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The general theory of relativity agrees excellently with
all available experimental data. It is used in applications, and
new observations merely increase the accuracy with which
this theory is confirmed. This is evidence of its practical val-
ue. But it is not by chance that the aesthetic beauty of general
relativity is also emphasized, in particular its role as a para-
digm for the construction of generalized theories of all phys-
ical interactions. To agree with this point of view—to recog-
nize the beauty of general relativity in full measure—it is
necessary to study this theory deeply. It is necessary to travel
the entire journey from first acquaintance, through disbelief
and disappointment, to recognition of its harmony and
depth. At the first glance, general relativity possesses serious
defects. It appears that it rejects certain fundamental princi-
ples, principles so precious and necessary which it would be
impossible to give up.

It is probable that one of the most difficult features to
accept is the absence in the structure of general relativity of
any direct mention of ordinary flat space-time (the Min-
kowski four-dimensional world). Usually, one specifies the
fields (for example, the classical electromagnetic field) on
the background of a global Minkowski world and uses the
symmetries of the background space-time for the traditional
formulation of conservation laws. In ordinary physical theo-
ries, there is both a metric rj^v of flat space-time as well as
physical fields defined on its background. But in general rel-
ativity (in its well-known, geometrical formulation) only a
curved world is discussed, and the components of the metric
g^v of this space-time play a dual role. They appear both as
quantities that determine the relations between time inter-
vals and lengths and as potentials of the gravitational field.

It is apparently not too well known that Poincare al-
ready attempted in 1905 a relativistic generalization of New-
ton's law, i.e., he attempted to reconcile the principles of the
special theory of relativity (Lorentz transformations) with
the law of gravitation (see, for example, in the book of Ref.
1). Einstein also began his construction of a relativistic theo-
ry of gravitation with a description of gravitational forces in
a flat world. He traversed a path from accelerated (curvilin-
ear) coordinate systems and a homogeneous gravitational
field through the equivalence principle and an analysis of the
procedure of physical measurements to the concept of a
curved world in which we live. The beauty and economy of
the geometrical formulation of general relativity is precisely
that everything redundant is eliminated. Measurements of
time intervals and lengths in the presence of a gravitational
field always lead to the metric relations of a curved geome-
try; the obsolete notion of a global flat world turns out to be
unnecessary. To say that in fact space-time is flat and only
"effectively" observed by us as curved is as artificial as to
assert that in fact the earth is flat (as in the immediate neigh-
borhood of Moscow) and the table of distances covered by
the long-range flights of Aeroflot indicates merely an effec-
tive curvature of the earth's surface due to the fact that the

standards of length vary from point to point with increasing
distance from Moscow.

The general theory of relativity, which uses the notion
of a curved space-time continuum, is a natural, correct, and
consistent method of describing gravitation and the phe-
nomena in which gravitation is important. In insisting on the
correctness of general relativity, we do not mean that this
theory is some absolute truth dependent on nothing else.
Like every physical theory, general relativity is incorrect in
the same sense in which Newtonian mechanics was found to
be incorrect from the point of view of quantum mechanics
and the special theory of relativity, and the special theory of
relativity was found to be incorrect from the point of view of
the general theory of relativity. But here we are speaking of
specific objections against general relativity and of specific
theories proposed in place of it, moreover in the region of the
same physical conditions that are covered by general relativ-
ity.

Geometrical general relativity, with its idea of a curved
space-time, replaced the notions of a flat Minkowski world.
However, there sometime arises a desire to turn backward
for a few steps in the historical development. One would like
to begin with the traditional notions of a field in the Minkow-
ski world and "derive" general relativity, establishing the
decisive aspects that lead to general relativity, rather than to
certain other theories. (And, perhaps, one could construct
an even better theory?!) One would like to compare the theo-
ry of the gravitational field with classical electrodynamics
and see in detail where and why the global flat space-time
"disappears" in a consistently developed theory of a relativ-
istic gravitational field.

There are also more specific motives for such an investi-
gation. Let us mention two of them. Far from gravitational
sources, where the gravitational field disappears asymptoti-
cally, space-time is practically flat. The gflv differ by only
small corrections h^v from i]^v:

SUV^TI^+^V. (1)

The desire arises to formulate an exact theory of gravitation
on the background of precisely such a flat space-time, i.e.,
one has the desire to introduce a mathematical relation that
is like the relation (1), not as an approximate, but as an exact
one. On the scales characteristic of electrons, protons, neu-
trons..., space-time is also flat to a stupendous accuracy de-
spite the fact that on much larger scales its curvature may be
appreciable. One has a desire to use the concept of a flat
world by analogy with the way it is done in the theory of
elementary particles and apply it to gravitation.

We shall not intrigue the reader any longer, but say
immediately that all this has already been done. It is well
known how naturally and beautifully Einstein's equations
arise, and why the original global Minkowski space-time
becomes auxiliary and fictitious, and why the concept of a
flat world is unnecessary. Our list of studies2'5 in which this
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theme is discussed is most likely far from complete.
From the point of view of the "finished" geometrical

general relativity, the metric of the background world is a
certain auxiliary structure. The introduction of additional
structures is nothing new: it is often used. Well known, for
example, is the tetrad formulation of general relativity (see,
for example, Ref. 6). It is based on the introduction of a
quartet of vectors e"^ (a = 1,2,3,4), which are defined at
each point of space-time. The metric g^v is represented in
the form £,,v = •>/«,<, where = 1, 77, , =1J22

= rj33 = — 1, and the remaining t]ab are zero. When the e°
are introduced, an additional symmetry arises-the possibil-
ity of subjecting the vectors e° to spatial and Lorentz rota-
tions at each point of space-time. Also well known is the
spinor formulation of general relativity,7 which is based on
the introduction of additional structures: spinors. Also dis-
cussed is a formulation of Einstein's equations based on the
symplectic calculus of Regge (see, for example, Ref. 8), etc.
Included in this list is the "field" formulation of general rela-
tivity, which uses an additional structure — a background
space-time, which need not necessarily be flat.5

Each of these approaches is helpful for the solution of
particular specific problems; makes it possible to exploit ad-
ditional symmetries at one's discretion; enables one to trans-
form certain expressions from nontensorial to tensorial na-
ture; and serves the purposes of better understanding of the
theory of the relativistic gravitational field. Of course, the
introduction of additional structures does not by itself
change the physical content of general relativity. The ap-
pearance of these structures in particular mathematical rela-
tions does not mean a priori that one is speaking about a
different theory. In this light, a forceful assertion like "as a
matter of principle general relativity does not contain the
metric tensor -f-v of Minkowski space and it is therefore
completely meaningless to speak about it in general relativi-
ty" does not sound convincing. Using the earlier example
with the earth, one can say that just as the geometrical prop-
erties of the surface of the earth can be studied in projection
onto a plane, so can the geometrical properties of a curved
world be studied in its projection onto a flat world (for more
details see, for example, Ref. 9).

The foundations of general relativity, possible ways of
generalizing this theory, the comparison of general relativity
with other theories of gravitation (alternatives to general
relativity either in content or only in form), and the ques-
tions of physical measurements and their interpretation
have already been considered in the previous papers of Refs.
10 and 1 1. It was noted that the field formulation of general
relativity is constructed and used in specific investigations.

Here, it should be emphasized that the mere concept of
a tensor gravitational field defined on the background of a
Minkowski world does not lead automatically to general rel-
ativity irrespective of the specific form of the Lagrangian of
the theory. For example, prior to 1984 A. A. Logunov and
his collaborators developed and proposed in place of general
relativity a theory of a tensor gravitational field "as a classi-
cal field of Faraday-Maxwell type" defined in a Minkowski
world. This theory differs from general relativity both in its
formal structure and in its physical predictions. (The main
features of this theory are summarized in the paper cited as
Ref. 2 in the paper of Ref. 12. This theory is a version of early
constructions of Deser and Laurent.13 ) According to this

theory, electromagnetic waves are deflected by a gravitating
body but gravitational waves are not. So far as one can judge
from subsequent publications, this theory has been aban-
doned even by its authors.

The field formulation of general relativity is less famil-
iar than the usual, geometrical formulation. In the geometri-
cal formulation of general relativity there occur only the
components of the metric tensor g^v of a curved space-time.
The constructions of the field formulation of general relativ-
ity contain both the components of the metric y^v of a cer-
tain auxiliary (background) space-time, for example, Min-
kowski space, as well as the components of a tensor
gravitational field h^v. As was already noted in Refs. 10 and
11, the field formulation of general relativity has the form of
an exact and rigorous field theory on a given background. It
possesses all the necessary attributes of such a theory—an
action and equations of motion, an energy-momentum ten-
sor of the gravitational field, and conservation laws which
reflect the symmetry of the background space-time; it pos-
sesses coordinate and gauge invariance, etc. The question of
the physical meaning of the auxiliary Minkowski world also
necessarily arose. It was established that attempts to give the
significance of observable quantities to the metric relations
of the Minkowski world leads merely to contradictions with
experiment.

The subject of the present discussion is the case when
the background space-time is flat. In presenting the field
formulation of general relativity, we shall, for definiteness,
follow Ref. 5, which, as is noted there, follows the path of
previous publications on this subject by other authors. It
should be emphasized that in Ref. 5 the general theory of
relativity was not postulated but derived—in the sense that
the construction began with the definition of background
and dynamical variables; the specification of a Lagrangian of
the theory, the variational derivation of the equations of mo-
tion and the energy-momentum tensor of the gravitational
field, the investigation of gauge symmetries and conserva-
tion laws, etc. An arbitrary background geometry was con-
sidered, moreover in arbitrary coordinates. The require-
ments that lead ultimately to general relativity rather than
some other theory were noted. The equivalence of the con-
structed "field" theory and the ordinary geometrical general
relativity was demonstrated at the end of the derivation by
appropriate identifications.

The paper of Ref. 5 was published1' before the appear-
ance in 1984 in the papers of Logunov and his collaborators
of the first references to the "relativistic theory of gravita-
tion" (RTG). This paper contains everything needed to
demonstrate the position occupied in the world of the field
formulation of general relativity by the collection of proposi-
tions that are combined under the name of the RTG. Neither
Ref. 5 nor the similar preceding publications of other au-
thors were divided into sections such as Proposition 1, Prop-
osition 2, etc., as is done in Ref. 12, but for the convenience of
the reader we shall also do this here. We shall cite the paper
of Ref. 5 in the translation back into Russian.

Thus:
Proposition 1. We consider a flat background space-

time (Minkowski space). This case "... is privileged, since
then general relativity resembles the theories of other phys-
ical fields to the greatest degree" (Ref. 5, p. 381). The Min-
kowski metric in Lorentz (rectilinear) coordinates has the
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form

da2 = i <= cW— dx1— dy1— dz2. (2)

In arbitrary curvilinear coordinates, which can also be intro-
duced in a flat world, we shall have in place of the compo-
nents ?/MV (i/go = 1,1/n — *?22 = */33 = — 1> the remaining
i/^v are equal to zero) a set of functions y^:

do2=f1,vd^'d>fv, (3)

but the curvature tensor constructed from the metric com-
ponents 7MV is of course identically equal to zero.

"It is well known that in flat space-time the use of cur-
vilinear coordinates does not prevent the obtaining of inte-
gral conservation laws. . . . Since general relativity can al-
ways be formulated as a theory on a flat background..., the
number of integral quantities (for a system with suitable
conditions at infinity) is equal to 10, in accordance with the
number of Killing vectors" (Ref. 5, p. 392). The ten Killing
vectors reflect the presence of the 10-parameter group of
motions that acts in the background Minkowski world.

Proposition 2. In the flat Minkowski world we specify
the gravitational field in the form of a symmetric second-
rank tensor h ̂  and other (nongravitational) fields.

There is no need to impose in advance any constraints
on the components h *v. However, in what follows it will
transpire (see below) that the theory possesses a gauge sym-
metry, i.e., a possibility to change the h/JV without changing
the field equations and without changing the predictions for
the results of any physical experiment. This symmetry is en-
tirely similar to gauge invariance in classical electrodynam-
ics. One can use the gauge freedom to make the components
h MV satisfy subsidiary conditions. In practical investigations,
one often uses the condition

/ifv.v = o, (4)

where the semicolon denotes the covariant derivative with
respect to the background metric y^v. This condition is used,
for example, in the theory of gravitational waves8 and in
quantum gravity.14 The condition (4) is not the only one
possible or necessary and does not even exhaust the complete
gauge freedom. Frequent use is made of other gauge condi-
tions, for example, h^vu

v = 0 (where uv is some 4-vector,
usually chosen in the form uv = 1,0,0,0),h ̂ y^, etc. (For a.
complete set of gauge conditions, see Refs. 15, 16).

In accordance with its origin, the considered gauge free-
dom is the same as the freedom to represent the earth's sur-
face on an arbitrary plane and describe on this plane straight
or curved coordinate lines. It is clear that the intrinsic prop-
erties of the earth's surface are unchanged by this, and it does
not lead to any new physical effects.

Since in arbitrary curvilinear coordinates the metric of
the flat background world is determined by Eq. (3), a de-
tailed expression of the condition (4) can be represented in
the equivalent form

(5)

(6)

where the comma denotes the ordinary derivative.
The Lorentz gauge condition can be expressed similarly

in classical electrodynamics:

dx1 - = 0. (7)

where y is the determinant of the matrix y^v. But if the co-
ordinates are taken to be Lorentzian, i.e., y^v = 7/^v (see
(2)), then the condition (4) reduces to the very simple form

The same condition can be expressed in a covariant (valid in
an arbitrary coordinate system) form:

/T;v=0. ( ! ' )

Of course, Maxwell's equations and the theory of the electro-
magnetic field do not cease to be what they are if they are
equipped with the admissible gauge condition (7) or (?')•

Equation (5) contains the symbols ya/3 and y. Examin-
ing the equation, one might suppose that it "introduces the
Minkowski space metric y^v into the theory" and that Eq.
(4) itself has some fundamental significance, in particular
that it "leads to a number of radical differences from the
conclusions deduced from general relativity."17 However,
in fact this equation is only one of many admissible gauge
conditions that fixes (incompletely) the gauge freedom, and
the symbols ya/3 and y which occur in it reflect an altogether
insignificant fact—the manner in which the coordinate lines
are drawn, i.e., whether the letters xv are regarded as curvi-
linear or rectilinear coordinates in the background flat
world.

Proposition 3. The specific theory of the free gravita-
tional field h MV is determined by the Lagrangian Lg of this
field. If in addition to the field h//v we consider other fields
<t>A (they are called matter fields), then it is necessary to
specify the Lagrangian Lm of these fields and also the specif-
ic form of the interaction of the fields h Mvand <j)A. We discuss
the question of interaction.

The constructions in Ref. 5 began with the assumption
that ". . . the Lagrangian density Lm of the matter fields,
including their interaction with gravitation, has the general
form...," which depends on Y*v,h ^v,(j)A and their derivatives.
Further, it was.specially shown that the form of the interac-
tion cannot be arbitrary if one imposes the natural condition
that the source for the linear part of the gravitational field is
the total energy-momentum tensor, including the energy-
momentum tensor of the gravitational field itself. It was
shown that y"v and h'"' must occur in L m in the form of a
sum. It was emphasized that "this condition symbolizes the
universal coupling of the gravitational field to the remaining
physical fields." In other words, this condition expresses
Einstein's equivalence principle and has decisive signifi-
cance in the obtaining of precisely general relativity, and not
some other theory. "The desire to have the total energy-
momentum tensor as source for the linear part of the gravita-
tional field leads to universal coupling of the gravitational
field to the other fields (and it also leads to self-interaction)
and, ultimately, to Einstein's theory" (Ref. 5, p. 379).

The sum of Y" and h ̂ v was used in Ref. 5 in the con-
crete form

(— g)lfs g*v = (— y)1/a (v"v + ^V) • (8)
The advantages of taking precisely this representation

rather than, say g^v = y^v + h MV or g = y + h , was

671 Sov. Phys. Usp. 33 (8), August 1990 L. P. Grishchuk 671



demonstrated particularly clearly in the well-known paper
of Deser.2 The relation (8) was also encountered in earlier
studies. In Ref. 2, the physical significance of this relation
was also clarified (see also Ref. 18). (Modifications in the
form of expression of the theory associated with transition
from the representation (8) to other possible representa-
tions were analyzed in Ref. 19).

Thus, the relation ( 8 ) itself, its origin, and its physical
significance were known before the relation ( 8 ) appeared in
papers on the RTG under the name "geometrization princi-
pie."

Proposition 4. To complete the construction of the theo-
ry, it is necessary to specify the Lagrangian Lg of the free
gravitational field and the action S= — (l/2cK)Sd*xLg.
In Ref. 5 this was done by means of the scalar curvature
formed from the g^v, with allowance for the relation (8).
The motives for this choice are well known — it is the sim-
plest scalar that leads to field equations with second-order
derivatives. The variation of Lg with respect to the field vari-
ables h ̂  gives the equations of the gravitational field, while
variation with respect to the background metric y^v deter-
mines the energy-momentum tensor t^v of the gravitational
field:

The equations of the free gravitational field given in
Ref. 5 have the form

,<*P a 16nG
H ;v;a = — r~ ( 9 )

An equivalent form of these equations was also specified:

'HV-

In the presence of matter fields, t^v in these equations is
replaced by the total energy—momentum tensor T™. An
obvious consequence of the field equations are the differen-
tial conservation laws

or

with the integral conservation laws that follow from them
and reflect the fact that the flat world admits a 10-parameter
group of motions (the Poincare group).

We have in fact constructed a field formulation of gen-
eral relativity (namely, the general theory of relativity), al-
though the equivalence of this theory and the metric formu-
lation of general relativity based on the metric tensor g^v

may not yet be obvious. The decisive elements in the con-
struction of the theory were the choice of Lg and the choice
of the type of interaction of gravitation with other fields
(Einstein's equivalence principle). We continue our study of
the theory.

In Ref. 5 gauge transformations of the theory were in-
troduced and investigated, and their origin was demonstrat-
ed. It is clear that the only symmetry of the theory is the
group of diffeomorphisms, i.e., the possibility of mapping
space-time onto itself in an arbitrary manner, or, expressed

even more simply, the possibility of covering space-time
with arbitrary coordinate meshes. This symmetry can be
cast in the form of gauge transformations, in which case the
coordinate system is regarded as fixed, while the tensor and
other fields defined on space-time are transformed. In Ref.
5, two types of gauge condition were introduced: "ordinary
transformations," under which both the background and
dynamical variables are transformed, and "true transforma-
tions" (intrinsic), under which only the dynamical variables
are transformed. In Ref. 5 the explicit form of these transfor-
mations is given, in, moreover, not only infinitesimally small
but also finite form. We give an infinitesimally small true
gauge transformation for the h ~'"/:
TVW "tTU"V' T^IAV i r^Ct /tTlAV i '̂ '[1V\ if t ~V- ft -" fj —i— l£ tQ _L. V 1 1

- eu (h™ +7°) -1\ ft* + ?"), (10)
where h ~"v= ( - y) l/2h "v,f*v= ( - y) "2fv, and £" is an
arbitrary vector. The dynamical matter fields are similarly
transformed.

A remarkable property of the gauge invariance of the
theory is that the substitution (10) does not change the field
equations (9), i.e., if h *v gives a solution of these equations,
then so does h ̂ v. The Lagrangian Lg changes by a diver-
gence (a total derivative) and a term that contains the back-
ground equations of motion (in the given case, the back-
ground Ricci tensor).

Using the arbitrary vector £ a, one can achieve fulfill-
ment of the gauge conditions. As we noted above, a conven-
ient (but not necessary) choice of the gauge conditions is Eq.
(4). With allowance for the conditions (4), Eqs. (9) sim-
plify to

16nG ,. ;<x
"(iv -jo. = >HV- (11)

The specification of the gauge transformations and their sig-
nificance completes the construction of the theory. As we
see, this theory possesses all the necessary attributes of a
field theory (see the beginning of the paper).

It should also be said that the tensor t^v is a generally
covariant generalization (due to the introduction of an addi-
tional structure—the tensor y^v) of the energy-momentum
pseudotensor that is used in the geometrical formulation of
general relativity. The tensor t^v does not reduce to an
expression that depends solely on g^v and the derivatives of
g^v. The tensor t^v itself is gauge noninvariant, but precisely
to the same degree to which the left-hand side of Eqs. (9) is
gauge noninvariant.

The equivalence of the constructed field theory and the
geometrical formulation of general relativity is established
by identifying the g?v in the relation (8) with the compo-
nents of the metric tensor of the curved (physical) space-
time. Substitution of the relations (8) in Eqs. (9) reduces
them to Einstein's equations for the free field:

In the presence of matter fields, Einstein's equations with
energy-momentum tensor T^v can be obtained similarly:

D __ 1 n = 8nG T

2 c* ""'
(12)

The Lagrangian Lg is transformed into the Hilbert Lagran-
gian. The Lagrangian L m of the matter fields contains h MV
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and /"" only in the form of the sum (8), and variation of L m

with respect to g'"'determines the energy-momentum tensor
7;,,.

The gauge symmetry of the field formulation of the the-
ory is transformed into the coordinate symmetry of the geo-
metrical formulation. Indeed, combining y^v with h Alvin ac-
cordance with the rule (8) we obtain g^v, and combining the
same y^v with the gauge-transformed A'"', we obtain g f l v ,
where

But theg^v andg'" obtained in this manner are related by the
ordinary tensor law

dxv

dxa
•g#(3P) (14)

for the case of coordinate transformations xa' = xa — |""
with the same vector J"". The arguments of the functions gal3

and g?v denote the point at which they are taken. With
allowance for this, we return from formula (14) to formula
(13).

As we have repeatedly emphasized, gauge freedom and
the possibility of choosing some particular gauge condition
are foreseen in the field formulation of general relativity.
With or without gauge conditions, the theory continues to be
general relativity. But we shall assume that for some reason
condition (4) is chosen. Substituting in it the relation (8),
we can obtain the relation

If, in addition, we require y^, =
be expressed in the form

dx1

(15)

rj^v, then this relation can

(16)

In terms of the components of the metric g*"", the relation
(15) (or (16) ) appears as some additional condition on the

g**v that are determined from Einstein's equations (12). We
shall discuss this question below, but now we draw certain
conclusions.

The rather laborious rewriting of the formulas and defi-
nitions from Ref. 5 into the present paper was needed in
order to make a transparent comparison of the theory that
the author of Ref. 12 calls the RTG with the field formula-
tion of general relativity.

We introduce new notation: <!>*"' in place of h'"' and the
symbol D^ for covariant differentiation instead of the semi-
colon.

The construction of the field formulation of general rel-
ativity began with the concept of the tensor gravitational
field h'"' defined in a Minkowski space with metric /"". The
authors of the RTG proceed from a similar conception. It is
shown in Ref. 5 that under certain natural requirements the
Lagrangian L m must contain y^v and h *"' in the form of a
sum, and, following earlier studies, the specific relation (8)
is used. In studies on the RTG, the same relation is intro-
duced under the designation "geometrization principle"
(Eq. (2) of Ref. 12). On the way to the field formulation of
general relativity the specific Lagrangian Lg was used in Ref.
5. Precisely the same Lagrangian is given in Ref. 12, Eq.
(20).2) After omission of a total derivative, this Lagrangian

[Eq. (22), Ref. 12] is identical to Rosen's well-known La-
grangian.20 In Ref. 5, by analogy with earlier studies, the
energy-momentum tensor of the gravitational field is intro-
duced and the existence of conservation laws is demonstrat-
ed. Precisely the same t^v occurs in Ref. 12.3> In Ref. 5,
gauge transformations of the theory are introduced, and the
gauge invariance of the theory and the possibility of impos-
ing gauge conditions are proved.4' Finally, field equations
are derived in Ref. 5, and these can, in a specific form (that
takes into account a gauge condition), be represented in the
form (11), (4) . Exactly the same equations occur in Ref. 12
[Eqs. (41) and (42) ], where they are called the RTG equa-
tions.

After this comparison it is clear that, taking as his point
of departure Propositions 1-4, the author of Ref. 12, after
other authors, followed a path that leads to the gravitational
theory known as the general theory of relativity of A. Ein-
stein (in the field formulation). There are no grounds for
changing the authorship of the general theory of relativity or
giving it a different name.

The paper of Ref. 12 begins with the strong assertion
that general relativity "leads, first, to abandonment of the
conservation laws for energy, momentum, and angular mo-
mentum of the matter and the gravitational field taken to-
gether." This claim is not addressed to the theory that re-
duces to Eqs. (41)-(42)ofRef. 12 (Eqs. (11) and (4) in the
present paper). The question of the "dependence of the iner-
tial mass on the method of arithmetization of three-dimen-
sional space" (see Ref. 17) is not raised. Moreover, it is
said17 that this theory "agrees completely with the funda-
mental physical principles."

Such a state of affairs can only be welcomed. Since Eqs.
(41 )-(42) of Ref. 12 are also the concrete expression of the
equations of general relativity (in the field formulation), the
assertion that "general relativity does not possess. . .conser-
vation laws"17 is automatically eliminated by the author of
Ref. 12 himself. From the point of view of the field of formu-
lation of general relativity (and, incidentally, the geometri-
cal formulation too), the quoted claims are also refuted
without necessary choice of the gauge condition (4) (see
Ref. 5), but there is also no prohibition on its use.

The reader may have become weary of repeated consi-
deration of the somewhat unusual field formulation of gen-
eral relativity. He is justified in asking what all this means in
terms of the ordinary geometrical general relativity, in terms
of the (physical) metric gf"'. Let us consider the equations.
As regards Eqs. (12) [Eqs. (39) in Ref. 12) ], everything is
clear—they are Einstein's equations. But suppose that for
some reason the gauge conditions (4) have been chosen. In
terms of gfv, they take the form (15) . The authors of the
RTG call these conditions, together with Einstein's equa-
tions, four further equations from the "field system of equa-
tions" of the RTG [Eq. (40) in Ref. 12]. It is these equa-
tions, according to the opinion of the authors of the RTG,17

that "make it impossible to eliminate the Minkowski space
metric Y*v from the theory." It is in connection with these
equations that it is said17 that "the Minkowski space met-
ric. . . occurs organically in the theory. This is the funda-
mental difference between the RTG and general relativity."
It is because of these equations that the RTG "leads to the
physical consequences that differ qualitatively from general
relativity."17
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To what shattering of the foundations of general relativ-
ity do Eqs. (40) of Ref. 12 lead? I would like to reassure the
reader: none at all.

Take an arbitrary solution g^v (x) of Einstein's equa-
tions. Substitute it in Eqs. (15). From this equation find the
Yuv Show that suitable functions are

dfa a/P
— — (17)

where the four functions f a ( x ) are solutions of the four
equations

(18)
dx*

Your solution gftv(x) automatically satisfies Eqs. (15) for
7MV chosen in the form (17)-(18), Equation (17) shows
how the coordinate lines must be drawn in the flat world that
has been constructed as an "extension." For the intrinsic
properties of space-time with the physical metric g^v(x) this
has no significance.

But if for some reason it is not immaterial to the reader
how the coordinate lines are drawn in the flat world "exten-
sion" and he has agreed on the additional requirement
?Vv = ^v, i.e., on Eq. (16), then it is necessary to proceed as
follows. Take your solution ^(x"). First transform it in
accordance with the tensor law to the coordinates
xa' =fa(x13), where/" are found from Eqs. (18). In the
expression g?v (xa ) obtained for your solution remove the
primes and substitute in Eqs. (16). They will be satisfied.
Return to work on your solution.

In Eqs. (16) one can readily recognize the so-called
harmonic coordinate conditions on the functions g^v. V. A.
Fock greatly loved harmonic coordinates. Emphasizing
their advantages for the solution of particular problems, but
without asserting that their choice overthrows general rela-
tivity, Fock obtained by means of them important concrete
results.5'

Working with equations that are completely equivalent
to those of general relativity, the authors of the RTG never-
theless arrive at a number of nonstandard conclusions. In
papers of the author of Ref. 12, it is said that the RTG leads
to a prediction of "exceptional strength" (the term is taken
from the summary of Ref. 21) and "strikes a blow against
the dogmatism that has so widely permeated general relativi-
ty" (from the summary of Ref. 22).

We list several very strong assertions of the authors of
the RTG.

1. It is asserted17 that an argument of Einstein, and also
of the mathematician Klein "contains a simple but funda-
mental error," as a result of which the quantity that Einstein
identified as the energy and momentum of an isolated system
"is seen in a more careful examination to be identically equal
to zero."

In Ref. 11 it is shown that this assertion can be ex-
plained solely by mathematical misunderstanding on the
part of its authors.

In Ref. 12 this assertion is not renewed.
2. It is asserted that "nonuniqueness of the predictions

for gravitational effects is an organic feature of general rela-
tivity"17 and that "its inability to give uniquely determined
predictions about gravitational phenomena necessarily"

leads "to the abandonment of general relativity as a physical
theory" (from the summary of Ref. 23).

In Ref. 11 it is shown that the assertion of "nonunique-
ness of the predictions of general relativity" is based on a
misunderstanding on the part of the authors of the assertion.
It is shown in what the misunderstanding consists. There is
no nonuniqueness in the observational predictions of general
relativity.

In Ref. 12, in conjunction with the characteristic re-
proach that "the authors of the paper. . . did not understand
the matter in hand," the assertion about "nonuniqueness of
the predictions of general relativity" (i.e., that there are too
many answers) is replaced by the assertion of the "impossi-
bility of general relativity giving an answer to the question"
(i.e., inability to give a single answer). As can be seen from
the text of Ref. 12, the author himself doubts the significance
of the question he poses and the possibility of testing the
answer—for this it would be necessary to "switch on" and
"switch off" the gravitational field of the sun. But if one
speaks of the proposed calculation in its own right, which
according to the belief of the author of Ref. 12 gives a "quite
definite answer to this question, since the Minkowski space
metric tensor occurs in the system of equations (39) and
(40)," then, of course, the same calculation can also be made
in general relativity [see Eqs. (12) and (15) of the present
paper]. There is no calculation that could be made in the
RTG but could not be made in general relativity; for the
RTG equations are just a special form of expression of the
equations of general relativity (in the field formulation).
Thus, as can be seen from Ref. 12, the thesis of the "nonuni-
queness of the predictions of general relativity" is over-
turned by the author of Ref. 12 himself, and there is there-
fore no need for the thesis of the "need to abandon general
relativity as a physical theory."

3. It is asserted17 that by virtue of the RTG equations a
"homogeneous and isotropic Friedmann universe can only
be... flat." This is the assertion that is characterized as a
"prediction of exceptional strength."21

As we have seen above, the complete set of RTG equa-
tions in terms of the metric g^v consists of Einstein's equa-
tions plus the condition (15), which does not restrict g?v at
all. In the most burdensome case the complete set of RTG
equations in terms of the metric g'*1' reduces to Einstein's
equations plus the harmonic coordinate condition (16).
Therefore, to overthrow the thesis of a "flat universe" it is
sufficient to find the metric of the spatially open (and not
spatially flat) homogeneous and isotropic Friedmann uni-
verse in harmonic coordinates. Such a metric satisfies the
complete set of RTG equations. It is discussed explicitly in
§94 of Fock's book24 and was given in Ref. 11.

In Ref. 12 it is said that "this assertion is incorrect, since
it is easy to show, in particular, that Fock's solution does not
satisfy the causality principle...." It can be seen from this
remark that the attempt to save the third important asser-
tion of the authors of the RTG is associated with a certain
new causality principle, which is also formulated in Ref. 12.

We now turn to the discussion of this causality princi-
pie.

We recall that in Ref. 11 the artificial, formal nature of
the Minkowski metric was explained. It was emphasized
that the causality cone is determined by the metric of the
curved world, and not the flat world. It was said that the
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causality cone and world lines of real bodies may be situated
both inside and outside the light cone of the formally deter-
mined Minkowski metric.

In Ref. 12, after the ritual "this assertion of the authors
indicates that they did not understand the essence of the
RTG," it is said that "a situation such as this . . .cannot
occur in the RTG, since any physical field (including the
gravitational field) is incapable of carrying the world lines of
test particles outside the causality cone of the Minkowski
space." But a page later this is formulated as a "causality
principle that makes it possible to select solutions of the sys-
tem of equations (39) and (40) that have physical mean-
ing," and it is recognized that "the causality principle is not
satisfied automatically."

Therefore, although hitherto it was asserted that Eqs.
(39) and (40) form the "complete system of equations" of
the RTG and in, say, the previous paper of Ref. 17 the cau-
sality principle was not even mentioned, it is now explained
that solutions of the RTG must in addition be selected on the
basis of an additional criterion, they must be tested, so to
speak, to see if they are physically meaningful — as this is
understood in the RTG. Here, it should be noted that the
mutual disposition of the light cones of the g^v and the rj^
metric can be of interest only in the case when an attempt is
made to interpret the metric relations of the flat world as
observable. But in any case such an attempt is doomed to
failure. Moreover, the mutual disposition of the light cones
is gauge noninvariant — it can be changed without in any way
changing the physical properties of the solution. Moreover,
it can be changed even if one insists rigorously on the fulfill-
ment of Eqs. (15), i.e., in one and the same gauge (4), due to
the remaining gauge freedom.

Nevertheless, it is firmly stated in Ref. 12 that "only
those solutions of Eqs. (39) and (40) have physical meaning
that satisfy the causality condition (48)-(49)." The condi-
tion itself is formulated as follows: ". . .for any four-vector u'
that is isotropic in Minkowski space,"

the following causality condition must be satisfied:

(48)

(49)"

(Since in the remaining text of Ref. 12 it is the Greek indices
that take the values 0, 1, 2, 3, we have made an appropriate
change of indices here too. ) We immediately verify that the
only remaining ( according to the assertions of the RTG )
Friedmann solution is flat. The expression for the interval of
the flat solution derived from the requirements of the RTG is
given, for example, in the book of Ref. 25 (see also Ref. 17) :

ds" = cV (t) dt2—v (t) (d.x2+d{/H-dz!). (19)

It is said there that ct, x, y, z "are the coordinates of a pseu-
do-Euclidean space and are chosen in accordance with the
values (1, — 1, — 1, — 1) of the Minkowski metric."6' In
other words, it is assumed that the solution (19) is consid-
ered on the background of a Minkowski world with metric
(2). In the book of Ref. 25 it is emphasized that the RTG, by
virtue of Eqs. (15), "uniquely leads to a prediction that the
universe. . . is flat. Since this conclusion is a consequence of
only equations" (15), "this general conclusion does not de-
pend on the value of the graviton rest mass."

To verify theconditions(48)and(49),we take a vector
with the components u° = 1, «' = 1, u2 = 0, u3 = 0. This
vector satisfies Eq. (48). We now substitute this vector in
(49). We obtain

g^u"=v(v'—l). (20)

We recall that the function v must be strictly positive and for
flat Friedmann solutions varies monotonically from 0 to oo.
At the present epoch t>> 1, about which the following is said
in Ref. 25: ". . . it is natural to assume that if T= TO then
/J(r0)>l ," where TO denotes the present time, and
/? 2 ( r )=y(r ) . I t can be seen from the relation (20) that "the
causality condition (49)" is not satisfied for the flat universe
(19); moreover, as follows from Ref. 25, we probably live in
an epoch in which it is strongly violated. Thus, the assertion
of the RTG, which is characterized there as a "prediction of
exceptional strength," does not stand up to the test for being
"physically meaningful," as it is defined in the same RTG.

There is one further remark in Ref. 12 that cannot be
passed by. Logunov believes it is possible to reproach Ya. B.
Zel'dovich as follows: "Academician Ya. B. Zel'dovich did
not critically consider the work of his coauthor, since other-
wise he could have easily seen that the Minkowski space
metric in the equations of motion of the gravitational
field.. .simply cancels." For my part, I merely remark that
this question was specially discussed in our first joint paper
on the subject.10 Of course, the Minkowski metric "cancels"
in the equations of motion of the gravitational field, and they
reduce to Einstein's equations. In precisely the same sense it
"cancels" in the RTG, irrespective of whether or not the
authors of the RTG recognized the equations of the general
theory of relativity in their own equations.

To summarize, it must be recognized that the accusa-
tions against general relativity that have been thought up
and frequently repeated by the author of Ref. 12, such as the
"absence of conservation laws," the "nonuniqueness of pre-
dictions," the "impossibility of description in the spirit of
Faraday-Maxwell fields," etc., are ultimately refuted by the
authors himself.

I should like to end this paper with words of gratitude to
and respect for Ya. B. Zel'dovich.

1' The publication of the paper Ref. 5 has a curious history. In a letter of
the editorial board of ZhETF [the Russian original of Soviet Physics-
JETP] of August 16, 1983 it was said that the bureau of the editorial
board of ZhETF had considered the paper and agreed that ". . . in the
nature of its content, this paper does not correspond to the currently
established profile of ZhETF; we attempt to publish papers. . .of a less
formal nature. At the same time, the exceptional overloading of the
portfolio that we currently experience . . .forces us to approach the se-
lection of papers accepted for publication with a special rigor, also as
regards their subject matter. Under these conditions, we. . .have been
forced to agree that its publication in ZhETF would not be expedient.
The paper should probably be sent to some other journal of a more
mathematical direction, for example, TMF (Teoreticheskaya i Mate-
maticheskaya Fizika: Theoretical and Mathematical Physics). . . ." In
a letter from the editorial board of TMF of November 10, 1983 it was
said that the board had rejected the paper "on the basis of the report of
the referee." In the report itself it is stated that: "the profile of this paper
does not suit the subjects that have been established for TMF, and it
should be sent to ZhETF. As regards its contents, it should be said that
the paper presents the well known. . . bimetric formulation of Einstein's
theory, in which the background for the gravitational interaction is tak-
en to be the metric ylk, and the Hilbert-Einstein equations are expressed
in the form. . . [;] it is well known that such an approach is not capable
of solving the energy-momentum problem in Einstein's theory. . . [;]
depending on the method of arithmetization of three-dimensional space
one can obtain for the inertial mass, for example, any value in the given
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formulation of the theory. Therefore the arguments of the authors are
incorrect "I should like to use this opportunity to thank S. P. Novi-
kov and Ya. G. Sinai for supporting the publication of this paper in the
journal Commun. Math. Phys.

21 Here and below, we set the parameter m2 = 0. It is well known that the
attempt to introduce a graviton mass leads to serious difficulties. But we
intend to leave this question entirely on the side, so that the discussion of
the RTG is not transformed into a continuous transition from one modi-
fication to another.

"The author ofRef. 12 calls the entity defined by Eq. (26) of his paper the
energy-momentum tensor. Then the basic equation, Eq. (41), of paper
[ 12 ] is mathematically inconsistent; for on the right there is a tensor but
on the left a tensor density. In reality, the expression (26) of [ 12 ] deter-
mines, not a tensor, but a tensor density, i.e., a quantity that differs by a
factor ( — f ) 1 / 2 . After correction of this inaccuracy, complete agree-
ment with the equations of Ref. 5 is achieved.

41 Without drawing distinctions between the "usual" and "true" gauge
transformations given in Ref. 5, the author of Ref. 12 discusses the
"gauge principle" on the basis of the relation (9) of [12], which is
mathematically inconsistent—the two equations in (9) cannot be satis-
fied simultaneously.

" As always, theorems about the choice of coordinate or gauge conditions
are directly valid "in the small"; their validity "in the large" requires a
separate investigation. This question is examined in the literature, but
we shall not dwell on it here.

61 We retain here the notation and style of the papers of the authors of the
RTG. The function v(t) in (19) is related by a simple transformation to
the cosmological scale factor a(t) that occurs in the more common
expressions for the metric of the flat Friedmann universe (in nonhar-
monic coordinates): ds2 = c2dt2 — a2(0(dx2 + dy2 -l-dz2) or
ds1 = a2(7?)(d7?2 - dx2 - d/ - dz2).
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