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The empirical regularities in the variation of the radiative lifetimes tk of excited states of atoms
are reviewed. A quasiclassical theory of radiation damping processes is constructed. The
formalism of quantization of the natural width Ak = t k ' of the excited states of atoms and ions is
presented. The question of how to describe the serial dependences for a perturbed series is
investigated. It is demonstrated that the radiation emission of atomic systems is sharply reduced
when the classical factors in the radiative processes are suppressed. Schemes are proposed for
extrapolating lifetimes from the lower terms of a series to the upper Rydberg states, right up to the
continuum. Recommended values of tk for group I, II, and VIII atoms are given in a form that is
convenient for inclusion in a computerized data base.

INTRODUCTION

Extensive numerical data, obtained by both experimen-
tal and computational methods, on the radiative lifetimes rk

of the excited states of atoms and ions have now been accu-
mulated in the literature. As new information on rk ap-
peared steps were taken to interpret it with the help of differ-
ent empirical rules. The dependences of rk on the principal
quantum number n and the effective quantum number и*,l~3

on the energy gap A£ between the levels of the same spectral
series,4 and on the effective charge (z*) of the atomic core5

were determined. A number of analytical relations describ-
ing the distribution of rk as a function of n were proposed for
hydrogen-like states.

The serial behavior is interesting because it permits de-
termining the most reliable values in a set of values of rk

obtained by different methods and also often to predict rk

for states that have not been studied.6 Much more complete
and accurate values of the atomic constants, including the
radiation constants, are now required. This is because new
fundamental and applied problems in atomic physics and
spectroscopy, plasma physics, quantum electronics, plasma
chemistry, and astrophysics must now be solved for a wide
range of conditions. In this connection, the problem of creat-
ing a compilation of recommended constants (lifetimes)
which have been evaluated by experts remains urgent. In this
review the existing published data on rk for group I, II, and
VIII atoms are systematized, different theoretical methods
(formulas) for calculating rk are compared, and a novel
quasiclassical theory for determining rk is developed. All
this makes it possible to compare the results obtained by
different authors, to analyze these results critically in order
to determine omissions, to find a method for determining the
most reliable values, and finally to compile recommended
values of the lifetimes of group I, II, and VIII atoms. In Sees.
2 and 3, which are devoted to applications of the theory of
radiation processes, the atomic system of units (a.u.) is
mainly employed.

1. EMPIRICAL DISTRIBUTIONS OF THE RADIATIVE
LIFETIMES OVER THE EXCITED STATES OF ATOMS AND
IONS

The first serial rule was apparently established back in
1928 by A. Cooper in an investigation of the oscillator
strengths /(и,/-»и',/') of the hydrogen atom:
f(n,l->n',l+ 1)~ («') ~3. Later Bethe and Salpeter7 dis-
covered that for the hydrogen atom the lifetimes rk of the
levels having the same orbital quantum number / are propor-
tional to и3.

N. P. Penkin and L. N. Shabanova also observed that
Aki~(n*) ~3, where Aki is the probability of a radiative
transition from the level k to the level /, in the principal series
for the Rydberg states of group II atoms.8 In 1975 it was
reported in Refs. 1-3, virtually simultaneously and indepen-
dently, that r is a power-law function of n* for different
series of excited states of neon, mercury, and sodium atoms.
Power-law dependences, whose empirical form is given by
the relation

f k = TO, ( («*)"', ( 1 . 1 )

were later observed for a large number of series of atoms and
ions. Here rol and al are constants for a given series of levels
with fixed orbital quantum number /; the symbol k incorpo-
rates all quantum numbers of a level in a series, but some
quantum numbers are dropped, for example, k = {n, I, m}
or k = {и, /,} or k = n. Another empirical law, proposed in
Ref. 4,

= В (1.2)

relates the radiative lifetimes with the energy difference
b£k = ek + i — £k for adjacent states in the series. It is con-
venient to represent the dependences (1.1) and (1.2)
graphically on a logarithmic scale, in which the dependences
are straight lines. Figures 1 and 2 show several examples of
such plots.

The practical utility of the relation (1.1) has been
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FIG. I. Power-law dependences (I .I) of the radiative lifetimes
(т) as functions of the effective principal quantum number (л*)
for a number of series of excited states. The exponent (a,) takes
on values between 2.7 and 4.3.
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FIG. 2. Power-law dependences ( 1 .2 ) of the radiative lifetimes ( т) on the
energy splitting ( Д£) for several series of excited states of the neon atom.

pointed out before. For this reason, in the last few years the
parameters rol and a, have been determined for a number of
atomic series by the method of least squares. The value of a,
is usually close to three, but both smaller and larger values
are often observed. For example, for the series presented in
Fig. 1 a, varies from 2.8 (Cs) to 4.3 (Ne np[3/2]2). Even
for different series of the same atom a/ can fluctuate from 3
to4.3 (Ne«s'[l/2]0 and «p[3/2]2) (see Fig. 1). In Sec. 4
the serial laws (1.1) and (1.2) are employed for analyzing
lifetimes and for discussing their range of application and
correspondingly the possibilities of using them to extrapo-
late rk to highly excited states.

2. FORMULAS FOR CALCULATING THE RADIATIVE
LIFETIMES т»

The main difficulty in interpreting the experimental re-
sults on lifetimes theoretically is that the probability
Ak = т £~' of radiative decay of the excited level k has a
complicated structure. The radiative width consists of indi-
vidual probabilities Ak-k of the emission of a photon at the
frequencies cokk = (ek — ek )/fi in optical transitions k-*k:

«^H^r-lUMi Am = 2o>UP (rnt^hn. (2.1)

Quite complete representations of the oscillator strengths
fkk as a function of the quantum numbers of the states k and
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k are now available,9'15 but the problem of obtaining ap-
proximate analytical expressions for the oscillator strengths
nonetheless remains an important element of many theoreti-
cal studies13'21 concerned with lifetimes rk. Thus in Ref. 20
a very accurate approximation offkk is presented for hydro-
gen-like and alkali atoms, using the method of Bates and
Damgaard (see, for example, Ref. 22). In Ref. 21 an ap-
proximate method is given for calculating the product
(u>2kkfkk)> in which the summation in Eq. (2.1) over the
components of the multiple! structure of the initial k and
final k electronic terms is performed. In Ref. 16 the quasi-
classical formulas of quantum mechanics23 are used to esti-
mate the oscillator strengths for the hydrogen atom. S. P.
GorslavskiT et a/.14 and R. A. Gantsev15 made a detailed
investigation of the overlap integrals of the radial wave func-
tions appearing infkk, starting both from the asymptotic
limits for/^ and from the general correspondence rules.15

The next step in the analytical description of Ak is to
perform the summation in Eq. (2.1) over the lower states k.
This can be done in several ways. For example, in Refs. 14-
16 the summation over the principal quantum number и of
the levels of the hydrogen atom is replaced by an integral
over и; this is justified for the Rydberg states (и>1). The
resulting expression for Ak, written in universal notation,
has the following form (in atomic units)

z*a G (n, I) _ 4
/Зле3

(2.2)

Here z is the charge of the atomic core and с is the velocity of
light (c = 137 a.u.). According to Refs. 14 and 16 the func-
tion G(n, 1) is a constant: (7[14] = 1 (Ref. 14) and
G[ I 6, = тг/2УЗ~ (Ref. 16). According to Ref. 16 L = I + 0.5
and according to Ref. 14 L = 1. In Ref. 11 it is suggested that
the "academic correction" /-»/ + 0.5 be introduced into the
formula for АпЛ given in Ref. 14. This so-called Langer's
correction arises in the quasiclassical theory because of the
singularity of the centrifugal repulsive potential at the ori-
gin.23 The accuracy of the representation (2.2) with
L, 14 ,=>£[],, = / + 0.5 can be judged from the curves in Fig.
3a( />0) .

The suggestion that the lifetime is a cubic function of
the principal quantum number was first made in Ref. 7 with-

•out any indication of the character of the behavior of rk as a
function of the orbital quantum number /. The specific de-
pendence in the form (2.2) with L — /was proposed in Refs.
13-14. In Ref. 14 the relation (2.2) with G(n, I) = 1 was
derived analytically whereas in Ref. 13 the dependence
AnJ~L ~2 was arrived at empirically. In Ref. 15, where the
results of a number of investigations (see Ref. 10) on radia-
tive processes involving hydrogen-like atoms are general-
ized, formulas are derived for the probabilities А(„'~п of
radiative transitions to lower levels with a fixed value of the
orbital quantum number. In the notation of Eq. (2.2)

. -+1 _

"
(I + 1/2) (I + 1) '•

(2.3)

(2.4)

According to Eqs. (2.3) and (2.4) the total probability An>,
has the form of Eq. (2.2) with L 2

1 5 ] = / ( / + l ) and
G[15 i = l + {7T/[4V3(/ + 0.5) ]}. The ordinate axes on the
right in Fig. 3 refer to the straight lines (/ = 0,1,2,3), which
describe the relations (2.3) and (2.4).

Under the conditions of an equilibrium distribution of
the populations of the atoms the probability of radiative de-
cay (An), averaged over an entire set l<n of degenerate
states \n, I) with energy £„, is of interest:

г=о

In the limit of Rydberg states (An} reduces to the following
asymptotic form:13"15

In (l,414ra) n~b, (2.5)

which corrects the previously widely employed empirical
formula of Bethe (An)~n~ 4 5.7

In Ref. 17 E. S. Chang used the technique of direct sum-
mation of Eq. (2.1) over k to establish the lower limit for the
probability Л„., of radiative decay of the state n*, I. Toward
this end, he appeals to the sum rules,22'23 which enabled him
to express Eq. (2.1) over the entire energy spectrum k of the

1,04 -
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FIG. 3. Comparison of calculations of the probability
А„i( of radiative decay according to the formula (2.2)
(solid lines in Fig. 3a) with a quantum mechanical
calculation24 (the symbols A, + , Э, •) for the hydro-
gen atom. The solid curves 1-3 in Fig. 3a are plots of
the functions G( n, I) from Refs. 13, 14, 5, 16, 17, and
18, respectively; the curve 0' describes the function
20<js (see Eq. (3.32)). The dashed curves were con-
structed using the relation (3.26) taking into account
corrections for the singularity of the Coulomb poten-
tial. The ordinate axes on the right refer to the straight
lines / = 0, 1, 2, and 3, constructed according to the
formulas of Ref. 15.

0,2 0,4- 0,6 0,8 1,0

b '

Sov. Phys. Usp. 34 (1), January 1991 Bezuglovefa/.



electrons (discrete plus continuous) in terms of the wave
function | k ) of the starting radiating state k. In the case of a
single electron in a centrally symmetric force field with the
potential U(r) there occur transitions in which the orbital
quantum number of the electron changes by one unit:
~l-*l ± 1. According to Bethe's rule (Ref. 7, see also Ref. 15),
however, downwards transitions to states with 7 = / — 1 oc-
cur with overwhelming probability, so that A „„ >; ̂ A < i~~ ' ~ ' ' .
The criteria for Bethe's rule to be applicable in individual
optical transitions (I, n->], n) were formulated in Refs. 14
and 15. They reduce to the requirement that there be a large
gap between the energy of the states (/, и) and (/, Я). It is
clear from the relations (2.3) and (2. 4), according to which
A <'-'- "/Л i'~'+ n s21, in the total probability^^, transi-
tions into a state with 7 = / — 1 predominate. In the quasi-
classical model of the emission of a photon upwards transi-
tions (including also into the continuum) with 7 = / — 1 are
unlikely (inverse Bethe rule). For this reason, the sum for

n<n
l, n*, 1-1

can be extended to all states n:

The oscillator strengths (2.1) for upwards transitions
change sign,25 so that the second sum in A ^'rj ~ n is less than
zero, and we have the following sequence of estimates:

An
(^} ='̂ - <n*Z | F (r) | n*

/ 4- 1 № 21
2Г+Г

I x

(2.6)

(2.7)

where |и*/) is the wave function of the radiating state («*,/)
and Л is the Laplacian. The derivation of the last equality in
Eq. (2.6) for the probability A <'rj- ° is based on both the
possibility of writing the matrix element (n*l \r\n*l) in three
different forms22 and the fact that the set of radial wave
functions | n*l) is complete. In the case of the hydrogen atom
U(r) = -r~l and F(r)=Fl (/•)•= (/+!)•//(/ + 0.5)
r ~3; the radial integral in Eq. (2.6) is well known,22 so that
лп,™'~1} reduces to the form Eq. (2.2), where
L(n j = / + 0.5 and G[17 j = 77/(2V3). One can see from Fig.
За that the curve 2 corresponding to А ^~'~ u (2.6) is in-
deed the lower limit of the probability of radiative transi-
tions.

The inequality (2.6) indicates (though indirectly) that
there exists a relation between the probability Ля</ of radia-
tive decay and the wave function \n*l) of the radiating state.
This connection is revealed more fully in Refs. 5,18, and 19,
where the total probability of radiative processes is deter-
mined in the quasiclassical limit in terms of the classical
trajectory rcl (f) of the electron. In Ref. 5, in analyzing the
lifetimes N. I. Afanas'eva and P. F. Gruzdev used the
expression for the rate of decay of the angular momentum
L(0 of a radiating electron:26

_, at;
(2.8)

here the symbol (p)^ means that the function p(r) is aver-
aged over the trajectory rct -.

Г-.00

(2.9)

We note that in Eq. (2.8) the characteristic time scale Д(
over which the parameters of the electron orbit change is
significantly longer than the period of the radial motion Tr.
In the process of a radiative transition the absolute magni-
tude L of the orbital angular momentum L changes essen-
tially by — 1 unit (see above, Bethe's rule in the discussion
of Eq. (2.6) ). Then the transition time r = Lt can be found
from Eq. (2.8) by setting A|L| = - 1:

]o)

In the quasiclassical analysis angular momentum L, equal
to (/ +0.5), is assigned to an electron with the orbital
quantum number I.23 For the Coulomb field
{/• ~3)cl =z*n~*L ~3,22 and the expression (2.10) reduces
to the representation (2.2) with L = I + 0.5 and
G[ 5 ] = fl-/2V3~. We also note that the formulas (2.10) are
identical (to within a factor) to the formula (2.6) with
F(r)=Fl (r) (2.7). From here it follows that the function
F, (2.7) determines the rate of decay of the orbital angular
momentum of the electron.

A systematic quasiclassical description of radiative de-
cay processes is given in Refs. 18,19, and 27. The description
is based on Feynman's formalism.28 In this formalism a
quantum system of N charged particles, subject to self-ac-
tion as a result of electromagnetic fluctuations (zero-point
oscillations) of the physical vacuum, is treated as a Hamilto-
nian system. The dynamics of this system is described with
the help of the principle of least action for a complex Hamil-
tonian. Correspondingly, the total energy Ek = ek —
(ifiAk/2) of the atomic system acquires a purely imaginary
correction, owing to the emission of light by the excited
states. In Ref. 1 8 a unique relation between a set of k classical
trajectories and the energy spectrum Ek is established with
the help of multidimensional quantization rules. As a result,
the natural width Ak, being the imaginary part of the total
energy Ek , and the energy ek emerge together as characteris-
tics of only the emitting state k. We emphasize that in this
approach there are no individual transitions between excited
levels, and to determine rk =Ak~

1 it is not necessary to
know the wave functions of all lower-lying states. From the
formal standpoint the energy Ek is the diagonal matrix ele-
ment of a complex Hamiltonian, so that the quasiclassical
computational scheme is highly accurate. The quasiclassical
theory of the radiative lifetime and applications of this theo-
ry are presented in Sec. 3. Here we give the results concern-
ing the calculation of А„, for the Coulomb field: Anl has a
representation of the type (2.2), where the function
G( «,/) = GH (L /n ) is given by the relation (3.18). Figure За
shows GH(p) as a function of the parameter
p = (l +0.5)/и, where />0 (solid curve 3). The reasons
why the deviation of the quasiclassical calculation (curve 3,
in Fig. За) from the quantum-mechanical calculation (the
points in Fig. За) is small are discussed below. The case of
the s series requires a special analysis (Sec. 3.6) and is pre-
sented in Fig. 3b. One can see that the quasiclassical formula
(3.30) with (3.32), which also is of the form (2.2), describes
well (solid curve) the results of the quantum-mechanical
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calculation24 (circles) of Ak for the s states of the hydrogen
atom.

3. SINGLE-CHANNEL THEORY FOR DETERMINING
RADIATIVE LIFETIMES т„

The investigation of serial regularities entails a search
for the analytical properties of the lifetimes as functions of
the position of an energy level within a series. It is convenient
to seek the solution of the problems arising here by analogy
to the quantum-defect theory,'2 since by virtue of the nature
of the effective quantum number л*

i Л

, (3.1)• Ĵr — e.|t 2 2n** ' ~~

the fact that the total energy Ek of the level k is complex
means that the quantum defect// acquires a small imaginary
correction:

i Im |i (e») = в"Г» 1 + z'n*-" -£-}•-£. (3.2)

The relation (3.2) is obtained by regarding the definition
(3.1) as an equation for the imaginary part of Ek.

3.1. Notation and assumptions

We shall describe the serial regularities on the basis of
the formalism of quantization of the radiative width Ak .'

8 In
analyzing real atomic systems we shall confine our attention
to the single-channel (single-electron) approximation
(SCA). Photons are emitted as a result of transitions of one
outer (optical) electron without a change in the state of the
atomic core. Due to the interaction with the core electrons
the optical electron moves in some effective central potential
U(r) which is asymptotically Coulombic U(r)=± — z/r as
r-> oo. An individual term k of the series is characterized by
three quantum numbers k = {m,l,nr}\ azimuthal, orbital,
and radial, respectively. The parameters of the classical orbit
r, of the electron—the energy e, the orbital angular momen-
tum L, the period of the radial motion Tr> and the rotation of
the orbit by an angle Д#г over the period Tr—are all unique-
ly fixed for the excited state k by the potential U(r) and the
Einstein-Brillouin-Keller (EBK) multidimensional quan-
tization rules:29"31

,. 1=0,

(3.3)

St = 2 jj (2e - 2СГен (r))1'2 dr, 5r (в, L) = 2я (в, + -J-) ,

(3.4)

w* = nr + i + 1 — ц ̂  n — ц,.
ЛЛ 95

TT = -~; (3.5)

here Sr is the action for the one-dimensional radial motion of
the electron in a potential Ue(e (3.3); the centrifugal param-
eter L = |L| is equal to /+ 0.5 in the quasiclassical limit
(Langer's correction23 ). In what follows we shall require
several representations for the period Tr which are conven-
ient for analyzing the behavior of the period within a series:

In the expression for Г, the first equality follows from Eq.
(3.5) and the Bohr-Sommerfeld selection rule
Д5,. = 2тгДлг in Eq. (3.4) and the second equality is ob-
tained from the first one by replacing Длл by Дл* + Д^ and
using the relation де/дп* = zzn* ~3 (see Eq. (3.6)).

When the single-channel approximation is applicable
the general relation between Ak and the classical trajectories
of motion assumes the form19

«2 1

(3.7)

(3.8)

here A is the vector potential of self-action. The factor / takes
into account the Fermi statistics of the electrons in the atom
and depends on the type of coupling between the orbital and
spin angular momenta of the electrons in configurations be-
tween which the transition of the optical electron occurs.22

In the case of alkali atoms and ions similar to them 7=1. We
note that the integrand in Eq. (3.8) is a periodic function
(with period T r ) of the variable t. This reduces the average
over the interval Т as Г-» oo to an average over Tr. The
second term A £4) in Eq. (3.7) is of a quantum mechanical
nature; because of this term the probability of radiative de-
cay of the ground and metastable states of the atomic system
is equal to zero.

The relation (3.7) makes it possible to interpret formal-
ly the previously obtained fact that the quantum defect (3.2)
acquires an imaginary part. Comparing Eq. (3.2) and Eq.
(3.6), we obtain

тт (3.9)

(3.6)

In accordance with Eq. (3.8) it turns out that
= Im Д5(гГг)/(2тг). Thus the imaginary part of the

quantum defect is equal to (to within ITT) the complex
change in phase, which increases over the period T, in the
wave function as a result of the interaction of the excited
state k with the zero-point state of the quantum electromag-
netic field. This situation agrees with the role of jj, in quan-
tum mechanics, when the quantum defect acquires an addi-
tional (as compared with the Coulomb case) increase in
phase as a result of the interaction of the optical electron
with the core electrons.12'23

We call attention to an important property of the qua-
siclassical formula (3.7): This formula describes well the
radiative lifetimes for nonsingular potentials, even in the
region of small quantum numbers. Indeed, in this case the
trajectories r, lie in a neighborhood of the minimum of the
potential U(r), where U(r) can be replaced by a quadratic
function. The total action Sat + J — /q, which determines
the dynamics of the electrons, also becomes a quadratic
functional of rr, and for this reason Eq. (3.7) gives the exact
result.28 Thus, for example, for a three-dimensional oscilla-
tor with the potential U(r) = ca2r 2/2 there follows from Eq.
(3.7) the relation
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-Z+ 1,5)— 1,5], (3.10)

which is identical to the quantum-mechanical relation. Ac-
cording to Eq. (3.10) in the ground state ( /= nr = 0) the
quantum correction A [4) (the term 1.5 in brackets) com-
pletely compensates the classical part A £cl) of the radiative
width Ak.

3.2. Leading terms in the expansion of Ak in powers of the
energy E

To expand Eq. (3.7) in a series in powers of £ it is con-
venient to introduce into the integrand the explicit depend-
ence on the energy e. To this end we define a polar coordinate
system (в, r) in the plane of motion of the electron and we
replace the time integration variables (t, /) in Eqs. (3.7) and
(3.8) by radial variables:

where vc is the radial velocity and r{ ( r r ) is the left (right)
turning point. The following fact makes it difficult to deter-
mine the analytical structure of Ak (E). The contours of inte-
gration over the variables r ( r ) (Г-from the left turning
point to the right turning point and back, Г-infinite collec-
tion of Г), appearing in Eqs. (3.7) and (3.8), as well as r[r

depend on E. In order to eliminate this dependence, we shall
transform Г(Г) into cycles C(C) in the planes of the com-
plex variables (r,r)by making a cut connecting the branch
points r}, rr of the analytic function ve (r) (3.11). The cycles
С in the complex planes can be deformed into other contours
Гс so that Гс and Гс would not have points in common and
would not be connected with the turning points. In contrast
to Г, the position of Гс can be fixed when rn -» oo as e -> 0. We
call attention to the fact that when the contours Г and Г are
disconnected it is necessary to pass through the principal
value singularities of the function P ( t ( r ) — t ( r ) ) ~ ' (3.8) at
the points r — r; this leads32 to the appearance of an addi-
tional r-local term A [L) in Eq. (3.7):

= / (Re A ;

dr .-H,; (3.12)

here A j£° is given by a double integral of the type (3.8),
which is taken along the contours Гс and Гс. The latter lie in
the planes of the complex variables r, r, respectively, and
envelop the cut from the left. In finite regions (r, r) all inte-
grands can be expanded in a series in powers of e together
with the velocity vc; this introduces into Ak (3.12) terms of
the type 2cm£m. The coefficients cm depend on the details of
the behavior of the potential near the atomic core. Because of
the long-range Coulomb tail — z/r the double integration
over (r, r) at infinity results in the appearance in A j£]>

(3.12) of a specific term logarithmic in e; this term is deter-
mined only by the turning angle Д#г. Omitting the details of
the proof, we shall give the leading terms in the expansion of
Ak in powers of e~ (и*) ~2:

2я/ G
-lr-^,

* ln ("*

ггг- «ИХ 2 '

Im (л = az2 -jjjj- G.

(3.13)

(3.14)

We note that the relation (3.13) agrees with the representa-
tion (2.2) for the probability of radiative decay of excited
states of a hydrogen atom. The parameter p in Eq. (3.14)
determines whether or not the expansion (3.13) can be con-
tinued from the highly excited states of the given series of
levels to lower states. The critical value я* is determined
from the equality p4(n*r) = G(n*r); for n*>n*r terms
O(p4) in Eq. (3.13) can be neglected. In what follows (see
Sec. 4) we shall construct, based on the relation (3.13), an
extrapolation scheme which will make it possible to obtain in
the single-channel approximation, based on several lower-
lying states of a fixed / series, rk for all terms in the series
right up to the continuum. In this case the parameter C0 for a
slow thermal / electron will determine the cross section for
photorecombination on the corresponding ion core.

In the case of hydrogen-like atoms and ions the result
(3.13) can be made much more accurate (see Ref. 19):

. , 1 рЧпр2 ,•'. , 39 Л

(3.15)

For Keplerian orbits the turning angle A0r = 2-ir,29 and ac-
cording to Eq. (3.14) DI = 1 for all series. We note that the
structure of the logarithmic term in Eq. (3.13) was written
in accordance with Eq. (3.15). We also call attention to the
fact that in Eq. (3.14) the functions G and// (3.9) are equal
to one another to within a factor. In other words, the repre-
sentation (3.13) determines the behavior of the imaginary
part of the quantum defect for small E.

3.3. Low-lying excited states

There exists another (unphysical) value p0~l, when
G(p0) has a simple form. Setting formally in Eq. (3.4)
nr = — 0.5 we obtain Sr = 0. The energy of the electron
e(nr = — 0.5) = £0 is equal to the minimum of the effective
potential Ueff (r0) — min C/eff, and the electron itself, having
reached the bottom of the potential well (7eff, moves in a
circular orbit of radius r0 with the frequency of revolution
v<,0) = L/(2irrl) around the center of force. The left and
right turning points merge with one another and the cut of
the analytic function (3.11) vanishes, so that the probability
A j£l) (3.12) is equal to zero. Rewriting Eq. (3.12) in accor-
dance with the definition (2.9)

Й" (3.16)

r / ч
{°> ~

and setting <p)cl = p(r0) on the circular orbit r=r0, we
obtain

l
(L -4 /3
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In deriving Eq. (3.17) we used the relation
a>r = U"ff(r0) = UQ — 3L2r 0~

4 between the frequency
vr = «,/2тг of the radial motion and the second derivative of
the potential U0 at the bottom of the well; from here follows
the relation Д U ( r 0 ) = co2

r — co2

e. The energy £0 lies below
the energy of the first level of the series e(nr =0), and the
values of the functions at £0 (the index "0" in Eq. (3.17)) is
found by analytic continuation from above. For the Cou-
lomb field fj.=0, p(nr = -0.5) = 1, i.e., GH(p = 1)
= 7T/2V3". We note that the expansion of GH (3.15) can be

continued up to the value p = 1 by choosing appropriately
the coefficient C, in Eq. (3.13). For example, the function
GH, obtained by joining the top (3.13) and bottom (3.17) of
the / series of the hydrogen atom,

4-1)

GH(p) = 1 +0,2p*(lnp»)(l - (3.18)

describes GH for 0</>< 1 to within one-tenth of one percent.
The foregoing example of the vanishing of A j£" (3.16)

models the general situation when the vector A(0 in Eq.
(3.8) becomes a simple г-local function: The radial motion
must be slow compared with the angular motion: ve > vr or
Д#г > 2тг. In this case the trajectory rcl (r) is a spiral with
relatively "frozen" and almost harmonic circular motion
with frequency cae = L/r 2. Operating on the harmonic
time-dependent function exp (ia>et) with the integral opera-
tor from Eq. (3.8) multiplies the function by /V,32 so that
v A ( r ) = ]v -irdU/dr. Since jv ~ve = L /r the probability
Ak (3.7) reduces to (3.16) with Л j£n = 0.

3.4. Criteria for satisfaction of Bethe's rule

Interesting physical consequences can be extracted
from the three equivalent formulations obtained above:

4£>; - o, p = •

(3.19)

Comparing Eq. (3.16) with Eq. (2.6) shows that they are
identical (to within insignificant factors ~1) ifEqs. (3.19)
are satisfied and the quantum-mechanical averages are re-
placed by classical averages (2.9): (k \F\k ) ~ (F)cl (Ref.
23). In other words, Eqs. (3.19) must be regarded as criteria
for satisfaction of Bethe's rules as applied to the total proba-
bilities of radiative transitions. The results of Ref. 16 make it
possible to give the conditions (3.19) a more obvious inter-
pretation: In the quasiclassical limit, when the probability of
downwards transitions in which / changes by — 1 is over-
whelming (Bethe's rule), the emission of light is controlled
by the Franck-Condon principle. The emitted photon with
frequency caph carries away energy equal to the energy differ-
ence ДС/ея- between the initial and final values of U^ at the
transition point r. aph (r) = U(J£ — U^~ " = l/r2 = coe

(see Eq. (3.3)), i.e., in the case when Bethe's rule holds the
angular frequency of the electron motion is equal to the fre-
quency of the emitted photon. The circular motion predomi-
nates over the radial motion in the vicinity of the left turning
point r,, where a>e assumes its maximum value and where
the main advance of the angle Д#г occurs. For this reason
the satisfaction of Eqs. (3.19) is controlled by the spread Дг
of the carriers of the integrands in the classical average
(...}c, around rt. If Ar<^r}, then photon emission is most
likely to occur near /•, at large frequencies. Transitions in the

p

FIG. 4. The ratio of the total probabilities A(

n'~'±l> of radiative transi-
tions with a fixed change in the orbital quantum number / by + 1
(/-/ + 1) or - 1 (/-./- 1) for the potential Ua (3.20). The radial
quantum number n, for the excited state of an /series is plotted along the
abscissa axis; the value of the parameter P, determining the rotation Д0,
of the electron orbit (Д0Г = lirfS), is given on each curve. For the solid
lines/= 3, for the dashed lines/= 4 (top line) and/= 1 (bottom line).

first few n0 terms (~ 1) in the series (/ — 1) make the main
contribution to the sum Ak inEq. (2.1) (k = {l,nr}). In the
opposite case (Дг> /•,) the emission probability and the pho-
ton frequency are distributed comparatively uniformly over
r and a): n0 > 1. The smallness of the parameter P (3.19)
(Bethe's rule does not work) is correlated with the fact that
almost all terms in the series for Ak in Eq. (2.1) are of the
same order of magnitude. Figures 4 and 5 illustrate this re-
sult for the example of the quantum-mechanical calculation
of the total probabilities of radiative transitions А Js.'-/± " in
the case of an electron moving in a force field with the model
potential

(3.20)

0 1 2 3 4

FIG. 5. The photon emission spectrum of the ninth level (nr = 8)ofthep
series for the potential Ua (3.20) for different values of the parameter/3.
The relative probabilities A J,'"'B~

 n/A(

a'~' '' of the radiative transitions
with a fixed upper level (n, = 8, / = 1) are plotted along the ordinate axis.
The area under the curves is normalized to unity.
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The function Ua differs from the Coulomb function in that it
contains a centrifugal term of the type in Eq. (3.3). The
quantity Lcff inEq. (3.20) is the effective centrifugal param-
eter for radial motion; the orbit rotates by the angle
Д#г = 2-rrL / L e f f , irrespective of the energy of the electron.
The points in Fig. 4 give the branching ratio
Wk = A(

k-
1- l)/A (

k

l~l+ u (k = и,) for the first few levels of
the f series ( / = 3 ) and several values of a. The curves in Fig.
5 show the relative contribution of the partial transition
probabilities A £-%>/A 'J-0' for the ninth level (n, = 8) of

the/» series for different /8 ( 3.20) . One can see that, in accor-
dance with Eq. (3. 19), as /? decreases Bethe's rule ceases to
be satisfied (see Fig. 4), and in addition the spectrum of the
light emitted by the atom is broadened at the same time (see
Fig. 5).

Note that the change in the serial number has little ef-
fect on the behavior and vertical position of the curves in Fig.
4. The latter fact can be explained based on the physical
meaning of the representation (3.19) for the probability
A £cl>. We have pointed out that (-A(L}) in Eq. (2.10)
gives the rate of change of the classical angular momentum
of the electron owing to the radiation reaction forces. If A [L)

( 3 . 19 ) is greater than zero, then as the electron moves along
its orbit the value of/ decreases, the transitions /-»/ — 1 are
preferred, and Wk > 1 . In the opposite situation, A j^' < 0, on
the basis of the classical approximation photon emission re-
sults in an increase of /and correspondingly Wk < 1. The rate
A l

k
L> inEq. (3.19) for the potential Ua given inEq. (3.20) is

described by a simple relation of the type of Eq. (3.13),
where G (L) consists of two terms:

1,5 (P2 - 1)].
(3.21)

+ 0,5. (3.22)

У

It is obvious that for Rydberg states the coefficient C0 deter-
mines the efficiency of radiation processes. It is obvious from
Eq. (3.21) that for/? = /?0 = 1/V5 = 0.57 the rate of change
of L changes sign. For/?>jS0 the rate is ( — A £L>) <0, i.e.,
here Wk>\. For£ </?0 the rate is ( - A (

k
L)) > 0 and Wk ~ 1.

One can see from Fig. 4 that the value j80 of the parameter P
is indeed critical for satisfaction of Bethe's rule (curves with
/? = 0.5 and 0.35).

We note that the structure of the emission spectrum in
Fig. 5 agrees well with the results of Refs. 14 and 15. When
downwards transitions with a large change in energy pre-
dominate (/?>0.7) the emission channel in which / de-
creases is preferred (see Fig. 4). If mainly soft photons are
emitted, i.e., transitions between close levels are preferred
(curve with/? = 0.6 in Fig. 5), then Bethe's rule is no longer
satisfied (see Fig. 4).

3.5. Corrections to the quasiclassical formulas

The singularity of the Coulomb potential U = — z/r at
the origin of the coordinate system results in the appearance
of singularities in the integrands Д U( r) and v • A in the repre-
sentations (3.7) and (3.8). In this situation the quasiclassi-
cal averages can differ from the quantum-mechanical aver-
ages so that corrections must be introduced into the classical
Bohr-Sommerfeld quantization scheme. Here we shall em-
ploy a device introduced by Langer, who substantially im-
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proved the accuracy of the quasiclassical formulas by rede-
fining the effective quantum number of the state.

In the investigation of the analytical properties of the
nonlocal vector potential A ( f ) in Eq. (3.8), as before, it is
useful to transfer the contour of integration over ~t into the
complex plane (see Sec. 3.2). It turns out that A separates
into two terms A (t) = Re Ac + As (/•), corresponding to the
first two terms of the formula (3.12):

. = 2Re 2<vAs>c, -

4U i (3.23)

The r-local potential As (t) absorbs the main singularity of
A(r): the term Ac ( t ) , like also A(r), is nonlocal, but it is
finite in the complex region of r near the point r = 0. For this
reason, the classical average (vAc)cl describes well the
quantum-mechanical average. Conversely, the function
/s =v-As(r) in Eq. (3.23) has a r ~3 divergence, so that
</s >cl and </s >q = (k | /s \k > give somewhat different re-
sults:23'33

(Г"3), =2Я2 |

Г '
r = •

L2 (Z,2 — 0,25)-*,

(3.24)

In order to take this fact into account, in Eq. (3.23) {...)C|
must be replaced by (...)q:

(3.25)

The first average in Eq. (3.25) is performed with a bounded
function (v A-vA,), and it can be performed according to
the quasiclassical scheme. The notation L indicates that L in
Eq. (3.23) originates from the Keplerian orbit of the elec-
tron r-t in the variable ~t. In the regular case L = L. We em-
phasize that in the expression (3.25) only the outer quasi-
classical average over t in Eq. (3.8) was corrected for the
singularity; the inner average over t is in no way affected for
the time being, though VU(i) diverges at f = 0. This diffi-
culty is removed by redefining the angular momentum
L-+LC of a single orbit r,-, in Eq. (3.8) so that the average
(v A)c,|Lc is equal to the quantum mechanical average when

v-A is modeled by its /--local singular part v-A s ~r ~3.
Equating (r ~3)cl (where L-»LC) and (r ~3)q from Eq.
(3.24),weobtainLc = [1 - (0.25/L2)]1/3-Z,. The replace-
ment L -»Lc is necessary in order to improve the accuracy of
the WKB approximation with respect to the "inner" vari-
able 'tin A in Eq. (3.8). We note that the standard Langer
correction 1->L = 1+0.5 (Ref. 23) takes into account the
r ~2 singularity of the centrifugal potential and is found
from the requirement that for an arbitrary smooth function
F(r) (F)q = (F)ct.

33 In this connection the quasiclassical
average in Eq. (3.25) over the "outer" variable t can be tak-
en with the standard L; this is reflected in the first term of
Eq. (3.25). Thus

f т ft 1 V/S II ОЙЧL •= L(l — -£2»j , (3.26)

where A £cl) is identical to the previously obtained expres-
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sions (3.13) and (3.18) for a Coulomb field. The factor L/L
multiplying Л Jicl) redefines L-+L for the "inner" variable of
integration/ from the double integral (3.8) into Л £cl)ofEq.
(3.26). One can see from Fig. За the degree (broken curves)
to which the corrections (3.26) to the singularity of the Cou-
lomb potential improve the accuracy of the quasiclassical
formula (3.13) and (3.18).

3.6. Quantization of the radiative width of the s states

In a Coulomb field the s electron passes through the
origin, where the potential and hence also the velocity of the
electron become infinite. Near the nucleus the nonrelativis-
tic approximation is not applicable, so that the double inte-
gralinEq. (3.8) diverges because of the strong singularity of
the acceleration | v = z/r2 at the Coulomb center. However
outside the соте A £cl> in Eq. (3.8) is meaningful, and it pri-
marily determines the dependence of the probability Ak on
the energy of the electron. For this reason, for s states it is
natural to separate from As (e) the divergence in the form of
parameters not defined by the theory and to find these pa-
rameters using a priori information (see below). In order to
regularize As the rectilinear trajectory r (

c*
}(t) of an s elec-

tron must be replaced by a curve rp (?) close to it. This curve
must satisfy the requirement rp (?) -»r £s' (0 as p -»0 (yo is the
regularization parameter) and it should not pass through
the point r = 0. For rp (t) we shall take the orbits rpc (?) of
the altered Coulomb potential Uk (r) — U™ for a fixed class
(/) of functions CA£"; for example, possible functions are
£/•<" = - (z/r) + (p2/2r 2 ) , U™ = - [zr/(r 2+p2)],
etc. Another type of regularization is obtained by giving the
Keplerian orbit a small angular momentum L; here/? = |L|.

These examples have an important feature. For r c (t)
the Keplerian similarity rules for a change in scale
r-»rs = 8r of the spatial coordinate with a simultaneous re-
definition of the regularization parameter/? are satisfied:

RV2,, (3.27)

The relations (3.27) make it possible to find from the orbit
гр&Се of the potential U™ both the solution
r

p,e (f) = <5~ 1РРе.Се(*в) °f Newton's equation for the poten-
tial Up* and the main dynamic characteristics of the trajec-
tories in this potential. From Eq. (3.27) and Newton's equa-
tions there follows the admissible class of functions Uin (r)
which regulate the Coulomb potential and preserve Kepler's
laws (3.27):

7T(l) /,.\ __. z TjW /r\ ». (-1 T 0 \UP (r) > T"> UP v) „_,- г IJ./O)
71—>OO ' P—*0 '

We note that according to the integral representation (3.8),
where -V£/= (d2/dt2)r(t), to find Л <c l ) (e,p) it is suffi-
cient to know only the trajectories rp (?). For an orbit of the
chosen type \rp | >0, so that the quantum part Л <ч ) in Eq.
£3.7) is identically equal to zero because of the inequality
Д c/^ (r) === QTTZO (r j , so tnat ^4S (f) =л s (£) (d is the
three-dimensional Dirac 6-function).

Using the similarity rules (3.27) in the formula (3.8)
gives the relation A <cl)(£,p) = <$25Л i^(8~ l£,8l/2p). This

reduce the number of variables on which As depends:

AS (e«) ̂  P"5 A s°" (P2en, 1). (3.29)

It is clear that the problem of finding the lifetime of the s
states reduces to an analysis of the dependence of A s

(cl) in Eq.
(3.29) on the energy of the Rydberg electron (р2£„ -»0) fora
fixed potential Up

n
= r (r), which as r-* со decreases in the

manner of a Coulomb potential (3.28). The expansion
(3.13) obtained above completely determines the structure
of the singular terms for s electrons. The substitution
£n ->р2£„ in Eq. (3.29) corresponds to the transformation
и -»n/p in Eq. (3.13), so that for the hydrogen atom

Inp2

•& . (з.зо)

The values of the constants C0 and Ct depend on the specific
form of the function U(

p'=,. It is obvious that the two param-
eters C0 = C0/p2 and С, = С, + (1п/э2)/5 diverge. It is
reasonable to prescribe the nonsingular terms in the proba-
bility As (е„) with the help of the terms of the function
GH/L2 in Eq. (3.15) with |L| = 0.5 which correspond to
Eq. (3.30):

Inn 2

0(
n*

The fact that the radial motion of s electrons can be de-
scribed quasiclassically with the help of the effective poten-
tial UeS = U+ (L 2/2r 2) with L = 0.5 (Langer's correc-
tion) has already been mentioned above. In the case of
nonsingular potentials this explains the fact that the
AL = 05(£n) =Аа(е„), which is easy to demonstrate for the
example of a three-dimensional oscillator (3.10), if the co-
factor in the brackets is rewritten in the form 2nr + L — 0.5.
Including in Eq. (3.30) the regular terms (3.31) with
L = 0.5 models the situation of regular force fields; the sin-
gularity of the Coulomb potential is reflected in Eq. (3.30)
by the presence of the first three terms with constants C0 ,
which cannot be determined on the basis of the nonrelati vis-
tic approximation.

To find their values we shall use the fact that the 2s state
of the hydrogen atom is metastable (As (n = 2) = 0). This
makes it possible to apply the condition for a minimum
dAs/dp(n = 2) = 0 to the imaginary part As of the total en-
ergy E. (3.1).

The state with n = 2 is preferable over the ground state
because it is closer to the Rydberg levels. Equating the deriv-
ative of the function Gs given in Eq. (3.30) with respect top
for и = 2 to zero gives C0 = C0/p2 = l/5«2 = 0.05. The
other unknown C, in Eq. (3.30) is specified by the condition
As(n = 2) =0, so that

G*(P) = -ЯГ [ d + 16P2 <ln P2) (! - PV

makes it possible, by selecting the scale factor 8 = p ~1/2, to

p = - - . (3.32)

The parameter/; for я>2 is small, and terms of order O(p4)
can be dropped. In Fig. 3b the quasiclassical function 20GS

given by Eq. (3.32) (solid curve) is compared with its values
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(20/a)n3As (circles) obtained from a quantum-mechanical
calculation of the radiative width As for the s states of the
hydrogen atom (Z = 1).

4. EXTRAPOLATION SCHEMES FOR FINDING т„ OF HIGHLY
EXCITED STATES OF ATOMS AND IONS

The Rydberg states of atoms, ions, and molecules are of
great interest in connection with the development of laser
spectroscopy as well as for practical applications, such as
isotope separation, thermonuclear fusion, and detection of
infrared and microwave radiation. For a number of rea-
sons,6'34 however, the existing theoretical and experimental
methods for studying atomic systems cannot give reliable
information about the characteristics of highly excited
states. In particular, there are virtually no data on the life-
times of the Rydberg levels of atoms and ions. The lifetimes
rk of states with principal quantum number up to 20 are
known only for the helium atom and for atoms of alkali met-
als.35'36 As a result, it has been suggested in the scientific
literature6'37^10 that different extrapolation schemes be em-
ployed to estimate the lifetimes of states with large n. Some
analytical dependence rk =/c(«*) is selected to describe
experimentally (or theoretically) the obtained values of rk

within a fixed series of levels. The adjustable parameters C,
appearing in /c, are determined for the lower states, after
which/c (л*) is extrapolated to the higher states of the series
which have not been studied.

Practically all schemes mentioned are empirical, since
the dependences т(п*) in them are obtained in a formal
manner without rigorous proof of the analytical structure of
/c. The functional form has been determined only in the
simplest single-channel approximation (see Sec. 3.2). In
other cases some arbitrariness must be admitted in choosing
/c. As a result, both under the conditions of the single-chan-
nel approximation39 and in approximations employing the
multichannel quantum-defect theory for calculating rk

(Refs. 37 and 40) the term logarithmic in the energy
~(1пл*2)/л*2 (seeEq. (3.13)), which plays an important
role for relatively weakly radiating states, was "lost." Here
we shall demonstrate two extrapolation schemes. The first
scheme27 has been rigorously justified. It requires that the
single-channel approximation be satisfied and it makes it
possible to obtain the lifetimes of the Rydberg states right up
to the continuum (Sec. 4.1). The second scheme6'38 supple-
ments the first scheme under conditions when the single-
channel approximation breaks down, it is empirical (see Sec.
4.2) and it is based on an analysis of a large volume of data on

4.1. Single-channel approximation

In this case the serial regularities are described by the
relation (3.13), which we shall represent in the form (see
Eq. (3.6))

«2*

/ + 0,5)»
(In pa) Pi

„«(!_ p*)5

(4.1)

The coefficient a (see Eq. (2.2)) is equal to L18- 1_0VO s" \
and the parameters satisfy C0, = /• C0il and Dl =/•/),. In
Eq. (4.1) terms of order O(p4) have been dropped; the fac-
tor (1 + дц/дп*) ~' which is not significant under the con-

ditions of the single-channel approximation (see below), has
also been dropped. The value ofp determines whether or not
terms of order O(p4) can be dropped in the expansion
(3.13). The applicability of Eq. (4.1) is determined exclu-
sively by the applicability of the single-channel approxima-
tion for the given quantum state k. According to Refs. 18 and
19 the probability Ak is an individual characteristic of the
excited level. For this reason the quantity rk is not sensitive
to interconfigurational interaction, which can perturb the
position of lower (or higher) states. A practical criterion for
the single-particle approximation and thereby Eq. (4.1) to
be satisfied is that the quantum defect/г, given in Eq. (3.5),
must depend continuously on the energy e along the series.41

According to Eq. (3.13) the lifetime rk is proportional
to the period Tr given in Eq. (3.6). To two neighboring lev-
els in a series there corresponds a unique change in the radial
quantum number (Диг = 1). The period Tr is equal to
2ir/kek, where kek is the energy splitting between the state
k and the nearest upper state, so that rfc ~ A£^~ '. The corre-
lation between the serial dependences of rk and Aefc (Ref. 6)
can be traced in the experimental data (see Figs. I and 2 and
Sec. 4.2). We note that when the single-particle approxima-
tion holds the last equality for Tr in Eq. (3.6) predicts that
Tr and rk are mainly cubic functions of я*.

The expansion (4.1) contains three free parameters:
C0, and D,. Their values are found by the method of least
squares, starting from the values of r for several states; this
makes it possible to reconstruct from Eq. (4.1) the radiative
lifetimes of all higher levels of the series. The possibilities of
such extrapolation can be judged from the curves in Fig. 6.
The dots were constructed by calculating rk for the excited
states of atoms of alkali metals,36 for which the criterion of
the single-channel approximation is satisfied. Initially the
extrapolation (circles 1) was performed based on the first
four levels of the series. The importance of monitoring
(through the parameter/») the validity of dropping the term
of order O(p4) in Eq. (3.13) for the lower states can be seen
for the example of the D series. The values of
p = (/ +0.5)/и* are given next to the first few curves. The
deviations of the extrapolated values of rk from the true val-
ues decrease significantly, if the extrapolation is performed
without the first few states with /?>0.87 (circles 2). The
figure also shows the experimental data of Ref. 36 (crosses,
first four levels). It is clear that the allowed error in rk (7p
level of Na) strongly affects the accuracy of the predicted
lifetimes (crosses following the fourth cross).

The coefficients C0 and Z>, = 7Dl in Eq. (4.1) contain
useful physical information about the scattering of slow
thermal electrons by the corresponding ion core. The param-
eter/?, inEq. (3.14) makes it possible to estimate the classi-
cal scattering angle Qr (ek -»0), and the value of C0 can be
related with the partial cross section for radiative recombi-
nation a <". The situation arising here is typical for the quan-
tum-defect theory, when a number of important properties
of continuum states are determined from the spectroscopic
data.12 Indeed, the product Ak Tr, rewritten in the form

W(l) = A*Tt =;2яои'|Л7оХ* + 0,5)-*.+ О (р2)],
p2 = _2(J+'0,5)2

6iz-2, (4.2)

gives the probability W{n of the emission of a photon by a
Rydberg/-electron (e, <0) during the period Гг. The proba-
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FIG. 6. Extrapolation of the radiative lifetimes rk from the lower levels
of a series to highly excited states for alkali atoms. The extrapolation is
performed with the help of the relation (4.1). The solid curves show the
values of rk from Ref. 36; for the circles (1) the first four values of Tk for
the states with radial quantum number nr = 0-3 were taken as the initial
values; for the circles (2) and crosses (experiment) the values for the
states with nr = 1—4 were taken as the starting values for the extrapola-
tion.

1,5 1дя*

TABLE I. The values of the coefficients C0, D,, and C, from the formula (4.1) for alkali-metal
atoms and the helium atom. The error shown in parentheses refers to the last digit.

a)

Atom

Li

Na

К

Rb

Cs

Series:

a
Ci

^0D]
C,
Г0

Ci

&c,

Sic,

s

0,0251(1)
0,34(5)

—0,11(3)
0,01561 (2)

—0,19(2)
-0,28(1)

0,0174(2)
0,1(1)

—0,17(5)
0,0171(1)

-0,12(3)
—0,29(2)

0,0175(1)
—0,11(3)
—0,31 (2)

p

0,069(1)
0,81(2)
0,1(1)
0,0144(2)
0,10(2)
0,217(5)
0,051(1)
0,48(5)
0,19(1)
0,075(2)
0,9(1)
0,28(3)
0,061(1)
0,86(5)
0,28(2)

d

1,12(1)
1,1(5)
0,05(9)
0,567(1)
0,66(4)
0,39(1)
0,18(2)
0,19(9)

-0,1(4)
0,51 (4)
1,3(3)

-0,6(1)
0,822 (3)
0,1(1)

—0,80(3)

f

1,0088(4)
0,94(1)
0,094(3)
l j [0380 (2)
1,00(1)
0,087 (1)
1,290(2)
1,1(1)

—0,23 (2)
1,491(4)
1,1(2)

—0,26 (4)
1,6(1)

—2(2)
-1,0(6)

b)

Helium
atom

is
'P
!Q

!F
3S
зр
3D
зр

С.

0,02344(2)
3,224(2)
0,976(2)
1,009(1)
0,0271 (2)
0,153(4)
1,183(1)
1,017(5)

6,

0,96(2)
0,8(2)
0,90(7)
0,88(5)
0,8(1)
0,9(4)
1,07(3)
1,1(2)

С,

0,21(1)
-0,58(4)

0,17(2)
0,07(1)
0,13(7)

-0,1(2)
-0,001 (7)

0,12(4)
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bility Wu\ continued with the help of Eq. (4.2) to positive
energies e, = v2/2, corresponds to a collision of the /-elec-
tron with the core and determines23 the cross section
a <;> = [ir(2l+ l)/u2] Win for the radiative losses of the
electron. Thus

4° = <M».4nV,[w« (I + 0.5)]-1; v < z (I + 0,5)-*. (4.3)

The restriction in Eq. (4.3) on the electron velocity follows
from the requirement (4.2) \p\ < 1. The relations (4.2) and
(4.3) also follow from the interpretation (3.9) of the prod-
uct A k Tr = 4тт" Im fi as the imaginary part of the quantum
defect. According to Seaton12 the defect ц, continued be-
yond the ionization limit, is proportional to the scattering
phase of a slow thermal electron: 8, = irfi. The total proba-
bility W (

r

l } of inelastic processes (in our case radiative) for
the /-wave can be expressed in terms of the eigenvalues of the
scattering matrix S,:23 = 1 - |5,| where
S, = ехр(21<5{и)) is given by the total scattering phase. Obvi-
ously, \S, |2 = exp( - 4я- Im S, ), and = 1 - exp
( — Ak Tr ) ~AkTr, which agrees with Ref. 4.2.

The three numbers C0 , and Dl in the expansion (4. 1 )
contain complete information about the radiative constants
of all levels in a given series. For the first four series of alkali-
metal atoms and the helium atom the values of the coeffi-
cients C01 and Д, obtained based on the data of Refs. 35and
36, are given in Table I. Here the computational data on т
from Refs. 35 and 36 are described by Eq. (4.1) to within
5%. We recall that for the hydrogen atom C0 = 1 (see Eqs.

£3.13) and (3.15)), except for s states for which
C0 = 0.0125 (see Eqs. (3.13) and (3.32)). It is interesting
that the emission of radiation by a Rydberg / electron de-
creases significantly when electrons with the same orbital
quantum number / appear in the subshells of the core which
are closest to it.

The example of alkali atoms shows that the formula
(3.13) is applicable over a wide range. This is connected
with the fact that for s, p, and d states the parameter p is
small, even for the first few levels. Orbitals with large angu-
lar momentum (/> 3), however, usually correspond to hy-
drogen-like states, for which, according to Eqs. (3.15) and
(3.18), the terms O(p4) are not important.

4.2. Power-law serial dependences (SD)

These refer to empirical schemes and are based on the
possibility of describing the extensive experimental and
computational data on rk with the help of the relations (1.1)
and (1.2).38'42 The dependence (1.1) can be used to estimate
the lifetimes of Rydberg states by extrapolating it to states
that have not been studied. In order that the estimates be
reliable it is necessary to know 1) the constants r0, and a, as
accurately as possible and 2) the range of values of и* in
which extrapolation is valid. The lowest states often do not
conform to the serial dependences (see the plots for Hel in
Fig. 7), so that information is required about rk for several
of the low states in the series, where the values of TO , and a,
are determined by the method of least squares. We propose

lg (r, ns) Ig (ДЕ, cm-i)

Net
Na

-2

FIG. 7. The serial behavior of the radiative lifetimes ( т ) and energy
splittings (Д£) as functions of the effective principal quantum

In number (n*) for a number of atoms. In each series a correspon-
- S,0 dence is observed between the form of the plots of the dependences

Г3.5-

Ba
-1,5

-2,0

12

0,6 0,8 lg/7
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finding the upper energy limit for the serial dependences by
analyzing the spectroscopic data. It was pointed out above
(Sec. 4.1) that the behavior of rk is correlated with the be-
havior of Д^д. as a function of л*, where Д^ is the energy gap
between close-lying levels in the series: k and (k + 1). Anal-
ysis of a large number of series of excited states of group I, II,
III, and VIII atoms revealed the existence of a dependence6

related with Eq. (1.1),

= Е0 (4.4)

with characteristic constants E0 and /3 for each series of
states. By virtue of the formulas (3.13) and (3.6)
rk~Gb.£k~\ i.e., the serial dependences (4.4) and (1.1)
should be consistent with one another. Some typical exam-
ples of such a correspondence are presented in Figs. 7 and 8.
The plots of the functions (1.1) and (4.4) on a logarithmic
scale are straight lines; this is observed in Fig. 7 for the n2D
series of Na. For the «3S series of Hel it is obvious that the и*
dependence of log т corrsponds to that of log ДЕ for all val-
ues of n*, though at и = 7 both dependences become power-
law functions. For the пгР3/2 series of In and the w'D2 series
of Bal there is a local perturbation of the upper states with
и = 10 and n = 25, respectively. But even in this case the
curves of rk and Vefc are correlated. Thus the form of the plot
of Д£(. determines the region into which the serial depend-
ence (1.1) can be extrapolated.

We shall formulate a method for estimating the radia-
tive lifetimes of the Rydberg states. A plot of log rk as a
function of log n* is constructed for the most reliable values
of rk for the lower levels and a plot of log ДеЛ as a function of

log n* is constructed next to it. The energy splitting between
the neighboring states kek is assigned to the upper state. The
region where the serial dependence (1.1) is valid (rectilinear
sections) is determined by comparing the plots. The con-
stants TOJ and a, (1.1) are determined by the method of least
squares from the points in this section. The plot of log kek as
a function of log n* gives the range of values of и* to which
the extrapolation of the serial dependence (1.1) is valid.

The foregoing procedure was employed in Ref. 43 to
estimate rk for the Rydberg states of the helium atom
(n = 9-22). Values of the lifetimes of 40 states of the n'P,
n'D, and w3D series were obtained. Comparing our estimates
with later calculations35 showed that the estimate is accu-
rate to within 10%. The method can be recommended for
the middle Rydberg states (n < 20).

We note that for the unperturbed single-electron terms
the lifetimes are described by the dependence (3.13):

+ z2n*~3 ЗЦ . (4.5)
(76 /

As n* increases the factor r3 becomes constant. The devi-
ation of Eq. (4.5) from a cubic law is connected with
changes in r3 only at the beginning of the series. The break-
down of the cubic dependence for Rydberg states could be
caused by an energetically extended perturbation due to
autoionization states and the continuum. In this case the
power-law dependence (1.1) "corrects" the cubic depend-
ence in the sense of giving the best approximation of the
function T k ( r i * ) . An example of an alternative description
(see Table Ib) with the help of Eq. (1.1) for the helium atom
is given in Ref. 35.

ig(r .
Cd Hg

ns 1д(Д£, cm-1)

2,5-

2,0-

1,5--3,0

Experiment
Л A 7 Т В

a • в и а
Cdl nO

13

0,4 0,6 0,8 lg/г*
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FIG. 8. The same as for Fig. 7. The systematic error can be seen to increase
in some experimental results for cadmium and mercury as n* increases.
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TABLE II. The value of the constants T0i, (ns) and a, from the formula (1.1) for group II and
VIII atoms. The last column gives the region of applicability of the power-law dependence (1.1).

Atom

МЙ1
Cat
Sri
Znl

Cal
Hgl
Nel

Series

nis

nls
nl¥
nlP
n3s
n3D
n»D

ns
ns
ns'
np
np
np
np
rep
rep'

r

3/2]
3/2]
1/2
1,2
5/2
3/2
3/2
.1/2
[3/2

2

1

0
1

2

I

0

]l

V'ns

4,22(3)
0,54(1)
0,430(8)
0,213(7)
0,667(12)
0,315(9)
0,266(5)
0,409(4)
1,53(1)
0,340(7)
1,64(2)
1,50(3)
1,18(2)
1,07(1)
0,670(8)
0,510(5)
0,860(7)

-,

2,62(2)
3,11(4)
2,91(2)
3,55(5)
3,10(6)
2,80(5)
3,00(5)
3,40(5)
3
3
3
4,10(9)
4,10(8)
4,10(9)
4,3(1)
4,4(1)
4,30(9)

n

4—15
7—14
5—11
5—9
6—11
4—13
5—10
8—20
5—12
6—10
5—10
4-8
4-8
4—9
3—9
3—9
3-6

Atom

Arl

Series

rep' Г3/2]г
nd fl/2"
nd
nd
nd

7/2"
n
4

7/2b
3/21,

nd [5/2 2

nd [5/2]3
nd'
nd'
nd'
ref
ns'
np
np
np
np
np
np

[5/2
[3/2
[3/2

[1/2
1/2:
5/2
5/2"
3/2:
3/2:
1/2]

Js
Ь
]i

i

3

1
2

0

V»

1,38(1)
0,450(5)
0,590(6)
0,430(3)
0,140(1)
0,550(6)
0,590(7)
0,490(4)
0,330(5)
0,180(1)
1,08(2)
0,520(9)
3,47(3)
3,47(3)
4,58(5)
2,95(3)
2,24(3)
1,82(2)

a(

4,0(1)
3,4(1)
3,30(9)
3,50(8)
3,40(9)
3,30(9)
3,30 (8)
3,40(7)
3,60(6)
3,30(9)
3,0(1)

.2,90(9)
2,90(8)
2,8(1)
2,90(9)
3,1(1)
3,20(8)
3,1 (2)

n

4—8
5—10
6—9
5—9
5—9
3-9
5-9
3—10
5—10
7—10
4—8
5—9
6—8
5-8
5-8
5—8
5—8
5-8

5. RECOMMENDED VALUES OF THE RADIATIVE LIFETIMES
OF THE EXCITED STATES OF GROUP IA, II, AND VIM ATOMS

An important problem in atomic spectroscopy is to con-
struct a data base of standard values of the radiative life-
times. Work on such a data base was begun in Ref. 38. Tables
of recommended values of rk for resonance and metastable
levels of a number of atoms appeared later.39 Here we shall
continue the work of collecting expertly evaluated informa-
tion about rk for all atoms of the periodic system.

Values of rk for group I atoms are presented in Ref. 38.
Subsequent publications36 confirmed that the data given in
Ref. 38, including the data based on analysis of serial distri-
butions of the radiative lifetimes, are reliable (see Sec. 4.2).
The values of rk obtained in Refs. 36 and 37 for alkali and
helium atoms are described well by the single-electron de-
pendences (4.1). The first levels of the D series of Na, Li, and
Cs are exceptions; for them the parameter/» is close to one
(see Fig. 7). The values of the coefficients C0, and Dl from
Eq. (4.1) are given in Table I. We recall that C0 determines
the partial photorecombination cross section (4.3).

Table II gives the recommended values of the radiative
lifetimes in the form of the constants in the power-law de-
pendences (1.1). We decided to describe the data on rk in
this form because, first, it can be used to estimate rapidly rk

for states which have not been studied and, second, it is con-
venient for constructing a computerized data base of the ra-
diative lifetimes. The constants TOJ and a, for the serial de-
pendence (1.1) were calculated from the values of т (rec' for
each state of the series which were obtained by statistical
analysis of all currently published values of rk for a given
state. The quantities т £гес) were taken to be the weighted-
mean values

m

r1^", (5.1)

for m of the works considered. The results of measurements
(calculations) of rk were ignored if they differed from the
mean value obtained by more than 2cr (a is the standard
deviation). The values of rk presented without an error as
well as the earliest results obtained by the same authors were
ignored. Finally, rk were also not included in the average
(5.1) if they did not correspond to the dependence (1.1)

constructed from data of other works and confirmed by the
power-law behavior of the function &£k(n*) (see Eq.
(4.4)).

CONCLUSIONS

The problems of systematizing the radiative lifetimes
rk, together with experimental investigations, are largely
connected with the development of theoretical ideas about
quantum radiative decay processes. The nonlocal Hamilto-
nian formalism for describing the dynamics of radiating
atomic systems and the resultant procedure for quantizing
the radiative width may in the future be a suitable technical
tool for calculating the values of rk. In this connection it
would be useful to construct a systematic multichannel theo-
ry for determining rk. Analysis of quantum radiation fric-
tion forces in the irregular part of the spectrum of complex
systems, when the interatomic interaction causes the classi-
cal trajectories of the motion to become chaotic,30 should
yield interesting results. An explanation of the fact that the
lifetimes are consistently observed to have power-law depen-
dences could be found here. In order to use these depen-
dences to estimate the lifetimes of the Rydberg states it is
necessary to have accurate information about the values of
rk for the lower states. This in turn will stimulate new ex-
perimental investigations using modern methods.

This is a good point at which to outline briefly the cur-
rent status of the problem of determining the most reliable
values of the radiative lifetimes of the excited states of atoms.
As we have already mentioned above, the construction of
complete systematic tables of recommended values was be-
gun by one of the authors of the review of Ref. 38, which is
devoted to all group I atoms. This work was followed by
publications on helium,43 group IIA atoms (Be, Mg, Ca, Sr,
Ba),44 and group IIB atoms (Zn, Cd, and Hg).45 In 1984
two papers by Theodosiou on helium35 and alkali-metal
atoms (Li, Na, K, Rb, and Cs)36 appeared; in these works
the values of rk for all states (including f) up to и = 18-21
were calculated theoretically with high accuracy. Compar-
ing the values given in Refs. 35 and 36 with the most reliable
experimental results allows us to recommend them as the
most reliable values. The handbook of A. A. Radtsig and B.
M. Smirnov was published in 1986.39 In it the values of the
radiative lifetimes of resonance, metastable, and some lower
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states of 73 atoms are presented. In 1990 a review with a
table of recommended values of rk for all inert gas atoms
(He, Ne, Ar, Kr, and Xe) was published.50 Reviews on rk

for group III atoms (Sc, Y, La, Lu, B, Al, Ga, In, and Tl)
and group VIB atoms (O, S, Se, and Те) is in press. Reviews
on rk for group IV, V, and VII, iron-group, and lanthanide-
group atoms will be published shortly. The publication of
the latter reviews will complete the construction, to a first
approximation, of complete systematic tables of the radia-
tive lifetimes for all atoms.

We thank Yu. A. Tolmachev, A. I. Vasil'ev, E. A. So-
lov'ev, and V. P. Prosikhin for numerous discussions in
which many aspects of the material presented in this review
were elucidated.
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