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A critical analysis of the general theory of relativity
shows that adoption of its concepts leads, first, to abandon-
ment of the conservation laws for energy, momentum, and
angular momentum of matter and the gravitational field tak-
en together, and, second, to the abandonment of the notion
of the gravitational field as a classical field of the type of
Faraday and Maxwell that possesses and energy-momen-
tum density. Disagreeing with what has just been said, the
authors of Ref. 3 assert that it is possible to give a field for-
mulation of general relativity with "all the necessary attri-
butes of such a theory - and action and equations of motion,
energy-momentum tensor of the gravitational field, and
conservation laws that reflect the symmetry of the back-
ground space-time." The error of this assertion can already
be seen from the fact that general relativity in principle does
not contain in its field equations a background Minkowski
space-time, so that there cannot be any talk of a 10-param-
eter group of motions of space-time, as a consequence of
which conservation laws for matter and the gravitational
field cannot exist in general relativity, and it is also impossi-
ble to introduce the concept of an energy-momentum tensor
of the gravitational field. All this is now obvious and has
been considered in detail in our monograph,1 which also
gives references to original studies.

In connection with the publication of the paper of Ref.
3, it has become necessary to give a brief exposition of the
basic propositions of the relativistic theory of gravitation so
that the reader can more readily understand what is under
discussion; in the course of the exposition I shall consider, as
briefly as possible, the main errors of the authors of Ref. 3.
Of course, I do not intend to analyze all their errors con-
tained in Ref. 3, since I see no need for that.

The relativistic theory of gravitation (RTG),1 which
completed the development of the ideas advanced in Ref. 2,
is based on the following physical requirements:

Proposition I. Minkowski space (pseudo-Euclidean ge-
ometry of space-time) is the fundamental space for all phys-
ical fields, including the gravitational field. This proposition
is necessary and sufficient for the existence of conservation
laws for energy, momentum, and angular momentum for
matter and the gravitational field taken together. In other
words, Minkowski space reflects dynamical properties com-
mon to all forms of matter. This ensures that they have the
same physical properties. The idea of using Minkowski
space to construct a theory of gravitation arose half a centu-
ry ago in the studies of Rosen. It was he who introduced a
Minowski space metric alongside a Riemannian metric. The
introduction of two metrics immediately led to the possibil-
ity of constructing numerous scalar densities. As a result, the
general form of the Lagrangian density for the free gravita-
tional field became too complicated. During several decades
that followed, Rosen constructed several theories, taking a

different form of the Lagrangian as the basis in each case.
Such an approach did not lead to the construction of a theory
of gravitation, since Rosen did not succeed in formulating a
principle that would lead to a unique Lagrangian for the free
gravitational field.

Proposition II. The gravitational field is described by a
symmetric second-rank tensor Wv and is a real physical
field that possesses an energy-momentum density; for gen-
erality, we shall assume that it has rest mass m and possesses
the spin states 2 and 0.

The elimination from the states of 4>''v of representa-
tions corresponding to the spin values 1 and 0' is achieved by
making Wv satisfy the field condition.

= 0, (1)

where D^ is the covariant derivative with respect to the Min-
owski space metric y*v . Besides eliminating the unphysical
states, this equation introduces into the theory the Minkow-
ski space metric y* , and this makes it possible to separate
inertial forces from the effects of the gravitational field. By
the choice of a diagonal metric ^"one can completely elimi-
nate the inertial forces. The Minkowski space metric makes
it possible to introduce the concepts of a standard length and
time interval in the absence of a gravitational field.

Proposition III. The geometrization principle, the es-
sence of which is that the interaction of the gravational field
with matter is, by virtue of its universality, realized by "ad-
joining" the gravitational field 4>MV to the Minowski space
metric tensor Y*v in the matter Lagrangian density in accor-
dance with the rule

^M(?V, ^)-^IM(?V, 0*), (2)

where 4>^ denotes the matter fields. By matter we under-
stand all forms of matter except for the gravitational field. In
accordance with the geometrization principle, the motion of
matter under the influence of the gravitational field 4>MV in
the Minkowski space with metric yv is identical to its free
motion in the effective Riemannian space with metric g^v .
the metric tensor fv of Minkowski space and the tensor <fv

of the gravitational field in this space are primary concepts,
while the Riemannian space and its metric are secondary
concepts that owe their origin to the gravitational field and
its universal effect on matter fields. The effective Rieman-
nian space has in the literal sense of the word a field origin
due to the presence of the gravitational field 4>MV. In this
proposition, Einstein's idea of a Riemannian geometry of
space-time finds a partial reflection. Since the metric prop-
erties in the presence of a gravitational field are determined
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by the tensor g?v, and without a field by the tensor y^v, the
present theory is capable of establishing how the sizes of
bodies and the rates of clocks change under the influence of
the gravitational field. The general theory of relativity can-
not give an answer to such questions, since in principle it
does not contain the Minkowski space metric '/tv, and it is
therefore quite meaningless to speak of it in general relativi-
ty. Since the effective Riemannian space is produced by the
gravitational field Wv acting in Minkowski space, it can al-
ways be specified (and this is very important) in one coordi-
nate system. This means that we shall be dealing with Rie-
mannian spaces that can be represented in a single chart.
From our point of view, closed Riemannian spaces are com-
pletely ruled out, since they do not have a field origin. In
accordance with the geometrizatioii principle, the matter
Lagrangian density depends on the gravitational field only
through the density of the metric tensor gmn, and, since the
action for any Lagrangian density is a scalar, the variation of
the action SJM corresponding to an arbitrary infinitesimally
small change of the coordinates will be equal to zero:

A/M = 6 J d**LM (gmn, ®A) = 0, (3)

we can obtain the identity1

where <PA are the matter fields.
From this condition, bearing in mind that under infini-

tesimally small coordinate transformations

*'••=*' + ?'(*), (4)

where |" (x) is an infinitesimally small displacement four-
vector, the variations SLgmn and 8L<$A transform in accor-
dance with the rules

(5)

(6)

where 7*" = — 2SL M /Sgkn is the matter energy-momen-
tum tensor. If the equations of motion for matter are satis-
fied,

^-=0, (7)

then on the basis of the identity (6) we have the equations

ykp»=0, (8)

where V*. is the covariant derivative with respect to the Rie-
mannian metric gik.

If there are four equations for matter, and only in this
case, we can use instead of equations (7) for matter the
equivalent equations(S). In what follows, when construct-
ing the equations of the gravitational field, we must have in
mind Eqs. (8).

Proposition IV. The Lagrangian density of the free grav-
itational field must be constructed as a quadratic function of
the first-order covariant (with respect to the Minkowski
space metric yv) derivatives D^g?v. As gauge group for the
field 4>MV, we take the local noncommutative group of super-
coordinate transformations of the form

( 9 )

where ev (x) is an infinitesimal four- vector. It is easy to show
that the operators Sc form a Lie algebra, and that their com-
mutator is equal to

(6e&, -6e,86l)?
v (*) =

where

(x), ( 10)

We now introduce a gauge principle, the essence of
which is that under the transformations (9) the Lagrangian
of the gravitational field Lg changes only by a divergence:

Lf->-Lg+DvB
v (x). (11)

Note that although the expression (9) for A^g^is formally,
i.e., in its form, identical to the expression for the infinitesi-
mal increment of gv/v under a coordinate transformation

x) , (12)

it differs essentially from the infinitesimalfor the field
increment

(x) + ^ (x) - (13)

which arises under the transformations (12). Thus, the
gauge transformations that we have introduced have a fun-
damentally different content from coordinate transforma-
tions. On the basis of Propositions I-IV the relativistic theo-
ry of gravitation is constructed uniquely if the field
equations have order not higher than the second.

We now turn to the construction of the Lagrangian of
the free gravitational field. It is easy to show that under the
transformations (9) the unique simplest scalar densities
( - g)1/2 and R = ( - g)1/2 R, where R is the scalar curva-
ture of the effective Riemannian space, change in accor-
dance with the law

_D v [e v (— g)1/'], (14)

and, therefore, satisfy the gauge principle.
The scalar density R can be represented in the form

- gtl°G£o), (15)

(16)

where we have the third-rank tensor

^ 1 _

- DV

or

R = - j?" (rj^rS, - ri
and Christoffel symbols

= gKa + dvgan — (18)

Note that in (15) each group of terms separately be-
haves as a scalar density under coordinate transformations.
At the same time, it_should be noted that, whereas in the
complete expression R the dependence of the metric on y^vis
identically eliminated, in the separately taken first and sec-
ond group of terms in (15) it cannot be eliminated. Since by
virtue of ( 1 ) the gauge principle is also satisfied by a scalar
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density of the form

(19)

the total Lagrangian density of the free gravitational field
with spin states 2 and 0 satisfying the gauge principle will be

=*i (R
(20)

where the divergence term with vector density Qv is added in
order to eliminate from Lg terms with derivatives of higher
than first order. This last requirement is achieved by the
choice

-?»(%,,. (21)

The upshot is that we obtain a scalar density with respect to
all coordinate transformations:

Le = - + X, (-

(22)

we shall determine the unknown constants A,, A2, A3, A4 be-
low.

A direct general method for constructing this Lagran-
gian is given in the monograph of Ref. 1.

In accordance with the principle of least action, we ob-
tain from this

= 0, (23)

with Ricci tensor

Cfck — C&fk,. (24)

Since in the absence of a gravitational field Eq. (23) must
become an identity, we have

^ cy\ /")c\
/V2 ^/VJ. \£3 )

Separating the energy-momentum tensor of the gravitation-
al field in the Minkowski space,

where

(26)

(27)

and taking into account (23), we arrive at a different equiva-
lent form of the dynamical equations of the free gravitational
field:

If this equation is to be satisfied identically in the absence of
a gravitational field, we must set

Since for the free gravitational field we always have

D^v = 0,

we obtain from Eq. (28)

(29)

(30)

(31)

Thus, Eqs. (1), which determine the spin states of the field,
follow directly from Eqs. (28). With allowance for Eqs.
(31), the field equations (28) can be written in the form

(32)

In Galilean coordinates, this equation has a particularly sim-
ple form:

_ ^4 0nv = L ̂ v-
Aj A! g '

(33)

it is natural to ascribe to the numerical factor — A4 /A, = m2

the significance of the square of a graviton rest mass, and the
value of — I/A, must, in accordance with the correspon-
dence principle, be taken equal to 1677. Thus, all the un-
known constants that occur in the Lagrangian density (22)
will be determined on the basis of (25) and (29):

A! = — —— , A2 = A4 = 2A3 = — . (34)

Equations (33) are nonlinear, since the gravitational field
itself is also a source.

In the general case, the Lagrangian of the free gravita-
tional field constructed on the basis of the gauge principle
will have the form

77-1 on ~1 6n

(35)

The dynamical equations for the free gravitational field that
correspond to it can be written in the form

' = - 16<v

or

(36)

(37)

Equations (1) are a consequence of these equations.
We emphasize especially that Eqs. (36) or (37) are not

invariant with respect to the gauge transformations (9).
This means that the presence in the Lagrangian of a mass
term makes it possible to determine uniquely the metric ten-
sor of the effective Riemannian space, and also the energy-
momentum tensor of the gravitational field. From the point
of view of the logic of the theory, it is very probable that the
graviton rest mass is nonzero.

The total Lagrangian density for matter and the gravi-
tational field will be

where $>A are the matter fields, and Lg is determined by the
expression (35).

On the basis of (38), the complete system of equations
for the gravitational field will have the form

or, in a somewhat different form,
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0.0^=0. (42)

In (39) and ( 4 1 ) , the energy-momentum tensor density of
matter and the density of the total energy-momentum ten-
sor of matter and the gravitational field in the Minkowski
space are denned as follows:

* p n __ '= — 2
fiYu

Using the obvious equations

we can find from Eqs. ( 39 ) the relation

(43)

(44)

from which it is directly seen that Eqs. (40) are necessary,
since they ensure fulfillment of the matter equations of mo-
tion (8). In other words, the matter equations are contained
in the gravitational equations (39) and (40) if matter is de-
scribed by four field variables.

It can be directly seen from Eqs. (39) and (40) of the
relativistic theory of gravitation that the Minkowski space
metric occurs both in the system of equations (39) and the
system (40). The choice of the physically equivalent coordi-
nate systems is completely determined by the specification of
the Minkowski space metric tensor /fv. All the field vari-
ables that occur in Eqs. (39) and (40) are functions of the
space-time variables of the Minkowski world.

The authors of Ref. 3 assert "...that the mathematical
content of RTG reduces entirely to the mathematical con-
tent of general relativity in the field formulation." This as-
sertion is also incorrect, since the basic equations of the
RTG, (39) and (40) (and they are 14innumber), are gener-
ally covariant and contain the Minkowski space metric ten-
sor, all the field variables being, moreover, functions of the
Minkowski space coordinates. In general relativity, there is a
system often generally covariant equations, and it cannot be
augmented, if one remains in the framework of general rela-
tivity, by additional generally covariant equations. In the
RTG only those Riemannian spaces that can be specified in a
single chart are possible. General relativity admits Rieman-
nian spaces that have complicated topology and can be cov-
ered only by an atlas of charts. Since the RTG is based on
Minkowski space, it has 10-parameter group of motions that
leaves all the gravitational equations, (39) and (40), form
invariant. In general relativity, such a group is in principle
impossible. Thus, the mathematical and physical contents of
the RTG and general relativity are quite different, although,
of course, in constructing the RTG we have used Einstein's
idea of a Riemannian geometry of space-time.

Further, the authors of Ref. 3 write of the artificial,
formal nature of the Minkowski metric, since, as they assert:
"The causality cone and the world lines of real bodies may be
situated both inside and outside the light cone formally de-
termined by the Minkowski metric."

This assertion of the authors indicates that they did not
understand the essence of the RTG, in which the gravita-
tional field is a classical physical field, and the theory itself is
constructed completely in the framework of the special theo-

ry of relativity, and therefore the Minkowski space metric
occurs in the system of gravitational equations (39) and
(40) and in the formulation of the causality principle. A
situation such as the one described by the authors cannot
occur in the RTG, since any physical field (including the
gravitational field) is incapable, in accordance with the spe-
cial theory of relativity, of carrying the world lines of test
particles outside the causality cone of the Minkowski space,
otherwise such a "gravitational field" would not be physical.
In principle, it is not possible to give any field formulation of
general relativity, since it is based solely on Riemannian ge-
ometry. The assertion of the authors of Ref. 4, that they have
constructed an "exact theory (the Einstein theory) of the
gravitational field," is incorrect, since the background Min-
kowski metric that they use is not contained in the equations
of general relativity for the gravitational field, and it is there-
fore meaningless to speak of such a background in general
relativity. The incorrect assertions of the authors of Ref. 4
passed in essence in their entirety into the content of Ref. 3 as
well.

In my opinion, Academician Ya. B. Zel'dovich did not
critically consider the work of his coauthor, since otherwise
he could have easily seen that the Minkowski space metric in
the equations of motion (2.18) of the gravitational field in
Ref. 4 simply cancels. It is also absent in Eqs. (2.20) of that
paper. It is here that we find the origin of the basic error of
the authors of Ref. 3.

Let us now consider what is the basic difference be-
tween the RTG equations (40) and the well-known harmon-
ic coordinate conditions in general relativity. In general rela-
tivity, the harmonic conditions are expressed in the form

dg n
—jT = '

where x^ are arbitrary coordinates in Riemannian space.
These conditions are not generally covariant. If in Eqs. (A),
for example, we use spherical coordinates, then we must rec-
ognize that the obtained results will not have any physical
meaning. Fock understood this, and therefore in perturba-
tion theory for island problems he took the coordinates in
(A) to be Cartesian coordinates, although in Riemannian
geometry such coordinates do not exist. In this way, he
could, in principle, have arrived at the introduction of a ten-
sor gravitational field embedded in Minkowski space and at
the construction of a theory of gravitation in the framework
of the special theory of relativity. However, he did not go in
the direction, since he did not believe in the success of such a
direction of research. General relativity cannot answer the
following question: Why is it that (A)is used, the coordi-
nates XM must necessarily be taken to be Cartesian coordi-
nates? In the RTG there is no such problem, since it is ob-
vious from Eqs. (40) that they have the form of equations
(A) provided the coordinates x1* are Galilean (Cartesian)
coordinates of the Minkowski space. It is for just such a
choice of coordinates that inertial forces are completely eli-
minated, i.e., everything that holds in any other physical
theory is realized. Equations (40) are generally covariant
and universal and determine the polarization properties of
the gravitational field. The harmonic condition in general
relativity cannot be generally covariant. Therefore, the as-
sertion of the authors of Ref. 3: "The complete set of RTG
equations in terms of the metric g^v of the curved space-time
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can be reduced to Einstein's equations plus the harmonic
coordinate condition" is simply false.

The RTG is constructed like the theories of other phys-
ical fields in the framework of the special theory of relativity.
In accordance with that theory, any motion of any point test
body always takes place within the causal light cone of Min-
kowski space. Therefore, noninertial frames of reference re-
alized by test bodies must also be situated within the causal-
ity cone of the pseudo-Euclidean space-time. This itself
determines the class of possible noninertial frames of refer-
ence. Local equivalence of inertial and gravitation acting on
a material point will hold if the light cone of the effective
Riemannian space does not go outside the causality light
cone of Minkowski space.

It is in precisely this case that the gravitational field
acting on a test body can be locally eliminated by going over
to an allowed noninertial frame of reference attached to the
body. But if the light cone of the effective Riemannian space
were to pass outside the causality light cone of Minkowski
space, this would mean that for such a "gravitational field"
there would not exist an admissible noninertial frame of ref-
erence in which this "field" could be locally eliminated as
regards its effect on a material point. In other words, local
"equivalence" of inertia and gravitation is possible only
when the gravitational field, as a physical field acting on
particles, does not carry their world lines outside the causal-
ity cone of the pseudo-Euclidean space-time.

This condition should be regarded as a causality princi-
ple that makes it possible to select solutions of the system of
equations (39) and (40) that have physical meaning and
correspond to gravitational fields. The causality principle is
not satisfied automatically. This is due to the fact that be-
cause the gravitational field is "adjoined" to the Minkowski
space metric yk it occurs in the coefficients of the second
derivatives in the field equations, i.e., it changes the original
space-time geometry. Only the gravitational field has this
property. The interaction of all other known physical fields
usually never affects the second derivatives of the field equa-
tions, and therefore does not change the original pseudo-
Euclidean geometry of space-time. We shall now give an
analytic formulation of the causality principle in the RTG.

Since in the RTG the motion of matter under the influ-
ence of the gravitational field in the pseudo-Euclidean
space-time is equivalent to free motion of matter in the cor-
responding effective Riemannian space-time, for causally
connected events (allowed world lines of particles and light)
in the effective Riemannian space, we must, on the one hand,
have fulfillment of the following condition in Galilean co-
ordinates of the Minkowski space:

ds*=gihdxidxk'^Q, (45)

and, on the other hand, for such events the condition of non-
negativity of the Minkowski space interval must hold. In the
same Galilean coordinates, this can be expressed in the form

dTz=(d*°)2— (dx1)2— (d^Y— (46)

We represent the velocity va = dxa/d' in the form if = vea,
where ea is an arbitrary unit vector in Euclidean space in
Cartesian coordinates.

From the expressions (45) and (46) we find the causal-
ity condition1

(47)

Its covariant generalization is trivial: For any four-vector u'
that is isotropic in Minkowski space,

the following causality condition must be satisfied:

(48)

(49)

The condition (49 ) means that the light cone of the effective
Riemannian space does not pass outside the causality light
cone of the pseudo-Euclidean space-time.

From Eq. (48) we readily find

vl/2
'00 (50)

where v is the coordinate velocity, and ea is an arbitrary
three-dimensional unit vector

(51)

here Xap K a metric tensor that enables us to determine the
square of the spatial distance:

dl2=^dx-dx^. (52)

Thus, only those solutions of Eqs. (39) and (40) have
physical meaning that satisfy the causality condition (48)-
(49).

Of course, the question of the existence of a rest mass of
the graviton remains open. However, it should be empha-
sized that the presence of a graviton mass, however small,
leads to qualitatively new physical conclusions. For exam-
ple, it can be shown that on the collapse of a spherically
symmetric body of arbitrary mass the process of contraction
is halted in the region near the Schwarzschild sphere and
replaced by subsequent expansion. Thus, the existence of
"black holes" is completely ruled out. This conclusion still
holds when the graviton mass tends to zero. A homogenous
and isotropic universe is infinite and "flat," and its evolution
proceeds cyclicly from a maximal finite density to a minimal
density, and then back to a maximal density, etc. The theory
predicts the existence in the universe of a large "hidden"
mass of matter.

The authors of Ref. 3 assert that in the RTG one obtains
Fock's solution "for the metric of a spatially open (and not
spatially flat) homogeneous and isotropic Friedmann uni-
verse in harmonic coordinates." This assertion is incorrect,
since it is easy to show, in particular, that Fock's solution
does not satisfy the causality principle (48)-(49).

Now a few words about nonuniqueness, or, more pre-
cisely, about the impossibility of general relativity giving an
answer to the question of the delay of a radio signal in the
field of the sun. We denote by t the time of propagation of a
radio signal from the earth to Mercury and back, and by t0

the time of propagation of a radio signal from the earth to
Mercury and back in the case when there is no effect of the
gravitational field of the sun. Of course, we are not capable of
switching off any interaction, but in a theory such a possibil-
ity always exists, and, using it, we can answer this question:
How does a particular field (in the given case, the gravita-
tional field) influence the change of some particular quanti-
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ty? We introduce A? = t — t0, which determines the delay
time of a radio signal due to the effect of the gravitational
field of the sun. Is it possible to calculate this quantity in the
general theory of relativity? No, it is not, since the equations
of general relativity do not contain the metric tensor of Min-
kowski space, which is what would enable one to calculate
the distance and, therefore, the time of propagation of a ra-
dio signal in the case of absence of the gravitational field of
the sun. In contrast to general relativity, the RTG gives a
quite definite answer to this question, since the Minkowski
space metric tensor occurs in the system of equations (39)
and (40). Of course, one can always say that general relativi-
ty is not obliged to answer such a question. But from the
general theoretical point of view such an answer would be
strange, since in a theory we always have the possibility of
switching off a particular interaction.

It is not possible to liquidate such ambiguity in general
relativity. Everything that the authors of Ref. 3 write on this
question is completely unrelated to our conclusion, since
they did not understand the matter in hand.

With regard to the assertion of the authors that at a
conference "excellent agreement between theory (namely,
the general theory of relativity!) and observations was not-
ed," it should be emphasized in this connection that the ex-
perimental data are usually compared with the results of
post-Newtonain calculations obtained in accordance with a
perturbation theory that is constructed on the basis of Min-
kowski space in Galilean coordinates, and in the process as-
sumptions are made about the decrease of the Riemannian
metric that are sufficient for the introduction of a classical
tensor gravitational field. The perturbation theory is con-
structed intuitively in the same way that we solve the prob-
lem in the framework of the RTG. It is this that leads to the
correct result.

The post-Newtonian perturbation theory is not an un-

ambiguous consequence of general relativity, but it is an ex-
act consequence of the RTG. However, it should be noted
that an analogous post-Newtonian perturbation theory can
also be constructed in other alternative theories of gravita-
tion (see, for example, Ref. 2), and therefore the fact of iden-
tity of its conclusions with observations does not yet prove
the correctness of any particular theory of gravitation. A
genuine verification of a theory is possible only by study of
phenomena in strong gravitational fields.

Since the introduction into the theory of a graviton rest
mass eliminates the degeneracy with respect to the gauge
group, the limit obtained with it tends to zero in the final
results leads in some cases to conclusions quite different
from those that would be obtained if the graviton mass were
set equal to zero in the basic equations (39)-(40). This cir-
cumstance indicates that the introduction into the theory of
a mass term (which is subsequently made to tend to zero in
the final results) is not a purely technical device, since we
arrive at quite different physical conclusions. Such an ap-
proach leads to the construction of a theory with a broken
gauge group.5
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