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Various scenarios for self-organization in a wide range of nonequilibrium physical, chemical, and
biological systems are examined. It is stressed that in many systems small-amplitude dissipative
structures never form: At the instant at which the homogeneous state stratifies, large-amplitude
dissipative structures appear abruptly. These large-amplitude structures are striations, spots, or
blobs. Methods for the construction of such dissipative structures and for studying their stability
are discussed for an arbitrary departure of the system from equilibrium. Many self-organization
scenarios do not involve an instability of the dissipative structures of a given type and are instead
determined by a local breakdown effect. In real systems, self-organization is determined by the
spontaneous appearance and subsequent evolution of autosolitons (localized dissipative
structures). The conditions under which turbulence arises in such systems in the absence of a flow
are discussed. This turbulence is a complicated picture of the random appearance and
disappearance of interacting autosolitons in various parts of the system. In gaseous and
semiconductor plasmas, dissipative structures can arise in the form of numerous current
filaments or electric-field domains. Their formation is unrelated to the shape of the current-
voltage characteristic of the system. There is a discussion of certain self-organization phenomena
in systems in which static dissipative structures may be accompanied by pulsating dissipative
structures and autowaves. Corresponding effects in systems with flows (or fluxes of material) are
also discussed. The general results of self-organization theory are used to explain the properties of
the dissipative structures which have been observed and studied in numerical and experimental
studies of physical systems of various types in recent years.

I. INTRODUCTION
Among the most vivid phenomena in nonlinear physics

is the spontaneous or stimulated formation of spatially inho-
mogeneous states in nonequilibrium systems (Refs. 1-25,
for example). Such states are presently called "dissipative
structures" (DSs) or "autostructures."" As the excitation
level is varied, the nature of the DS changes, either smoothly
or abruptly. Prigogine suggested the name "self-organiza-
tion" for the spontaneous formation and evolution of DSs.2)

Self-organization is associated with a manifestation of col-
lective (or cooperative) effects which occur in nonequilibri-
um systems. Haken has suggested the name "synergetics"
for this field of science.5'6

Striations in a gas discharge are a classic example of the
formation and evolution of DSs.14 The formation of ioniza-
tion striations was apparently observed by Michael Faraday
back in the 19th century.14b Another classic example of self-
organization is the formation and evolution of Benard cells
in a viscous liquid heated from below.3'4 Self-organization is
observed in many nonequilibrium systems, differing com-
pletely in nature, including hydrodynamic systems,2 chemi-
cal and biological systems,3'8'10"12'16'17 semiconductor
plasmas,31'32 semiconductor33'35 and gas-discharge struc-
tures,14'15'36'37 composite superconductors,19'38 and nonlin-
ear optical media.41 Self-organization is also observed in the
propagation of flame fronts,13'20 during the melting and

crystallization of solids,39 and in chemical reactions at sur-
faces.40

In ideally homogeneous distributed media, the sponta-
neous formation of DSs stems from a stratification of their
homogeneous state, i.e., from the growth of fluctuations
with some particular wave number k0 ̂ 0. In the active dis-
tributed media which we will be discussing in this review, the
stratification occurs because a positive feedback operates
through one of the parameters—the "activator"—and leads
to a growth of this activator. The growth of the activator is
controlled by another parameter of the system—the "inhibi-
tor"—for which there is a negative feedback.3' Both the ac-
tivation processes and the inhibition processes are of course
completely different in nature in different physical, chemi-
cal, and biological active systems (§§1, 7, 8).

Steady-state DSs usually form in active distributed me-
dia in which the inhibition process is of longer range than the
activation process.3'5'8'11'12 In other words, in these media
the length scale of the variation of the inhibitor, L, is much
larger than the length scale of the variation of the activator,
/. The homogeneous state becomes stratified because the re-
lation L > / prevents the inhibitor from effectively suppress-
ing a local growth of the activator in a region of size
dx(!L)l/2 (Subsection 1.1).

That a flame front might stratify, essentially because of
the relation £>/, was pointed out back in 1944 by Zel'do-
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vich.43 In 1952, Turing analyzed the condition for the strati-
fication of a homogeneous state on the basis of an axiomatic
model of morphogenesis.44 Analysis of that model leads to
the general conclusion that it becomes an easier matter to
satisfy the stratification condition as the quantity e = I /L
becomes smaller (Subsection 1.1). It later became clear that
it was specifically the combination of a short-range activa-
tion process and a long-range inhibition process—i.e., the
condition l^L—which was pertinent to the formation of
DSs in a wide range of active distributed media, including
gas discharges,45'46 several chemical and biological sys-
tems,3>5'8'"'12 hot semiconductor plasmas and gaseous plas-
mas,47'51 homogeneous semiconductors and semiconductor
structures (transistor, p-n, p-i-n, etc., struct-
ures ),33b'34>35'52~58 nonequilibrium gas mixtures,59'61 and the
ionospheric F layer.62

Various approaches have now been developed for ana-
lyzing the evolution of small-amplitude DSs. Under certain
condition (Subsection 1.4), such structures may form near
the point at which the homogeneous state of a system strati-
fies. The goal of these approaches is to make use of the small
amplitude of the DSs to construct some equations simpler
than the original equations for describing the self-organiza-
tion processes.

1.1. THEORY OF SMALL-AMPLITUDE DISSIPATIVE
STRUCTURES

It was back in 1944 that Landau derived an equation
describing the appearance of small-amplitude DSs in a mov-
ing viscous liquid at Reynolds numbers near the critical val-
ue.1 Simplified equations were subsequently derived for de-
scribing the properties of small-amplitude DSs in various
systems, including hydrodynamic systems, by many investi-
gators, including Kuramoto and Tsuzuki,63 Nitzan and Or-
toleva,64 Sivashinsky,13 Newell and Whitehead,65 Segel,66

Siggia and Zippelius,67 Swift and Hohemberg,68 Gertsberg
and Sivashinsky,69 and Malomed.70 Haken proposed a
method by which a certain choice of "order parameter" of
the system and the use of a "subordination principle" of de-
caying modes make it possible to derive equations for the
evolution of this order parameter: so-called generalized
Ginzburg-Landau equations.5'6 It follows from an analysis
of these and many other equations describing small-ampli-
tude DSs that the formation and evolution of DSs are related
to a fluctuational restructuring of these systems, i.e., to the
growth of fluctuations of a certain type at certain critical
excitation levels of the system. In other words, fluctuations
are assigned a decisive role in the selection of one of the
possible stable states of the system:3'9 "an ordering through
fluctuations."3 A picture of self-organization drawn from
an analysis of the various equations describing small-ampli-
tude DSs is presented in monographs by Nicolis and Prigo-
gine3 and Haken5'6 and also in many reviews (e.g., Refs. 9,
13,71-74).

As has already been mentioned, the methods used to
derive equations describing the properties of small-ampli-
tude DSs rest on the assumption that at excitation levels
above but close to the critical level (which corresponds to
the stratification point of the homogeneous state, A=AC)
the amplitude of the DSs is small to the extent that the exci-
tation level is close to the critical level. In other words, it is
small to the extent that the quantity /3 = (A — Ac )/Ac 41 is

small (Refs. 1,3,5,6,9,13, and 63-74). This assumption, as
natural as it might seem, frequently turns out to be unjusti-
fied. In many real active distributed media the stratification
of the homogeneous state of the medium results in the abrupt
appearance—i.e., right at the point A = Ac—of large-ampli-
tude DSs, whose magnitude does not depend on the distance
above the critical excitation level (the value of (3) and is
determined instead by the nonlinearities of the system. This
effect stems directly from the long-range nature of the inhi-
bition in comparison with the activation, i.e., from the small
value of the quantity £ = l/L. Large-amplitude DSs appear
abruptly at the point A =AC because the condition L^>1
causes an avalanche growth of the activator in the course of
the stratification, in certain regions of the system of size
d^ (IL) 1/2<Z,. In certain systems, the amplitude of the DSs
which form is higher, the smaller the quantity e = l/L( Sub-
section 1.5.2).

1.2. THEORY OF LARGE-AMPLITUDE DISSIPATIVE
STRUCTURES IN ACTIVE DISTRIBUTED MEDIA

This theory was derived in Refs. 75-77 by the authors of
the present review. It has been used to study the shape, sta-
bility, and evolution of various types of large-amplitude
DSs. k does not make use of the assumption that the excita-
tion is only slightly above the critical level; i.e., it does not
assume that the quantity 0 = (A - Ac )/Ac is small. It does
make use of the small value of the ratio £ = I /L. It thus be-
comes possible to analyze self-organization phenomena in
active systems at arbitrary excitation levels (§§2-6 and 12).
It follows (in particular) from that analysis that self-organi-
zation in real systems usually results from a dynamic, rather
than fluctuational, restructuring of the DSs.78

1.3. DYNAMIC RESTRUCTURING OF DISSIPATIVE
STRUCTURES

This dynamic restructuring occurs because at certain
critical levels of the excitation of a system the solution de-
scribing dissipative structures of a given type disappears
(Subsection 12.2). The dynamic restructuring of DSs is not
related to the presence of fluctuations in the system. It oc-
curs in a deterministic way as a result of a local breakdown78

in certain regions of the DSs (Subsection 2.1). In other
words, fluctuations may not play an important role in the
selection of the particular type of DS which forms. The pres-
ence of fluctuations in real systems leads to a finite probabili-
ty for the occurrence of a local breakdown, before the corre-
sponding critical excitation levels of the system are reached.

1.4. SELF-ORGANIZATION AND AUTOSOLITONS

In real systems, the formation of DSs is usually not de-
termined by a stratification of a state near a homogeneous
state and is instead associated with a spontaneous formation
of autosolitons. Autosolitons are localized DSs in the form
of solitary nonequilibrium regions which may be static, pul-
sating, or traveling. The theory of autosolitons and the prop-
erties of these entities were reviewed in Ref. 25. The sponta-
neous formation of autosolitons in real systems stems from a
local breakdown which occurs near the small local inhomo-
geneities78'79 which are always present in a real system (Sub-
section 4.1). The spontaneous formation of autosolitons and
their subsequent evolution determine the self-organization
scenarios which are observed experimentally (§4).
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1.5. TURBULENCE AND AUTOSOLITONS

In active distributed media, even in the absence of flows
(convective fluxes), a turbulence can arise in the form of
inhomogeneous oscillations which are random in time and
space. In certain systems, such a turbulence may be linked
with an interaction of autowaves, e.g., spiral auto-
waves,7'8'10'11'17 while in other systems it may be linked with
the complex nature of the interaction of static or pulsating
autosolitons (striations, in the ID case).80'81 In the latter
case, the picture of the turbulence may be a random disap-
pearance and nucleation of autosolitons at various spatial

-Q(0, t], A),

points79,82,83 (§9).
Self-organization phenomena have recently been stud-

ied experimentally in many physical systems. For example,
DSs in the following forms have been observed and studied:
emitting regions of a hot electron-hole plasma in GaAs (Ref.
31), thermal-diffusion striations in a photogenerated hot
electron-hole plasma in Ge (Ref. 84), resistive domains in
composite superconductors,38 the glowing multiple-thread
formations which occur during extrinsic breakdown of
GaAs (Ref. 32), the avalanche breakdown of a-SiC p-n
junctions34 and Si p-i-n structures,35 the current filaments
in forward-biased, gold-doped Si p-i-n structures,333 the
glowing current filaments in various structures containing
gas-discharge layers,36'37'57 including structures containing
a high-resistivity compensated semiconductor,85 and also
the inhomogeneously emitting pattern in an electronic ana-
log of a model of an active distributed system with diffu-
sion.86'87 Extremely detailed studies have been made of the
shape and evolution of DSs experimentally,31'34'36'38'57'85'87

analytically,
llb'17'88-91 and numerically.8"'11"'17'57'92-113 The

results found in these studies agree completely with the con-
clusions which follow from the theory derived in Refs. 75-78
for self-organization in active distributed media.

The present review is devoted to an examination of this
extremely nontrivial picture of self-organization in active
distributed media of various types. We focus on self-organi-
zation phenomena which do not depend on the size of the
system or the conditions at its boundaries and are instead
determined by the bulk properties of the distributed medium
(which is sufficiently large, in at least one direction). In
other words, we will not be discussing such very simple self-
organization phenomena as the formation and evolution of a
current filament or a field domain in a system with an S-
shaped or N-shaped current-voltage characteristic, since
their properties depend in a fundamental way on the size of
the system, on the conditions at the boundaries of the sys-
tem, and on the parameters of the external circuit.21~24

1. STRUCTURES NEAR THE POINT AT WHICH THE
HOMOGENEOUS STATE STRATIFIES

1.1. Turing instability

The long-range nature of the inhibitor and the activator
is determined by diffusion processes in many physical,
chemical, and biological distributed media. Such media are
accordingly called "active systems with diffu-
sion."3'7'8'11'12'25 The properties of DSs in such systems are
described by equations of the type

(1.2)

where 9 and 77 are the values of the activator and the inhibi-
tor; Tg, r,, and /, L are the time and length scales of the
variation of the activator and the inhibitor; and A is a control
parameter (or bifurcation parameter), which characterizes
the excitation level in a physical system. Formally, the exis-
tence of a negative feedback through the inhibitor and of a
positive feedback through the activator 9 means that in a
certain range of A we have

(1.3)

Under conditions (1.3), it follows from Eqs. (1.1) and (1.2)
that with 9 = const fluctuations Srj will die out, while with
r/ = const fluctuations 89 will grow.

According to Eqs. (1.1) and (1.2), the homogeneous
state of the system (9 = #h and rj = r/h ) is determined by the
equations

<7(6h, Tin, 4)=0, Q(eh) Tih, A)=Q. (1.4)

A self-organization can occur in a monostable active
system, in which the functional dependences ?/h (A) and
0h (A) are single-valued. According to (1.3) and (1.4), the
latter assertion is valid if

0. (1.5)

A homogeneous state of a monostable active system may
spontaneously stratify. Linearizing Eqs. (1.1) and (1.2)
with respect to fluctuations 69, Srj <x exp( — yt + /kr) near
the homogeneous state, we find a dispersion relation. From
this relation it follows that the stability is disrupted
(Re 7<0) if one of the following inequalities holds4' :

A2/1)

; 4- 0 .

(1-6)

(1.7)

According to (1.3), the first of these inequalities holds in
systems with a = re/r, <1, with respect to fluctuations
with k = 0 and with a particular frequency

Q = Im Y = co0 = (1.8)

Near the threshold for its satisfaction, condition (1.7)
is satisfied for fluctuations with Im y=a> = 0 and with cer-
tain special wave numbers near5'

ft = k0 =

in which case we have

<7e < -e2Q; —

-q(Q, (1.1)

(1.9)

(1.10)

Stratification condition (1.10), i.e., the condition for an in-
stability of the homogeneous state of the system with respect
to an aperiodic growth of fluctuations with k = k0, holds by
virtue of the relation q'g <0, according to (1.3) and (1.5).
This condition can be satisfied more easily, the smaller the
value of £ = //£..

A condition for the stratification of active systems with
diffusion was derived by Turing44 in an analysis of an axiom-
atic model explaining the process of morphogenesis. Tur-
ing's ideas stimulated analytic and numerical studies of var-
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ious axiomatic models of biological and chemical systems
which can be described by Eqs. (1.1) and (1.2) (Refs. 3-8,
10-12, and 17). One particular model in this category is the
classical Gierer-Meinhardt model of morphogenesis,92'93

for which we would have

=Q— B— = T)— C62 (1.11)

Another model in this category is one proposed by Prigo-
gine's Brussels school (the "brusselator"),3 for which we
would have

q = Q—(B-f9zr)) (1 +A)~l, Q = r\Q*—AQ, (1.12)

Yet another is the model with a "cubic nonlinearity"llb of
the type6'

<7 = 9s_0_T) i Q = e + t l + _L._ A. (1.13)

Conditions (1.3) hold for these models. The second of con-
ditions (1.3) holds for the model in (1.11) under the condi-
tion^ >A0 = CB, for the model in (1.12) under the condi-
tion A >A0 = 1, and for the model in (1.13) in a limited
range of the control parameter A: A0<A<A'0. The value
A = A0 orA=Ao corresponds to a point with q'e = 0. In
chemical and biological reactions, a positive feedback
through the activator implies a self-production of activator
substance. Real processes involving a self-production of a
substance and the equations which describe them are ex-
ceedingly complicated and extremely controversial. 3~6'7b'8>n

Equations (1.1) and (1.2), which make use of expressions
(1.1!)-(!. 13), are the simplest axiomatic models of such
reactions.

Independently, research has developed on the processes
which lead to the stratification of the homogeneous state of
physical systems. In the 1950s and 1960s, for example, the
physical reason for the stratification of gas discharges was

identified. '* It turned out that the stratification of a gas dis-
charge and the formation of striations in it can be treated, on
the basis of general considerations,45 as consequences of a
Turing instability. Equations like (1.1) and (1.2) also de-
scribe the DSs in many other real physical systems,25 includ-
ing the "hot spots" in semiconductor structures52 (Subsec-
tions 7.2 and 7.3); the avalanche-current filaments in p-n
junctions34 (Subsection 7.1), p-i-n structures, and gas-dis-
charge structures57'"2'"3; and also the multifilament or
multidomain states in various composite structures with a
"latent" S-shaped or N-shaped current-voltage characteris-
tic, including structures which contain an active layer of a
semiconductor, a superconductor, or a material which un-
dergoes a metal-insulator or other type of phase transition
(§7).

The threshold for the satisfaction of condition (1.10)
for a given value of £ determines the critical excitation level
A=Ac,at which the homogeneous state of the system strati-
fies. As 5->0, condition (1.10) becomes the same as the sec-
ond of conditions (1.3); i.e., it becomes satisfied as Ac -+A0,
at which we have q'e = 0. There exists a certain maximum
value £ = em above which condition (1.10) cannot be satis-
fied at any value of the parameter A (Fig. 1, a and b). For the
model in (1.11), it follows from (1.10) that the relationship
between Ar and e is115

l— 2e— e2)- (Aa=CB) (1.14)

and is shown in Fig. 1 a. It can be seen from (1.14) that under
the condition e > £m = V2 — 1 =;0.41 Turing's stratification
condition (1.10) does not hold. For the model in (1.12), the
relationship between £ and Ac is

8 = (^_l)(l+4c)-./»B-i (1.15)

and is shown in Fig. la. From (1.15) we find em =B "'.For

<u
•D

"EL

<0
CO
Q

FIG. 1. The critical excitation level (A = Ac) as functions of the
quantity E — I /L (a, b) and bifurcation diagrams (c, d). a—For
V and A systems; b—for N and H systems. The solid parts of the
curves in parts a and b correspond to a subcritical branching of
the solutions (c), which is realized under the condition £<ec;
the dot-dashed parts of the curves correspond to a supercritical
branching of the solutions (d), which is realized at e>ec. The
diagram in part e corresponds to values off which are close to ec

but which satisfy e<fc (the corresponding small regions are
shown schematically by the circles in parts a and b). The dashed
lines in parts c-e are the parts of the curves which correspond to
unstable states.
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the model in (1.13), the relationship between e and A is as
shown in Fig. Ib. The various types of behavior of e as a
function of A (Fig. 1, a and b) found for models (1.11)-
(1.13) are characteristic of the entire class of monostable
active systems.

1.2. Conditions for the stratification of active systems with
a "cross" diffusion

In Subsection 1.1 we discussed active systems with a
diffusion which can be described by Eqs. (1.1) and ( 1 .2 ) . In
those systems, the positive feedback through the activator
which results in the stratification is determined by the non-
linearities of the systems, i.e., by the functional dependence
0(0, 77) in (1.11). More generally, active distributed media
are described by equations of the type

(1.21)

(1.22)

where D° = D(T,), T° =Te(T,},L= (£>°rr)
1/2 is the car-

rier diffusion length, and / = [ ( 5/2 + a ) D °T ° ] ' /2 is the re-
laxation length of the hot-carrier energy. In the case with
both G and rr constant, with Wj independent of n and T
(Subsection 8.1), the homogeneous state of the electron-
hole plasma is determined from the following equations, as
can be seen from (1.21) and (1.22):

n = nh = GTr, T = Th = T, + Wft, (1.23)
ex.

i)—gi(Xi,...,Xi,...,Xn, A), (1.16) In other words, this homogeneous state is unique. The rea-

where X, are the concentrations of chemical substances, gas
particles, electrons, holes, or ions; the temperature;
etc 3,5,8,17,25 physical47,59,60,61,62,75,76 and Cnermcal8b, 108,116

active systems in which the stratification is determined by
diffusion processes or, more precisely, by a dependence of
the cross diffusion coefficients Dtj with i^j on the param-
eters of the system, X,, constitute a special class.

Examples of these systems with a cross diffusion are
gaseous and electron-hole plasmas in semiconductors heat-
ed by electromagnetic radiation or by an electric field.47'51

The distributions of the density n and the effective tempera-
ture Tof hot electrons are described by balance equations for
the number of particles,

dn "---• t-G —ntr1, (1.17)

(1.18)

at
and for their average energy,

of

Here je and j£ are the flux densities of the particles and their
energy; G and rr are the rate of generation and the lifetime of
the electrons; W} is the power transferred to the electrons
from the external source; P=n(T— T,)T ~ ' is the power
transferred from the electrons to the lattice or to the atoms of
the gas; rE is the relaxation time of the electron energy; and
T, is the temperature of the semiconductor lattice or of the
gas atoms. We wish to stress that Eqs. (1.17) and (1.18) can
be derived rigorously from a Boltzmann kinetic equa-
tion.117-'19

To learn about the physics of the stratification of the
homogeneous state of a system with a cross diffusion, we
consider a symmetric electron-hole plasma, in which the
electrons and the holes have the same properties. In this case
we have47'51

je = _ V (nD (T)) = — DVn — (1 + a) DnT^VT, (1.19)

je = - (4 + a) V (TnD (T)) = - f-| + a) (TDVti
\ 2 / \ 2 /

+ (2+a)DnVT], (1.20)

where D( T) oc T' + a is the diffusion coefficient of the elec-
trons and holes. Using (1.19) and (1.20), we can rewrite
Eqs. (1.17) and (1.18) in the form71 (Ref. 76)

son is that TC cannot increase more rapidly than T1/2 in a
semiconductor; i.e., s = d In r£/<? In 7X1/2 (Ref. 21). Lin-
earizing Eqs. (1.21) and (1.22) with respect to fluctuations
6n,6Tcx exp( — yt + rtcr), we find the dispersion relation47

- TrT8 - (5 + 3CC

(1.24)

It follows from (1.24) that an electron-hole plasma is stable
with respect to homogeneous fluctuations (with k = 0). The
meaning is that in this case, without spatial derivatives in
Eqs. (1.21) and (1.22), an instability does not arise, in con-
trast with the case in the systems discussed in Subsection
(1.1).

The homogeneous state of an electron-hole plasma may
stratify because the condition e = l/L~ (r£/rr ) 1 / 2<^I
usually holds in a semiconductor. It follows from (1.24) that
in the case a + s > 0 an instability occurs8' with respect to
an aperiodic growth of fluctuations with k = k0 ~ (IL) ~ 1/2,
in which case we have T> T, (1 + a + s) (a + s) ~ '. The
stratification of the electron-hole plasma stems from the
presence in Eq. (1.21) of a term corresponding to the last
term in (1.19). The latter term describes a cross diffusion or,
more precisely, an effect of the carrier temperature distribu-
tion on the carrier density distribution. The physics of the
stratification of electron-hole plasmas is analyzed in more
detail in Refs. 47 and 76.

The mechanism for the stratification of the homoge-
neous state of a system with cross diffusion is thus funda-
mentally different from Turing's stratification mechanism
in active systems with diffusion (Subsection 1.1). Formally,
these subsystems can be described in a common language,
with the help of the concepts of activator and inhibitor. In
this case, the temperature plays the role of activator, while
the inhibitor is a certain function of the carrier temperature
and density:

6 = — , 11 = -—^- snip"1 (6). (125)T « no • \ / \ -• /
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Using (1.25), we can put Eqs. (1.21) and (1.22) in the
form75'76

e, ^. A).

where

(1.26)

(1.27)

(1.28)

Vl

Using (1.28), we easily see that stratification conditions
(1.9) and (1.10) agree within e2^ 1 with the corresponding
conditions which follow from (1.24).

1.3. Classification of active distributed media

It follows from the analysis of active systems with diffu-
sion that the particular type of instability which occurs in
these systems depends on the value of a = (re/rv) or
e = l/L (Subsection 1.1); i.e., it depends on the extent to
which the activator is slow and of long range in comparison
with the inhibitor.

Under the conditions e < 1 and a > 1, condition (1.6)—
for the appearance of uniform oscillations—does not hold,
but stratification condition (1.10) does. In other words, the
condition for the instability of the homogeneous state of the
system with respect to the growth of fluctuations with a spe-
cial wave number k = k0, i.e., (1.9), is satisfied. For this
reason, systems in which the inhibition (or retardation) is
faster than the activation (or excitation) but is of longer
range are called "K systems."25'120

In systems with e > 1 but a < 1, condition (1.10), for the
stratification of the homogeneous state, does not hold, but
condition (1.6), for the appearance of uniform oscillations
with a special frequency a> = a>0 [see (1.8) ], does. Systems
in which the inhibition is of shorter range than the activation
but slower are thus called "H systems."91

Systems with e < 1 and a •< 1 or, more precisely, systems
in which the inhibition is slower and of longer range are
called "Kfl systems."

An important characteristic, which determines the
properties of both autosolitons25 and more-complex types of
dissipative structures (DSs), is the local-coupling curve, i.e.,
the functional dependence rj(6), which satisfies the equa-
tion

s

FIG. 2. 1—Basic types of local-coupling curves; 2—basic types of state-
equation curves. Dashed lines 1' in parts b and d show systems with "de-
generate" local-coupling curves.25

Another Such important characteristic is the "state-equa-
tion" curve, i.e., the functional dependence rj(0), which fol-
lows from the equation

Q(6, T], A) = 0 npn A = const. (1.30)

<7(9, T), A)=0 npn^4 = (1.29)

The points at which these curves intersect determine the ho-
mogeneous state of this system (6 = 0n, 77 = i)h,) according
to (1.4). In a case in which the local-coupling and state-
equation curves intersect at one point, the systems are called
"monostable." If there are instead three such points, the sys-
tem is a "flip-flop" or a "bistable system," since two of these
points usually correspond to stable homogeneous states. The
particular features of DSs and self-organization in systems
of those types are discussed in §6 below.

It follows25 from conditions (1.3) and (1.5) that the
local-coupling curve in an active system has an N, A, H, or V
shape (Fig. 2). Such systems are thus called "N, A, H, and V
systems." The complete names of the various systems—re-
flecting the response time and range of the activator and the
inhibitor and the form of the local—coupling curve, are giv-
en in Table I. The DSs which are realized in them and the
effects which determine their restructuring, i.e., the self-or-
ganization scenarios, are generalized in Table II.

In N and H systems, we have a zero derivative q'e = 0 at
two points, 0 = 00 and 6 '0 (Fig. 2, a and c), while in A and V
systems we have this at a single point, 6 = 80 (Fig. 2, b and
d). We denote the value of A at which we have #h = d0 or 6 '0

TABLE I.

Shape of
local-coupling
curve

N (Fig. 2a)
H (Fig. 2c)
A (Fig. 2b)
V (Fig. 2d)

Name of system

K systems:
The inhibition is of long
range and is fast (in com-
parison with the activation )

KN systems
KH systems
KA systems
KV systems

n systems:
The inhibition U of
short range and is
slow (in comparison
with the activation)

(IN systems
flH systems
HA systems
QV- systems

KH syslems:
The inhibition is of
long range and is slow
(in comparison with
the activation)

KftN systems
KflH systems
KftA systems
KOV systems
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TABLE II.

Name of
system

KM, KH

KA, KV

QN, QH

KfiN, KfiH

KfiA, KQV

Type of dissipative
structure (DS)

Static, wide

Static, peak

Traveling autosolitons
and other autowaves

Wide static, pulsating;
traveling autosolitons
and other autowaves
Peak static,
pulsating, traveling

Effects determining
restructuring of DS

I— VI

I— III, V, VI

H, VI

I-VI

I— III, V, VI

Subsections of this paper in
which the self-organization
scenarios are discussed

3.1, 4.1—4.3, 5.1,
5.3, 5.4

3.2, 4.1—4.3, 5.2,
5.3, 5.4

11.1

3.1, 4.1—4.3, 5.1,
5.3, 5.4, 11.2—11.6

3.2, 4.1—4.3, 5.2,
5.3, 5.4, 11.2—11.6

I—Local breakdown in static, pulsating, or traveling autosoliton, in striations, or in certain
regions of a more-complicated type of DS (Subsections 2.1.1 and 5.1) and autowaves. II—Local
breakdown in oscillating"tail" of static (Subsections 1.2 and 5.3), pulsating, or traveling autoso-
liton. Ill—"Pumping" of activator between striations (Subsection 2.2), spots, blobs, or other
fragments of DSs (Subsection 5.1) and autowaves. IV—"Corrugation" of walls of static (Sub-
section 2.3), pulsating striations or other extended regions of DSs (Subsections 5.1-5.3) and
autowaves in two- or three-dimensional systems. V—Granulation of static (Subsection 2.3),
pulsating striations or other extended regions of DSs (Subsections 5.1-5.3) and autowaves in
two- or three-dimensional systems. VI—Spontaneous appearance near a small local inhomogene-
ity of static (Subsection 4.1), pulsating, traveling autosoliton or a more-complicated type of DS
and autowaves.

byA0 or A Q , respectively. It can be seen from (1.10) or (1.6)
that the quantities Ac and A 'c, which determine the boundar-
ies of the region in which the conditions for instability of the
homogeneous state of the system hold, are the same as A0

and A '0, respectively, within e < 1 or a << 1.
The properties of the DSs which are realized in various

active distributed media are general properties, by which we
mean that they do not depend on the specific activation (or
excitation) or inhibition (or retardation) mechanism, nor
do they depend on the processes which determine their speed
and range. The distributions of the activator and the inhibi-
tor may be determined not only by diffusion processes (Sub-
sections 1.1 and 1.2) but also by long-range couplings of
another nature which can be described by integral opera-
tors.125'130 In particular, equations of the following type are
used to model phenomena in active systems with long-range
coupling:9'125'131-133

ae <D (x ' — x)Q(x', t)dx'—A —

(1.31)

Tn-|2- = e—^, (1.32)

where H(y) = 1 for ̂ >0 and ff(y) = 0 for y<0, and the
function $>(x) describes a short-range activation and a long-
range inhibition.25 The term arj in the argument of the func-
tion H(y) describes the variation in the excitation threshold
of the medium. The response time here is determined by Eq.
(1.32). Under the condition a = re /T^ > 1, Eqs. (1.31) and
(1.32) thus describe distributed media which fall in the cate-
gory of K systems, while under the condition a <^ 1 they de-
scribe media which fall in the category of Kfi systems (Ta-
ble II).

In nonlinear optical resonators excited by external radi-
ation, diffraction DSs form as isolated or interacting autoso-

litons. 107 The activation process here involves an intensifica-
tion of the electromagnetic radiation as the result of a
nonlinearity of the absorption coefficient or refractive index
of the medium in the resonator. The inhibition process in-
volves field oscillations caused by diffraction effects. The
oscillations of the diffraction pattern propagate a distance
considerably greater than the width of the main maximum,
which determines the characteristic length scale of the vari-
ation of the radiation in the resonator. In other words, the
inhibition process here is of longer range than the activation
process. For this reason, such systems107 fall in the category
of K or Kfl systems.

In systems with a cross diffusion, as was mentioned
back in Subsection 1.2, a homogeneous state undergoes
stratification at e •< 1. Such systems are therefore usually K
systems (§8 and Table II); under certain conditions they are
Kfl systems. The latter is the case, for example, if the recom-
bination time of the electrons and holes in the nondegenerate
electron-hole plasma which we were discussing back in Sub-
section 1.2 is a decreasing function of the temperature or an
increasing function of the carrier density.51

In order to identify the particular category in which a
specific system falls and therefore the properties of the DSs
and the possible self-organization scenarios, it is necessary to
identify explicitly the quantities 6 and rj which serve as acti-
vator and inhibitor. We wish to stress that in some cases
these quantities may be exceedingly complicated functions
of the real physical parameters of the system (see, for exam-
ple, Subsection 1.2 and Refs. 50b and 51). The next step is to
determine the time and length scales of the variation of the
parameters 6 and rj and the relations between them. It is then
necessary to analyze the shape of the local-coupling curve,
found from (1.29). The latter relation follows from the
equation for the activator in the steady-state, homogeneous
case. This procedure is carried out in §§7 and 8 for certain
physical systems (see also Refs. 25, 50b, and 51).
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1.4. Small-amplitude dlssipative structures

Near the stratification point A = AC, Eqs. (1.1) and
(1.2) have small-amplitude quasiharmonic solutions in the
one-dimensional case. Their fundamental mode is5 ' ( Ref. 3 )

e(x)-9h=A9mcos(V), A#, = x-*(,4 — 4.). (1.33)

where the quantity x depends on the functions q(6, rj, A)
a.ndQ(0,rj,A) and the value off (Ref. 3, 134, and 135). In
the limit £-»0, the expression for x is135

As was mentioned in Subsection 1.3, in the limit £—0, we
havey4c ->A0; i.e.,^c approaches the value A =A0, which is
the value at which we have q'e = 0. It follows that at values of
A near Ac we have a derivative dq'0/dA <0. Making use of
this result along with condition (1.3) and (1.5), we find
from ( 1 .34) that at small values ofe we have x < 0. It can be
seen from (1.33) that in the case x < 0 inhomogeneous states
exist at A <AC. In other words, a subcritical branching of
solutions occurs (Fig. Ic), and in the course of this branch-
ing small-amplitude states are unstable.3 At a certain e = ec ,
a subcritical branching may be replaced by a supercritical
branching ( Fig. 1 d ) . For the model of ( 1 . 1 2 ) with B = 2, for
example, we have ec ~0. 1, but even at e > em = 0.5 a stratifi-
cation of the homogeneous state does not occur, regardless
of the value of A ( Fig. 1 a; Subsection 1.1). For the model of
an electron-hole plasma discussed in Subsection 8.2 we have
a value em ~Q3\, and the supercritical branching of solu-
tions (Fig. Id) occurs at £>£cl or £>£c2, where £cl s;C).27
and £C2=; 0.23 (Fig. Ib).

It follows from these examples that a supercritical
branching of solutions (Fig. Id) in the course of which
small-amplitude DSs are stable is realized in an extremely
narrow interval ofe values, i.e., of values of the parameters
of the system, even at excitation levels A close to the critical
level Ac. Since the supercritical branching of solutions is re-
placed at s = EC (Fig. Id) by a subcritical branching (Fig.
Ic), it is clear that at values ofe close to but smaller than ec

the bifurcation diagram has the form shown in Fig. le.
As was mentioned back in the Introduction, the proper-

ties of small-amplitude DSs in models of various physical
systems, including hydrodynamic, have been the subject of
very many studies (see, for example, Refs. 2b, 3, 5, 6, 9, 63-
74, and 136). In the theory for such DSs, the small value of
the amplitude of the DSs is exploited to derive equations
which are simpler than the original system of fundamental
nonlinear equations describing the specific physical system.
Some particular examples of these simplified equations
are

and

,6,9,72,74,136,137

(1.35)

(1.36)

where /? = (A — Ac )A ~' and Re y>0. Equation (1.35)
with c>0 and fj,>0 was proposed by Petviashvili and Ser-
geev.137 A derivation of Eq. (1.36) is given in a monograph

by Haken. With c = 0 and fi > 0, this equation becomes the
equation which Swift and Hohemberg derived in order to
describe the Benard problem.68 Equations of the type in
(1.35) and (1.36) are called "generalized Ginzburg-Lan-
dau equations,"6-74 since with real coefficients (c,//, y) they
follow from the equation

du

dt
T = •

6u* (1.37)

where the "free energy" F has the meaning of a Lyapunov
functional. The problem of seeking stable steady states, i.e.,
stable small-amplitude DSs, reduces to a search for the mini-
ma of F(Ref. 74).

We wish to stress that equations of the type in (1.35)
and (1.36) describe the properties of only small-amplitude
DSs, including autosolitons, which may form at excitation
levels near the critical level, i.e., at \/3 =\A — Ac \A ~' < 1.
Small-amplitude autosolitons, which are sometimes called
"localized autostructures" or "particles,"74 are realized
only in systems in which the bifurcation diagram is approxi-
mately the same as that in Fig. le or—more precisely—when
small-amplitude DSs form as a result of a stratification, de-
spite the subcritical branching, at the point A = Ac. At the
beginning of this subsection it was shown that a situation of
this sort (Fig. le) is realized only at values of e = l/L
smaller than, but very close to ec. In turn, the value of ec is
determined by the nonlinearities of the system, more precise-
ly, by the particular functions q(6,rj) and Q(0,ij) in (1.1)
and (1.2). It follows that solutions in the form of small-
amplitude autosolitons are allowed by models which de-
scribe the properties of active systems in a small neighbor-
hood of A =AC and with parameter values meeting some
very stiff requirements. These stiff requirements would be
difficult to meet experimentally.

It was stressed in Subsections 1.1 and 1.2 that it be-
comes easier to satisfy the conditions for the instability of the
homogeneous state as e or a becomes smaller. We know
from the qualitative theory of differential equations26 that
under the condition re -£TV small-amplitude quasiharmonic
oscillations with a frequency co = &>0 [see (1.8) ] are unsta-
ble, and large-amplitude relaxation oscillations appear ab-
ruptly in the system atA=Ac. These oscillations consist of
sequential combinations of intervals of slow and fast mo-
tions with time scales T, and rg, respectively.26

It was mentioned at the beginning of this subsection
that under the condition e<4,1 there is a hard regime of the
spontaneous formation of DSs (Fig. 1, a-c), in which large-
amplitude DSs appear abruptly at the stratification point
(Subsection 1.5). In such DSs, the inhibitor rj varies
smoothly (with a length scale L) in space, and the distribu-
tion of the activator 0 is a high-contrast pattern, i.e., the
activator varies sharply in certain regions with a size of the
order of / (§12). We derived a theory for these large-ampli-
tude DSs making use of the small value of the quantity
e = I /L in Refs. 75-77. This theory, based on an analysis of
an initial system of fundamental equations, of the type pre-
sented in Subsections 1.1 and 1.2, describes the shape, stabil-
ity, and evolution of DSs under arbitrary excitation condi-
tions, for the actual nonlinearities of the system. The basic
results of this theory and the basic self-organization scenar-
ios which follow from it are presented below.
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FIG. 3. Kinetics of the spontaneous formation of wide
striations. a—Distributions of 0 and TJ at various times
(tl=220Te, ?2=250rf , ) f 3 = 3 7 0 r 9 ) b—the func-
tional dependence Q(t) at the center of the striations
which form (x = xt). These are the results of a numerical
solution of Eqs. (1.1), (1.2), and (1.13) with A =0.21,
£ = 0.033, and a = 1 carried out in Ref. 100.

z/L

1.5. Kinetics of the formation of one-dimensional DSs, i.e.,
striations

It was mentioned in Subsections 1.1 and 1.2 that the
stratification of the homogeneous state at the point A = Ac

stems from an aperiodic growth of fluctuations of period

7.5.7. A large-amplitude DS forms abruptly at the
stratification point A = Ac in KN and KH systems by virtue
of the condition £< 1 (Fig. 3a, t > ?3 ). In these systems, the
inhibitor 77 varies slowly near 17 = ?7S 7^ 'Vh > while the activa-
tor distribution usually consists of broad striations76 in
which 0(x) varies sharply from 0min ~0sl to <9max ^6s3, in
certain regions of size ~/ (the walls of the striations).
[Equations determining the values of the inhibitor in the
striation walls, rjs, the quantity 0sl and 0s3, and the func-
tions 6(x) and TJ(X) in the striations are given in §12.]

In other words, the shape of the DSs which form in the
stratification is fundamentally different from quasihar-
monic, i.e., fundamentally different from the shape of a criti-
cal fluctuation (a mode with k^k0 ), whose growth leads to
the formation of DSs. By this we mean that under the condi-
tion £ << 1 the analysis of the DS which arises cannot be re-
stricted to a small number of interacting modes, with the
growing fluctuation10' with /r~A:0 chosen as the main one,
even near the critical point (A = Ac ) . The reason is the ex-
tremely nontrivial nonlinear effect which is manifested at
the stratification point of the homogeneous state of the sys-
tem during the formation of the DS. The short-wavelength
modes with k > k0 which are strongly dampened in the linear

theory begin to grow when the nonlinear interaction of the
modes is taken into account, and as the critical fluctuation
with k?zk0 grows. Beginning at a certain time, the growth
rate of these short-wavelength modes becomes higher than
that of the critical fluctuation. This effect has been observed
in numerical studies (Fig. 3), and it follows, in particular,
from an analytic study of the kinetics of the current stratifi-
cation in a transistor.138

1.5.2. Dissipative structures in KA and KV systems
have some fundamental distinguishing features. During the
stratification of the homogeneous state in such systems,
large-amplitude peak striations of two types form. One type
is narrow75 (Fig. 4a), and the other wide98'139 (Fig. 4b).
Regardless of the small value ofe = / /L ^ 1, the width of the
narrow peak striations is on the order of /, and that of the
wide ones on the order of L. The amplitude of the peak stria-
tions (the value of 0max) increases with decreasing e (Refs.
75, 81, 140, and 141). The amplitude of the wide peak stria-
tions can reach a huge value even if E is not very small.98

Wide peak striations may be realized in systems in which
Q(G, TJ, A) in (1.2) is not a rapidly increasing function of 0
(Refs. 98 and 139).

The narrow peak striations, with a period J?'p = Jz"0,
are often unstable75 (Subsection 3.2). The period of the sta-
ble peak striations which form during stratification may
thus be considerably larger than J?0 = 2-rrk 0~ '. There is a
distinctive feature in the formation of the narrow peak stria-
tions. Let us assume that at the time ?>0 the excitation level
of the system exceeds the critical value A = Ac by a small
amount. As a result of the growth of a critical fluctuation

FIG. 4. Two types of peak striations. a—Narrow; b—
wide. The solid and dashed lines show rj for A and V sys-
tems, respectively.
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FIG. 5. Kinetics of the spontaneous formation of narrow peak striations.
a—Distributions of 0 and 77 at various times (r, = I324re,t2 = 1433 T,,,
t3 = 1439 T g , tt = 1460 re) b, c—the functional dependence 0(t) at the
points x = 0 and x = xt. Shown here are results of a numerical solution of
Eqs. (1.1), (1.2), and (1.12) with A = 1.1,5 = 2, e = 2.24-10~\ and
a = 1 in Ref. 82.

with a period J?0 = 2irk0 ', after a time delay rdell, peak
striations with a period J^0 form in the system (Fig. 5,
t = t2). A DS of this sort is a metastable state. As a result of a
"pumping" instability75 (Subsection 2.2), this state, after a
certain time (rde]2 — rdell; Fig. 5b) which is associated with
the growth of a fluctuation of greater period, takes the form
of peak striations with a period ^fp > J?0 (Fig. 5, t = t4).
The period of the striations continues to increase in the
course of their spontaneous formation until stable striations
form.''} The latter consist of a periodic sequence of peak
autosolitons which interact in a relatively weak fashion. The
shape of these autosolitons (Fig. 4) was analyzed in Refs. 75,
98, and 139 and was reviewed in Ref. 25.

The conclusion regarding the instability of the stria-
tions of period ^f0 = 2-irk 0~~' applies more to A in V sys-
tems, in which wide peak striations form98 (Fig. 4b), since
the very width of these striations, ~L, is greater than &0

under the condition e< I.

2. EFFECTS DETERMINING THE RESTRUCTURING OF
STRIATIONS

2.1. Local breakdown in striations757678

Periodic striations with a period J^p >L are essentially
a periodic sequence of interacting autosolitons (Fig. 6a). At
certain values of the excitation level, a local breakdown can
occur in the striations, as in autosolitons.25 In other words,
there may be a sharp change in the activator in certain local
regions of a DS, which leads to an increase in the number of
striations in the system.

2.1.1. A local breakdown can occur between striations
(Fig. 6a) or at the center of striations (Fig. 7a), i.e., in re-
gions in which TJ(x) and d(x) vary smoothly, in N and H
systems. In these regions, the relationship between 77 and 6 is
determined by (1.29); i.e., it corresponds to a local-coupling
curve (Subsection 12.1). The functional dependence 6(rj)
corresponding to the local-coupling curve (Fig.2,aandc)is
S-shaped (Figs. 6b and 7b). A local breakdown occurs be-
cause as the striations evolve with changing excitation level
A the value of the inhibitor at the center of the striations, rjm,
reaches an extremum 770 (Fig. 7b), or the value of the inhibi-
tor between striations, 77,, reaches an extremum 7/0 (Fig.
6b).

In the first case, as A varies further there is a sharp
decrease in the activator from 9m^60 to d^0a, while
r)m ~T/O remains essentially constant (Fig. 7, a and b). As a
result of this local breakdown (shown schematically by the
arrows in Fig. 7, a and b), the striations divide. A local
breakdown of the same type (shown schematically by the
arrow in Fig. 7c) leads to a division of the hot autosoliton
discussed in Subsection 3.5 of the review in Ref. 25.

In the second case, a further variation in A results in a
local breakdown between striations, i.e., in a sharp increase
in the activator, from the value 6>t ^dQ to 0^6'A, at rjl ~r)0

(this local breakdown is shown schematically by the arrows
in Fig. 6, a and b).

A similar local breakdown (shown schematically by the
arrow in Fig. 6c) leads to a division of a cold autosoliton.25

These local-breakdown effects at the center of striations
or between striations occur because at certain critical value
A =A(

d
NyorA d

(W the solution in the form of ./V striations in
a sample of size Jtf, i.e., the solution in the form of striations
of period J>"p = ^/N, disappears. This result follows for-
mally directly from the procedure used to construct periodic
striations, which is set forth in §12. Also in that section are

FIG. 6. Diagram used in explaining the local breakdown
between striations of period ^f'p ZL (a), at the center of a
cold autosoliton (c), and in the "tails" of a hot autosoliton
(d). Part b shows the local-coupling curve (curve 7) for N
systems and the actual TJ( 6) dependence (2) in striations (a)
and in autosolitons (c, d) near critical excitation levels of the
system, Al

a
m,A'a, and Aa, respectively. The arrows schema-

tically show local breakdown, i.e., a local increase in the acti-
vator from Ozz 00 to&~&^ in an avalanche fashion (partb).
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FIG. 7. Diagram used in explaining local breakdown at the
center of striations of period Jff ZL (a), at the center of a
hot autosoliton (c), and in the "tails" of a cold autosoliton.
(d). Part b shows the local-coupling curve (curve /) for N
systems and the true rj(d) dependence (2) in striations (a)
and in autosolitons (c, d) near critical excitation levels
A j(lV), Ad, and A 'a, respectively, of the system. The arrows
schematically show local breakdown, i.e., a local decrease in
the activator from dzz6'0 to 0~6d in an avalanche fashion
(partb).

equations which determine, within £<1, the values of
A = A (

d
N} and/I d

lN^ and the critical width of the striations at
these points. It also follows from the procedure for con-
structing the striations that a set of solutions in the form of
striations of various periods corresponds to a single value of
A.

There is an upper limit J^max, on the period of the stria-
tions; this value depends on A. For a specific system, this
dependence can be found from the equations in Subsection
12.2.

The qualitative dependence12 ^ma.(A) (Fig. 8a) fol-
lows from the fact that at A <AC and A>A'C an autosoli-
ton,25 i.e., a solitary state which may be thought of striations
of period J?p = oo, can be excited in the system. In addition,
there are systems in which an autosoliton is realized in the
form of a solitary hot striation (Fig. 6c) only under the con-
ditions A < Ad <AC. There are also systems in which an auto-
soliton in the form of a solitary cold striation (Fig. 6c) can
be excited only under the condition A > A * > A.'c. At the
point A = Ad (or A =A'd), a hot (or cold) autosoliton di-
vides (see Subsection 3.5 in Ref. 25). For such systems, the
dependence .S?max (A) is as shown in Figs 8b and 8c, respec-
tively. For systems in which an autosoliton can be excited
only under the conditions A <Ad and A>A'd the J?max (A)

10 X j

Xf
\\ //
**?*< Al

FIG. 8. Possible versions of the behavior of the maximum striation period
-S?max as a function of the excitation level A (Subsection 12.2 and foot-
note'2).

dependence corresponds to that shown in Fig. 8d. The values
A = Ad and A 'd and the corresponding values of the maxi-
mum possible width of hot and cold autosolitons are deter-
mined within e4:\ by Eqs. (3.37)-(3.39), respectively, in
the review in Ref. 25.

As was stressed in the Introduction, a local breakdown
leads to a dynamic restructuring of a DS; this restructuring
is unrelated to the presence of fluctuations in the system.
During a dynamic restructuring, the formation time of a new
DS is determined by the time scales of the variation of the
activator and the inhibitor and by the extent to which A
exceeds the corresponding critical value Ad, Ad, A

 (
d

m, or
A d

( N ) . Fluctuations lead to simply a finite probability for the
occurrence of a local breakdown, before these points are
reached; it may also accelerate the initial stage of the devel-
opment of local breakdown at a value of A greater than but
very close to the corresponding critical value. This time evo-
lution of the development of a local breakdown leading to
the division of autosolitons and striations was observed in
the model of an electron-hole plasma in Refs. 100, 104, and
109. The division of autosolitons and striations which is ob-
served in numerical and experimental studies of composite
superconductors19'97'142 and of structures with a gas-dis-
charge region (Figs. 5 in Ref. 87b) is apparently related to
the local-breakdown effect which we have been discussing.

2.1.2. Local breakdown may occur not only at the cen-
ter but also at the periphery, i.e., in the "tails," of an auto-
soliton.110 The reason for this effect is that at values of A
close to Ac the monotonic decay of 9(x) and 17 (x) toward 0h

and 77 h at the periphery of the autosoliton may give way to an
oscillatory decay.25 The appearance of oscillations at the
periphery of an autosoliton as A — Ac can be linked with the
circumstance that the tail of an autosoliton may be thought
of as a reaction of the system to the local decrease in the
activator caused by the autosoliton at the point with
0 = ^min (Fig- 6d). In turn, the response of a homogeneous
stable system to a small local irregularity in the parameters
of the medium at values of A close toA^ consists of an oscilla-
tory13) 9 ( x ) distribution whose amplitude decays with dis-
tance from the irregularity.

As A approaches Ac, the amplitude of the most promi-
nent of the maxima, d = 0,, in the oscillating distributions
d ( x ) in the tails of the autosoliton becomes larger (Fig. 6d).
At a certain value A = Ac, close to Ac, at which the value of
#, at the points of this maximum exceed the value of 00 (Fig.
6b) by a certain critical value, a local breakdown occurs in
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these regions. In other words, there is an abrupt local in-
crease in the activator (shown schematically by the arrows
in Fig. 6, b and d) from 0i^00to0^0'd. The reason for the
local breakdown is that as A ->AC the value of t]h is close to
770, and the local dependence 0(r/) is S-shaped (Fig. 6b).
Consequently, the nearest two maxima in the oscillating dis-
tribution 6(x) (Fig. 6d), which lie a distance ^f\ from the
center of the autosoliton, act as seeds for the abrupt appear-
ance of striations. In turn, a local breakdown occurs in the
tails of the striations, and new striations form.

A local breakdown can also occur in the tails of a cold
autosoliton as A-+A 'c. Such a breakdown, i.e., a local de-
crease in the activator from #, ~ 0 Q to 0zz 0d in an avalanche
fashion, arises at the minima of the oscillatory distribution
0(x) closest to the center of the cold autosoliton, at the pe-
riphery of the autosoliton (Fig. 7d). It occurs at a certain
value A = A 'c which is close to A 'c, at which the value of 0,
at these minima is smaller than 6'0 by a certain critical
amount (the local breakdown is shown schematically by the
arrows in Fig. 7, b and d).

2.2. "Pumping" of activator between striations75'76

It follows from the theory of the stability of striations
(Subsection 12.4) that at certain values A = A p

w or A 'JN} a
state in the form of # striations of period J^p = Jif/N (Fig.
9a) becomes unstable with respect to the growth of activator
fluctuations 86^d6N/2fl of doubled period. It follows from
the form of the critical fluctuation (Fig. 9d) that the growth
of this fluctuation leads to an increase in the width (or am-
plitude) of one striation and to a narrowing of a neighboring
striation. In other words, it describes a pumping of activator
between striations. As a result, the number of striations in
the system may decrease by a factor of two (Fig. 10).109

An instability of the pumping type is realized at values
A = A p"> >Ab or A ;<JV) <A b> i.e., before the points A = Ab

and A b, which determine the stability boundary of the auto-
soliton (see Subsection 4.2 in Ref. 25 )i The reason for this
result is that the growth of an activator fluctuation

FIG. 9. Diagram used in analyzing the stability of periodic striations (a, e);
b—the "potential" Ve (see Subsection 12.4); c, d—the critical functions
(c) S0QO and (d) S0ff/20 and the inhibitor perturbations Sr/ which damp
dangerous activator fluctuations SO^S600, S0-^S6N/20 in striations (a,
e).

a
4

t-0 JUUL

UUJLJ

2 4 6 x/L

FIG. 10. Numerical simulation of the kinetics of the activator pumping
(the "pumping" of carrier temperature) between striations in a "dense"
electron-hole plasma'09 with t, = 20rr and t2 = 135rr.

S0^S000, which has a period ^"p and which is an even
function of x with respect to the center of the striations (Fig.
9c), is suppressed by the fixed-sign change in the inhibitor
(Fig. 9c) all the way to the point A=Ab (or A =A b ) ,
where dJ?s/d4 = oo and dijs/dA = oo. The growth of a
fluctuation 80zz80N/2i0 of period 2 Jfp is damped by a sign-
varying change in the inhibitor, Srj, of the same period (Fig.
9d). The damping effect of this change in the inhibitor is
reduced by its diffusive spreading, which is more pro-
nounced, the smaller the distance between striations, ^ f p . It
follows that with decreasing striation period the range of A
in which the striations are stable decreases (Subsection
12.4).

The critical width of the striations of period J? < L
(Subsection 12.4) at the point A = A p

mately by79

(N) is given approxi-

(2.1)

It follows from this picture of the striation instability
that the period of the striations which are realized at a given
value of A is limited from below by a certain -5^min. Striations
of period ^fp < -^min are unstable with respect to the
growth of a fluctuation 80~80N/2a (Fig. 9d), which de-
scribes a pumping of activator.

2.3. Corrugation of walls and granulation of striations77

Striations in 2D and 3D systems may lose their stability
with respect to the growth of activator fluctuations
89(x,y,z) which are inhomogeneous in the plane of the walls
of the striations, i.e., in regions in which 0(x) varies sharply
(Fig. l la). A. critical fluctuation 80 = 80(x) exp(/k1r1)
(Fig. 1 la) is localized near the striation walls, so its increase
can lead to a corrugation of the striation walls in a 2D system
(Fig. 11, c-e; in a 3D system, it can lead to the appearance of
a cellular structure at the striation walls). Alternatively, it
may lead to a breakup of the striations into smaller regions in
the form of interacting autosoli tons (Fig. l ib) with a shape
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FIG. 11. Diagram used in explaining the "corrugation"
and breakup of striations. a: Critical activator fluctu-
ations dO(x, y), localized at striatioh walls. The growth of
these fluctuations (indicated schematically by the ar-
rows) leads to (b) a breakup of striations and to the for-
mation of a set of interacting autosolitons or (c) the for-
mation of a striation with corrugated walls, d, e: Activator
distributions in the cross sections of a striation (c), y = 0
(d) and^ = 0.6L (e) [these are the results of a numerical
solution of Eqs. (1.1), (1.2), and (1.13) with A = 0.35,
£ = 0.033, and a = 1, carried out by Gafiichuk et al. ] . 10°
The dashed lines in part a show the initial distribution
0(x, y) in the striations.

1.2 x/L

approximating that of radially symmetric autosolitons (see
Fig. 1 1 in Ref. 25 ) . The critical striation widths in KN and
KH systems can be estimated from expression (12.52) by
setting 7 = 0 there. It follows from this criterion79 that the
striation instability condition is satisfied with respect to fluc-
tuations with kL~(l/^p)

l/4(lL) when the width
) of the hot striations (Fig. 6a) satisfies .
. vim where79

s > -Z cl '

< or

= S,«")-/ In e-1^

= 2%
(2.2)

In other words, in the 2D and 3D cases the width of the
stable striations is in the interval J^ <^,< ̂ f°; i.e.,
these striations are usually stable in a smaller interval
[A (

b*\ A <f° ] of values of^ than in the IDcase (Subsection
3.1). Numerical studies show that the hot striations which
shrink with decreasing A (with A—A^) generally break
up into smaller regions. As A increases (at the point
A =A (

c^), there may be either a breakup (Fig. lib) or a
corrugation of striation walls (Fig. 11, c-d), depending on
the parameters of the system. Striations with corrugated (or
cellular) walls may be thought of as a metastable state.

3. SELF-ORGANIZATION SCENARIOS IN IDEALLY
HOMOGENEOUS 1D SYSTEMS75 76

3.1. Evolution of wide striations

It can be concluded from the results in Subsections 2.1
and 2.2 that a set of stable DSs in the form of striations with
periods from J?ma!1 to £*min can exist in one-dimensioal
( ID) KN and KH systems of size J?' >L at a given value of
A.

The quantity -^max determines the maximum possible
striation period, i.e., the period above which the number of
striations doubles as the result of a local breakdown at the
center of striations or between striations (Subsection 2.1).

The quantity ^"min determines the minimum striation
period, i.e., the period at which the striations lose their sta-
bility at the given value of A (Subsection 2.2). The value of

J^min is found from the formulas in §12. As was mentioned
earlier, as A ->Ab or A b striations of finite period lose their
stability, and all that remains stable is an autosoliton, i.e., a
state which may be thought of as striations of period
J^p = oo. It follows that the dependence -^min (A) is qual-
itatively as shown in Fig. 12a.

The behavior of ̂ max (A) (Fig. 8) and ̂ min (A) (Fig.
12a) essentially also determine the various self-organization
scenarios which operate in ideally homogeneous systems in
the ID case. It is also convenient to analyze the evolution of
striations with varying A by using one of the bifurcation
characteristics of a system: the dependence of the value of
77 = rj& at a striation wall on A (Fig. 12b), that of the stri-
ation width ^fs on A, etc.25

1) At the point A = Ae, the homogeneous state of the
system stratifies with respect to the growth of fluctuations of
period '<fQ = 2-rrk^ ^lu(lL)U2 (Subsections 1.1 and
1.2). As a result of the growth of such a fluctuation, i.e., a
fluctuational restructuring of the homogeneous state, large-
amplitude striations form abruptly in such systems (the
jump 0->1 in Fig. 12, a and b). The width of striations
J^s (Ac) of period ^f0 depends strongly on the nonlinearity
of the system. This width is determined by the formulas giv-
en in Subsection 12.1. The period of the striations which
form is equal to J^0 if ^f0 > ̂ min ( A c ) , i.e., if their width
Jz^s (Ac) exceeds the critical width of stable striations,
^1N\ of period & Q. An estimate of Jf^ can be found
from (2.1) by setting _2"p = ^f0 there.

In the opposite case, J?0 < J?min ( A c ) , striations of pe-
riod J?',, are unstable with respect to pumping, and stria-
tions of period J*^p > Jf0 appear at the point A=AC.

The hot striations which form in KN and KH systems
at the point A = Ac as the excitation level is raised become
broader (Fig. 12d) and transform into cold striations of the
same period (Fig. 12e). At the point A =A^N\ the cold
striations become unstable when their width J^s (Fig. 12e)
reaches the value ^f{

c
N\ which is equal in order of magni-

tude to the value given by (2.1) for the quantity Jf<w. This
instability (of the pumping type) of cold striations (Fig.
12e) stems from the growth of a critical activator fluctuation
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FIG. 12. Diagram used to explain the evolution of periodic striations. a,
b—^min and^ma, as functions of A (a) and the bifurcation characteris-
tic ijs as a function of A (b); c, e—activator distribution in hot striations
(c,d) and cold striations (e). Curve labels ̂ ,^/2,Af/4, and N /8 in partb
correspond to the number of striations of periods JSff> 2-S"p, 4^fp, and
8^p, respectively, in the system; AS and /45represent hot and cold auto-
solitons.

with a double period. As a result of the aperiodic growth of
such a fluctuation, there may be an abrupt halving (the jump
2'-»3' in Fig. 12, a and b) of the number of cold striations.
The kinetics of this effect has been examined in a numerical
study of a model of a dense electron-hole semiconductor (see
Fig. 22 in Ref. 109). [In certain systems, striations whose
period is again equal to 2J^p but which contain two (slight-
ly distorted) asymmetric striations may arise at the point
A = A p(JV).] With a further increase in A, as a result of a
sequence of period-doubling bifurcations of this sort, there

are sequential abrupt decreases in the number of striations
(jumps 4' -»5', 6'-*?',..., in Fig. 12, aandb). As a result, a
cold autosoliton may arise spontaneously in the system at
values of A near A b. This autosoliton abruptly disappears
(8^-9' in Fig. 12b) at the point A=Ab,at which we have
d3fs/dA = drjs/dA = oo (Subsection 4.2 in Ref. 25).

2) Hot striations which form spontaneously at the point
A=AC shrink with decreasing A (Fig. 12c), and at a certain
A = A p

w they lose their stability with respect to a pumping
of activator (Subsection 2.2). As a result, hot striations of a
doubled period form abruptly in the system (2 — 3 in Fig. 12,
a and b). The kinetics of .this effect is shown by Fig. 10. As a
result of a sequence of these period-doubling bifurcations
(4 — 5, 6 — 7,..., in Fig. 12, a and b), a hot autosoliton can
form spontaneously in the system at values of A near Ab.
This autosoliton abruptly disappears (8 — 9 in Fig. 12b) at
the point A = Ab, where we have dJf s/dA = dT)s/dA = oo
(Ref. 25).

3) The hot striations of period J>^p £Z, which form
with increasing A, at values of A near Ab, may undergo a
spontaneous restructuring as a result of the local-breakdown
effect discussed in Subsection 2.1. As a result of this dynamic
restructuring, the number of striations in the system doubles
sequentially and abruptly; i.e., the period of the striations
decreases by a factor of two (jumps 10— 11, 12 — 13 in Fig.
12, aandb) .

The same conclusion applies to cold striations of period
Jz"p £L which form in accordance with scenario 1 near
A — A b. In this case, the increase in the number of striations
due to the local breakdown occurs with decreasing A (jumps
10'-11', 12'-13'in Fig. 12, aandb).

4) In systems with/4d <AC, i.e., in the case of the situa-
tion in Fig. 8, b or d, the condition ^f0 > J2fmax (Ac) may
hold. In this case, a local breakdown occurs during the for-
mation of striations as a result of the growth of a critical
fluctuation of period ^f0 in the regions with a high value of
the activator which form as time elapses. This local break-
down leads to a breakup of the striations. As a result of this
dynamic restructuring, striations of period Jfp < J$f0 form.
The subsequent evolution of these striations occurs in accor-
dance with scenarios 1-3, outlined above.

3.2. Evolution of narrow peak striations

As was stressed in Subsection 1.5.2, narrow or wide
peak striations can form in KA and KV systems (Fig. 4).
The evolution of narrow peak striations (Fig. 13), like that
of wide striations in KN and KH systems, is determined by
local-breakdown effects and by the pumping of activator
between striations, i.e., by the functional dependences
J^max (A) and 3fmin (A) (Fig. 13c). A critical fluctuation
80~80N/2Q describing a pumping of activator in striations
of period J^p (Fig. 13a) has a period 2^p and is localized
near peaks (Fig. 13b). The growth rate calculated for this
fluctuation without consideration of the damping effect of
the change in the inhibitor, i.e., under the condition Srj = 0,
is approximately A.0 1, as in the case of a narrow peak
autosoliton.25 According to the stability condition for peri-
odic striations in (12.53), such striations are therefore stable
when they have a large period and a large amplitude (0max).
The latter conclusion follows from the circumstance that the
value of the coefficient ago (Ref. 25) in (12.53) increases
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FIG. 13. a: Diagram used in explaining the evolution of narrow peak
striations (a) in A and V systems, b: Critical activator fluctuations SON/20

and inhibitor perturbations Stj which damp the growth of the activator
fluctuations, c: One possible dependence of & mm and -£?„,„ on A. d:
Bifurcation characteristics, i.e., dependence of the inhibitor value at a
striation peak, 77 = ?7sh, on the system excitation level A. The numbers N,
2N, and 4N in part d correspond to the number of striations of periods
J^p, ^ f f / 2 , -^p/4 respectively, in the system; <4Srepresents a narrow peak
autosoliton.

with 0max. Let us examine some characteristic self-organiza-
tion scenarios in ID KA and KV systems.

1) During the stratification of a homogeneous state in a
KA or KV system, peak striations form abruptly (jump 0— 1
in Fig. 13; see Subsection 1.5.2). Their period, .2%, may be
substantially greater than J?0 = ZTT/C <T' . As £ — l/L de-
creases, the striation amplitude 0max increases. With in-
creasing A, the amplitude of the peak striations increases,
and at certain values A=A(

d
N\ A (

d
2N\ ..., the number of

striations sequentially and abruptly doubles (2 — 3, 4-»5,...
in Fig. 13, c and d) as the result of a local breakdown
between striations. In other words, the evolution of the stria-
tions with increasing excitation level of the system in A and
V systems is usually determined by a dynamic, rather than

fluctuational, restructuring. At large values of A the number
of striations may decrease abruptly as a result of a pumping
of activator between closely spaced striations; alternatively,
a turbulence arises in the system (§9).

2) As A decreases as a result of the pumping, i.e., as a
result of the fluctuational restructuring, the number of nar-
row peaked striations sequentially and abruptly decreases at
certain values A = A (

p
w, A (

P
2N),... (6->7, 8-9,... in Fig.

13, c and d). As A^Ab, a narrow peaked autosoliton may
arise spontaneously in the system. At the point A=Ab,
where d?7sh /dA =00 , the autosoliton abruptly disappears
(10-11 in Fig. 13d).25

3) In A and V systems with "degenerate" local-cou-
pling curves (curves 1' in Fig. 2, b and d),25 the number of
peak striations may abruptly double with increasing^ as the
result of a local breakdown at the center of the peaks. This
situation is realized,"3 for example, in the model of ava-
lanche breakdown of a p-n junction discussed in Subsection
7.1.

In A and V systems, a turbulence may arise spontan-
eously; the mechanisms and scenarios for the formation of
this turbulence are discussed in §9.

4. SCENARIOS FOR SELF-ORGANIZATION IN REAL 1D
SYSTEMS

Real systems always contain small inhomogeneities,
which are capable in principle of altering the processes by
which dissipative structures (DSs) form and evolve. Small-
scale (local) irregularities of size d$ (IL) 1/2and large-scale
irregularities, of size c?>(/L)1/2, act in different way on the
self-organization picture. Let us examine the most charac-
teristic self-organization scenarios which play out in real
systems.

4.1. Spontaneous formation and evolution of
autosolitons78 7"

Self-organization in real systems may be determined by
the spontaneous appearance of autosolitons near small local
inhomogeneities and the subsequent evolution of these soli-
tons. This spontaneous formation of autosolitons occurs
when the excitation level of the system is below the critical
valued = Ac. It leads to a dynamic restructuring of the ini-
tially nearly homogeneous state of the system.

4.1.1. As A increases or, more precisely, as A -+AC, small
local inhomogeneities are essentially nucleating regions of
the spontaneous formation of autosolitons. The reason is
that a local inhomogeneity causes corresponding perturba-
tions of the activator and the inhibitor in its vicinity, and the
amplitude, A#m = #max — 0h, increases as A-*AQ. The
monotonic decay of 6(x) and 7 7 ( x ) at the periphery of the

II
8(x)

g

a

x s,

FIG. 14. Activator oscillations which arise in a stable system at values
of A near Ac, near a small inhomogeneity which causes a local increase
(a) or a decrease (b) in the activator.
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inhomogeneity, toward the values 0h and rjh for the homoge-
neous state, gives way to an oscillatory decay13' with a peri-
od ̂ 0= 2irk<,-' (Fig. 14).

In the situation in Fig. 14a, at values of A close to Ac

near an inhomogeneity, the value of the inhibitor at the cen-
ter of an inhomogeneity, rjm~rih, is close to rj0, while the
value of the activator, 0max, is close to 00. We recall that the
point 77 = rj0, 6 = 00 determines an extremum of the local-
coupling curve, at which we have dd /drj = oo (Fig. 6b). At
a certain .4 = A ~ <AC, at which 0max is greater than 00 by a
certain critical amount, a local breakdown therefore occurs
at the center of the inhomogeneity: an increase in the activa-
tor from #max ;s#0 to 9^0'A in an avalanche fashion (the
local breakdown is shown schematically by the arrow in
Figs. 14a and 6b). As a result of this local breakdown, an
autosoliton arises spontaneously near the inhomogeneity.
Figure 15 (Ref. I l l ) shows the kinetics of its formation in an
electron-hole plasma (Subsection 8.2). The threshold for
the spontaneous formation of an autosoliton, i.e., the value
of A ~, may be quite different from the stratification point
A — Ac of a homogeneous state of a system, even in cases in
which the inhomogeneity amplitude a is small.

In the situation in Fig. 14b, the value of the activator at
the center of the inhomogeneity is lowered. Consequently,
and in contrast with the preceding case, a local breakdown
does not occur at the center of the inhomogeneity. As we
have already pointed out, as A->AC the decrease of 0(x)
toward the value 6h at the periphery of the inhomogeneity
becomes oscillatory. The values of 6 = 0max at the maxima
of the oscillatory 6(x) distribution (Fig. 14b) increase as
A-*AC. Consequently, at a certain A =A~, at which the
values of 0max are greater than 60 by a certain critical
amount, the conditions for the occurrence of a local break-
down become satisfied at the two maxima of the 6(x) distri-
bution nearest the center of the inhomogeneity. As a result of
such local breakdowns, occurring in two spatially separated
points (these breakdowns are shown schematically by the
arrows in Fig. 14b), three different effects may occur, de-
pending on the parameters of the inhomogeneity and those
of the system:

a) An autosoliton of complex shape, consisting of two
striations, may form.

b) An ordinary autosoliton may form as a solitary stri-
ation. It would arise because during the formation of a com-
plex autosoliton one of the striations "perishes" as a result of
the pumping (Subsection 2.2).

c) A sequence of striations may form and fill the entire
system. These striations would form as the result of a multi-
ple generation of two autosolitons near an inhomogeneity
and the propagation of these solitons away from each other,
on different sides of the inhomogeneity.

The local-breakdown effects which we have been dis-
cussing here, and which lead to the spontaneous formation
of autosolitons near small inhomogeneities, are of the same
nature as those which occur as A -^Ac in the oscillatory tail
of an autosoliton (Subsection 2.1.2).

4.1.2. At parameter values of the system such that an
autosoliton in the form of a solitary striation forms near a
small inhomogeneity, the subsequent evolution of the auto-
soliton as A varies may occur in accordance with one of the
following scenarios.

1) As ,4 increases, there may be a sequential breakup of
the autosoliton due to the local-breakdown effect at the cen-
ter of the autosoliton which was discussed in Subsection
2.1.1. This situation occurs in systems with Ad <AC (Fig. 8,
b and d) when A exceeds the critical value A = Ad.

2) A local breakdown and a breakup of an autosoliton
in systems with Ad <AC, for which the dependence
Jsf max (A) is the same as that shown in Fig. 8, b or d, can
occur even during the spontaneous formation of an autosoli-
ton near a small inhomogeneity at A = A ~ > Ad. As a result
of the sequential breakup of the newly formed autosolitons,
the entire system becomes filled with striations (Fig. 16).

3) Another self-organization scenario occurs in sys-
tems in which the autosoliton does not break up before the
value A = Ac (Fig. 8a), which corresponds to the point of
the stratification of the homogeneous state of the system. In
this case, a local breakdown occurs at the periphery of the
autosoliton as A—AC (Subsection 2.1.2). Striations may
form spontaneously, and they may be periodic, but their
period «^p sr J?, (Fig. 6d) may be quite different from that
of a critical fluctuation, Jf0 = 2ir^ tk~2-ir(lL)>/2 (Subsec-
tion 1.5.1).

4) At a very small amplitude of a local inhomogeneity, a
spontaneous formation of an autosoliton may occur at val-
ues of A extremely close to Ac. In this case the amplitude of
the d(x) oscillation in the tail of the autosoliton which
forms, i.e., the quantity 9l (Fig. 6d), is quite large. For this
reason, there will be a sequential appearance of striations in
the course of the formation of an autosoliton near a small
inhomogeneity, as a result of local breakdowns in the tail of
the autosoliton. These striations will fill the entire system.

S
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FIG. 15. Kinetics of the formation of a static autosoliton near a small
inhomogeneity electron-hole plasma heated by an electric field (Sub-
section 8.2). a—Small static inhomogeneity in the carrier generation
rate; b, c—distribution of the temperature 6 = T/T,, the carrier den-
sity n/n/,, and the parameter 77 in an intermediate state (t=t}) and in
an autosoliton (t>t2) (Ref. I l l ) U, = I.2rr,t2 =5r r) .

694 Sov. Phys. Usp. 33 (9), September 1990 B. S. Keener and V. V. Osipov 694



2,132

2 x/L

FIG. 16. Kinetics of the formation of periodic striations (e) which arise as
a result of the breakup of an autosoliton (b, c) in the course of its sponta-
neous formation (a, b) near a small static inhomogeneity (with a relative
amplitude a = 5 - 1 0 ~ 3 and a width of 0.2L) at x = 0 at t, =0.5rr,
t2 = IT,, »_, = 5rr, r4 = 6rr, (5 = 20rr. These are the results of a numeri-
cal simulation of a "dense" electron-hole plasma.109

The physics of the formation of these striations is similar to
that described in Subsection 2.1.2.

5) In real systems, there are usually several local inho-
mogeneities of various amplitudes. As A varies, there can
accordingly be a sequential formation of DSs near many in-
homogeneities in accordance with scenarios 1-4.

6) If there are large-scale inhomogeneities in addition
to the local inhomogeneities, the system could conceivably
break up into several regions, each with its own value of Ac.
In this case, at a value of A close to the smallest of these Ac

values there will be a spontaneous formation of a DS in a
corresponding region in accordance with one of scenarios 1-
4 above. The formation of DSs in other regions of this system
with increasing ,4 may occur as a result of the "penetration"
into neighboring regions of a DS which has formed or as a
result of the formation of DSs in other regions of the system
by one of scenarios 1-4.

As a result of the complex picture of self-organization
corresponding to scenario 5 or 6, autosolitons or DSs of com-
plex form may arise in real systems even without the partici-
pation of fluctuations. In the ID case which we have been
discussing, DSs may form as stochastically distributed
asymmetric striations.

In KN and KH systems, the self-organization scenarios
discussed above may also occur as A decreases, more precise-
ly, as A ->A 'c, as a result of the formation of a cold autosoli-
ton near a small local inhomogeneity. Such an inhomogene-
ity causes perturbations of the activator 0(x) whose decay
far from an inhomogeneity as A-^A 'c is oscillatory (Fig. 14),

as in the case A^AC (see the discussion above). In this case,
a local breakdown leading to the formation of a cold autoso-
liton occurs in regions in which 6(x) reaches its minimum
value 0min. Local breakdown occurs when f?min is smaller
than 6 Q by a certain critical amount. This breakdown con-
sists of a local decrease in the activator in an avalanche fash-
ion from the value 0min ?z6'0to6zzdd (the local breakdown
is shown schematically by the arrow in Fig. 7b). A local
breakdown at the center of an inhomogeneity, followed by
the formation of cold striations, which come to fill the entire
system (scenario 4), occurs, for example, during a decrease
in the heating level of a stable hot electron-hole plasma
(Subsection 8.3). Figure 17 illustrates the kinetics of this
breakdown.

4.2. Evolution of striations"7J

The presence of small local inhomogeneities also has a
substantial effect on the evolution of striations near points
A=A(

p
N), of period-doubling bifurcations, or points

A = A (
d
N\ of striation-number doublings (Fig. 12, a and b).

In this case the number of striations may either decrease or
increase as ,4 varies (as a result of a dynamic restructuring),
not by a factor of two (§3) but (for example) by a single
striation or several striations. A restructuring of the DS as a
result of the appearance or disappearance of several new
striations in individual fragments of a DS is characteristic of
self-organization in real systems which contain small inho-
mogeneities. As a rule, the DS appears in the form of aper-
iodically distributed striations. In certain cases, the param-
eters of the striations away from such a fragment may vary in
such a way that the DS becomes approximately periodic.

4.3. Experimental results

The self-organization scenarios discussed above are ob-
served in experimental studies of striations in rf gas dis-
charges,146 of the bright points in electron-hole plasmas in

4,3108
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FIG. 17. Kinetics of the formation of periodic striations (d) which arise as
the result of local breakdowns in the "tails" of a cold autosoliton (b, c) in
the course of its formation near a small static inhomogeneity (with a
relative amplitude a = 5 -10~ 4 and a width of 0.16L) at x = 0. Part a
shows activator oscillations which decay with distance from the inhomo-
geneity «, = 1.2rr, t2 — 1.7rr, t, = 3rr These are the results of a numeri-
cal simulation of a dense electron-hole plasma (Subsection 8.3) carried
out in Ref. 100.
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FIG. 18. Results of an experimental study of the evolution of striations (in
the form of glowing current filaments) in a reverse-biased Si p + -n-n +

structure (a) (Ref. 35). Points 1-5 on the current-voltage characteristics
I( V) of the sample (b) correlate with diagrams 1-5 of the arrangement of
striations in the p + -n-n + structure in the form of glowing current fila-
ments (hatched regions) (c). _?",, = 15-10~4 cm, x, = 10~4 cm,
X2 = 4-\Q-4cm,x, =6-10-4cm,x4 = 2.5-10-4cm.

GaAs (Ref. 3 la), of the regions of metallic conductivity in
composite superconducctors,19'142 of the glowing ava-
lanche-current filaments in reverse-biased Si p + -n-n +

structures35 (Fig. 18), and of the current filaments in struc-
tures with a gas-filled gap57'87 and in electronic analogs of
active systems87 (Fig. 19). It can be seen from parts 1 of
Figs. 18 and 19 that with increasing excitation level (with

increasing voltage drop across the structure, V) an autosoli-
ton in the form of a single current filament initially forms,
spontaneously, in the structure. With a further increase, the
number of filaments increases (parts 2 and 3 of Figs. 18 and
19), and a DS in the form of periodically distributed current
filaments forms in the system.

Experiments87 also confirm other predictions of the
theory of Refs. 76 and 79 (Subsection 3.1) regarding the
evolution of striations. With increasing A = V, the current
filaments—i.e., the regions of a high activator value ("hot"
striations)—expand, and the DS takes the form of narrow
"cold" striations, i.e., regions of a low current (part 4 of Fig.
19). These striations then disappear abruptly and sequen-
tially, in agreement with the results of Subsection 4.2. An
approximately homogeneous state is established in the struc-
ture (part 5 of Fig. 19). If the voltage Vis now reduced,
filaments again begin to appear spontaneously in the struc-
ture, but now in the form of cold striations (part 6 of Fig.
19). With a further decrease in V, these striations expand,
and DSs in the form of narrow hot striations again form in
the structure. These formations are filaments of a high cur-
rent density (part 7 of Fig. 19). They then disappear, se-
quentially and abruptly.

5. SELF-ORGANIZATION IN 2D AND 3D SYSTEMS

In K systems, self-organization is determined by three
effects discussed in §2: local breakdown in certain regions of
a DS, a pumping of activator between fragments of DSs, and
a corrugation of the walls of striations or of more complex
DSs.77'79 The last of these effects may lead to a breakup of
the striation walls or the surface layers DSs (regions of a
rapid variation in the activator) into smaller regions or to
the formation of a corrugated or cellular surface of the DS
walls (Fig. 11).

mA
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20 40 BO BO 100 120 H

FIG. 19. Results of an experimental study of the evolution of striations (in
the form of current filaments) in a discrete electronic analog of an active
medium with diffusion87 as the voltage across the structure is increased
(distributions 1-5) or reduced (6, 7).

5.1. Shape and evolution of dissipative structures in ideal
homogeneous systems77 79

5.1.1. In 2D and 3D KN and KH systems, the point
A = Ac, at which the homogeneous state of the system strati-
fies, is degenerate. By this we mean that numerous growing
fluctuations, of various types, correspond to this point.3'6'12

In this case there is thus the nontrivial question of just which
type of DS forms in an ideally homogeneous system as its
homogeneous state stratifies. The shape of the system plays
an important role here.3'6'12

5.1.2. The simplest DS would consist of periodically
distributed striations76'77 (Figs. 6a and 7a). In 2D and 3D
systems, striations of a given period «^p usually exist in a
narrower interval of A than in ID systems. The reason is that
as the striations either contract or expand they may become
unstable with respect to a corrugation of their walls (Subsec-
tion 2.3). As a result, striations with corrugated walls may
form (Fig. 1 Ic), or the striations may break up into smaller
regions (Fig. l ib). In the latter case, DSs consisting of a
lattice of periodically arranged interacting autosolitons may
form in the system; these autosolitons may be spots or blobs,
i.e., regions of a high (or low) value of the activator. The
distributions of the activator and of the inhibitor over a cross
section passing through the center of these autosolitons are
approximately the same as the d(x) and rj(x) distributions
in striations.77
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The distance (/?) between interacting autosolitons is
limited by the values Rmin and Rmax. As in the IDcase (§2),
these limiting values can be found by analyzing the condi-
tions for a pumping instability and for local breakdown.77"79

The evolution of a periodic 2D or 3D lattice of interact-
ing autosolitons, like that of a periodic striations in ID sys-
tems (§3), can be determined at a qualitative level from the
behavior of Rmin and/?max as functions of the excitation level
A. All the self-organization scenarios discussed in Subsec-
tion 3.1 are realized in KN and KH systems. In contrast
with periodically distributed striations, however, the local
breakdown in this case may occur not between nearest auto-
solitons but in the regions farthest from the centers of the
autosolitons. The most closely spaced autosolitons are
quicker to lose their stability with respect to the pumping of
activator. In addition, as A varies, the autosolitons in KN
and KH systems may become unstable with respect to a cor-
rugation of their walls. Let us take a look at this effect in the
particular case of radially symmetric DSs.

5.1.3. In a radially symmetric system, radially symmet-
ric DSs of large amplitude may form abruptly at A = Ac. In
the 2D case, they would form as nested rings, and in the 3D
case as (hollow) spheres.77 The distributions d(p) and rj (p)
in these rings or spheres (see Fig. 1 Ic in Ref. 25) are approx-
imately the same as the distributions 9 ( x ) a n d t ] ( x ) in stria-
tions.

A fragment of a DS in the form of a ring (or sphere)
with an inner radius pol > L is stable at values of A such that
its thickness ̂  ^ =p02 — p0\ lies in a region whose boun-
daries Jfbl andJ^cl can be estimated from (4.33) or (4.35)
in Ref. 25. Outside this region, such a fragment of a DS
would become unstable with respect to radially asymmetric
fluctuations, which would lead to a corrugation of its walls
(or to the formation of cellular structures at the surfaces of
the DS walls) or to a breakup of the fragment into smaller
spots (orblobs).

The ring (or sphere) may also undergo a restructuring
as a result of the local-breakdown effects discussed in Sub-
section 2.1 in connection with striations.

Since the rings (or spheres) in the DS differ in radius
and thus in thickness, their restructuring may occur at dif-
ferent values of A. In other words, the transformation of a
radially symmetric DS upon a variation in A may occur as a
result of an instability or local breakdown in one of its frag-
ments. As a result, DSs of complicated form may arise even
in radially symmetric systems.

5. 1.4. Generalizing the results described above, one can
conclude77 that the inhibitor rj(r) in a DS of complex shape
varies smoothly in space with a length scale ~L, and the
0(r) distribution is a high-contrast pattern: In some regions
(surface layers or the walls of DSs) the activator 6 varies
sharply from the value #min;si9s, to the value #max~0s3

(Subsection 12.1) over a distance ~l4,L. In the regions of a
smooth variation of 0(r) and r/(r) , i.e., between the walls of
DSs, the values of 9 and 77 satisfy Eq. (1.29) with an accura-
cy to within e •< 1. More precisely, they correspond to local-
coupling branch I or III (Fig. 2, a and c). In other words,
between the walls of DSs the values are 9<60 or 6>6'0
(Subsections 1.3 and 12.1). At these values of 9 we have a
derivative q'g > 0; i.e., the state of the system is stable (Sub-
section 1.1). An unstable heated region with 00 < 9( r) < 6 'Q

and q'g < 0 is found only in thin surface layers (walls) of size
— / in which 6 ( r ) varies sharply. The requirements on the
form of stable DSs which have been formulated77 are sup-
ported by the results of numerical calculations carried out in
a series of studies.95 As A varies, a DS undergoes a complex
restructuring as a result of local breakdown in one of the
fragments of the DS, as the result of a pumping instability or
as the result of a corrugation of the walls of the DS.77

5.2. Evolution of narrow peaked DSs"7"147

In ID, ideally homogeneous KA and KV systems, nar-
row peak striations may form (Fig. 5). In the 2D and 3D
cases, such striations, like a narrow ID peak autosoliton
(Subsection 5.2 in Ref. 25), are unstable with respect to
breakup into smaller regions. The instability stems from a
growth of an activator fluctuation which is localized near a
striation peak and which is inhomogeneous along its surface.
Also unstable with respect to breakup are radially symmet-
ric rings (or spheres) or spots (or blobs) of any other type
whose dimension in at least one direction is substantially
greater than / (Ref. 77).

The only stable DSs are spots (blobs) with a size on the
order of / which are separated from each other by a distance
R such that Rm.dx (A) > R > Rmin, where Rmin is found from
the condition for a pumping instability (Subsection 12.4),
and /?max is found from the condition for local breakdown
(Subsection 12.2) between spots (or blobs).

The evolution of a periodic lattice of interacting narrow
peak autosolitons is analogous to the evolution of periodic
striations in ID systems (Subsection 3.2). The evolution can
be determined qualitatively from the behavior of/Jm i n and
/Jmax as a function of the excitation level of the system, A
(but see the comment at the end of Subsection 5.1.2).

The variations in 9 and rj in the cross section of the spots
(or blobs) are approximately the same as the activator and
inhibitor distributions in a narrow peak hot striation (Fig.
4a). These results explain the shape of DSs which Gierer and
Meinhardt92'93 have seen in a numerical study of the model
of a KV system in (1.11).

5.3. Self-organization scenarios in real systems78 79

Small inhomogeneities in real systems raise the possibil-
ity that the self-organization in these systems may be deter-
mined by the spontaneous formation of autosolitons near
certain local inhomogeneities.

5. 3.1. Peak autosolitons25 form as spots or blobs of a
high value of the activator in KA and KV systems (Subsec-
tion 5.2). In this case the picture of the self-organization is a
gradual filling of the system with peak autosolitons, which
arise in accordance with the inhomogeneity field of the sys-
tem or near an autosoliton that had been formed by one of
scenarios 3-6 outlined in Subsection 4.1.2.

In 2D or 3D systems, there may be some qualitatively
distinct features in scenarios 3 and 4 (in Subsection 4.1.2).
The reason is that as A -+AC a radially symmetric oscillatory
activator distribution instead of oscillating tails forms at the
periphery of the autosoliton (Fig. 6d). This oscillatory acti-
vator distribution is seen as a series of nested rings (or
spheres). The amplitude of the activator oscillations in the
rings (or spheres) decreases with distance from the center of
the autosoliton. As has been noted in KA and KV systems,
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peak DSs in a form of a ring (or sphere) are unstable.77 The
local breakdown in the oscillatory tail of an autosoliton
(Subsection 2.1.2) therefore leads to a sharp increase in the
activator in the ring nearest the center of the autosoliton in
this case. During the formation of a region of a high activator
value in the form of a narrow ring (or sphere), this region
breaks up into small regions in the form of small-radius
( ~/) peak autosolitons. Consequently, even a single slight
inhomogeneity leads to the filling of the entire system with
interacting peak autosolitons as A ->AC.

5.3.2. In KN and KH systems, a radially symmetric
autosoliton whose radius depends on the nonlinearities of
the system forms near a small local inhomogeneity at values
of A close toAc. All the self-organization scenarios present-
ed in Subsection 4.1.2 occur in this case. However, those
scenarios have certain distinctive features in the 2D and 3D
cases.

The reason for the distinctive features of scenarios 3 and
4 in Subsection 4.1.2 is that first one and then more rings (or
spheres) can form in KN and KH systems near an autosoli-
ton as-4 -».i4c, as the result of local breakdown in the radially
symmetric tail of the autosoliton. In other words, a radially
symmetric DS may arise spontaneously in a system which
contains only a single local inhomogeneity. Such a state may
prove to be unstable with respect to radially asymmetric
fluctuations. Consequently, the spontaneous formation of
an autosoliton near a small inhomogeneity may also lead to
the appearance of DSs in the form of nested rings (or
spheres) with a corrugated (or cellular) surface. Alterna-
tively, the system may become filled with a multitude of in-
teracting autosolitons, each with a shape approximating that
of a radially symmetric autosoliton.

Distinctive features of scenarios 1 and 2 in Subsection
4.1.2 in 2D or 3D KN and KH systems with Ad <AC are that
the local breakdown at the center of the autosoliton in the
form of a spot or blob may lead to a state in the form of a ring
or sphere (Subsection 4.4 in Ref. 25). In turn, a local break-
down may occur in the ring (or sphere) and lead to the
formation of at first two and then more nested rings (or
spheres). However, another situation is also possible, be-
cause radially symmetric states may break up into smaller
parts at the same (or a larger) value of A, as mentioned
above. This breakup may occur either as the result of an
instability in which the walls of the DS become corrugated
(Subsection 2.3) or as the result of a dynamic restructuring
in the course of which the wall of an expanding ring runs into
one of the inhomogeneities.

5.4. Self-completion of DSs during local excitation of a
medium

A brief excitation of the medium in a local region can
serve as an inhomogeneity which nucleates the abrupt ap-
pearance of an autosoliton.25 All the self-organization sce-
narios presented in §4 and Subsection 5.3 are realized. In
particular, after a brief local excitation of a medium during
the formation of an autosoliton, periodic or more-complex
DSs can arise. This DS formation process is called "self-
completion."8'17'94'95 Self-completion of DSs has been ob-
served experimentally in studies of striations in gas dis-
charges.14 The formation of DSs as the result of
self-completion has been examined in numerical studies of
axiomatic models of active media92'95 (see also Refs. 8, 10,

17, 19, 96, 100, 104, 105, 106, 109, 111, 113, and 142).
The formation of DSs as a result of self-completion is

also linked with the eifects discussed in §§2-5. In particular,
the self-completion of a peak DS observed by Giere and
Meinhardt92'93 (see Fig. 10.3 in Haken's monograph5' in a
numerical study of 2D model (1.11) is associated with a
local breakdown at the periphery of a peak autosoliton (Sub-
section 5.3.1). This type of local breakdown leads to the
formation of a narrow ring around the autosoliton. As a re-
sult of the instability of this ring with respect to radially
asymmetric fluctuations,77 it breaks up into smaller regions:
small-radius peak autosolitons (Subsection 5.3.1). As a re-
sult of a chain of such processes, the entire system becomes
filled with interacting peak autosolitons. A breakup of ex-
tended 2D regions of the DSs into smaller regions associated
with corrugation of the walls of DSs is also observed in nu-
merical studies of the formation of complex 2D DSs, which
form in models of media with long-range coupling [see
(1.31) and (1.32)].13U32

6. DISTINCTIVE FEATURES OF SELF-ORGANIZATION IN
BISTABLE (FLIP-FLOP) SYSTEMS79

In bistable systems, the value of the inhibitor (and that
of the activator) for the homogeneous state of the system is
by definition a multivalued function of the excitation level A
(Fig. 20). There exists an interval of values A 'c <A <AC in
which three homogeneous states ( r j h l , 0M; r/h2, dh2; 7)M,
0h3), are realized. Two of them are stable and correspond to
respectively cold (&hl <60) and hot (0h3 >0'0) states of the
system. This situation may be realized, for example, in semi-
conductors,148'149 in semiconductor structures and gas-dis-
charge structures,57'58'150 in electron-hole and gaseous plas-
mas,48 and in several chemical reactions.10'16 In contrast

FIG. 20. Evolution of striations in bistable systems with Ah <A 'C,A i>Ac

(a, b) and with/4b >A'^,A'b<Af (c, d). a, c—Examples of bifurcation
characteristics for H systems with q'A < 0, Q 'A = 0; b, d—for N systems
with q'A = 0; Q ̂ _< 0. Curves N correspond to periodic striations, and
curves AS and AS to hot and cold autosolitons. The dashed lines corre-
spond to unstable states.
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with the monostable systems discussed in §§ 1-3, the relation
AC>A'C holds in bistable systems (Fig. 20).

The theory set forth in §§1-5 also describes the shape
and stability of DSs in bistable systems if condition (1.3)
and q'^Q'e < 0, hold for them. These conditions also hold for
monostable systems (Subsection 1.3). Self-organization has
certain distinguishing features even in such bistable systems.

The nature of these features depends on the relationship
between A 'c and Ab or that between Ac and Ab, where
A = Ab and A b are the points at which we have
d?7sAL4 = oo. We recall that the values Ab and A b are the
limiting values of the excitation level at which DSs can still
be excited in a system (excited as a hot autosoliton in the
case A = Ab or as a cold autosoliton A = A b; Ref. 25).

Four different cases may be realized, depending on the
parameter values of the system: a) Ab <A 'c,A'b >AC (Fig.
20, a and b); b) Ab >A 'c, A b <AC (Fig. 20, c and d); c)
Ab>A'c,Ab>Ac;d)Ab<A'c,Ab <AC.

In case a), the stratification of the homogeneous state of
the system at the point A = Ac (or A = A ' c ) leads to the
spontaneous formation of DSs-striations in the ID case. The
kinetics of their formation, their evolution, and the effect of
small inhomogeneities are all the same as described in §§ 1-5
for KN and KH systems.

Since DSs are not realized in a system at A <Ab (or
A>A'b), the stratification of the homogeneous state of the
system atA=Ac (or atA=A'c) in case b) leads not to be
the formation of DSs but to an abrupt transition from an
unstable homogeneous state to a stable state (jumps 3->4
and 3 '-> 4' in Fig. 20, candd). A.sA^Ac (orA^A 'c), small
inhomogeneities lead to a local breakdown in this case and to
the appearance of switching waves (Subsection 8.1 in Ref.
25), in which there is a switch from one homogeneous state
to another.

In cases c) and d) the self-organization has some ex-
tremely nontrivial distinctive features. In case c), for exam-
ple, as a cold system is heated (as A increases), DSs form
abruptly at the point A = Ac. Their evolution is the same as
described in §§3-5. As a hot system is cooled (as A is re-
duced), on the other hand, DSs do not form at the point
A = A 'c; instead there is an abrupt transition from a hot to a
cold stable homogeneous state. In case d), on the contrary,
DSs do not form at the point A = Ac, and the system goes
abruptly from a cold to a hot stable homogeneous state. Dur-
ing the cooling of a hot system, on the other hand, DSs form
spontaneously at the point A = A 'c. Their evolution is the
same as described in §§3-5.

7. ACTIVE MEDIA WITH SPATIALLY SEPARATED REGIONS
OF ACTIVATION AND INHIBITION

Among the various active distributed media with diffu-
sion, there are, in addition to the systems of various types
which are inhomogeneous over volume and which were list-
ed in Subsection 1.1, some multilayer systems, which are
homogeneous only over area or only over cross section. In
such structures, the activation and inhibition processes may
occur in spatially separate regions. The properties of DSs in
such structures and thus the self-organization processes are
again described by Eqs. (1.1) and (1.2) for the 2D and ID
cases.

Active media with spatially separate regions of activa-

tion and inhibition constitute an extremely broad class,
which includes many active elements of semiconductor elec-
tronics. Such media are not only important but also conven-
ient objects for an experimental study of the self-organiza-
tion processes discussed in §§2-6. The reason is that it is
possible in this case to vary independently the parameters of
any of the layers making up the structure. Let us look at
some examples of such media.

7.1. Growing filaments of avalanche current in p-n
structures

The distribution of the avalanche current density
j = envd over the area of reverse-biased p-n and p-i-n struc-
tures is described by equations like (1.1) and (1.2) (Ref.
34):

-~ nvs (n, — n (7. 1

(7.2)

The first of these equations is the electron balance equation
in (1.17), averaged over the thickness of the space-charge
region of the p-n junction (Fig. 2 la). In it, rn = w/v0 is the
transit time of the electron through the space-charge region,
whose thickness is w, VD is the electron drift velocity,
/ = (Dern )

1/2, />e is the electron diffusion coefficient, and G
is the rate of thermal generation of carriers in the space-
charge region. Equation (7.2) describes the distribution of
the voltage drop Vt over the space-charge region of the p-n
junction (Fig. 21a) associated with the spreading of the cur-
rent over the quasineutral part of the structure. In this equa-
tion, TV = Cp; V is the total voltage drop across the struc-
ture; C is the specific capacitance of the p-n junction;
p = W /a; a and Ware the conductivity and thickness of the
n-type (or p-type) region of the structure, which has a large
value of p; and L~W. In these structures, the inhibition
process is associated with current spreading in the quasineu-
tral p-type or n-type regions, which are distributed resistive
layers (Fig. 2la), while the activation process occurs in the
space-charge region of the p-n or p-i-n structure and is asso-
ciated with the increasing dependence of v, on n (Ref. 34).

In this case, the average electron density in the space-
charge layer (d=n) plays the role of activator, while the
voltage drop across the space-charge region (77= F,) plays
the role of inhibitor. The positive feedback through the acti-
vator is associated with the self-breeding of electrons,141

which is determined by the increasing dependence of the rate
of impact ionization, vt, averaged over the space-charge re-
gion, on the value of n. The damping role of the inhibitor
stems from the circumstance that with V = const a uniform
increase in n, i.e., in the current densityy, is accompanied by
a corresponding decrease in the value of V( because of an
increase in the voltage drop across the quasineutral regions
of the structure. This effect leads in turn to a sharp decrease
in the carrier density in the space-charge region, because of
the strongly increasing dependence of the rate of carrier ioni-
zation, V; on V { . As a result, the current-voltage characteris-
tic of this structure is single-valued (curve 3 in Fig. 21b).
Nevertheless, a stratification of the uniform distribution of
the avalanche current density occurs; i.e., the Turing stratifi-
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FIG. 21. Diagram used in explaining the formation of bright points during the stratification of a uniform avalanche breakdown of a p-n junction, a:
Structure of the p-n junction. Thin solid lines—Schematic current lines within two periods of the peak dissipative structure; /—active layer, or space-
charge region (SCR), of the p-n junction; 2—resistive layer; 3—metal contacts, b: Current-voltage characteristic of the active layer, /(V,) (curve
between 2 and 3), load line determined by the conductance of the resistive layer ( 2 ) , and resultant current-voltage characteristic of the overall structure
(5) c: Results of numerical calculations"3 of the n,j, and V, distributions, d, e: Photographs of the emission in the plane of the p-n junction34 at currents
respectively below and above the critical value.

cation condition, (1.10), holds.34

The reason for the stratification of the avalanche cur-
rent density is that in real structures the current spreading
length L is many orders of magnitude greater than /, the
electron diffusion length during the transit of the electrons
through the space-charge region. In other words, we have
e = / /L <^ 1. As a result, the stratification condition holds
even if the dependence of vt on n is weak. As a result of this
stratification (whose physics was discussed in Refs. 34 and
113), regions of a high electron density and a high avalanche
current form in the structures. This effect is a clear example
of the formation of peak DSs in real physical systems (Fig.
21). The appearance of peak DSs in this case follows directly
from the circumstance that the local-coupling curve (Sub-
section 1.3), i.e., the dependence Vt ( n ) , which is a conse-
quence of Eq. (7.1) for the steady-state homogeneous case,
is A-shaped. Experimentally, the formation of peak DSs is
observed as the replacement of a glow of the p-n junction
which is uniform over the area (Fig. 21 d) by a high-contrast
glow pattern in the form of bright points34 (Fig. 21e) or
filaments35 (Fig. 18) against a dark background. The pic-
ture of the spontaneous appearance and evolution of such
points on filaments agrees completely with that presented in
§§4 and 5.

7.2. Multifilament states in a semiconductor film with a
thermal instability

We consider a sandwich structure consisting of a thin
semiconductor film (of thickness w) on a considerably
thicker resistive substrate. Metal electrodes are applied to
them (Fig. 22a). An electric field E = y{w~l heats the elec-
trons in the film. The distribution of the effective tempera-
ture of these electrons, T, is described by21'23 Eq. (1.18), in
which Wj = cre V

2
tw~2, jc = *eVr, and cre and xe are the

electrical and thermal conductivities of the electrons. In this
case the electron temperature [ more precisely, the quantity
6 = Sxc ( T ) d T ] serves as activator. It is easy to see that the
second of conditions (1.3) is the same as the condition for
the thermal instability of an electron gas.21 The role of in-
hibitor is being played here by the voltage drop across the
semiconductor film, V{; the distribution of this voltage drop
over the film area is described by Eq. (7.2), in which
j=<TeV-,w~l;p= W /a; W, a, and rv are respectively the
thickness, conductivity, and Maxwellian dielectric relaxa-
tion time of the resistive layer; V is the voltage drop across
the overall structure; and L~W.

The thermal instability in a semiconductor is usually
studied with a lumped load resistance in the external circuit,
in which case only an isolated current filament, whose prop-
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FIG. 22. Diagram used in explaining systems with spatially sep-
arate activation and inhibition regions, a: Diagram of the sand-
wich structure. 1—Active layer of thickness w; 2—resistive lay-
er (inhibition region) of thickness W; 3—metal contacts, b:
Distributions of the current density j and of the voltage drop
across the active layer, Vt. c: S-shaped current-voltage charac-
teristic of the active layer (curve /) , load line of the resistive
layer (2), and possible resultant current-voltage characteristics
of the overall structure (3 and 3").

erties depend on the size of the semiconductor plate, is sta-
ble.21'23'24 In the sandwich structure which we are discussing
here (Fig. 22a), in contrast, the current spreading in the
resistive layer, i.e., the redistribution of the voltages among
layers, results in the formation of stable multifilament states
in which the distribution of the current density j= aeE is
qualitatively the same as the distribution of the electron tem-
perature T (Fig. 22b). The properties of the filaments which
form do not depend on the dimensions of this system; they
are determined by the parameter values of the layers, pri-
marily the thickness of the resistive layer W, and the electron
energy relaxation length in the film, l£. The quantity WzzL
determines the distribution of the voltage V}, i.e., of the in-
hibitor (r)= V { ) , according to (7.2), while /£ determines the
distribution of T, i.e., of the activator.

In this case we thus have l=lc,L^W,Te=re,T7l=Tv,
and A = V. In semiconductors the conditions E = / /L < 1 and
re > ry usually hold; i.e., this sandwich structure is a K sys-
tem (Subsection 1.3) or, more precisely, a KN system. The
latter conclusion follows from the circumstance that the lo-
cal-coupling curve—in this case the dependence V{ (T)—is
N-shaped under the conditions of the thermal instability,21

as is easily verified. The shape of the DS and their evolution
are therefore the same as those discussed in §§2-5 and 12 for
KN systems.

Multifilament states also arise in a sandwich structure
(Fig. 22a) in which the thin semiconductor film is heated.
The distribution of the temperature T over the film area is
described by the heat-conduction equation averaged over
the film thickness w.

dT

dt

(7.3)

where 1T and TT = cpl \/K{ (7",) are a length scale and a time
scale of the variations in T; c, p, and K{ are respectively the
specific heat, density, and thermal conductivity of the mate-
rial; Tt is the temperature of the reservoir; and
Wj = cre ( T ) V\w ~~2. In this case, the lattice temperature is
high in the regions in which the current density is high.
These "hot spots" form in a film because the dependence of
the film conductivity <re on the lattice temperature T is an
ascending dependence, usually of a thermal-activation na-
ture.

7.3. Hot spots in transistor structures

A structure of this sort (Fig. 23a) is a realistic model of
an active distributed medium, which has been used as an
example to analyze the current stratification and the shape
of the DS which form in systems with a single-valued cur-
rent-voltage characteristic.52'151 In this structure (Fig.
23a), the temperature 7"of the structure serves as activator
(6= T), the voltage drop across the forward-biased (emit-
ter) p-n junction, FE, serves as inhibitor (77= KE), and the
overall voltage drop across the structure, V, serves as the
control parameter A (A = V). The T distribution in the
structure is described by Eq. (7.3), in which the Joule heat-
ing power is

/, mA,

20 40 SO V,v~

FIG. 23. "Hot spots" in a p-n-p transistor structure,
a—Schematic diagram of the structure; b—distribu-
tions of the temperature and the voltage drop across
the injection (emitter) p-n junction; c—experimental
current-voltage characteristic,'51 on which region 0
corresponds to a uniform T distribution, while region
H corresponds to a state with a hot spot. Jumps 1 -> 2
and 3^4 in part c correspond to the formation and
disappearance, respectively, of a hot spot.
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W/ = jVtfW = /„ exp l(eVE- £,) T~l] VtfW, (7.4)

Ef is the width of the band gap of the semiconductor,
j0 exp( — E^/T) is the saturation current of the reverse-bi-
ased emitter p-n junction, and IVis the thickness of the crys-
tal of the transistor structure. The distribution of KE over
the area of the structure is associated with the current
spreading over the base of the structure (the n-type region in
Fig. 23a). It is described by an equation like (7.2) (Ref. 52):

— VE- jpk(\ - a,M),
dt

where rv = Cpc, L = (awpc)
1/2, /jc is the leakage resistiv-

ity of the collector p-n junction, w and a are the thickness
and conductivity of the base of the structure, Cis the overall
specific capacitance of the p-n junctions, and a, and M are
the current transfer ratio and carrier breeding factor. As a
rule, the quantity pc is very large, while C is small, and the
conditions Z,>/r and TV<TT hold. These conditions are
characteristic of K systems. According to (7.3) and (7.4),
the local-coupling curve—in this case, the curve of V^(T)—
is A-shaped. The shape and evolution of the hot spots in
transistor structures are therefore the same as those dis-
cussed in §§2-5 for K.A systems, in which narrow peaked
DSs form (Fig. 23b). Hot spots of this sort are also observed
experimentally15' in transistors.155

7.4. Structures with "latent" S- or N-shaped current-voltage
characteristic

7.4.1. It follows from the equations which describe the
activation process in the structures discussed in Subsections
7.1-7.3 that the activation region has an S-shaped current-
voltage characteristic. The resistive layer, i.e., the inhibition
region (layer 2 in Fig. 22a), has a positive differential resis-
tance, which may be greater in absolute value than the nega-
tive differential resistance of the activation region. As a re-
sult, the current-voltage characteristic of the overall
structure corresponding to a uniform current distribution is
single-valued.16' Sandwich structures of this sort are essen-
tially media with a "latent" S-shaped current-voltage char-
acteristic.52 Among such media are numerous semiconduc-
tor structures,54'55'57 gas-discharge structures,36'37 and
distributed electronic models of active media with diffu-
sion17' (Refs. 57, 86, and 87).

The distribution of the inhibitor rj= V-t in these sand-
wich structures (Fig. 22a) is described by Eq. (7.2). If the

results of §§2-5 are to be used directly to analyze DSs and
self-organization phenomena, it is necessary to express the
current density in the layer with the S-shaped current-vol-
tage characteristic unambiguously in terms of a parameter
(playing the role of activator) whose distribution is de-
scribed by an equation like (1.1), as in Subsections 7.1-7.3
(Refs. 34 and 52) and in Refs. 54,55, and 57. This procedure
has been carried out for complex semiconductor devices (in-
jection diodes, avalanche transistors, and dynistors) in sev-
eral papers, which are reviewed in Ref. 22.

7.4.2. One-dimensional DSs of various types may also
arise in sandwich structures in which the resistive layer (re-
gion 2 in Fig. 24a) is connected in parallel with an active
layer (region 1) with an N-shaped current-voltage charac-
teristic (Fig. 24c). Striations can arise in such structures, as
domains of a high electric field (Fig. 24b). The general re-
sults of §§2-6 can be used directly to describe the shape of
such domains and self-organization effects. To do this, we
need to express the electric field (EN) in the active layer with
the N-shaped current-voltage characteristic in terms of
some parameter 6 (which plays the role of activator), whose
distributions are described by equations like (1.1). The role
of inhibitor in such structures is played by the total current
in the active layer, IN (rj=IN). The equation describing the
distribution IN (x) can be found from the law of induction of
the electric field for a closed circuit:

where f j is the induced emf. Applying this equation to a
small element of a thin sandwich structure, and taking its
average over the thickness of the layers, we find

dt
. = L « I _ I * L _ j

a*«
(7.5)

where T, = Wab&,, £,- W, ¥, is the overall inductance
per unit length of the layers, and a and fFare the conductiv-
ity and thickness of the resistive layer. The time and length
scales of the variation of the inhibitor 77= IN in this case are
therefore TV =r, and L~ W, and the control parameter is
A=I.

Among structures with a latent N-shaped current-vol-
tage characteristic are (for example) composite supercon-
ductors in which the active layer is a superconducting film,
while the resistive layer is a film of a normal metal.19 In such

FIG. 24. Diagram used in explaining structures with a "la-
tent" N-shaped current-voltage characteristic, a: Schematic
diagram of the sandwich structure. 1—Active layer with N-
shaped current-voltage characteristic; 2—resistive layer;
3—metal contact; solid lines—schematic current lines, b:
Distributions of the electric field and the current in the active
layer, c: N-shaped current-voltage characteristic of the ac-
tive layer (curve /), load line of the resistive layer (2), and
possible types of resultant current-voltage characteristic of
the structure (3 and 3').

X
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sandwich structures, the film temperature plays the role of
activator (0=T); its distribution along the structure is de-
scribed by an equation like (7.3). The results of the experi-
mental and theoretical studies of domains in composite su-
perconductors which were carried out in Refs. 19 and 142
agree entirely with the general results of the theory of DSs as
set forth in §§2-4 and 6 for KN systems.

7.4.3. A change in the number of current filaments (or
of field domains) in these structures upon a variation in the
parameters of the external circuit is accompanied by jumps
in the current / (or in the voltage V) on the current-voltage
characteristic of the structure. These jumps are observed ex-
perimentally in studies of multifilament and multidomain
states in various structures. 19'31~38>57'86t87'142 In ideally uni-
form monostable systems, the evolution of the current fila-
ments (and of the field domains) is qualitatively indepen-
dent of the magnitude of the active load resistance RL (Ref.
18). There can be only an expansion of the range in which an
autosoliton exists as an individual filament (or domain)
which forms as a result of the evolution of multifilament (or
multidomain) states (§ § 3 and 4). In a sample of size & < L
a current filament is stable if151'160

(7.6)

(7.7)

and a field domain is stable if47'160

D(0)(RL+Z(0))<0,

where Z(ico) is the impedance of the structure with the la-
tent S or N-shaped current-voltage characteristic, respec-
tively, and D(ico) is given by expression (4.9) in an earlier
review.25

8. ACTIVE SYSTEMS WITH A "CROSS" DIFFUSION

In this section of the paper we discuss systems in which
not only the stratification mechanism (Subsection 1.2) but
also the properties of the DSs are determined by diffusion
processes or, more precisely, by the sign of the cross diffu-
sion coefficients Di} with i=£j in Eqs. (1.6) and by their be-
havior as functions of the quantities X:. Among such systems
are nonequilibrium gaseous and electron-hole plasmas, as

was mentioned back in Subsection 1.2. Thermodiffusion
DSs, whose existence is determined by thermodiffusion, i.e.,
by the strong effect of the temperature distribution on the
spatial distribution of the densities of electrons and holes (or
ions), can form in these systems.75'76

8.1. Thermodiffusion DSs in electron-hole plasmas7576

We consider an electron-hole plasma which is produced
in a semiconductor film by light with a photon energy fua
greater than the band gap of the semiconductor, Eg, by an
amount 2A = fiat — Eg (Fig. 25a). The absorption of such
photons is accompanied by the formation of hot electrons
and holes, which may be heated as a single system to an
effective temperature Tas a result of electron-electron colli-
sions. The distributions of T, the electron density, and the
hole density in a symmetric electron-hole plasma are de-
scribed by Eqs. (1.26)-(1.28) with W} = AG. As was point-
ed out in Subsection 1.2, the instability which results in the
stratification of the electron-hole plasma is aperiodic; i.e., its
threshold is determined by the condition y = Q. Another
conclusion which essentially follows from this condition is
that the left-hand sides of Eqs. (1.26) and (1.27), i.e., the
nature of the time derivatives, usually do not affect the sta-
bility condition for DSs. Consequently, the conditions for
the stability of thermodiffusion DSs (with rr = const) are
usually the same as those studied in §12 for K systems, for
which we also have Im^ = 0 at the stability threshold.

It follows from (1.28) that the local-coupling curve is
V-shaped or H-shaped for a + s > 0. This electron-hole plas-
ma thus falls in the category of KV or KH systems, for
which the form of the DSs [ the distributions 9 (r) and rj (r) ]
and their evolution were analyzed in §§2-5. The distribution
of the density «(r ) in thermodiffusion DSs can be recon-
structed easily (Fig. 25, b and c) through the use of the
relationship between r), on the one hand, and n and T, on the
other, which follows from (1.25). Since D( T) is an increas-
ing function of T in this case, it follows from (1.25) that the
temperature and carrier density in thermodiffusion DSs
vary out of phase. In other words, regions of a high tempera-
ture and of a low carrier density form in the electron-hole
plasma (Fig. 25, b and c). We wish to stress that, despite the

H H H

FIG. 25. Dissipative structures in systems with a "cross" diffusion, a, d,
e—Schematic diagrams of local regions of (a) a high temperature of the
electron-hole plasma, (d) transverse striations, and (e) longitudinal
striations; b, c, f, g—distributions of the temperature T and the carrier
density « in the striations realized in systems with (b, c) a positive and (f,
g) a negative thermodiffusion.75-76
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large diffusion length, the carrier density (like the tempera-
ture) varies sharply in regions of size l4,L, i.e., the walls of
the DSs (Fig. 25, b and c). The reason is that at the walls of
the DSs the carrier diffusion flux JD = — DVn is balanced
by the thermodiffusion flux, which corresponds to the last
term in (1.19).

8.2. Multidomain states in semiconductors with a single-
valued current-voltage characteristic49

Let us consider the heating of intrinsic or photogenerat-
ed carriers in a static or rf field. Again in this case, the distri-
butions of « and T are described by Eqs. '(1.17) and (1.18),
with the one difference that Wj —jE in (1.18) is the Joule
power supplied to the electron-hole plasma. It follows from
these equations that in the absence of a thermal instability,
i.e., under the condition a + s < 1, the current-voltage char-
acteristic of the sample is single-valued. The homogeneous
state of the plasma becomes unstable with respect to fluctu-
ations with a wave vector k||E (Refs. 49-51, 161, 162). The
reason is that the presence of a field gives rise to a special
direction. As a result of this instability, striations, i.e., elec-
tric field domains, form abruptly in the plasma, in a direc-
tion transverse with respect to the current lines49 (Fig. 25d).

In such thermodiffusion striations, as in the formations
discussed in Subsection 8.1, n and Tvary out'of phase (Fig.
25, b and c). The current density is a constant,y(*) = const,
so the field Eand the power Wj —f/a = j2(2e/nn) ~ ' reach
maxima in regions with a low carrier density (Fig. 25, b and
c). As a result, the striation formation condition
a + s > — 1 is less stringent than in the case of an electron-
hole plasma which is heated as a result of photogeneration
(Subsection 8.1).

Under the condition a + s> — 1, the local-coupling
curve for the variables in (1.25) which follows from the
equation q = P- Wj = 0 may be 1/2- or V-shaped, depending
on the value of T, and the parameters of the electron-hole
plasma.51 This plasma thus falls in the category of a KI/2 or
KV system, so the evolution of the multidomain states which
occurs in it is the same as described in §§2-4.

8.3. Multifilament states in a "dense" electron-hole
plasma48-51'100'104'109

In a dense electron-hole plasma, the carrier mobility /LL
is determined by collisions of electrons and holes which are
moving opposite to each other in the electric field. In this
case we have/* oc T3/2n ~ ' (Ref. 163); i.e., the conductivity
a = e^n of the electron-hole plasma is independent of its
density. At low temperatures the carrier energy is usually
dissipated on acoustic and optical phonons. In this case we
have 5 < — 1/2, and the current-voltage characteristic of the
dense plasma is single-valued. Nevertheless, the homoge-
neous state of the plasma stratifies with respect to fluctu-
ations with klE, and multifilament states in the form of lay-
ers or cylinders directed parallel to the current lines form
abruptly in the plasma48 (Fig. 25e). The changes in the den-
sity and the temperature in these current filaments are out of
phase (Fig. 25, b and c). They are described by equations
like (1.17) and (1.18), with je = -fife-lVLPs in the lat-
ter, where />„ = nT is the pressure of the electron-hole plas-
ma, and/zf is the carrier mobility, which is determined by the

scattering of the carriers by defects and phonons.
The reason for the appearance of multifilament states

parallel to the current lines in a dense electron-hole plasma is
that in them we have E(rL) = const, and the Joule power is
Wj = aE2 oc rv2. As a result, the local-coupling curve cor-
responding to the equation q = P — Wj• = 0 is H-shaped or
V-shaped104 if we note that in this case we have 6 = T /T,
and rl = Ps/Tinh. Consequently, the evolution of the
multifilament states is the same as described for K A and
KV systems in §§2^4.

A distinctive feature here is that a change in the number
of filaments in the sample leads to numerous regions of
hysteresis on the current-voltage characteristic. A current-
voltage characteristic of this sort is observed during the
stratification of electron-hole plasmas in thin GaAs films31

and in GaAs transistor structures.164 The evolution of the
multifilament states upon a change in the voltage across the
sample has been studied experimentally31 and numerical-
ly.100'104'109 The results agree with the results of the self-
organization theory presented in §§2-5.

8.4. "Hot spots" in a semiconductor film

The DSs which form in systems with a "positive" ther-
modiffusion, in which the particle flux is directed out of a hot
region into a cold one, were discussed in Subsections 8.1-8.3.
In several systems, an increasing particle scattering cross
section with increasing particle velocity may cause the ther-
modiffusion flux of particles to be directed out of a cold re-
gion into a hot one. A uniform particle distribution in such a
system with a "negative" thermodiffusion may stratify, as
was first pointed out in Refs. 59 and 60 for the particular
cases of chemical reactions and a mixture of neutral gases.
As a result of this stratification, DSs consisting of regions of
a high temperature and a high particle density form in sys-
tems with a negative thermodiffusion75'51 (Fig. 25, f and g).

Thermodiffusion DSs of this sort may arise spontan-
eously in a thin semiconductor film in which an electron-
hole plasma is photoproduced in a uniform fashion.75 At
room temperature and at high carrier densities, the tempera-
ture of the plasma is essentially the same as the film tempera-
ture T. The distributions of T and of the carrier density n in
the film are described by Eq. (7.3) and by the balance equa-
tion for the number of carriers, (1.17), averaged over the
film thickness. It follows51'75 that the bipolar diffusion
length L characterizes the length scale of the variation in
77 = nip ~ l ( T ) , where cp{T) is an increasing function of T.
As in Subsections 8.1-8.3, the role of activator is played in
this case by the temperature (ff=T), while the role of inhibi-
tor is played by rj. The equations for the form of the DSs in
terms of the variables 6 and 77 are also analogous to (1.1) and
(1.2). The properties of the DSs at L^>1T correspond to
those discussed in §§1-6 for KN or KA systems.51

The reason for the existence of local regions of a high
temperature (Fig. 25, f and g) is that the carrier density
increases in these regions as a result of the negative thermo-
diffusion. On the other hand, the absorption of the electro-
magnetic radiation and the recombination of carriers occur
more rapidly in a region of carrier buildup. The effect is to
sustain the high temperature in local regions of the film;75

this high temperature may be above the melting point of the
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semiconductor and may cause a spotty damage to the film.
This effect165 is apparently also pertinent to a spotty melting
of the surface of a semiconductor which has been observed
experimentally 166~168 during uniform pulsed exposure to
light at a power well below that sufficient to melt a surface
layer of the semiconductor.

8.5. Dissipative structures in chemical reactions with a
"cross" diffusion

Thermodiffusion DSs, including autosolitons, may also
arise in nonisothermal chemical reactions, as a result of the
dissipation or absorption of heat.

In principle, the stratification of the uniform distribu-
tion of chemical substances can also occur when a chemical
reaction proceeds under isothermal conditions. Such a
stratification may be associated with an entrainment of one
chemical substance by the other. ' 16 In this case the fluxes of
chemical substances can be described by8bil7iU6

i = — DnVnt — D12Vn2, J2 = — (8.1)

where «, and«2 are the densities of the chemical substances,
and the diffusion coefficients Z),y depend on n , and «2 • In this
case the matrix of coefficients Dtj in Eqs. (1.16) contains off-
diagonal terms, which describe a nonlinear "cross" diffusion
of the two chemical substances. It follows from linear strati-
fication theory116 that the densities of the substances, n{ and
«2, may vary either in phase or out of phase spatially, de-
pending on the signs of the cross-diffusion coefficients Du

andD21 .
The form and properties of the DSs in isothermal chem-

ical reactions with a cross diffusion can be determined by
exploiting their analogy with thermodiffusion DSs (Subsec-
tions 8.1-8.4). Specifically, if we formally replace n by n,,
and Tby «2. in Eqs. (1.19) and (1.20), these equations as-
sume the form of expressions ( 8. 1 ) . It follows from this anal-
ogy that, in systems in which n, and «2 vary out of phase,
DSs with the form shown in Fig. 25b or Fig. 25c may arise,
depending on the nature of the nonlinearities in this system,
if n is replaced by « , , and Tby «2 , in these figures. In systems
in which n, and «2 vary in phase, the DSs shown in Fig. 25, /
or g, are realized, where n = n , and 7"= «2 .

9. TURBULENCE IN ACTIVE DISTRIBUTED MEDIA

A turbulence, i.e., nonuniform oscillations which are
random in time and space, is observed in many systems with
convective flows, in particular, various hydrodynamic flows
(see, for example, Refs. 1 and 74). A turbulence is also ob-
served in systems without convective flows.7'8'10 A turbu-
lence can arise even in K systems, in which there are no
convective flows and in which there furthermore can be no
uniform self-oscillations, pulsating DSs, or autowaves (Ta-
ble II ) . Let us discuss the mechanisms for the formation of
such a turbulence.

9.1. Conditions for the occurrence of, and scenarios for the
development of, turbulence80"83

The minimum distance ( J?min ) and the maximum dis-
tance (J?max ) between striations (spots or blobs) are deter-
mined by effects which are completely different in nature
(§2). Periodically arranged striations (or spots or blobs) of

period J?^p < Jf min are unstable because of a pumping effect
(Subsection 2.2). Because of the local-breakdown effect
(Subsection 2.1), a state in which the distance between stria-
tions is J^p > ̂ max does not occur. In KA and KV systems,
the quantities J5fmin and -^max may be comparable in mag-
nitude,81 and the following condition may hold in certain of
these systems:80'81

S^m x(A) <C27mln('4). ( 9 1 )

Under this condition, all static DSs are unstable. Since we
have a = re/r^ > 1 (Subsection 1.3) in K systems, station-
ary states in the form of uniform oscillations or pulsating
DSs cannot arise80 (§11). Furthermore, autowaves cannot
arise.25 Under the condition A>Ac,a homogeneous state of
the system is also unstable (Subsections 1.1 and 1.2). Conse-
quently, when condition (9.1) holds a turbulence may arise
spontaneously in an ideally homogeneous system at values
A>AC. The turbulence here is a time-varying state in the
form of autosolitons (striations, spots, or blobs) which ap-
pear and disappear at random.

The mechanism for the onset of turbulence in this case
can be summarized as follows: Neighboring striations (or
spots or blobs)—interacting autosolitons—separated by a
distance less than J f m i n are unstable by virtue of the pump-
ing effect (Subsection 2.2). As a result of this instability, the
number of autosolitons in the system should decrease, and
the distance between them should increase. Under condition
(9.1), such autosolitons should break up as a result of the
local breakdown effect even as they are forming (Subsection
2.1). Since the breakup and instability processes of two
neighboring autosolitons can occur in an uncorrelated fash-
ion in well-separated spatial regions, the effect is the onset of
turbulence.

Another mechanism for the onset of turbulence can be
summarized as follows: At the center of peak DSs which
arise spontaneously in KA and KV systems (Subsection
1.5), the condition82'83

at) e=i
(9.2)

may hold, where 0max and r;sh are the values of the activator
and the inhibitor at the center of the peak of the DS. Inequal-
ity (9.2) isthe opposite of the condition Q ̂  > 0 which was
used in §§1-6 [see (1.3)] and which corresponds to the
presence of a negative feedback through the inhibitor in the
system (Subsection 1.1). In other words, condition (9.2)
means that during the formation of peak striations (or spots
or blobs) the negative feedback through the inhibitor gives
way to a positive feedback at the center. This result may in
turn cause a change in 77 such that a striation (or spot or
blob) is annihilated. Since this process may occur in an un-
correlated fashion at well-separated spatial points, a turbu-
lence may arise in the system (Subsection 9.2).

It follows from these mechanisms for the onset of turbu-
lence80 83 that the formation of oscillations which are ran-
dom in time and space is determined by the complex behav-
ior of the autosolitons, which is associated in a fundamental
way with effects of the interaction of these autosolitons. The
picture of the turbulence is essentially one of a random ap-
pearance and disappearance of autosolitons at various spa-
tial points.79 Similar ideas have recently been used to explain
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the picture of turbulence which arises in liquid flows at
Reynolds numbers near the critical level.74

Following from the mechanisms outlined above are
these scenarios for the onset of turbulence:

1) Condition (9.1) or (9.2) may hold even at the point
A = Ac. In this case, a turbulence may arise at A = Ac as a
result of a stratification of the homogeneous state of the sys-
tem.

2) Stable DSs (striations, spots, or blobs) form spon-
taneously in the system at A = Ac. As A increases, condition
(9.1) or (9.2) becomes satisfied at a certain A >AC, and a
turbulence arises spontaneously in the system.

3) Stable static DSs form spontaneously at A = Ac. As
A increases, the number of striations (or spots or blobs) in-
creases sequentially as a result of local breakdown between
striations (Subsection 3.2), and condition (9.1) or (9.2)
holds only at sufficiently large values of A, at which a turbu-
lence arises.

4) In real systems, a turbulence can also arise at A <AC

as the result of a spontaneous formation of an autosoliton
near a small local irregularity and its breakup into first two
and then more striations (scenario 2 in Subsection 4.1). The
reason is that the striations which form in the course of the
breakup process may be unstable.

Experimentally, a turbulence has been observed in a gas
discharge in the form of striations which appear and disap-
pear at random.14 Their turbulence is apparently due to the
satisfaction of condition (9.1) (Ref. 46b).

9.2. Turbulence in an electron-hole plasma

Turbulence condition (9.2) can be satisfied in a heated
electron-hole plasma. Numerical studies show that oscilla-
tions which are irregular in space and time do indeed
arise.82-83

The reason why condition (9.2) can be satisfied in an
electron-hole plasma is that peak striations may form in
which the carrier temperature at the center is so high that
interband impact ionization of carriers must be taken into
account.98'170 In this case the carrier generation rate G in
(1.17) can be written in the form G = G0 + nvt ( T ) where
G0 = const, and v, is the rate of impact ionization, which
increases exponentially with increasing T. In this case,
expression (1.28) for the function Q should be replaced by

Q=T)e-»-»(i_Vl(e)Tr)-i. (9.3)
From (9.3) we see that at the center of a striation, where
# = #max > we nave Q 'r, < 0, in which case we have
v, (0max )rr>\. Numerical studies show that a turbulence
arises in an electron-hole plasma when the quantity
vi (^max )rrls considerably greater than unity. Depending on
the parameters of the plasma, all the scenarios for the onset
of turbulence described above may be realized.82'83

10. SYSTEMS WITH CONVECTIVE FLOWS

It follows from a qualitative theory46 that in a system
with convective flows the shape of static striations is distort-
ed, and these striations may be carried off at a velocity pro-
portional to the magnitude of the flows.19) These results ex-
plain the shape observed experimentally for moving
striations in a gas discharge.169 This shape has also been
studied in numerical170'111 and experimental84 studies of

thermodiffusion striations in an electron-hole plasma heated
by a static electric field. The evolution of moving striations
as the current is varied is also determined by a local break-
down (Subsection 2.1) and a pumping instability (Subsec-
tion 2.2).17°

Boundaries and small irregularities in systems with
convective flows may change the picture of self-organization
more substantially than as described in Subsection 4.1. For
example, an autosoliton which forms spontaneously near a
small irregularity or the boundary of a sample may detach
from this irregularity and give rise to a sequence of moving
striations.51'98'111 This effect has been observed experimen-
tally84 and in numerical calculations.111 Asymmetric static
striations with an amplitude and a width which vary along
the sample can form throughout the sample or in some part
of it. These effects are observed experimentally in low-tem-
perature gaseous plasmas171 and semiconductor plasmas.84

11. SPONTANEOUS FORMATION AND EVOLUTION OF
PULSATING DSs AND AUTOWAVES

In this section of the paper we will discuss self-organiza-
tion in KO and fl systems (Subsection 1.3). Falling in these
categories are systems with a uniformly generated combusti-
ble substance,25 a degenerate electron-hole plasma which is
heated in the course of Auger recombination,149 Belousov-
Zhabotinskil models of chemical reactions,7'8'10'11'16'17 mod-
els for various types of excitable and neuristor media, in par-
ticular, the Fitz-Hugh-Nagumo model,7'8'16'17'12115'122-124

and certain models of neuron networks whose fl and Kfl
systems are structures with a latent S-shaped or N-shaped
current-voltage characteristic, in which (in contrast with
the cases discussed in §7) it is necessary to choose the pa-
rameters of the layers in such a way that the inhibition pro-
cess is slower (see, for example, Ref. 158).

Before we take up the particular features of the evolu-
tion of DSs and autowaves (Subsections 11.3-11.6), we wish
to point out some characteristic properties of these inhomo-
geneous states in fl systems (Subsection 11.1) and Kfl sys-
tems (Subsection 11.2).

11.1.

Static and pulsating DSs are not realized in fl systems
(Table II). Traveling autosolitons (pulses) and more-com-
plex autowaves—spiral, coiled, ring, etc.—can form in them
(see, for example, Refs. 7, 8, 11, 16, 17, and 121-124). The
properties of traveling autosolitons and other autowaves in
flN (and J1H) systems have been studied in extreme detail
in models of the Fitz-Hugh-Nagumo type (see, for example,
Refs. 8, lib, 16, 17, 121b, 122, and 124), i.e., in models
which are described by Eqs. (1.1) and (1.2) with
L = 0(e = oo), a = Tg/T^ -^ 1. Research on these models
has shown that (a) a traveling one-dimensional autosoliton
(pulse) is stable over a fairly wide range of A, from some
A = Av, at which its width J^s and its velocity v are at a
minimum (v = i>min ~«1/2//r0; Ref. 122b), up to a critical
valued = Ac (Subsections 1.1 and 1.3), at which the width
and velocity of the autosoliton reach maxima
v = ymax ~l/re; (b) colliding traveling autosolitons
(pulses) annihilate7'8'11'16'17'123'124; and (c) a one-dimen-
sional traveling autosoliton is stable in a two-dimensional
system. These properties of traveling autosolitons (pulses)
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determine the basic properties of the more-complex auto-
waves which are realized in fl systems.7-8'10'11'16'17'121-124

11.2.

In Kfl systems, not only autowaves but also static and
pulsed DSs can arise (Table I). A theory of autowaves and
DSs in Kfl systems was derived in Refs. 80 and 172.

Autowaves in Kfl systems have properties which may
be fundamentally different from those of the autowaves
which are realized in fl systems (Subsection 11.1). In Kfl
systems, traveling autosolitons and other autowaves may
not annihilate in the course of collisions. The reason is that
the condition e 4,1, i.e., L > /, means that a "diffusion precur-
sor," a refractory region of the order of L in size,25'172 forms
ahead of the traveling autosoliton. Consequently, two auto-
solitons which are traveling opposite to each other interact
at distances much greater than the size of the front of the
autosoliton (~/) . As a result of this interaction, the autoso-
litons slow down, and instead of annihilating they may be
repelled from each other or may convert into static or pulsat-
ing DSs.25'115 The formation of static DSs in collisions of
traveling autosolitons is observed in numerical studies of
various models of active media,107-'3' •'32 including models of
the type in (1.31) and (1.32) witha^l .

In two-dimensional and three-dimensional KflN and
KflH systems (Table I), a one-dimensional traveling auto-
soliton, spiral autowaves, and other autowaves may be un-
stable with respect to a "corrugation" of their walls, i.e.,
with respect to the effect which was discussed in Subsection
2.3 in connection with static striations. This effect may re-
sult in the breakup of autowaves into smaller regions. As a
result, autowaves of a new type or a turbulence may arise in
the system.

The properties of autowaves, static DSs, and pulsating
DSs in Kfl systems depend primarily on the relations among
the parameters which determine the range and speed of the
inhibition process in comparison with the activation. In sys-
tems described by equations like (1.1) and (1.2), the region
of existence and the properties of autowaves, pulsating DSs,
and static DSs are determined by the value of the ratio
«/£= ( T g / r ^ ) ( l / L ) ~ ' (Ref. 172; see also Fig. 8 in the re-
view in Ref. 25).

It follows from the qualitative procedure for the con-
struction of traveling autosolitons in systems with
e = //Z,<1 (Refs. 25, 77, 160) that the condition for the
existence of autowaves in KflN (KflH) systems reduces
to1

a/e < bc,

i.e.,

L/T,<6c//Te. (11.1)
Here bc is of the order of unity and is determined by the
nonlinearities of the system, i.e., by the functions q(9, 17)
and Q(0, 77) in (1.1) and (1.2). (For the piecewise-linear
model of an active medium discussed in Subsection 8.1 of the
review in Ref. 25, for example, we have bc^2~3/2.)

With increasing value of the ratio a/e or, more precise-
ly, with increasing value of the inhibitor diffusion length L,
the region in which a traveling autosoliton exists, i.e., the
region (A0, Ac), shrinks. The value of vmin increases, while

ymax decreases. As the ratio a/s tends toward the threshold
bc [see (11.1) ], a traveling autosoliton can be excited only
at values of A close to Ac. With decreasing value of the ratio
a/e, the boundary of the region in which a traveling auto-
soliton exists, i.e., the quantity A=AV, becomes progres-
sively more different from Ac. At a <e4 (Ref. 172), the ve-
locity of the autosoliton at the point A = A0 reaches its mini-
mum possible value i>min ~a1/2//re.

In KflN and KflH systems with
z<a<e<l (11.2)

there exists a certain range of excitation levels in which static
DSs are stable.80'172 At the boundaries of this range, static
DSs lose their stability with respect to pulsations; i.e., fluctu-
ations which oscillate in time at a certain frequency <yc grow
(Subsection 12.4).

11.3.

In homogeneous KftN and KflH systems which satisfy
condition (11.2), static autosolitons, striations, and other
DSs may convert spontaneously into pulsed DSs or
autowaves as the deviation of the system from equilibrium,
A, varies. A pulsating autosoliton may arise as A is either
increased or reduced, when the width of a static autosoliton
becomes respectively greater than or less than a critical value
&a or J?bia . These critical values are calculated in Subsec-
tion 6.2 of Ref. 25. It follows from the stability of a static
autosoliton172 that a traveling autosoliton may arise at val-
ues of A close to A „ , at which the width of a static autosoliton

11.4.

In narrow-ring systems, autowaves in the form of an
isolated traveling autosoliton or a sequence of traveling au-
tosolitons (striations) of various periods may be excited at a
given excitation level A. As A varies, the number of these
autosolitons may change abruptly as the result of a local
breakdown and a pumping of activator between striations, as
discussed in Subsections 2.1 and 2.2 for static autosolitons
(striations).

11.5.

At values of A close to Ac, a traveling autosoliton ac-
quires an oscillatory tail in the form of repeating regions of
excitation and refractoriness. 102b As in the case of a static
autosoliton (Subsection 2.1.2), a local breakdown may oc-
cur in the tail of a traveling autosoliton, with the result that
new traveling autosolitons continually arise behind a travel-
ing autosoliton. The local breakdown which occurs in the
tail of a traveling autosoliton can explain the existence of a
steady-state guiding center (a source of outgoing
autowaves) in ideally homogeneous Kfl systems. 102b

11.6.

Local irregularities in real Kfl systems may, depending
on their parameter values, lead to the spontaneous forma-
tion of static, pulsating, or traveling autowaves. The smaller
the irregularity, the closer the corresponding critical value/!
is to A<.. Even small local irregularities may nucleate the
spontaneous formation of a guiding center through the effect
discussed in Subsection 11.5. The spontaneous formation of

707 Sov. Phys. Usp. 33 (9), September 1990 B. S. Kerner and V. V. Osipov 707



various types of autowaves (spiral autowaves and guiding
centers) near local irregularities or boundaries of a system
has been observed in, for example, experiments on Belousov-
Zhabotinskii reactions.10'16

12. PARAMETERS AND STABILITY OF PERIODIC
STRIATIONS

12.1. Development of the shape of striations75-77

To analyze the shape and parameters of striations of
period J^p £ L in N and H systems, we note that solutions
of Eqs. (1.1) and (1.2) in the form of periodic striations, as
in the case of autosolitons (Subsection 3.2 in Ref. 25), can be
described within £ = 1/L4,\ as successive combinations of
regions of sharp and smooth distributions.

The sharp distributions satisfy the equation

_
ae (12.1)

where 77 = const. The smooth distributions satisfy the equa-
tion

FIG. 26. Diagram used in the construction of periodic striations in N
systems, a: 1—Local-coupling curve; 2—state-equation curve; 3—actual
Tj(0) dependence in the striations (d). b: The actual potential Uv and
"particle" trajectories in it corresponding to a distribution ij(x) in the
striations (d). c: The actual potential l/e, the highest trajectory of a parti-
cle in which corresponds to distribution 8(x) in the striations (d).

(12.2)

The length scale of the variation of the activator in sharp
distributions is /, while that in smooth distributions is L. The
function #(77) in (12.2) is one of the single-valued func-
tional dependences ^(77), #n(77), #„, (77) determined by
Eq. (1.29); i.e., the function #(77) corresponds to branch I,
II, or III of a local-coupling curve (Fig. 2, a and c). Branch I
corresponds to values 0<00, II to values 60<6<6'0, and III
to values 6>d'0. In other words, the potential U^ in (12.2)
consists of three independent branches, I, II, and III (Ref.
25).

It can be seen from (12.1) and (12.2) that the smooth
and sharp distributions may be thought of as trajectories of
particles with coordinates 6 and 77, respectively, which are
moving with the "time" x in the potentials Ug and Un in
(12.1) and (12.2), respectively. The form of the latter is
determined unambiguously25 by the local-coupling curve
(Fig. 26). In order to construct periodic striations, it is nec-
essary to join the fragments of sharp and smooth distribu-
tions and the corresponding branches of potentials in a self-
consistent way. Making use of the symmetry of the periodic
striations, we can describe them by simply considering a
fragment of size J^p/2 (0<;e< J^p/2) at whose boundaries
we have d& /dx = d77/d>c = 0 (Fig. 26d). The procedure for
constructing &(x) and 77(*) in this fragment is analogous to
the procedure for constructing autosolitons which is de-
scribed in detail in Subsection 3.2 of Ref. 25.

It follows from the shape of the local-coupling curve
(Fig. 26) in N and H systems that U9 in (12.1) has the form
of a potential well bounded by the points 0, and 03 [which
correspond to branches I and HI, respectively, of the single-
valued #(77) dependence]. At these points, the potential Ue

has maxima. It follows from this form of potential U0 that
Eq. (12.1) has periodic and solitary solutions 6(x). The lat-
ter correspond to the highest particle trajectories in potential
Ue, i.e., to the separatrices of Eq. (12.1) which close at the

saddle points 6l or 03. At a certain value 77 = ij,, the maxima
of Ug at the point 0, = 0sl and 03 = 0s3 coincide; i.e., the
conditions

BS3

J q (8, T]., A) d6 = 0, q (9.,, r]s, A) = 0 (i = 1, 2, 3),

6si

(12.3)

hold. These conditions determine the values of 77,,, #sl, and
0s3. The highest particle trajectory in a potential Ue of this
sort describes the activator distribution B(x) = 0sh (x) at
the walls of striations, i.e., in regions with a size of the order
of / in which 0 varies from Omm = 0sl to 0max = 0s3. Here we
have 0sl < 00; i.e., this value belongs to branch I of the local
coupling curve. We also have 0s3 > 80; i.e., this value belongs
to branch III of the local-coupling curve (Fig. 26a). Asharp
distribution 0stl (x) thus joins the solutions rj(x) of Eq.
(12.2) corresponding to branches I and III of the potential
Un, i.e., to the Ql (77) and Bm (77) curves. It follows that in
order to construct the potential U^ it is necessary to arrange
its branches I and III in such a way that they intersect at the
point 77 = 77,. (Fig. 26b).

In monostable systems, the potential U^ has a unique
extremum, which corresponds to the point 77 = 77h, 6 = 0h,
which in turn corresponds to a homogeneous state of the
system.25 This homogeneous state stratifies (Subsections
1.1 and 1.2) when the point 6=6h and 77 = 77,, lies on
branch II of the single-valued #(77) curve, on which we have
q'g <0 (Ref. 25). In the region in which the homogeneous
state of the system is unstable, i.e., in the region AC<A<A'C
(Subsections 1.1-1.3), branches I and III of the potential U^
have no extremum. From the sign of Q we can determine the
slope of the branches25 (Fig. 26b).

The various trajectories of a particle in the actual poten-
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tial C7, (Fig. 26b) corresponding to a given "energy" of the
particle determine the inhibitor distributions T?(JC) in the
periodic striations. According to (1.29), they describe
smooth distributions of the activator, 6(x), away from the
walls of the striations. These smooth 0(x) distributions join
in a natural way25 at the point 17 = i;s with the sharp distri-
bution 6(x) = 0sh (x), which describes the variation of the
activator in the walls of the striations.76>77 There are a num-
ber of such trajectories which correspond to the same poten-
tial 17, (Fig. 26b). It follows that under the condition
A = const there are a number of states in the form of stria-
tions of various periods in the distributed system.

Equations which determine the characteristic param-
eters of the striations of a given period -2"p, i.e., the quanti-
ties Jfs, rjt, 0t, Tjm, and 0m (Fig. 26d), can be found by
integrating Eq. (12.2) under the boundary conditions

dx
= 0

(12.4)

and by making use of the smoothness of the function 77 (x )
at the point x=^s/2 (i.e., the condition d^,/
d*U = .y,/i = df/m /d*U = y »/2) • As a result we find79

it

(12.5)
5'S=/2L U jQmdn

inAlm '

It

The functions Q\,m =Q(6\,n\ (??), '"), ^). 6\,m (^),
77, m (x), and 0un (x) correspond to values of 77 and 0 which
in turn correspond to branches I and III of the single-valued
0(77) curve on the local-coupling curve (Fig. 26a). The
functions 77, „, (x) and 0, „, (x) describe the inhibitor and
activator distributions away from striation walls.

Generalizing the results above,76-77 we can write the
distributions 6(x) and fi(x) in a wide striation, of size
J^s > 1, as follows, where we are making use of the symme-
try of the striation with respect to the point x = 0 (Figs. 6a
and26d):79

(12.6)
t#

where 0sh (x) is a sharp distribution corresponding to a stri-
ation wall. This sharp distribution corresponds to the separ-
atrix of Eq. (12.1) at rj = rjs, which runs from one saddle

point, 0s3 = 0max, to the other, 0sl = 0min.
Equations (12.3), (12.5), and (12.6), which follow

from the qualitative theory of DSs,75~77 determine the basic
parameters of striations to within £< 1. This conclusion can
be substantiated with the help of the asymptotic theory,79

which is based on the idea that the activator varies sharply
over a short distance ~1<£L in the walls of striations, so
these walls may be thought of as boundary layers. The pres-
ence of such boundary layers makes it possible to apply to
the analysis of striations the ideas of the theory of singular
perturbations which have been developed in other problems
involving boundary layers.173'175 For example, one can ver-
ify that Eqs. (1.1) and (1.2) for stationary states re-
duce176-177 within E •<! to equations for sharp and smooth
distributions according to the qualitative theory of differen-
tial equations.26 To construct the shape of striations in ac-
cordance with the qualitative theory presented above from a
set of sharp and smooth distributions, however, it is neces-
sary to construct a solution which satisfies certain integral
conditions [see expression (11) in Ref. 77] and boundary
conditions. An asymptotic theory of striations of this sort
was derived in Ref. 79 (a theory is presented in Subsection
3.3 of Ref. 25 for the case of autosolitons).

12.2. Conditions for local breakdown in striations757678

In systems whose homogeneous state 0 = 0h and
77 = 7/h is unstable, there naturally cannot be states in the
form of one or several autosolitons, i.e., solitary states at
whose periphery we find 0->0h and 77->77h (Ref. 25). In
other words, at excitation levels Ac <A <A 'c the striation
period J^p has an upper limit ^max, whose value becomes
infinite as A ->AC (or as A -+A 'f) (Fig. 8a). At a given value
of A, the quantity ^max is the period of the striations in
which the distribution 77 (x ) corresponds to the highest tra-
jectory of the particle in the potential [/, (Fig. 26b). Two
situations may be realized in the range A,. <A<A'C.

The first is shown in Fig. 27a. It occurs if

^n (lo) — ̂ n (is) = f Qmdr\ > Un (n0) — £/„ (r^) = f Qtdr\.
M ,1

IjJ

(12.7)

Under inequality (12.7), the^ dependence of the maximum
striation period J^p = ^max is given by12 (12.5), in which
it is necessary to set 77, = 770 and 0, = 00:

J I s
Is \^0

_ is / n \-'/2

J?m = V"2L f ( fQ, , ,dn dr), (12.8a)
1m Vim /

Is

!idr] + J QHIdn = 0, q (6m, rim, A) = 0.
»U 1m

Here J?, = -2"m is the critical width of the hot region of
striations.

The second situation is illustrated in Fig. 27b. It occurs
if, as A is increased, condition (12.7) reverses at a certain
value of A. In this case the dependence J^max (A) is deter-
mined by (12.5), in which we must set ijm =77^, and
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FIG. 27. The potentials {/, for smooth distributions and the highest
trajectories of the "particle" in them which correspond to striations
of period .2% = -?"max. a, b 4. <^<^c'; e—Aa <A<A,; d—
4; <A<A'6.

S'max = dlj.

(12.8b)

= 0, ? (9t, r)t, 4) = 0.

It follows from the qualitative ̂  dependence of ̂ max

(Fig. 8a) that N striations of period ̂ p = Jif/N exist in a
system of size J^ in a certain interval of ^4 values. At the
boundaries of this interval, A=Ad

N) and ^4=^4 'd
(m (Fig.

8a ) , the number of striations increases abruptly as the result
of a local breakdown (Subsection 2. 1. 1 ). For striations of a
given period .2%, the critical values A = A (

d
N\ A=A d

(N>
(Fig. 8a) are determined from Eq. ( 12.8a) or ( 12. 8b) if we
set J"max = ̂ p in them.

In certain systems there may be a situation in which the
local breakdown at the center of an isolated striation (auto-
soliton) occurs a.tA <AC. In such systems, a single autosoli-
ton can be excited only under the conditions A<Ad <AC

[the value of Ad is given by ( 3.37 ) in Ref. 25]. It follows that
in the limit A-+A& the maximum striation period becomes
infinite: -2% = «^max -> °° (Fig- 8b). Under the condition
A>Ad but with A <AC, the situation shown in Fig. 27c oc-
curs, in which case we have

* (r)h) - I/,, (T|i) -

In this case the quantity ^fp = J^max (A ) is given by
(12.8b). It follows from Fig. 8b that at A > A (

d
N ) a local

breakdown occurs at the center of hot striations (Fig. 7a).
In systems in which a breakup of cold autosolitons oc-

curs25 at A > A 'c , the A dependence of the maximum stri-
ation period ^fp = -$^max is qualitatively as shown in Fig.
8c. The critical value A=A'd,at which the local breakdown
occurs in a cold autosoliton, is determined by Eq. (3.39) in
Ref. 25. Under the condition A <A 'd but with A>A'C, we
have the situation shown in Fig. 27d. In this case the quanti-
ty ^p == ^max(^) is determined by (12.8a). It follows
from Fig. 8c that under the condition A<A'd

<N> a local

breakdown occurs at the center of cold striations (Fig. 6a).
In principle, there can be systems in which there is a

breakdown of both hot and cold autosolitons. In such sys-
tems, the maximum striation period becomes infinite,
Jz?p — ̂ max -* oo not as A ->/4c and A 'c but as A -+Ad and
A d. In other words, the dependence ̂ max (A) is qualitative-
ly as shown in Fig. 8d.

In H systems the quantity J^p = Jz^max is also deter-
mined by Eq. (12.8a) or (12.8b).

12.3. Striations of small period '"

To analyze the shape of the striations of period ^fp </,,
it is convenient to rewrite Eqs. (1.1) and (1.2) for the
steady-state case in the form

-0-9(8, 1, ̂ ) = 0, e--£jL-Q(e, T,, A) = 0, (12.9)

where x is expressed in units of /. We seek solutions of Eqs.
(12.9) in the form

. . . , e=0(i))+82eci)+... (12.10)

Substituting (12.10) into (12.9), we find equations for the
zeroth approximation,

dae(<>)

dx"

dx*
= 0,

(12.11)

(12.12)

(12.13)

(12.14)

At the boundaries of the period of the striations, we have
d?7/d* = di9/dx = 0; i.e., according to (12.10), at
x= ±(-S%/2) +n^p (n=0, 1, 2,...) we have

and for the first approximation,

dae(1)

dti'0' = de"" ^ Q dr)(" = d9(1' =Q

Ax Ax Ax Ax
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It follows from (12.12) and (12.15) that we have
?7(0) = const. The condition under which problem (12.14),
(12.15) has a solution reduces to the condition that its right-
hand side be orthogonal to the solution of the homogeneous
problem (with a zero right-hand side) which is the adjoint of
problem (12.14), (12.15) (the Fredholm theorem178'.
Since this homogeneous problem has a solution
77(1) = const, the condition under which problem (12.14),
(12.15) can be solved reduces to

•>-p/ "

C Q (G<0> (x), TI(O), A) Ax = 0. (12.16)

Equation ( 12. 1 1 ) with r/10' = const, along with condi-
tion (12.16), completely determines the function 8m(x)
and the quantity ??<0), i.e., the activator and inhibitor distri-
butions in the zeroth approximation in £2. This problem was
analyzed in Ref. 160 and is discussed in the review in Ref. 25.
It follows from this analysis that the distribution 9 m (x) is
determined substantially by the shape of the local-coupling
curve (Fig. 2).

Since the local-coupling curve is V-, A-, H-, or N-
shaped, Eq. ( 12.1 1 ) has periodic solutions.25 Striation dis-
tributions 9 (0) ( x ) , i.e., layers of high and low values of the
activator, are potentially stable in N and H systems.25 The
size of the striation walls, in which 6 (0) (x) varies sharply
from 6min to 0max , is of the order of / (the dashed curves in
Fig. 28a). In wide striations of size -i"s>/, we have
<9min = <9sl and 0max = 0s3, and the quantity rjm = rjs is
found from conditions (12.3). The striation size J^s is
found from Eq. ( 12.16) (Refs. 79 and 160).

In N systems at rjm >ijs there are 0 <0) (x) distributions
in the form of narrow hot striations (the dashed curves in
Fig. 28b), while at ijm < 77,, there are narrow cold striations
(Fig. 28c).

In H systems, narrow hot striations are realized at
77
and 160).

(0) < 77,,, and narrow cold striations at rjm > 77S (Refs. 25
160).
Differentiating Eq. (12.11) with respect to x, we find

*LJ$?—a'w». *<•>. A)-^!!!_=O. (12.17)

A comparison of (12.17) with (12.13) shows that the func-
tion 0('' (x) a d(9 (0)/dx is a solution of self-adjoint equation
(12.13) with a zero right-hand side. Since <9 < 0 ) (x ) tends
toward a constant value (0min or <9max) exponentially rapid-
ly away from the striation walls, the derivative

A6(' Vdx « d20 (0)/dx2 is close to zero with an exponential
accuracy at the points x = ±J?f/2( Fig. 28a; see also Sub-
section 3.1 in Ref. 25). In other words, it satisfies boundary
conditions (12.15). It follows that the condition under
which problem (12.13), (12.15) has a solution reduces to

r A) d9""

d*
(12.18)

Since the function 6(0) (x) is an even function with re-
spect to the point x = 0 in the striations (Fig. 28a), while
d0 (0)/dx is odd, it follows from (12.18) that T? ( I ) (x) is an
even function. At the center of a striation we have
6(0) = 0s3, and 77(0) = 77,. In N systems we have Q(9^,r)s,
A)>0, and in H systems Q<0 (Subsection 3.1 in Ref. 25).
It thus follows from (12.14) that the function i)m(x) has a
minimum at the center of the striations in N systems (Fig.
28a), while it has a maximum there in H systems. It follows
from an analysis of (12.13) that in both N and H systems the
function 8w(x) has a minimum at the center of the stria-
tions, while it has a maximum at the boundaries of a period
(at the points x = ± -S?p/2 4- n^f\ n=0, 1,...) (Fig.
28a). The same result follows from the procedure for the
construction of striations as described in Subsection 12.1.

12.4. Stability of striations7576 16°

To study the stability of the striations, we linearize Eqs.
(1.1) and, (1.2) around a solution in the form of striations of
period & 'p , with respect to fluctuations of the type

66 (r, 0 = 68(x)exp(/k1r1-YO,

H(r, *) = 6r) (*) exp (tkj.r± - vf). ( 12. 19 )

here k I = k} + k}; ky = ZTT/H ,/.£%, kz = 2ff/«2/^2,
"1,2 =0. ± . ••• ; and 3? y and J^ are the sizes of the system
along the y and z directions. As a result we find the system of
equations

= <7e 12.20)

V* = Q; (9 (x), T) (x), A), (12.21)

r U 7 u

FIG. 28. Periodic striations of period ^\ <L. a—Wide striations
(^..^l); b—narrow hot striations; c—narrow cold striations. Dashed
lines: Distributions of 0 and T? in the limit L -. oo.
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in which lengths and times are expressed in units of /and re,
respectively. In an extended system of size J^>L, we can
use cyclic boundary conditions for fluctuations S6(x) and

86(0) = 66 (SO, ^2.
d66
Ax

(12.22)

o d* z

It can be seen from (12.19) that this state is unstable if

12.4.1 To analyze y, we consider the auxiliary problem

HQ 86n = A.n69n,

dx
(12.23)

whose eigenfunctions 8dn (x)are normalized. It can be seen
from (12.20) and (12.23) that the eigenfunctions 86n and
the eigenvalues An describe activator fluctuations with
8rj = Q.

For striations of period Jz*^ (Fig. 9a), the potential Ve

(Fig. 9b) in the operator He is a periodic repetition of the
potential for an individual striation (0<x<.S?p; Fig. 9). It
follows from the construction of a striation (Subsection
12.1 ), that the form of the latter is similar to that discussed
for an autosoliton in Subsection 4.2 of Ref. 25.

For an isolated striation the potential VB = q'B consists
of two narrow wells (of size ~/) with min Ve < 0 which are
localized near the striation walls, i.e., which are at a distance
J^s from each other. Outside these wells we have
Ve=q'e~\ (0<x<J^p; Fig. 9b). In the An spectrum of
problem ( 12.23) for an isolated striation, as for an autosoli-
ton,25 only the values A0 and A, are less than 0. They corre-
spond to functions 800 and 50, which are localized at stri-
ation walls and which are similar in form to the
corresponding functions for an autosoliton (see Fig. 60 in
Ref. 25). Away from the striation walls, the functions 860

and 86 ', fall off exponentially with a length scale ~ /. The
estimates of A0 and A, for an isolated striation and for an
autosoliton are the same, i.e., are25'79'172

,
X0 - - - ~exP - - T . *i - - - - • (12.24)

Since the functions 860 and 86 ', for an isolated striation
are very localized, to find the eigenfunctions S6n and the
eigenvalues An of problem (12.23) for periodically arranged
striations ( Fig. 9 ) one can use the perturbation theory which
is called the "approximation of tightly bound electrons" in
solid-state theory.179 When that approach is taken, the ei-
genfunctions 86 '„ of the periodic potential Vg (Fig. 9b),
which are localized at the striation walls, can be written in
the form

N

66n = 69M (.v) = 2 exp (iksxp) 69, (x — xp) (t = 0, 1 ),
p=i

(12.25)

where ks = 2irs/NJff [s = 0, ± 1, ... , + (N/2 - 1 ),
N/2}; N= -^/-^p is the number of hot striations in the
system; 86, (x — xp ) are the eigenfunctions for an isolated

hot striation, which are localized near the walls of this stri-
ation; and xp =p3?p — £ p/2 is the coordinate of the cen-
ter of striation/;. The functions 80st (x) and 80, (x — xp) are
orthonormal:

-L [

(12.26)

where Fis the volume of the system, and <5SS. and 8,,. are
Kronecker deltas. The functions 86, (x — xp ) for different
striations, i.e., which correspond to different values of p
(Fig. 9a), overlap to an exponentially small extent. The dis-
crete eigenvalues A0 and A, for an isolated striation thus
undergo an AMbld splitting in the case of N striations, into
narrow bands of width Ad, ~exp( — J^p//) < 1. In other
words, the eigenvalues are given with exponential accuracy
by

X.-X.,**., (i=0,l)- (12.24).

12.4.2. We first consider the stability of striations of a
small period Jifp <L. For such striations, solutions of prob-
lem ( 12.20)-( 12.22) can be sought in series form:

(12.27)

Substituting (12.10) and (12.27) into (12.20)-( 12.22), and
assuming £2^a, 1, we find the equations of the zeroth ap-
proximation,

k\) 68<»' = — (12.28)

(12.29)

and those of the first approximation,

(#e" — Y<°> + k*i) 66I1) = — q'^V — | , — Yd>) 69'») - (

(12.30)

(12.31)

Here q'0=q'e(6
(°\ rj(0\ A), etc., and the functions 8rj(n

and 86c/> (/ = 0, 1) satisfy the cyclic boundary conditions

d66<"

fir)"') (0) = 6n"> (&),

(12.32)

It follows from (12.29) and (12.32) that we have
<V0) = 0 for kL ^0 and <V°' = const for kL = 0.
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From the condition under which problem (12.31),
(12.32) has a solution with ki = 0 (the Fredholm theorem)
we find

6r)(°' = — (Qe69<°>) (\in — orVT1. (12.33)

where /u.0 = (Q',,), and (...) means (as above) an average of
the function over the volume of the system.

It follows from (12.28) and (12.33) that problem
(12.20)-( 12.22) corresponds in the zeroth approximation
in £2 to the case L = oo; i.e., it is the same as the problem
studied in Refs. 80 and 160 (Subsections 4.1 and 6.1 in Ref.
25).

12.4.2-1. We first consider the stability of striations
with respect to fluctuations (12.19) with kL = 0. Among the
fluctuations 86<0) for which <5?/(0) ̂ 0 the most dangerous is
a fluctuation 86<0) ;=c5<?0i0, which has no nodes (Fig. 9c).

In kfl systems ( Subsection 1.3) with e2 4 a <£ 1, the con-
dition80

(12.34)

may hold. This is the condition for the appearance of pulsat-
ing striations, i.e., for the growth of fluctuations
80mzz800:0 with some special frequency coc. It follows
from (12.34) and (12.24) of the present paper and from Eq.
(6.2) of Ref. 25 that the frequency cac and the critical width
of a striation of period =2% at the threshold for the appear-
ance of pulsations are given approximately by

(12.35)

In K systems (Subsection 1.3), condition (12.34) does
not hold, according to (12.24), because of the conditions
a> 1 and e<l, and a dangerous fluctuation <50(0)~<5000

does not grow up to the point A = A (
b
N\ at which we have

dr)s/dA — oo. The width of the striations is

(Subsection 4.1 in Ref. 25). Periodic striations lose their
stability before they reach the point A = A^N\ when their
width is &i>&\?\

The reason is that for striations there are fluctuations in
the 80(0) spectrum such that the condition Sr)m = 0 holds.
For such fluctuations, our initial problem, (12.20)-( 12.22),
and the auxiliary problem (12.23) discussed above are pre-
cisely the same in the zeroth approximation in e2; i.e., we
have 86 <0) = 86 <0) and ym = A{°\ The fluctuations which
are the most dangerous, 86 <0) =86(

s°,\ are described by
(12.25) or, more precisely,

Ws°,t (*) = (iksxp
) (x ~ xp

N (12'36)

For fluctuations
=J, <,0) -- exp( - ^s

tion can be verified

86m=86 ' we have25
 r

( 0 ) =A< 0 )

and<5i/<0) = 0. The latter asser-
by substituting the function

86 (0) = 86 <°' from ( 12.36) into ( 12.33) and by making use
of the properties of the functions 86 ,<0) (x — xp ) (Subsection
12.4.1).

In the next approximation in e2, the value of 7 corre-
sponding to the dangerous fluctuations 86'<0) =<!>#^) in
(12.36) can be found from the condition under which prob-
lem (12.30), (12.32) has a solution (the Fredholm
theorem). For this purpose we note that the functions
86<0>* = 86 <>

0>*, which are the conjugates of (12.36), con-
stitute the solution of the problem which is adjoint of prob-
lem (12.30), (12.32) with a zero right-hand side in (12.30).
It follows from the condition under which problem (12.30),
(12.32) has a solution that

vu> = (12.37)

In deriving (12.37), we made use of the circumstance that
the functions 86 ̂  are orthonormal:

(fieSJiaeS'S) = 8«-.
An expression for 8rj(" (x) can be found from (12.31)

and (12.32). With kL = 0 and Srjm = 0, this expression is

(12.38a)

where

,km = / ,-, , , \ »r(m = 0, ± 1 , . . . ) , N =

(12.38b)

Substituting (12.38) into (12.37), and noting that we
have (Q '686 < 0 >) = 0, i.e., <V°' = 0, for the fluctuations un-
der consideration here, 86 (0) = <50 <t

0) [see ( 12.36) ], we find

(s=±l,. • • , ± (Y - l , ; <=

(12.39)

where ks =

Xexp(—ik

and

(12.40)

(t = 0, 1), (12.41)

Here the A., are the eigenvalues of auxiliary problem
(12.23), estimates of which are given in (12.24). In deriving
(12.39) we also made use of the periodicity conditions of the
functions q'^ (x), and Q 'g (x) the equation179

*„—JUl=a.m . (12.42)
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For the systems under consideration here we have
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<l'r,Q o <0 (Subsection 2.2 in Ref. 25), so the coefficients ast

are greater than 0. It follows from (12.39) that the striation
instability condition (y<0) can be satisfied most easily for
s = smax = AV2 and that the most dangerous2?' fluctuation
is 60(0) = SO J,% with a period 2J"P (Fig. 9d).

The threshold for the growth of such a fluctuation re-
duces to the following condition according to (12.39) and
(12.40):

- = 0. (12.44)

Here we have made use of the circumstance that we have
as0 xa00 =a0, i.e., that these coefficients depend only weak-
ly on the index s. The reason for this circumstance is that the
functions SO QO) in (12.36) are highly localized in a region of
size ~/< Jz?p. Making use of this circumstance and also the
normalization condition for the functions 80\0), i.e.,
(12.43), we find a0~l/^p. from (12.40). Using the esti-
mate (12.24), we find from (12.44) that at the threshold for
the loss of stability of the striations their critical width is
jfw = 3? .(A p">) > ̂ ^~l\n(^v/l), and for ̂ p <L
the quantity J3f(

c™ is given approximately by (2.1). The
minimum period of the stable striations, -2"min (Subsection
2.2), is given by (12.5) if we set & v = ^min and
j f , =J?<AO [see (2.1)] there.

Striations of period Jifp >L are weakly interacting au-
tosolitons, so they lose their stability at a value of A close to
Ab, i.e., near the point with25 d^f,/AA = dijs/dA = oo.
Their critical width is essentially the same as the width of an
autosoliton, 3?b~lln(L/l), at the critical point A=Ab

(Ref. 25).
12.4.2-2. In the two-dimensional or three-dimensional

case, in an analysis of the conditions for the growth of fluctu-
ations in (12.19) with kL =£0, the factor k-* in (12.38b)
must be replaced by (k 2

m + k \) ~' , and we must make use
the relation ym = A (

n
m + k I , as follows from analysis of

Eqs. (12.28)-(12.31). In otherwords, instead of (12.39) we
find

(12.45)

The condition .$"„ < Jifffl for the instability of striations
with respect to a corrugation of their walls, discussed in Sub-
section 2.3, follows from (12.45). We wish to stress that for
striations of period ^ f p < L ( l / L ) [ / 3 the condition
J*?s < J?b*' is more restrictive than the condition
J^s < ^"-C

N) for the instability of striations due to a pumping
effect (Subsection 2.2).

• 12.4.3. To analyze the stability of striations of arbitrary
period, including J^p £ L, we consider the auxiliary prob-
lem

Ax dx
(12.46)

in which the operator H^ is given in (12.21), and the func-
tions 8rjk are orthonormal:

= «*»•. (12.47)
y-v

In the "Hamiltonian" Hn the "potential" satisfies
Vr, = C J, > 0. so all the eigenvalues satisfy fik > 0. Their val-
ues increase with increasing k according to the oscillation
theorem. Making use of the periodicity of the potential F,,
we can write the eigenfunctions 8r)k in the form of Bloch
functions:179

% = 6tip.v (x) = «piV (x) exp (iftfix), (12.48)

where u0v (x) are Bloch factors with a period ^ f p , and

*P=T^r~> P = 0i ± l i . . - i

It follows from the analysis in Subsections 12.4.1 and
12.4.2 that among the eigenfunctions 80(x) of problem
(12.20)-( 12.22) the fluctuations S0^S0Si, [see (12.25)]
are "dangerous." For them, as we have already noted, the
condition >lSj, ;=/l, <0 holds. The growth of such fluctu-
ations of the activator can be suppressed through appropri-
ate changes in the inhibitor; it follows from (12.21) that
these appropriate changes are7

2 6l1i>.v (x
P.V

(up>v

(12.49)

where T(x, x', y) is the Green's function of problem
(12.21), (12.22) with a zero right-hand side in (12.21). [In
( 12.49), the function T(x, x', 7) is expressed in terms of the
eigenfunctions 8t]k =8i]0tV (x) and the eigenvalues fj.k =ne,v
of auxiliary problem (12.46).] We substitute (12.49) into
( 12.20) with the function 80 = 80S<I from ( 12.25), multiply
the resulting equation from the left by 88*,, and take an
average of the result over V. Using ( 1 2.42 ) and the condition
for the periodicity of the functions uAv(x), we thus find
equations for estimating the critical values off (Ref. 80):

®s,t (Y) = A* + k\ ~ 7

The coefficients here are

0.

(12.50)

flsTJ = — &*&? J u,.v
-Jlfll

«
x J u's,v(x)exp(— iftsx)(&

-sUp/t

5=0, ±1 ±(|--l), ^-; /=0, 1. (12.51)

12:4.4. Condition (12.34) does not hold in K systems.
In this case it follows from an analysis of Eqs. (12.50) simi-
lar to the analysis in Subsections 4.2 and 6.2 of Ref. 25 (in a
study of the stability of autosolitons) that the value of y near
the striation stability threshold is75'77
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= X, + tfj. + 2 aftWv («s.v + ( 12.52)

Noting that the values of f i , v increase with increasing index
v, we need consider only the first term in the sum in ( 12.52),
and we can use fl^oVo.o ̂ ^o -//-^p in estimating the criti-
cal parameters of the striations.

In this case, (12.52) gives us the critical values which
we presented in Subsection 2.3 for the quantity k± and the
striation width, (2.2), at points at which the striations lose
stability with respect to the growth of a fluctuation

86 « 660,0 (x) exp (tk1r_L).

The condition for the instability of hot striations (Fig.
9a) with respect to activator pumping follows from expres-
sion ( 12.52) when we set kL = 0 and t = 0 in it:75'78

> + l,..., ±

(12.53)

Since nsfl increases with increasing s, the fluctuation
80~8dns-0 (x) with s = smax = N/2 is the most dangerous.
Itfollows from (12.24) and (12.53) that the critical width of
the striations at the point of instability (the instability is an
activator-pumping instability) is

• / I n (12.54)

Let us estimate the value of/nN/20 for striations of peri-
od J?p -^ L. In this case, a solution of problem (12.46) can be
sought in series form:

(12.55)

Substituting (12.55) into (12.46), we find, in the zeroth ap-
proximation,

84°' (0) = H0> (&),
(12.56)

Problem (12.56) has solutions 8rj(
k°

}(x) = exp(2irikx/
), /

quently,
= (2irk/ =

for
)2, k = 0, +1, ... . Conse-

ao°oVo,o~«o

4^L we have
Since we have

we find Eq. (2.1) from (12.54).
Equation (2.1) was derived above from condition (12.44).

12.4.5. In Kfl systems, a fluctuation 86
x86>00 (x) cos(<ycf) with cac ^0 may be a growing fluctu-
ation, as follows from an analysis of Eqs. (12.50) by the
procedure in Subsection 6.2 of Ref. 25. The striation pulsa-
tion frequency &>c is given by (12.35), and the condition for
the appearance of pulsating striations reduces to (12.34). It
follows from (12.34) and (12.24) that the width of stria-
tions which are stable with respect to pulsations, like the
width of autosolitons,25 lies in the interval •&•&,,
<Jfs<3fm, where ^bto is given by (12.35), and

CONCLUSION

The results presented in this review make it possible to
analyze the picture of self-organization as not only the exci-
tation level of the system but also other of its parameters are
varied. For example, as the length of the system decreases,
and ̂  reaches the value N^min ( A ) , the number of stria-
tions, N, decreases abruptly as a result of a pumping instabil-
ity (Subsection 2.2). Conversely, as the size of the system,
J^ (in semiconductors and gases, the distance between elec-
trodes), increases, the striation period increases, and at a
certain critical length J^ = NJ?'max (A) a local breakdown
occurs at the center of striations or between them (Subsec-
tion 2.1). This dynamic restructuring increases the number
of striations.

These results are important for biology, e.g., in the anal-
ysis of embryos and morphogenesis, i.e., changes in the
shape of a fetus or an organism as it grows. Models of the
types in (1.11) and (1.12) are frequently used to describe
such processes; fluctuations are assigned a governing role in
them.3'5'6'8'12 In addition, as we have seen, the self-organiza-
tion phenomena which occur as a system grows usually re-
sult from a dynamic restructuring (Subsection 2.1). Fluctu-
ations may thus not play an important role in the selection of
the type of dissipative structure which forms.78'115

In real systems, i.e., experimentally, the picture of self-
organization is determined by the inhomogeneities of the
systems. Small local inhomogeneities serve as nucleating re-
gions for the abrupt appearance of autosolitons, whose sub-
sequent evolution determines the self-organization process
(§4 and Subsection 5.3).

We wish to stress that in most cases the spontaneous
formation and the evolution of dissipative structures occur
in monostable systems, i.e., in systems whose external pa-
rameters depend on the excitation level in a single-valued
fashion, even linearly. The formation of filaments or do-
mains of an electric field is generally unrelated to the shape
of the current-voltage characteristic of the system. For ex-
ample, multifilament and multidomain states may arise in a
monostable electron-hole plasma with a single-valued cur-
rent-voltage characteristic (§8). A gas discharge has an S-
shaped current-voltage characteristic, and striations (elec-
tric field domains) form in it.4S'46b In a transistor structure,
in contrast, current filaments form, and the current-voltage
characteristic may be N-shaped (Subsection 7.3). The local
breakdown effect (Subsection 2.1.1) is directly related to the
monostable nature of a system, since only striations of finite
width can form in such systems. The realization of wide
striations of large period essentially implies the existence of
two stable homogeneous states in the system; i.e., such stria-
tions are possible only in bistable systems (§6).

We also wish to stress that the picture of self-organiza-
tion, in particular, the appearance of turbulence (§9), does
not depend on the nature of the system, i.e., on the particular
mechanisms which determine the activation and inhibition
processes. The picture is determined primarily by the nature
of the nonlinearity of the system, more precisely, the local-
coupling curve, and by the response time and range of the
activator in comparison with those of the inhibitor (Subsec-
tion 1.3). By experimentally studying the properties of dissi-
pative structures in complex chemical and biological sys-
tems, one can thus draw conclusions about the qualitative
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form of the local-coupling curve and of other parameters of a
mathematical model which can be used to describe the ob-
served picture of self-organization. On the other hand, by
studying specific physical systems for which the equations
describing dissipative structures can be derived correctly
[e.g., an electron-hole plasma (Subsections 8.1-8.3) or sem-
iconductor structures, which are the most convenient for
experimental studies (§8) ], one can draw conclusion about
the self-organization scenarios which apply to systems dif-
fering in nature, including chemical and biological systems.

Basic notation
DS—dissipative structure;
AS—autosoliton;

&—value of activator;
17—value of inhibitor;
6h and rjh—values of activator and inhibitor in homo-
geneous medium;
/ and Te—length scale and time scale of the variation of
the activator;
L and r,—length scale and time scale of the variation of
the inhibitor;
£ = l/L;
a = Tg/T,,;
A—excitation level of the system (a control or bifurca-
tion parameter);
Ac and A 'c—critical values of A, which are the lower
and upper limits on the region of instability of the ho-
mogeneous state of the medium;
Ab (A 'b)—the limiting value of A, below (above) which
static autosolitons and other dissipative structures do
not occur;
A<p

m(A'p
(ff))— the value of A at which N "hot"

("cold") striations of period ^p in a system of size
y = NJ?p lose their stability as the result of "pump-
ing" effect;
Ad (A 'd) or A <"> (A '^)—values of A at which a local
breakdown occurs at the center of a hot (cold) autosoli-
ton or at the center of hot (cold) periodic striations;
J2^p—period of striations;
Jjfs(Jfs)—width of hot (cold) striations and autosoli-
tons;
J^min —minimum possible striation period;
=2"max—maximum possible striation period;
K, ft, Kft, KN systems (and other systems) are ex-
plained in Table I.

"In general, the term "dissipative structure" proposed by Prigogine is
sometimes applied not only to spatially inhomogeneous states but also
to homogeneous self-oscillations which may arise spontaneously in dis-
tributed media.3'10'" A study of the various types of self-oscillations,26

including stochastic ones,27"29 is an independent problem, which is not
discussed in the present review.

2) In its general meaning, "self-organization" is a change in the nature of
the ordering of a nonequilibrium system upon a change in the excitation
level of the system. For this reason, self-organization processes are also
called "nonequilibrium" or "kinetic phase transitions."3"6 Criteria for
the degree of ordering in the course of self-organization processes have
been proposed by Klimontovich.30 As a rule, dissipative structures are
a macroscopically inhomogeneous state and can thus be also thought of
as incommensurate phase transitions in nonequilibrium systems. Ques-
tions concerning the analogies between and differences between equi-
librium and nonequilibrium phase transitions, critical phenomena near
nonequilibrium phase transitions, and statistical approaches to the
analysis of self-organization phenomena constitute an independent
problem, which is not discussed in the present review.

3'For this reason, such media are also called "activator-inhibitor sys-

tems" in the English language literature. In systems in which there is no
inhibition process, an instability leads to either an unbounded growth
of the activator in a certain region of the system or an abrupt transition
of the system from one homogeneous state to another. The first of these
processes occurs, for example, upon the breakdown of a dielectric or
during an explosion which starts at a specific point.20 A theory for such
time-varying processes (sharpening regimes) is offered in Ref. 42. The
second of these processes occurs, for example, in semiconductors, gas-
es, and other systems which have an S-shaped current-voltage charac-
teristic. When there is an external circuit, the voltage drop across the
structure plays the role of a uniformly varying inhibitor, so an isolated
filament21*24 forms in systems with an S-shaped current-voltage char-
acteristic. Such a filament is the simplest sort of dissipative structure.

41 Conditions for the instability of three-component active systems are
discussed in Refs. 114, 8, and 17.

5' Under neutral boundary conditions in a one-dimensional system of size
^ f , we would have k = km = irm/Jf, where m = 0, 1,... . For this
reason, the stratification is realized with respect to fluctuations with a
wave number k = km>i which may be close to the value of fc0 given by
(1.9) (Ref. 3). The discrete nature of the values of k, however, is essen-
tially unseen in the picture of self-organization in distributed systems of
size ̂  > A: 0

 1 which is discussed below.
6) Expressions (1.11)-(1.13) are written in a form in which the lengths /

and L are essentially independent of the control parameter A, i.e., are
length scales of the variation of the activator and the inhibitor.

7> Incorporating the difference between the parameters of the electrons
and the holes essentially leads to only a simple renormalization of the
coefficients (the electron diffusion coefficient is replaced by a bipolar
diffusion coefficient, and so forth).75-76

81 This stratification condition is far less restrictive than the condition for
the thermal instability in unipolar semiconductors:21 a + s> 1. The
reason is that in an electron-hole plasma inhomogeneous quasineutral
distributions of the carrier density may form because the holes as well
as the electrons have a mobility.

" In a certain region of stability of the homogeneous state of ft systems,
traveling autosolitons and other, more-complex autowaves can be ex-
cited by a brief external perturbation. The properties of these solitons
have been discussed in many places (e.g., Refs. 7,8,10-11,17,and 121-
124).

"" This conclusion essentially follows from the theory of current fila-
ments and field domains in semiconductors which have S- and N-
shaped current-voltage characteristics. Specifically, the stratification
of the homogeneous state of a semiconductor is realized with respect to
the longest-wavelength mode, with k = Tr/^f (^f is the size of the
system). The stable state (a filament or domain) which forms is a step.
The transition region of this step has a size l4,^f (Refs. 21-24). All
modes, including the shortest-wavelength mode, with k = IT/I—which
is highly damped at the critical point—participate in the formation of
this step.

"'In certain systems, states in the form of stable striations do not occur,
and a turbulence may arise upon the stratification of the homogeneous
state (§9).

121 Corresponding to a given value of ¥'„,„ there may be several values of
A. In other words, the ^CmtK(A) dependence can in principle have
several minima (see the dashed line in Fig. 8a). This comment applies
to all the curves in Fig. 8.

13>The appearance of oscillatory distributions 0(x) nndi)(x) (Ref. 143)
near an inhomogeneity as A-*AC essentially follows from the form of
the spatial-correlation function of the fluctuations near the point of the
stratification (A = Ac) analyzed by Nitzan et a/.144 and also from the
form of the Green's function of this inhomogeneous problem as A —AK

(Ref. 145).
141 The formation of striations in a gas discharge is also associated with a

self-breeding of electrons as the result of an increasing dependence of
the rate of electron impact ionization, v,, on the electron density n
(Ref. 14). In this case, however (in contrast with the systems which are
being discussed in this section), the activation and inhibition processes
occur in the same volume of the gas-discharge tube.

15'In transistors, because of the special base electrode, the condition
L > -2" usually holds (-2" is the linear size of the structure), and only a
single "hot spot" forms. Hot spots were first observed experimentally
in Ref. 152. They were subsequently explained at a qualitative level in
Refs. 153 and 154. A nonlinear theory of hot spots in transistors was
derived in Ref. 151. In particular, it was shown there that the current-
voltage characteristic of the transistor may be N-shaped upon current
filamentation (Fig. 23c).

161 Dissipative structures can also arise in bistable sandwich structures
whose current-voltage characteristics remain S-shaped, despite the
presence of an inhibition region. The distinctive features of self-organi-
zation phenomena for bistable structures of this sort are discussed in
§6-
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17> Structures with a "latent" S-shaped current-voltage characteristic are
also being studied as electronic models of neuristors (Refs. 156-158,
for example), in which traveling autosolitons can be excited. The pa-
rameters of such structures correspond to ft systems (Subsection 1.3).

18) The evolution of dissipative structures may change significantly if the
external circuit has a complex impedance.80

"'Terms proportional to V0 and VTJ arise in equations like (1.1) and
(1.2) (see, for example, Refs. 14 and 46).

20)This assertion is valid for hot striations (Fig. 9a) of width
& ̂  < J^p/2. In the opposite case, i.e., in the case of cold striations
(Fig. 9e), a fluctuation S0m = 66^)2.1 is the most dangerous. This
fluctuation describes an increase in the width of a cold region in one
striation and a narrowing of a cold region in a neighboring striation. In
other words, the growth of a fluctuation of this sort leads to a pumping
of activator between cold striations.
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