £M ~ 1 for high frequencies co of local vibrations. None-
theless, to simplify the notations we will not note the pres-
ence or absence of this factor in Va/3(r..,) and only in
estimates for OH groups on a SiO2 surface will we assume
that V~ 10 meV for static interactions and F~20 meV for
dynamic interactions. The opposite situation, in which static
interactions exceed dynamic interactions, is observed in CO
groups on a surface of ZnO.109'112 This is explained by the
increase in the dipole moment of the CO molecule itself in
adsorption on ZnO,"3 as well as by an increase in the effec-
tive dipole moment of the surface fragment perturbed by the
CO group, which is adsorbed along the normal to the sur-
face. In dynamic interactions the substrate atoms are not
attracted because the vibrations of the dipole moments occur
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at frequencies which exceed the phonon frequencies of the
substrate.19

In a ferroelectric state of dipoles ordered by orientation
in a triangular lattice, the dispersion law of phonons of
stretching vibrations is defined by the equation (see Eqs.
(4.3) and (4.4))

(5.5)

so in the infrared absorption spectrum (/:-»0) one will ob-
serve a band whose frequency will, in the Heitler-London
approximation (| V{ \/I^co^), be equal to

1 ' " (5.6)

For OH groups on a SiO2 surface, based on estimates
from Eq. (3.18), we obtain x~f>.(> and static renormaliza-
tion is dominant. Then Eq. (5.6) is actually reduced to Eq.
(3.19), in which the electric field E= — Vl /n is created by
neighboring dipole moments in the ground orientational
state. With F, = - 5.517F 50 meV, &>0~7.07-1014

s"1 (3750 cm^ 1 ) , /= 1.48- lO"40 g-cm2, we obtain from
Eq. (5.6) an estimate of the shift in frequency relative to a>0:
co(0) - a>0 2(x + 1) cm'1 15 cm"1.

In an orientationally disordered state the spectral char-
acteristics of the system in the Heitler-London approxima-
tion are defined by the following Green's function:66'111'114

(5.7)

which should be averaged over all possible orientations of
the unit vectors f,. If the spatial structure of radicals is to be
characterized by the probability c of filling the sites of a lat-
tice of adsorption centers, the orientation averaging must be
supplemented by averaging over all possible configurations
of radicals in the lattice. Then the desired spectral function
and the distribution function of frequencies will be equal to

(5.8)

where G"f(w) is the frequency Fourier component of
Ga.?(t), which for small average reorientational frequencies
Wj (see Eq. (3.15)) compared to the vibration frequencies
<0j, satisfies the equation

(5.9)
g{a>) = ((o- u>t

The moments of the spectral function and the distribution
function of frequencies

(at — <
"• MPP = J (0) ~ '

(5.10)

is defined at w} — + 0 by the equations111
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(5.11)

AJJ, - -,

If the unit vectors J} have arbitrary two-dimensional
orientations and there is no correlation of |} in the neighbor-
ing radicals:

<$-o, <£?$> = ?VV (5-12)

then for a triangular lattice of adsorption centers the mo-
ments of the spectral function will be equal to the following

.inexpressions:

'I^^O + MSI-VQo), = <on + Me, =o>n + ——cV. = cun — 2,759c4,

MS2 = (co - co,)2 = 3,985ol2(x2c + 2 - c), A s V/ 2/coQ ,

(5.13)

= 16,0c*3[l,829x2(c - 0,559) + (1,944 - c)(c - 0,176)].

The shift of the "center of gravity" of the spectral func-
tion relative to <u0 is a small negative value and is associated
exclusively with the dynamic interaction of dipole moments
(because there is no parameter x). At c= 1, MSJ in Eq.
(5.13), due to orientational disorder, is a factor of two
smaller than in Eq. (5.6) at;* = 0, and is 1 cm"1. Due
to the presence of orientational disorder the RMS width
S(o>) rises monotonically as the parameter c increases and is
nonzero even for maximum filling of adsorption centers
(c = 1). The asymmetry of the spectral function at x2^> 1 is
positive (negative) when c>0.56 (c<0.56). When x = 0,
Eq. (5.13) switches to the equations obtained in Refs. 66 and
114.

The spectral function of a disordered system of anhar-
monic oscillators with x2^> 1 and w} = w is approximately
described by an asymmetrical Gaussian function:111

S(w)=*-n-ll

x Jl - £*»[! - (xV3)]/2M^}^n/2^j^
x.—x + iw

(5.14)

which depends on the exact values of the moments in Eq.
(5.13). Figure 11 shows the frequency dependences S(eo) as
w-> + 0 for various values of c. Equation (5.14) makes it
possible to link the half-width Aw ]/2 at the half-height of the
distribution S(<n) with the second moment MS2: as u;-»0,

In 2)1 / 2~2(2 In 2) ' ~ oc cm"
The resultant estimate at c~0.3 agrees with the value
Ata1/2 x 2 cm ~ ~ ' , which was experimentally obtained in Ref.
9for T < 400 K (see the discussion of Eq. (2.2)). The value
of c~ 0.3 < 0.56 and the asymmetry of the spectral function
is negative (see Fig. 11), which is also observed when the
temperature at which the spectra are taken is dropped.

Here it should be noted that the negative asymmetry of
the spectral function may also result from OH groups locat-
ed near the junctions of globules of highly dispersed silica,
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FIG. 11. Frequency dependences of the spectral function S of an orienta-
tionally disordered two-dimensional system of anharmonic oscillators at
c = 0.3 (/),0.7 ( 2 ) , and 1 ( 3 ) .

-0,5

FIG. 12. Frequency dependences of the spectral function Sand density of
states/? of an orientationally disordered system of harmonic oscillators in
a triangular lattice in the coherent potential approximation
(1= V\\/2Icoa = 5.517/1).

because the frequency of their stretching vibrations, accord-
ing to Eq. (3.19), should be lower due to the perturbing
electric fields of OH groups in the neighboring globule.73

Estimates show that for a globule of radius ~ 50 A the num-
ber of such perturbed groups in relation to the total number
is ~ 1-2%.

For a system of arbitrarily oriented harmonic oscilla-
tors gj (<y) = g(co), and the Green's function g^(ca). in Eq.
(5.9) becomes a locator function, because it does not depend
on interaction with other oscillators. Due to the equality
o)j — o)0 the Hamiltonian in Eq. (5.3) contains only nondia-
gonal disorder of the multiplicative structure
l"Vae(r.., )£e,, which, in contrast to Ref. 115, arises from3 j ^ a /s j '
the problem statement itself (and not as a means of an ap-
proximate description) and is defined by the random unit
vectors J}. This makes it possible when 1 — c < 1 to use the
coherent potential approximation, which leads to the follow-
ing results:66

/>(«) = ~( \-ii (k, i

3cpa(k,co))= (o-\w)- 1 7V
2/<uf

(5.15)

where the locator of the effective medium a"e (o>) is the root
of the matrix equation

(5.16)
G0(o.) = ,

(N0 is the number of lattice sites in the main area). For
equally probable orientations of J} in a ^/-dimensional space
and an isotropic effective medium filling a space of the same
dimension d, the equation for a is simplified:

a-i.j-i+ [l-(c/d)]G-1. (5.17)

The spectral function and the distribution function of fre-
quencies, in the framework of the coherent potential approx-
imation,

were calculated for a triangular dipole lattice (c = 1) in Ref.
66 on the basis of an analytical approximation (Eq. (4.9)),
and are presented in Fig. 12. Analogous calculations in the
framework of the coherent potential approximation for a
simpler system of CO groups with orientational ordering by
dipole moments perpendicular to the plane of the surface
were done in Ref. 110 for various values of c. However, as
shown in Refs. I l l and 114, the accuracy of such calcula-
tions is substantially reduced as x increases and as c de-
creases, and at c<(x + 1 )/(2x: + 8.31) one obtains in the
framework of the coherent potential approximation even an
incorrect sign for the asymmetry of the spectral function.

Let us now turn to a description of the spectrum of tor-
sional vibrations. The Hamiltonian for torsional vibrations
is given by Eq. (5.3) with

S(o>) = -(wc)-1Im<Gc"« (k = 0, co)>, (5.18)

(5.19)

In contrast to Eq. (5.4), the dynamic renormalization of
frequencies is defined by the unit vectors g2j, while the static
renormalization, Eq. (5.19), again contains unit vectors £ly

(thus, one can establish the following formal correspon-
dence of parameters between Eqs. J5.19) and (5.4):
<a0 = o)^, K = — 1). Moreover, now | F, |//~«^, and the
Heitler-London approximation is inapplicable. Bearing this
in mind, one can easily switch from the results of Eqs. (5.5) -
(5.18) for stretching vibrations to analogous equations for
torsional vibrations. The orientational vibrations of arbi-
trary two-dimensional dipole lattices (with u>v = 0) were
examined in Refs. 38 and 88. We present here only two exact
equations for the first moments of the squares of the frequen-
cies of the spectral function and the density of states (the
distribution function of the squares of the frequencies):
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(5.20)

which have not been averaged over the spatial and orienta-
tional disorders, and^thus, depend on the arbitrary orienta-
tions of unit vectors £ ly and £2j > which are perpendicular to
each other. We recall that, according to Eqs. (3.9) and
(3.10), the spectral function of torsional vibrations de-
scribes the spectral lines of infrared absorption in the long-
wavelength region ~ 200 cm ~ ' , while the density of states of
torsional vibrations approximately describes the spectral
lines of the composite frequencies co~cor ± (ov due to the
"opening" of a wide band of torsional vibrations on the back-
ground of a narrow band of stretching vibrations in transi-
tions with simultaneous change in two quantum numbers19 :

e(o) - (ur) 8(car - eu)
P((w-«v)2)-

(5.21)

Thus, Eqs. (5.20) and (5.21) make it possible to analyze the
spectral behavior of torsional vibrations in various orienta-
tional phases.

For a high-temperature paraelectric orientational
phase or for an orientationally disordered phase of dipole
glass, the unit vectors in Eq. (5.20) should be averaged using
Eq. (5.12), which for a triangular lattice of adsorption
centers filled by radicals with probability c, yields

((0\ = ̂  + ^JcVl, <«>% = «£ (5.22)

In the case of a ferroelectric orientationally ordered state of
dipoles in a triangular lattice (c = 1) from Eq. (5.20) we
obtain

0)1 = ! (5.23)

Since V, < 0, ferroelectric ordering leads to an increase in
the effective frequencies of torsional vibrations by a quantity
oftheorderof K, |/(2/^)^40 cm-' (for/= 1.48-lO'40

g'cm2, (av = 200 cm"1 and energy of static interactions
F, = — 50 meV) in accordance with the result of Eq.
(3.21) of the simplified examination. In section 2 we re-
called the result of Ref. 12 on the increase in the frequency of
the observed band a)r +idv=± 3850 cm ~ ' by 30 cm ~ ~ ' when
the sample was cooled with liquid helium, which agrees with
the estimates which were presented, that took into account
the orientational ordering of dipoles.

Equation (5.22) (and Eq. (5.23) for <«2>p) are not
well suited for direct quantitative estimates of the frequen-
cies of the maxima of spectral lines, because the latter and
the corresponding "centers of gravity" of the frequency dis-
tributions may substantially differ (see, for example, Fig.
12). Thus, for these estimates we use the results of numerical
calculations for a triangular dipole lattice (c = 1) in the
framework of the coherent potential approximation. The
frequencies of the maxima of functions S(a>) and p(co) in
Fig. 12, which are defined by the dynamic interactions of

dipole moments with F, = — 100 meV, are approximately
equal to

oG")

120cnr

(-0,64|K.|/-1)1/2= 140cm-
(5.24)

Thus, the experimental value &%£* ~ 100 cm ' (in Refs. 10-
12 wide bands were observed at 3650 and 3850 cm ~ ' which
were about 100 cm"1 away from the narrow band at 3750
cm~ 1 ) , and a distinct peak with <y^'x = 104 cm ~ ' in Fig. 2
can be matched with the value a^ ~ 200 cm ~ ' for isolated
torsional vibrations when one takes into account dipole-di-
pole interactions.66 Since the quantities <a2 and / are propor-
tional to m ' ,then«^
an observed decrease in i

6. CONCLUSION

* m and in .ff«-»-.D-exchange,
'x by a factor of about V2 occurs.

The basic approaches in solid state theory correspond
to the following two levels of description: 1) calculations of
the electron band structure, of the force constants, and of
other characteristics of crystals from first principles (using
only fundamental physical constants, data on the electron
structure of atoms and basic equations of quantum mechan-
ics); 2) statistical description of observed macroscopic
quantities (electron and vibrational spectra of crystals) in
terms of collective variables (excitons, phonons, and other
quasiparticles) and using the values of the crystal character-
istics calculated from first principles or estimated from ex-
perimental data. At present, this type of classification may
also be used in the theory of vibrational spectra of surface
groups of atoms. Quantum chemical calculations of the elec-
tron structure and force constants of surface formations
yield information from first principles, for example, on the
vibration frequencies of some isolated groups of atoms on
various substrates. In this survey we discuss results obtained
in the framework of the second level of description, which
operates on given values of characteristics of individual
groups of atoms and explains effects considering the macros-
copically large number of degrees of freedom of substrate
atoms and the interaction of surface groups of atoms. This
consideration is especially important for low-energy orienta-
tional states, because the transitions between them are re-
sonantly coupled with the phonon spectrum of the substrate;
reorientation is characterized by a temperature dependence
which cannot be calculated without a statistical description.

For a sufficiently complete interpretation of observed
spectra of surface groups of atoms one must use the ap-
proaches of the two levels of description. Nonetheless, at
present first-level interpretation predominates, and it seems
self-sufficient because the majority of experimental data is
only for one temperature point, room temperature. For ex-
ample, in the spectroscopy of OH groups on an A12 O3 sur-
face it would make sense to analyze the temperature depend-
ence of each of the observed spectral lines, which would
make it possible to link them with OH groups on various
surface centers (independent of the temperature intensity of
lines) or with the vibrational-orientational transitions (tem-
perature-dependent broadening and intensity). On the other
hand, it would be unjustified to use the results of only the
second level of description to interpret the experimental
spectra of identical surface centers, although this is tempt-
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ing, because sets of spectral lines are frequently described by
vibrational-orientational transitions of one center, and do
not require additional assumptions about their differences.
Thus, from a practical point of view, the further develop-
ment of the theory should unite both levels of description,
which would be more awkward, but more suited to the na-
ture of the objects under study.

The study of the orientational states of interacting di-
pole groups of atoms with rotational degrees of freedom led
to the statement of a number of fundamental problems
which are of general theoretical interest: the description of
thermoactive reorientations and tunnel relaxation of orien-
tational states of extrinsic radicals in the phonon field of the
framework or substrate, the possibility of establishing the
orientational long-range order in a two-dimensional lattice
system with dipole-dipole interaction and a description of
the orientational phase transitions, the analysis of orienta-
tional states and the spectrum of vibrations of a system of
dipoles with a disordered surface arrangement. Some of
these problems have already been solved, and this is reflected
in this survey. The most detailed exposition of the described
issues can be found in Ref. 19 and in recent articles.34"38'88"90

Nonetheless, there still are a number of fundamental
problems which must be solved. They include the descrip-
tion of the average characteristics of the two-dimensional
phase of dipole glass with an exact consideration of aniso-
tropic dipole-dipole interactions, thermodynamic charac-
teristics of orientational phase transitions in two-dimension-
al dipole lattices, analysis of the vibrational spectra near the
points of phase transitions, and relaxation phenomena in
spectra in the dipole glass phase.

The prospects for further experimental studies of these
systems consist of measurements of spectroscopic character-
istics of surface OH(D) groups (or similar objects) in a wide
range of temperatures (including extremely low tempera-
tures) in the long-wavelength infrared region (~ 100
cm ~ '), as well as the area of composite frequencies at 3750
cm"~'. Estimates show that the volume concentration of sur-
face OH groups of highly dispersed matter is completely suf-
ficient to determine the temperature anomalies of heat ca-
pacity and permittivity due to orientational phase
transitions.
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