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1. INTRODUCTION

The transition radiation that arises upon motion of
charges in inhomogeneous and/or non-steady-state media
has been intensively studied starting in the mid-forties.' At
present it constitutes an extensive, independent field of radi-
ation theory.2 The emission from charges when they pass
through phase boundaries of different media, while they
move in periodic media, the so-called resonance radiation3

when they move in media having broad-spectrum random
inhomogeneities,2'4 etc., are the topic. The latter case is most
interesting from the standpoint of elucidating the physical
meaning of transition radiation (which in this case is also
called transition scattering2), since in the presence of a
broad spectrum of inhomogeneities of the medium having
arbitrary scales, the passing particle itself selects the har-
monics with which it interacts most effectively in emitting
waves of frequency со in the direction n.

Transition radiation can be calculated in various ways.
Depending on the approach, this radiation arises either as
emission from the particle under study,3 or as emission from
the medium in which this particle moves.2 Actually, if we
specify the permittivity of the medium as depending on the
coordinate £tj (r), and calculate the corresponding Green's
function G,j (r, r') of the inhomogeneous medium, then the
radiation field will be determined by the current of the parti-
cle je. In this case all the polarization currents of the medium
are fully taken into account in the Green's function, and the
resulting formulas describe both the transition radiation in-
volving the inhomogeneities of the medium and other types
of radiation in the case in which the trajectory of the particle
differs from rectilinear.3 This means that the transition radi-
ation appears here as a part of the total emission from the
particle.

On the other hand, one can calculate the current (polar-
ization) induced in the medium by the field of the relativistic
particle moving in it, and directly find the radiation from
this current in the medium.2 In this case the transition radi-
ation is emitted by the medium itself, while the field of the
relativistic particle plays the role of a perturbing factor.

Thus the question arises: what is emitting in transition
radiation-the particle or the medium? To answer this ques-
tion, we note that the propagation in the medium can be
described by using the exact Green's function (which, in-
deed, cannot always be found in explicit form). Then the
resulting emission, which takes account of the inhomogene-
ities of the medium via the Green's function Gv, will amount
to the emission from the particle. Moreover, the energy be-
ing emitted is drawn from the kinetic energy of the particle,
rather than from the energy of the medium, which can exist
in the ground state, both before and after emission.

Moreover, when the corrections to the current that
arise from the inhomogeneities of the medium can be de-
scribed by perturbation theory, one can separate them from
the current of the particle. If the particle being studied
moves rectilinearly, while the condition for Vavilov-Cher-
enkov radiation is not satisfied, then only the stated current
in the medium will make a nonzero contribution to the emis-
sion; in this sense we can treat the transition radiation as
emission from the medium itself. However, we must bear in
mind the fact that this treatment of transition radiation is
possible only when perturbation theory is applicable, and
the emission process can be graphically represented by a
Feynman diagram (Fig. 1), in which the emitting agent is an
electron of the medium. The resulting transition radiation
comes from coherent addition of the emissions from individ-
ual particles of the medium.6

The following sections of this article will discuss the
formation of transition radiation by a relativistic particle
moving along a curvilinear trajectory in a randomly inhomo-
geneous medium. Since in this case we are interested in fre-
quencies considerably exceeding the plasma frequency a>p,
we shall use a very simple plasma formula to describe the
dielectric properties of the medium

«и=i-5- (Dftr

and call such a medium a plasma.
Section 2 describes the procedure of perturbation theo-

ry applied for calculating the nonlinear plasma current in
the case of arbitrary curvilinear motion of the particle, and
discusses the defects of the method of the reaction of the
mean field.7 After this, examples are discussed that demon-
strate the role of the curvature of the particle trajectory in
different cases. Thus, in Sec. 3 the transition radiation is
calculated for a particle moving along a helix in a magnetic
field, and in Sec. 4, the transition radiation of a particle per-

FIG. 1. Feynman diagram for transition radiation.
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forming random walks in a medium owing to Coulomb colli-
sions, or owing to scattering by random magnetic and elec-
tric inhomogeneities, which are always present in a
randomly inhomogeneous plasma. Section 5 presents some
final clarifying remarks.

2. GENERAL THEORY OF TRANSITION RADIATION OF
ACCELERATED PARTICLES

Let us proceed to derive the general formulas that de-
scribe the transition radiation of a relativistic particle mov-
ing along an arbitrary trajectory. If we know the exact
Green's function that describes the propagation of a photon
in the given medium, then the energy of the radiation asso-
ciated with the current of the external relativistic particle

<u,k

= (2 , k Ak, ( 2 )

where Еш k is the field of the current j£k in the medium. Here
Eq. (2) contains all types of radiation, in particular, also
those not associated with the variable polarization of the
medium, but arising from the curvature of the trajectory of
the particle. Since, for media with random density inhomo-
geneities, the exact Green's function is not known, we must
use the procedure of approximate calculation of the transi-
tion radiation based on perturbation theory.

Let us represent the electric field in the form of a power
series in the amplitude of the density inhomogeneities of the
plasma

Ea,k =
-(o)

4),k • (3)

This corresponds to expansion of the current in the medium

j»,k = j£.'k + J& + jL2,'k + • • • (4)
Then we can rewrite the expression for the total emitted en-
ergy (2) in the form:

<0),

;*Q
Jco,k

) \
,k>

;*(2)\p(o)

The first term in the parentheses in Eq. (5) describes the
radiation involving the curvature of the trajectory of the par-
ticle or the Vavilov-Cherenkov radiation, while the transi-
tion radiation is contained in the subsequent terms, which
are quadratic in the amplitude of the inhomogeneities SNa k .
The angle brackets denote averaging over the spectrum of
the inhomogeneities, whereby the terms linear in &/V№k van-
ish. Since j*£ and E^°k do not contain SN^k , they are re-
moved outside the averaging in ( 5 ) .

Now let us proceed to find the fields and currents that
enter into ( 5 ) . Upon eliminating the magnetic field from the
two vector equations of Maxwell,2 we obtain the relation-
ship between the transverse electric field and the current
that gives rise to it:

««-• (6)

Here we start from the microscopical equations of the elec-
tromagnetic field, while the current /№k contains within it
both the current of the particle/*-^ and the current involving
the motion of the particles of the medium, in particular, the
ordinary polarization current described by the permittivity

of the plasma of (1). Upon substituting (3) and (4) into
(6), we obtain the following equation:

(7)
k.k.

Here we must perform an iteration procedure, i.e., interre-
late the fields and currents of a given order. Then E(°£ will
be determined by the current y '̂, the field £ l°k'' by the cur-
rent f°j{. The latter, in turn, is expressed from the kinetic
equation in terms of the field E ^°k', etc. Thus we have a
closed procedure that enables us to seek any of the correc-
tions to the fields and currents.

It is important to note that here the denominator of the
right-hand side of (7) repeatedly contains the difference
(c2k 2 — со2) or (c2k 2 — co2e) in taking account of the polar-
ization current of the unperturbed plasma. For waves that
propagate in the medium, i.e., ordinary transverse electro-
magnetic waves, this difference vanishes, which leads to di-
vergent expressions for E '̂k', E (2^, etc. Therefore, to make
the procedure of perturbation theory valid, we must apply it
only for the virtual component of the field, for which
(c2k 2 — co2e) does not vanish. Such a difficulty did not arise
in studying the transition radiation of a rectilinearly moving
particle,2 since the entire field of such a particle is virtual
(apart from the cases in which the condition for Vavilov-
Cherenkov radiation is satisfied). Yet if the particle moves
along a curve (e.g., along a helix), the remark that we have
made proves to be essential, since now the field of the particle
consists of two components-the radiation field (e.g., synch-
rotron radiation) and the virtual field proper, to which per-
turbation theory is applicable.

To find the currents that arise in a plasma with random
inhomogeneities as a relativistic particle moves in it, we shall
use the kinetic equation for a cold, collision-free plasma2

(p) = - (p) dw' dk'. (8)

Here e is the charge of an electron. Upon solving this equa-
tion by perturbation theory and taking account of the expan-
sion of the electric field in (3), we find the corrections to the
unperturbed distribution function

/L°, 'k(p)=/(p)6(to)5(k),

/eo,k =
Sf(p)

dp + 6/M,k(p).

(9)

(10)

Here / ( p ) is normalized to the particle concentration N0 ,
while the increment 8fm k describes the inhomogeneities of
the electron density of the plasma:

In the following orders we have

,(•2) e Em.k df(p) , e f F(0)—
(0) ., , ,,
»-"..t-k. ~aj- <У<"..*. dft)i dki

eEuH,ki df , ,. ,.-
--

~ dk2. ( 13)
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Equations (10)-( 13) enable us to calculate the plasma cur-
rents of interest to us according to the formula

(14)

Upon substituting (10), (12), and (13) into (14) and
calculating the integrals, part of which vanish, we find the
following expressions for the currents in the plasma:

j(0) _ -Q
J<o,k — J«,k

.(1) _ ie*N(

mo)

mu>

X dcO], dka

-co)), (15)

.k.e (a — Wl — (k — kj v)

.k.e ((k — kj) v — (to — coj)) dc^ dkx,

(16)

2 dk2. ( 17)

In Eq. (15) the electric field is divided into two parts:
El°k0(u> - kv) and Ei«(9(kv - a), where 0(x) is the theta
function of Heaviside, and т is the mass of an electron. Since
в(х) + в( — x) = l, this separation does not violate the va-
lidity of ( 1 5 ) . At the same time, it allows us to take separate
account in (7) of the real (в(со — kv)) and the virtual
(0(kv — ca) ) fields of the particle. Let us study the integral

Jr k.e (со — M! — (k — kj) v) dcoj

Since it contains the real radiation field, whose wavelength is
much smaller than the characteristic dimensions of the inho-
mogeneities of the medium |k| > |k, |, if we are not interested
in effects of the type of Mandel'shtam-Brillouin scattering,
we can obtain approximately

V $ cWm,,kie (со — coj — (k — k:) v) dcoj dkj

(18)

Then the expression ( 16) for the current j^ is transformed
as follows:

^.k-k.tW^e ((k — kj v - (eo - Wl)) dcoa dk^

(19)

We note that in the third term of ( 19), which contains the
virtual field, we must not ignore the shift of the arguments
a> — a> i , k — k, , since the nonvanishing of this term is due
exclusively to this variation in the arguments ca and k. Let us
substitute the obtained expressions for the currents (15),
( 17), and ( 19) into Eq. (7). Then we have

Let us take up the analysis of this expression in greater
detail. Terms of the type (ie2N/ma)EJ

aik, which are linear

in the electric field, describe the polarization of the unper-
turbed plasma and lead to a change in the dispersion law of
waves in the medium. Actually, if we transfer the stated
terms to the left-hand side of (20), then instead of
(c2kг — ca2), we obtain (c2k2 — co2e), where e (со) is the per-
mittivity of the cold isotropic plasma. In a magnetoactive
plasma, as is known, Eq. (1) is valid under the condition

(21)

which we shall assume below to be fulfilled. In the zero-
order term we can neglect the quantity A7V in comparison
with Л^, since taking it into account when ДЛ^ Л 0̂ does not
lead to qualitatively new effects. Finally we note that, after
the electric field has been separated into real and virtual
components, this separation occurs automatically in the
subsequent terms. Therefore, the last term of (20) contains
simply the electric field E^g.

After performing the cited transformations of (20), we
shall write the expression for the electric field in the different
orders of perturbation theory:

(a = 1, 2),

. 2 ('

/u),k \ -

where

.k.e ((k

k,67V«,,, k, dco2 dk2,

v - (со -

4Л1Ш

(22)
(23)

Oj dkj,

(24)

(25)

(26)

is the transverse Green's function in the medium.
Let us first study the last ("cross") terms in (5). To do

this we shall calculate {/?!*£'), which enters into (5). Upon
using (23)-(26), we find:

k.k.

т I caft2 — co2e

(k-k2).(k-k2); 1

- J ' ca (k _ k2)2 _ (ш

X в ((k — kj — ka) v — (со — coj — co2)) dcoj dco2 dkj dk2.
(27)

To describe the correlators of the density inhomogeneities
we shall use the random-phase approximation:

.kieWei,kl> = | 6/V l^.k, S (ац + co2) 6 (kx + k,), (28)

<tWMl, kl6/V»,, kl> = 1 6ЛГ |2Ш„ kl 6 (Wl - coa) в (kt - k,). ( 29 )

Upon substituting (28) into (27) and integrating over
du»2 dk2 with account taken of the «5-function, we obtain

(0), 9(kv-(o)

X ^ ^ j t- . . -— ш t

(30)

We see that the mean field in (30) contains as a coeffi-
cient the 0-function 0(kv — ca), which vanishes for ca and k
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related by the dispersion law in the plasma. Thus we have
<E^k > = 0. and for the same reason < j$ > = 0. Hence the
terms jgk <E$ > and < j$ >E^k in (5) do not contribute to
the intensity of the emission from the relativistic particle in
the medium. Since we can treat the stated terms as interfer-
ence terms, we arrive at the conclusion that interference is
absent between the "intrinsic" radiation of the particle (the
first term in (5)) and its transition radiation, which now
involves only the second term in (5).

Upon integrating the second term in (5) over dk, we
represent the energy of the transition radiation in the form4'8

(31)

where n is a radiation direction, and j^k current is deter-
mined by Eq. (24). £^?k' electric field is connected via Eq.
(22) with j£k relativistic particle current, which can be ex-
pressed via its v(f ) velocity and r ( t ) trajectory:

v(*)exp(-ikr (32)

where Q is the charge of the relativistic particle.
Upon substituting (32) and (26) into (22), (22) into

(24), and (24) into (31), and averaging the obtained
expression over the random phases by using (29), we find
that

oo oo

. J d t R e J dx

X
| 61V |ki exp [ICOT — i (k — b) (r (t + т) — г (<))]

»2e((o)

[nki](k —
(k-kj)»

{[n,v(t+T)]+-lBM. (33)

Here we have used the assumption that the inhomogeneities
are quasistatic, |&/V|* > k = \SN\^S(ea), while the sign of v
implies that we must perform the integration with respect to
dk, over the region of parameters at — (k — k j )v<0, that
corresponds to the virtual electric field of the particle. This
expression was applied in Ref. 2 for the case of a rectilinearly
moving particle (see also the references in Ref. 2). We shall
return to analyzing (33) in the other sections, where we
shall study the effect of the curvature of the trajectory of the
particle in a magnetic field (Sec. 3) and in a scattering medi-
um (Sec. 4) on the formation of transition radiation. But
here we shall discuss another method of calculating transi-
tion radiation-the so-called method of the reaction of the
mean field.7 The difference of this method from that pre-
sented above consists in the following. In studying Eq. (7),
the separation of the field into real and virtual fields is not
performed. Then, after substituting the corresponding cur-
rents into (7) and averaging over the spectrum of inhomo-
geneities, it is not complicated instead of (20) to derive

(34)

Of course, owing to the averaging, all the terms have
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dropped out of (34) that are linear in the amplitude of the
inhomogeneities.

The last term in (34) differs from (30) only in that it
does not contain the factor 0(kv — CD) that makes (30) van-
ish. Therefore, in this approach (E(^) differs from /его,
and moreover, the calculation of the radiation intensity of
the type

leads to a divergent result, in agreement with what we said at
the beginning of this section.

In the method being discussed this difficulty is over-
come as follows. The replacement is performed in the last
term of (34):

,(2)гх __ (35)

This small change in Eq. (34) fundamentally changes its
structure. Actually, now by regrouping the terms we can
reduce (34) to a form that coincides with the analogous
equation for E^k in a homogeneous plasma, whose polariza-
tion properties are described by the so-called effective per-
mittivity:

4ite2 \2 <A/V 2 > in2 / 4яе2 \2 ( ' . ,2
-- - \ &W k, k,toe V rn J J ' I ' *

(36)

Here the imaginary component arose from using the rule of
passing around the pole in the integral in ( 34 ) . The existence
of the imaginary component in £eff enables us to calculate the
radiation by the known formulas for the energy losses of a
particle in an absorbing medium8 having the permittivity of
(36). However, the substitution (35) is ill-grounded. The
point is that, to introduce the permittivity of (36), one
would have to write out the corrections to the field at least to
the fourth order (strictly speaking, one must consider all
orders of perturbation theory ) . As a result fourth-order den-
sity correlators would arise, which in the general case do not
reduce to the product of two second-order correlators. Thus
the substitution (35) is an overshoot of exactness that takes
account of only a fraction of the fourth-order terms. We note
that the need to take account of the higher-order correlators
to substantiate the method being discussed has already been
pointed out in Ref. 2.

In closing, let us formulate the fundamental defects that
have been noted in the method of the reaction of the mean
field.7 First, perturbation theory is applied to the total field,
which includes in the general case both the real and the vir-
tual field. As we have already noted, this is incorrect. Sec-
ond, it is not the quadratic quantity of ( 5 ) that is averaged,
but the field itself of (34), whereby the terms of the type
{ Ja|k*E^k } drop out. Third, an overshoot of exactness was
allowed in forming the permittivity of (36), owing to the
substitution (35).

As we see it, the mentioned defects do not allow one to
consider the results of calculation of transition radiation by
the method of the reaction of the mean field as being reliable.

3. TRANSITION RADIATION OF A PARTICLE MOVING ALONG
A HELIX

Now let us proceed to analyzing concrete situations in
which the particle generating the transition radiation moves

G. D. Fleishman 89



along a curvilinear trajectory. To understand better the ef-
fects that arise here, we shall first examine qualitatively the
role of the curvature of the trajectory.

To do this, we note that the transition radiation is
formed over some finite length called the coherence length
or the radiation-formation zone,2 which has the following
form in a plasma for a rectilinearly moving particle:

2с
(О

(37)

Here у = %/Mc1 is the Lorentz factor of the particle, $ and
M are its energy and mass, and caf is the Langmuir frequen-
cy. The fundamental fraction of the energy emitted at the
frequency со is emitted in a narrow cone along the velocity of
the particle, with the opening angle

,,а \1/2
(38)

In the presence in the plasma of density inhomogene-
ities with a broad spectrum, the radiation at the frequency со
arises from the interaction of the field of the relativistic par-
ticle with those harmonics for which k ~' ~ /c (<u) in (37) .2

Let the curvature of the trajectory be such that the direction
of the velocity of the particle varies by the angle #c of (38)
over a certain length l'^l(eo). Then the narrow directiona-
lity of the radiation causes the spectrum of the emitted tran-
sition quanta to be formed over the short length /'. In turn
this implies that the inhomogeneities with scales
fc ~ r ~ /c (u> )>/' with which the transition radiation at the
frequency со is associated will interact less effectively with
the field of the relativistic particle, and the corresponding
radiation will prove to be strongly attenuated.

If the curvature of the trajectory of the particle arises
from the homogeneous magnetic field B, then we have
/' = /„ = Mc2/QBL = c/coBi, where U>BI = QBJMc is the
gyrofrequency of the particle, while the maximum value of
/c (со) is attained when со = сору; /™ax = cy/cof. Then the
condition / ' < /c in the given case has the form

(39)

Thus the curvature of the trajectory of the particle in the
magnetic field is essential when (39) is satisfied. In this re-
gion of the parameters it leads to suppression of the transi-
tion radiation (Fig. 2).

Let us proceed now to calculate the transition radiation
of a relativistic particle moving along a helix in a plasma
having random heterogeneities of electron concentration.
To do this we must substitute into (33) the known expres-
sions of the trajectory and the velocity v ( t ) of the particle in
the magnetic field.9 Since, for an ultrarelativistic particle the
formation zone of the radiation is considerably smaller than
the Larmor radius, the arguments of the trigonometric func-
tions in v(0 and r(t) prove to be small, a>BiT/y4l. This
allows us to expand the sines and cosines in a power series in
the small quantity (co^j/Y)• However, to take correct ac-
count of the deviation of the trajectory of the particle from
rectilinear, we must retain the next terms after the linear
ones in the expansion, as is usually done in studying synchro-
tron radiation:10

-•>-(*/*)

FIG. 2. Spectrum of transition radiation in the presence of a magnetic
field under the condition (39). The dotted line indicates the spectrum of a
rectilinearly moving particle.

(40)

v (t) т - v [nQ] ̂ - + v [06] ~ - v [О [nO]] -1-

Here ft = Q B/Mcy, while the two-dimensional vector в is
equal in order of magnitude to the angle between n and v ( 0 .

Upon substituting (40) into (33), we go from the total
emitted energy to the energy of emission per unit time (in-
tensity of emission ) ; upon taking the outer integral with re-
spect to dt and neglecting the second terms in the curly
brackets of (33), which are small in comparison with [nv],
we find

I 6N I k,

Re
—аи

X ехр •! i (о — (k — kj) v) т — iwO' [пи] -4;—|- ш

(41)

Here fi = cos i? = kk, /&&,.
In Eq. (41) we transformed to the radiation in the total

solid angle 7™, since this quantity does not depend on the
time. In studying the radiation in a fixed direction, we would
have to deal with repeating short pulses of radiation, as in the
case of synchrotron radiation.10

To integrate (41) with respect to the time r, it is con-
venient to make the substitution of the angular variable
0' = 9 + [ nfl ] т. Since the integration over the angles can be
performed within infinite limits owing to the rapid conver-
gence of the integrand, the stated substitution will not alter
the limits of integration over d0:

X exp
21 ,v

24 у»
(42)
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The inner integral can be expressed in terms of the Airy
function Ai(|"). Upon performing the substitution of vari-
able X= (ct}ca^i/Y

2)l/3T/2 and taking account of the fact
that Ai"(J") =£А1(£), while the term containing Ai'CJ")
makes no substantial contribution, we find (with the func-
tion Ai(£) normalized to unity):

\2/з f1 „ dn dk) [ 6/V |̂

X о* —

where

у-' + (й»2/(о2) + 9" + (2Uing/m)
,\2/3

(43)

(44)

while the integration in (43) must be performed over the
region of parameters |"<0, which corresponds to scattering
by the virtual field (see Sec. 2).

To proceed further in the calculations of the transition
radiation, we must concretize the form of the spectrum of
the inhomogeneities \SN £ . We shall assume that this spec-
trum is described by the power function relationship:

|в"& = ТГ

<ДЛ'Ъ
(45)

HereL0 = 2ir/k0 is the fundamental scale, while (A./V2) is
the mean square of the inhomogeneities. Upon substituting
(45) into (43) and writing in explicit form the limits of inte-
gration with account taken of J"<0, we obtain

lm —-* (ft —
2л (v — 1) <?2,

(omV3

coy \2/з

^min

х \ Jfe- с 1 4-ft
•1 «, ^ J Ц L

"min 1 -1
(07

where we have

fcmin (6) =2c
(47)

First of all we note that Eq. (46) allows taking the limit
in the case of zero magnetic field. Actually, as сов -»0, we
have

Ai

lim
,2/3 = e(<B-(k-k1)T), (48)

and the integrals in (46) over d/* and dA:, are easily calculat-
ed. Then, upon taking the outer integral with respect to d8,
in line with (2), we obtain the spectral-angular intensity of
the transition radiation from a rectilinearly moving particle

8я (v —
vcm*o>s

(49)

We shall return to analyzing Eq. (46). It is important to
note that, in the case of curvilinear motion of the particle,
taking the outer integral with respect to d& does not yield,
strictly speaking, the intensity of radiation in the given direc-
tion n. This involves the fact that now the angle в is referred

to some instantaneous value of the velocity, whereas the ra-
diation is collected from a finite (albeit small) region of the
trajectory of the particle over which the direction of its ve-
locity varies. This essential difference involves the change in
the symmetry properties of the system being studied-in mo-
tion of the particle along a helix the problem ceases to be
axially symmetric with respect to the direction of its veloc-
ity. Running ahead (Sec. 4), we shall say that, if the particle
is scattered in a medium isotropic on the average, all the
directions of change of its velocity are equally probable, and
the problem remains axially symmetric with respect to the
direction of the velocity of the particle.

Nevertheless, we shall find it convenient for a while to
omit in (46) the integral over d9, so as to have the possibility
of comparing the derived expressions with (49).

Despite the fact that the analysis of Eq. (46) in general
form is difficult, one can find asymptotic dependences that
adequately describe the emission spectrum in individual fre-
quency ranges, and which coincide well with the results of
numerical integration of (46).

First let us study the frequencies for which

v-2 J E_ =
I I ,,i2 :

which corresponds to the intervals

«V W2

<a

(50)

(51)

In this case the role of the curvature of the particle trajectory
is small, and the Airy function can be replaced by the <5-
function of (48). However, in the second term in the brack-
ets in (46) we must take account of the finite width of the
stated function, since when #-»0 its contribution proves to
be the major one. The finiteness of the width of the function

(46) («7/u>Bi)
2/3Ai(|) has the result that £ effectively varies

within the bounds — 1 5; J"<0. Therefore, for a rough esti-
mate we can assume, e.g., that £=• — 1/3, whereupon we
find

/S.,

8я(у —
vcmaco3

6' + (c

(52)

This expression differs from (49) only in the additional term
(a>Bi/(oy)2/3 in the numerator, whose presence, as will be
seen below, weakly alters the radiation intensity in the total
solid angle under the conditions (50) and (51 ).

In the other case in which у~г + й>2/<и2<
or

£u* (53)

the curvature of the trajectory is essential, and the argument
of the Airy function effectively proves to be small: |£ | < 1
(this involves the rapid convergence of the integral over
d£i). This allows us to expand Ai(£) in a series and keep
only the first term of the expansion
Ai(J-)~Ai(0)~l/32/3r(2/3). Then the integration over
ф and dkl is performed without difficulty and yields:
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*n, o> —
24я(у — 1 <Д/У2> Ai (0)

\2/3

v«(v слАо*

+ ea + (54)

It is important to note that the possibility of replacing the
Airy function Ai(£) with Ai(0) implies a substantial change
in the character of the transition radiation. In particular, the
interaction lacks resonance character, which for a rectilin-
early moving particle was ensured by the ^-function

We see from (54) that the intensity of the transition
radiation decreases with increasing magnetic field:
In,<a~

caBi
2/3 (m contrast to what occurs for synchrotron

radiation) . That is, transition radiation is suppressed by the
magnetic field.

Upon integrating (52) and (54) over the angles, we
find the spectral distribution of the transition radiation in
the intervals (50), (51 ), and (53) that are usually of great-
est interest:

8n2(v —
v* (v. -f- 1) cmzeos

Г, , v(o)Bi/coV)2''3]
(55)

radiation even when a> > cof y. Consequently the suppression
of transition radiation by a magnetic field occurs at the fre-
quencies at which it proves to be the fundamental mecha-
nism of emission, both from electrons and heavy particles.

Now let us study the integral intensity over all frequen-
cies of the transition radiation:

/fot= (58)

In the absence of a magnetic field (or under the condition
opposite to (39)), the fundamental contribution to the inte-
gral of (58) comes from the frequency region со 5 cop y, since,
when со > u)p y, the intensity /™ rapidly declines:

'tot Т- , dco

8я2

v2 (v -f 1) •lV (59)

Yet if the magnetic field differs from zero and the condition
(39) is satisfied, the transition radiation begins to decline
sharply, even at frequencies ca^
we have

Sco<copy, and hence now

,3 __ 16я2 (2v -
w va(v

Г <e

(By \2/3 '. tot

(56)

As we see from (5 5) and (5 6), the complete spectrum of the
radiation is divided into four power-function regions:
/™~u>v~2 when (о-^са^, /™~u>v~( I O / 3 ) when
<иф <u)<u)py, /™~<a~v~( 4 / 3 ) when <ypy<<y<<yBi7

/2, and

/™~<y~ v ~ 2 when ta^to^y2 (see Fig. 2). Thus, when

a> > a*. the intensity of the transition radiation rapidly de-
clines, while the fundamental fraction of the radiation is con-
centrated in the frequenpy region ca^ca^ (50). This effect is
observed if ca^ <(opy, which coincides with the condition
(39) obtained from qualitative considerations. Consequent-
ly the curvature of the trajectories of particles of sufficiently
high energy (39) completely changes the character of their
transition radiation by suppressing radiation at frequencies
ia^o)py, where a rectilinearly moving particle would emit
the main fraction of the energy. At the same time the charac-
teristic angle within which the transition radiation is emitted
increases, while remaining small in comparison with unity.
Upon substituting ш„ into (38), we find

<Bn , W2

v-J >*?• w
Since a particle moving along a helix in a plasma with

random inhornogeneities also generates „synchrotron radi-
ation along with transition radiation, we note that the for-
mer at frequencies o><&py is exponentially small owing to
the effect of density (the Razin-Tsytovich effect), whereas
the transition radiation is concentrated precisely in this fre-
quency region. The effect of suppression of transition radi-
ation by a magnetic field occurs at frequencies
am £й)<й)ру. The synchrotron radiation of protons and
other nuclei is very small owing to their large mass, so that
transition radiation can dominate for them over synchrotron

V 2 ( V + 1 ) V /

e>pT

<*BJ.

v-1
. 2 -

(60)

In the special case of a system of sharp boundaries v = 2
(pile of plates, ensemble of shock waves, etc.), instead of the
linear dependence /™,~7 we obtain the square-root de-
pendence /£t~7/1/2- This substantial change involves the
fact that (as we have already stated), in a magnetic field
under the condition (39), the transition radiation is sup-
pressed at the frequencies at which the main fraction of the
energy would be emitted when В = 0.

For orientation we shall give some illustrative estimates
of the magnitude of yfip (for electrons and protons) in (39)
in various physical situations. In a laboratory plasma with
ne~1014 cm'3 (ft>p~5xlOn s-1) and Я-104 G
(«Be~2-10n с-1, «вр-108 с'1), we have y?~2.5,
7p*~5-103. In the active regions on the Sun (arcs) with

2.5ХЮ9 cm""3 (<a -2.5X109 s~') and Я-102 Gл cm
,-1

<Уц„ ~1

; 10 s"
c~'), we find

7*~2-103. In interplanetary space (ие~4 cm ,
5~5xlO~5 G), correspondingly we have y*~102,
y*~2-105, while in radio galaxies (ие~10~2 cm"3,
B~ 10 -5 G), we have у?~30, ft~5' Ю4. Thus the situa-
tion proves typical in which the transition radiation of all or
of a considerable fraction of the electrons is strongly sup-
pressed, whereas for heavy particles the influence of the
magnetic field is not essential up to rather high energies.

Let us make another interesting estimate. Let the parti-
cle move along a line of force of a very strong magnetic field
B~ 1012 G, which is realized, in particular, in neutron stars
(this problem has been treated in Ref. 2 under the assump-
tion that the field is homogeneous). Since the magnetic field
in the vicinity of the neutron star is not homogeneous, the
trajectory of the particle will trace the curved line offeree to
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which it is strongly bound. In this case Eq. (39) must be
somewhat modified. Actually, now the role of the Larmor
radius is played by the radius of curvature of the line of force
/J,-»/?cur. Therefore, upon substituting into (39) the fre-
quency cocar = cy/Rcur instead of the gyrofrequency eaBi, we
obtain

(61)

1012 s ' and ЛсUpon assuming that u/p ~ s an сцг ~ cm, we
find у* ~ 104. However, as will be shown in the next section,
this estimate can be lowered even further upon taking ac-
count of the scattering of the relativistic particle by random
electromagnetic fields, which are apparently present in the
plasma near a pulsar.

4. TAKING ACCOUNT OF MULTIPLE SCATTERING
(STOCHASTIC TRAJECTORY)

Let us study the transition radiation of a relativistic par-
ticle that performs a random walk in a medium with random
inhomogeneities. This character of motion can arise from
collisions of the particle with Coulomb centers (atoms, nu-
clei) in a condensed medium, or from its scattering in ran-
dom fine-scale magnetic or electric fields present in a turbu-
lent plasma. It is important to take account of these fields, in
particular, when the particle is moving along the axis of a
regular (quasihomogeneous) field and is not subject to its
influence.

The trajectory of the particle in the given case is a ran-
dom function. Therefore now (33) must be averaged over
the corresponding ensemble of realizations:

8QM

X <[nv (t)] [nv (t + т)] exp [— i (k — kx) (r (t + т) — t (*))]>.

(62)

The averaging denoted in (62) by angle brackets can be per-
formed by using the distribution function:

<. . .>=.$ dr dr' dv dv' [nv'] [nv]

X exp [— i (k — kt) (r' — r ) ] F (r, v, t)

X W (т, v, r', v', т) = § dv' [nv] [nv'] Wk_kl (v,V, т),

(63)

Here F(r,v,f) is the distribution function of the particle at
the instant of time t. Owing to the normalization to unity
upon integration over dr dv, this yields the unit coefficient W
(r, v, r', v', r)-the conditional probability that the particle
goes in the time т from the point of phase space (r, v) to the
point (r', v'), while Wk_kl is its spatial Fourier transform.

The function W (which satisfies the kinetic equation)
has been calculated as applied to radiation problems, both
for Coulomb collisions11 and for scattering in random
fields,4 and can be represented as follows:

i K' V, T)

+ k^ni; ] т} U (в0, в, т).

(64)

= y-26 (v — va)

X exp {- i [*!L (l -

Here the vectors 00 and 8 are defined analogously to (40) by
the relationships

- - - + ei;, (65)

(66)

v0 = av l -

while the function t/(60,9,r) satisfies the equation

Here q = q0y
 2 is the frequency of collisions of the relativis-

tic particle with the Coulomb centers or with fine-scale mag-
netic fields. In the former case we have1'

(67)

where TV and Ze are the concentration and the charge of the
nuclei in the medium, while in the latter case we have12

-
3c

(68)

Here L0 and (B 2, ) are the correlation length and the magni-
tude of the magnetic inhomogeneities, <yst = Q (B 2

t )
 1/2/

Me, co0 = c/L0 , while the field is assumed to be fine-scaled if
<wst <ca0. In the case of electric inhomogeneities, Eq. (66)
remains as before, while in defining q0 we must make the
replacement (B 2 } -> (E 2 ) .

The solution of (66) with account taken of the obvious
initial condition Щв0,9,0) = <5(G - 90 ) is

£/(е0,е,т)

where

exp [— x (Э2 + 6j).cth (ZT) + 2zee0 sir1 (ZT)],

(69)

(70)

Upon substituting (64) and (69) into (63) and (62) and
transforming to the intensity of radiation, as in the previous
section, we find

2'.-

ж (в2 + в?) cth (ZT) +[2жв90 sh-1 (ZT.]• (71)

It is important that, in the presence of multiple scatter-
ing, the treatment of the intensity of radiation in the given
solid angle in (71) is quite correct, in contrast to the situa-
tion treated in Sec. 3. This involves the fact that now the
problem is axially symmetric (on the average) with respect
to the initial direction of the particle, since all directions of
change of its velocity are equally probable, while the angle 60

in (71) is referred to the initial velocity v0. Of course, the
stated symmetry holds for an ensemble (beam) of particles,
whereas all the individual particles move along their individ-
ual random trajectories, which do not possess axial symme-
try.

Since the integrand in (71) is a Gaussian function of the
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angle, the integration over u6x and ddy can be performed
over the region ] — oo; + oo [. The possibility of such a
choice of limits of integration is ensured by the rapid conver-
gence of the integrals over ив, which involves the sharp di-
rectionality of the radiation along the velocity of the particle:

0 I

ЛсЗ3" J~T[l_ (k-k')ae2 1s

L «2e (со)

dx

i(OT

X exp L^- ̂ '2 + -J- — xQi th (ZT) | •

(72)

As in the previous section, to perform the further integration
we shall study the different limiting cases of (72). If we have

(73)

then the arguments of the hyperbolic functions are small:
|zr|<l, th ZTZZZT, ch zrs:l, and (72) is reduced to the
known expression (49) for a rectilinearly moving particle.
The inequality (73) is satisfied in the low- and high-frequen-
cy regions

(74)

(75)

In the intermediate frequency region in which

or, as is the same,

о** << to << 8?oV

2, (76)

multiple scattering plays an essential role. Here the hyperbo-
lic functions also are simplified: th zr~\,
ch2zr~exp(2zr)/4. Thereupon the integration over the
time yields the following expression (we omit the subscript
"0"inc90):

3 r t (k-itov i2 (77)

The integration in (77) over dk, with account taken of the
spectrum of inhomogeneities of (45) is performed by analo-
gy with (46) and yields

2 (co?)
1/2

2V

(78)

We note that here, in contrast to the case of motion of a
particle in a regular magnetic field, the vanishing of the radi-
ation in the direction of the initial velocity of the particle
в = 0 is preserved. This involves the differing symmetry
properties in the two problems. Upon integrating (78) over
the angles, we find the spectrum of the transition radiation at
the frequencies of (76):

•i 4_J1.)T"V.(79)
V 2 (V-M) с

Thus, in the region (76) the radiation spectrum consists of
two power-function regions I™~cov~3-5 for i

FIG. 3. Spectrum of transition radiation in the presence of multiple scat-
tering under the condition (80). The dotted line indicates the spectrum of
a rectilinearly moving particle.

™~u> v '•' when <ap7<8gr

0y
2. Consequently, when

a> £ а>^, the transition radiation is considerably weakened
(see Fig. 3) and declines with increasing frequency of colli-
sions, /™ ~q ~l/2.

The effect of suppression of transition radiation by mul-
tiple scattering in (79) occurs if the frequency region of (76)
exists, i.e., ы^ ^Sg^y2. When we take (74) into account,
this is valid for particles of high enough energy:

CO

7>-V**=-o-E-- (80)

The inequality (80) is an analog of the condition of suppres-
sion of transition radiation by a magnetic field in (39).

Let us study the dependence of the total energy emitted
by the transition mechanism on the energy of the particle
under the condition (80). Upon integrating (55) over the
frequency up to the value «„,„,, we obtain by analogy to (60)

'tot

ID.,

J 4><H
"p

16л2 iQV <A/V 2 >

2"V (v + 1 ) cmaco2 9o

J-(v-l)
(81)

We see that this case is intermediate in a certain sense be-
tween the rectilinear motion of the particle in (59) and its
turning in the magnetic field in (60). The dependence of / ™, .
on у for these cases is shown schematically in Fig. 4.

We note moreover that the distribution function of
(64) is known also in the case of joint action of a regular field
and its random inhomogeneities on the motion of a particle.4

Hence it should be possible to take account of both factors
simultaneously. However, as we see it, in the given case this
would only complicate the formulas without adding clarity
to the essence of the effects that arise here.

Since in condensed media under normal conditions the
effect of suppression of transition radiation by multiple scat-
tering by Coulomb centers is inessential up to values
у** ~ 1015, which far exceed the bounds of the possibilities of
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FIG. 4. Dependence of the total energy of transition radiation on the
energy of the emitting particle for various types of motion, /-rectilinear
trajectory, 2-multiple scattering (random walk), 3-helix.

accelerator technology, we proceed directly to astrophysical
estimates. Let us study for illustration an interplanetary
plasma, whose parameters are well known:13

<.»*>;= 3.6- КГ10 Гс2, L0~3-10" cmor<y s t =0.25 c~\
o)0 = 0.1 c~ '. Upon substituting (68) into (80), we find

**Ye • (82)

Now let us return to analyzing the situation that arises
in the vicinity of a neutron star (see the end of Sec. 3). If
weak field inhomogeneities exist over the course of a line of
force of the magnetic field along which the particle is moving
(e. g., Alfven waves), of flux density 5st = <-B2

t)
1/2~5 Гс

(~Ю~ПВ0) and L 0 ~l m = 102 cm, then u)st ~108 c"1,
u> 0 ~3-10 8 c~ 1 , and by using (82) we find

102
(83)

Since in the vicinity of a neutron star the plasma is rela-
tivistic and y^lO2 for practically all particles, in the given
case the effect of suppression of transition radiation is im-
portant for most electrons and positrons that are present.
Moreover, even in the complete absence of inhomogeneities
of the magnetic field, an important role can be played by
multiple scattering of particles by radio waves (with A 5 1
m), which are generated in the magnetosphere of pulsars.
What we have said here, and also at the end of Sec. 3, implies
that the application of the theory of transition radiation to
real objects having a strong magnetic field requires great
caution, and in particular, taking scrupulous account of all
factors that lead to bending of the trajectories of the emitting
particles.

5. CONCLUSION

In the examples that we have discussed (Sees. 3 and 4),
curvature of the trajectory leads to a decrease in the transi-
tion radiation. However, this does not always happen. We
shall point out only one case, which was discussed in Ref. 3.
If a relativistic particle crosses the phase boundary between
a medium and vacuum, then the intensity of its emission can
be represented in the form of the square of the difference
between the coherent lengths in the vacuum

and in the medium

шр
to2

(84)

(85)

(86)

It is not complicated to see that at frequencies a>^(opу we
have /v > 4; in this region transition radiation is effectively
generated. However, when u>>u)py, for which the term
d)l/со2 is relatively small, we have /v =;/c, and the transition
radiation rapidly declines with increasing frequency. Now
let the particle undergo multiple scattering in the medium.
This scattering leads to a decrease in the coherent length /c

as compared with (85), while the difference /v — /c will dif-
fer appreciably from zero, including even the case со> (apy,
since in the vacuum the particle does not undergo multiple
scattering. This means that the transition radiation is en-
hanced in the frequency region со><ыру as compared with
the case of rectilinear motion of the particle. In the same
situation the curvature of the trajectory in a magnetic field
would act differently-it would suppress the transition radi-
ation by decreasing both coherence lengths /c and /v. With-
out dwelling further on a discussion of concrete problems
and situations, we shall make some closing remarks for
greater precision.

Let us turn our attention to the fact that the procedure
of separating the electric field of a relativistic particle into
virtual and real components is not always obligatory. We
need not resort to it, apart from the trivial case of uniform
rectilinear motion of the particle, when all its field is virtual,
and in treating resonance radiation,3'5 since in the quasiclas-
sical approximation one can construct a Green's function
that describes the propagation of quanta in a periodic medi-
um. This allows us, by using Eq. (2), to seek the total radi-
ation generated by both the transition and the bremsstrah-
lung mechanisms. However, the stated separation occurs in
such a case automatically. Actually, in Refs. 5 and 3 the
regions of resonance quanta correspond to negative values of
the "coherence lengths" used by Ter-Mikaelyan (somewhat
differing from (37))-an analog of the condition
a — (k —k, )v<0, while in the final expressions for the
emission spectrum in a periodic medium f?-functions arise
that separate the region of resonance quanta from the region
of bremsstrahlung quanta.

Thus the approach proposed in Sec. 2 for calculating
the transition radiation agrees with the other methods appli-
cable for this purpose,2'3 while possessing certain advan-
tages. Among these advantages are the possibility of calcu-
lating the transition radiation of a particle moving along an
arbitrary trajectory in an arbitrary inhomogeneous medium,
as well as the fact that, by adopting the proposed method,
one can systematically separate the transition radiation in
the formulas from other mechanisms of emission. One can
distinctly see from the results of Sec. 2 that one must take
transition radiation to mean (as compared with bremsstrah-
lung ) an additional channel of formation of transverse quan-
ta that arise from the virtual intrinsic field of the particle
owing to its interaction with the inhomogeneities of the me-
dium.

The effects discussed in this paper of suppression of
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transition radiation can prove to be substantial and highly
useful in various physical situations. As we see from the esti-
mates given at the end of Sec. 3, the case is typical in which
the transition radiation of light particles is strongly sup-
pressed practically throughout the existing range of ener-
gies, while the radiation from heavy particles is not sup-
pressed over a broad range. In principle this enables one to
obtain direct information on the nuclear component of rela-
tivistic particles in remote cosmic radio sources,14 even if the
number of nuclei does not exceed the number of electrons.

The effect of suppression of transition radiation by a
magnetic field can be used for selecting particles with differ-
ent masses in using transition counters,3 for minimizing the
total energy losses of particles during acceleration in a labo-
ratory plasma, and for other purposes. Also special experi-
mental studies of transition radiation of relativistic particles
moving along curvilinear trajectories in randomly inhomo-
geneous media seem to be of great current interest.15
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