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A review of the experimental data on correlations and number fluctuations in multiparticle
production at high energies. The author discusses new concepts of intermittency and fractality

that can be used to describe these processes.

1.INTRODUCTION

When two particles collide at very high energies the
most probable outcome is the production of a large number
of new particles. Studies of multiparticle production pro-
cesses began more than 50 years ago with cosmic ray re-
search and many scientists are active in this field today. The
most complete and precise results have been obtained in ex-
periments at particle accelerators, which continue to extend
the overlap of the energy range previously accessible only in
cosmic ray studies. Despite the enormous accumulations of
experimental data and our increasing experience in con-
structing phenomenological models, we still cannot explain
all observed phenomena or predict new properties. The ad-
vances achieved in the past quarter century in deciphering
the quark structure of strong interactions have yet to resolve
the fundamental questions of multiparticle production, al-
though we now possess new phenomenological models that
correctly reproduce many properties of inelastic processes.
Nonetheless, we are often faced with experimental surprises
that compel us to modify or even abandon our theoretical
models. In the review we will discuss one such surprise.

Investigations of multiparticle production processes
usually proceed from the simplest characteristics: total
cross-sections, multiplicity distributions, single-particle in-
clusive (pseudo) rapidity and transverse momenta, distribu-
tions, etc. More detailed information can be obtained from
correlation measurements and exclusive experiments that
require great effort and improved experimental apparatus.
The accumulation of the resulting information helps to clar-
ify the dynamics of the processes in question.

From the viewpoint of a theorist, experimental results
are best approached via quantum chromodynamics (QCD).
Unfortunately, the application of QCD to soft processes in-
volving small momentum transfers is quite restricted. The
problem lies in our insufficient understanding of the quark
nonemission mechanism that is produced by strong nonper-
turbative effects. In the theory of multiparticle production
this problem requires us to resort to phenomenological de-
scriptions of the transformation of QCD quarks and gluons
into the experimentally observed hadrons. Hence we are
compelled either to construct general relations that connect
various experimental facts or to develop phenomenological
models that describe these facts by adjusting a number of
free parameters. By now many such models have been devel-
oped. These usually employ Monte Carlo simulations to ex-
tract complete information on all produced particles. Occa-
sionally a model proves incapable of explaining new
experimental results or becomes invalid in a newly accessible
energy range. Such a model is either modified or altogether
abandoned.
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The fluctuation problem was the downfall of all earlier
models, since none of them could explain the experimental
results.

The dynamics of these fluctuations is the subject of
much current debate. Various hypotheses have been pro-
posed, all invoking either chaotic (intermittent) dynamics
or the usual (but of a special type) dynamical processes.

In this review we shall briefly describe the general pic-
ture of particle correlations in hadron production processes
and concentrate on experimental results on fluctuations,
their connection with observed correlations, and the theo-
retical approaches to fluctuation dynamics. The purpose of
the review is to present the fundamental principles and ideas
in a concise form, allowing the reader the freedom to delve
further into the numerous studies in this field that have ap-
peared recently and are cited in the references. The burgeon-
ing interest in this subject has led to ever-increasing amount
of experimental and theoretical research, accompanied by
the appearance of many new and interesting problems.

2.CORRELATIONS

Like all many-body problems, multiparticle production
possesses an enormous number of characteristics that con-
tain information on particle correlations. Indeed, any pro-
cess that produces n particles can be described by a collec-
tion of n points in three-dimensional phase space, with each
point labeling the properties of the appropriate particle
(mass, charge, spin, etc.). Correspondingly, the number and
variety of the correlations is enormous; two-, three- or many-
particle correlations; azimuthal correlations; distributions
over rapidity bins containing several particles; correlations
of particle groups in various phase space domains; etc. In
this review we shall restrict ourselves, for the most part, to
(pseudo) rapidity correlations of produced particles, neg-
lecting charge correlations, correlations of different types of
particles, etc.

Clearly, the existence of correlations is evident in the
simplest properties of particle production processes, for ex-
ample the multiplicity distribution in the various domains of
the accessible phase space and the behavior of the higher
moments of this distribution. The well-known phenomeno-
logical description of the distributions of inelastic processes
over the multiplicity » in the total phase space employs the
scale-invariant KNO (Koba—-Nielsen—QOlesen) distribution
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(¥ is a universal function that does not depend explicitly on
energy). This description has been quite successful for elec-
tron-positron annihilation, lepton production at all current-
ly accessible energies (up to s'’? ~50 GeV), as well as ha-
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dron-hadron processes up to the highest ISR energies (s'?

~63 GeV). However, at even higher energies attainable at
the SppS and FNAL colliders (up to 5172 ~900 GeV and 1.8
TeV, respectively) the scale invariance ensured by ¢ being
only a function of the ratio of multiplicity » to the average
multiplicity {n) breaks down, and the distributions broaden
with increasing energy. The peak at small multiplicities be-
comes sharper and higher, but the role of processes with
significantly above-average multiplicities also increases.
This is illustrated in Fig. 1, which compares the experimen-
tal results on nondiffractive pp-processes at 200 and 900
GeV in terms of KNO units of n/{n) (the logarithmic and
linear scales of the ordinate axes emphasize different proper-
ties of these distributions).

The correlation-induced breakdown of KNO scaling
clearly manifests itself in the behavior of the normalized mo-
ments of the multiplicity distribution
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which should be independent of energy as long as KNO scal-
ing remains valid. Experimentally these moments indeed re-
main nearly constant up to ISR energies, but they increase
markedly in colliders over the total rapidity window (Fig. 2)
while falling off in small rapidity bins in the central region.

To remedy this discrepancy several other parametriza-
tions with more fitting parameters have been proposed, the
most popular being the negative binomial distribution. Yet
even the latter failed to describe the measured multiplicity
distribution of charged particles in pp-interactions at
52 =900 GeV.

s ‘Aﬂ'&% pp

A =200 GeV
* “” =300

a o8 .
Q‘:m K + 54'3?
A %f? a
& 114

-2 fl TT
| ﬁ N

w3
g T 1 ‘/ Z T
=N /<>
2r M* UAS
b4 } o - 200 GeV
b . - 900
IR
% v
g f
S 1 # +¢4 b
| ¢ Mﬂ.‘
s
_i_ ML%
a 7 2 3

z=n/<n>

FIG. 1. Multiplicity distributions in nondiffractive pp-interactions at 200
GeV and 900 GeV center-of-mass energies that demonstrate deviations
from KNO scaling at these energies. The scales are logarithmic (a) and
linear (b).
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FIG. 2. Normalized moments of multiplicity distributions as a function of
initial energy (the lowest set of points is C,).

Before discussing (pseudo) rapidity correlations, let us
briefly mention several other, widely discussed correlations.
Charge correlations may be manifested in large number-
fluctuations of charged and neutral pions produced in a giv-
en event if the ratio of charged to neutral pions departs sig-
nificantly from two, which is the expected value in the
absence of correlations. Experimental evidence includes the
observation of anomalous events in cosmic rays with few
neutral particles (Centaurs and mini-Centaurs) and, con-
versely, in rays containing unusually large numbers of y-
quanta (gammanization). Long-range correlations enter
into the linear dependence of the average multiplicity of par-
ticles emitted into the backward hemisphere on the number
of particles emitted into the forward hemisphere. There is
also the correlation of the mean transverse and the longitudi-
nal momentum of the produced particles, known as the “sea-
gull effect”. The problem of quark-gluon plasma formation
has stimulated research into correlations between the mean
transverse momentum and the particle number density on
the rapidity axis. More pertinent to the subject of this review
is the Bose—Einstein correlation, which establishes an attrac-
tion between two identical bosons (pions) in rapidity space.

Moving on to our subject of (pseudo) rapidity correla-
tions, let us begin by defining the kinematic variables and the
form of single-particle inclusive spectra. The simplest meth-
od of treating an inelastic event as a one-dimensional prob-
lem consists of projecting all particles {points in the phase
space) onto the rapidity axis:

y=Ln 20 (3)
2 £E—p
{where ¢ and p; = p cos 6 are the particle energy and longi-
tudinal momentum in the center-of-mass coordinates). Al-
ternatively, the particles can be projected onto the (pseudo)
rapidity axis:

n=—lntgy, 4)

which coincides with ordinary rapidity for relativistic parti-
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cles emitted at small angles 6.

Hereafter we will focus mainly on hadron-hadron pro-
cesses, although electron-positron annihilation and nucleus-
nucleus interactions will receive occasional mention.

Inclusive (pseudo) rapidity distribution of particles
usually appears either bell-shaped or hat-like with a dimple
at the center. In the first approximation it is taken to be a
plateau whose height and width increase with energy. The
increase in height is more rapid than the attendant increase
in the total cross-section, while the width of the distribution
increases more slowly than the broadening of the total rapid-
ity window permitted by the conservation laws. Phenomeno-
logical fits of the energy dependence of the distribution
height (divided by the total cross-section) are as follows:

=0.014-0,22In s logarithmic approximation

= (0,744 s*105 power-law approximation (5)

Rapidity correlations of two secondary particles contain a
strong short-range term. The correlation function
1 d%o
0y,0
Ry, y)= —4% (6)

G 0y ¢ 0y

has a maximum when the particle rapidities are equal,
¥, = J,; the width of this maximum Ay ~2. This isillustrated
in Fig. 3, where we plot the rapidity correlations of two
charged (cc), negative ( — — ), positive ( + + ), and posi-
tive plus negative ( — + ) particles. The experimental data
(points) are complemented by theoretical curves obtained
from Monte Carlo ensembles of events according to the dual
parton model" of the Orsay group (MCDPM),! the gener-
alized cluster model of the UAS collaboration (GENCL),?
and the Fritiof model of the Lund group (FRITIOF).? Es-

New>6, m—NAZS

sentially, the GENCL cluster model is purely phenomeno-
logical, since the inputs consist of experimental data on mul-
tiplicity and rapidity distributions. It is not surprising,
therefore, that it is the most successful in reproducing two-
particle correlations, which are partially present in the in-
puts, by introducing a clustering mechanism that requires
additional two-particle attraction (although there are some
problems in the case of two negatively charged particles-see
Fig. 3). The other models are based on theoretical descrip-
tions of the processes and yield weaker correlations than are
actually observed, although the results are qualitatively sim-
ilar to experimental data.

We note here that analogous problems arose earlier in
investigations of the simplest multiperipheral models.*
These problems could only be resolved by “‘manually” intro-
ducing strong correlations within certain groups of particles
labeled as clusters (or, earlier still, fireballs), that had
greater masses than the known resonances. The recent ef-
forts to promote the application of quantum chromodyna-
mics from hard to semi-soft and soft processes have led to the
introduction of minijets that are conceptually similar to
clusters (fireballs).

At the same time, direct experimental information on
many-particle correlations is still very meager. The investi-
gation of three-particle correlation functions by generalizing
(6) is hindered both by the large number of variables and by
their less explicit effect on the final result. We do know,
however, that three-particle correlations increase with ener-
gy* between 50 and 400 GeV. Later we will see how more
explicit information on actual many-particle correlations
can be extracted from fluctuations.

3.FLUCTUATIONS

Multiparticle production processes do not uniformly
fill the phase space allowed by conservation laws with sec-
ondary particles. Large transverse momenta are strongly
suppressed, while the longitudinal momentum distribution
is determined by the inclusive rapidity distribution. Because
of this a cylindrical phase volume is often assumed. Yet in

—=MCDPM 1.3 ,—~GENCL , —FRITIOF 3.1

0.3
0,2

FIG. 3. Two-particle correlations of arbitrarily

charged particles (cc), negatively charged particles
(— — ), positively charged particles ( + + ), and

oppositely charged particles ( — + ).
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single events the particles are not as uniformly distributed
even in this cylindrical phase volume as required by the in-
clusive distribution. This would not be altogether surprising
if the deviations from inclusive distribution curves were due
to the finite statistics of a given event. On the other hand, if
these deviations (fluctuations) cannot be explained by sta-
tistical effects alone, their existence indicates the presence of
some dynamical mechanisms that determine fluctuation
properties. A general approach to the fluctuation problem
seeks to uncover the dynamics of the processes by studying
fluctuation properties. ‘

Relatively long ago, physicists investigating cosmic
rays reported inelastic events with unexpectedly large parti-
cle number fluctuations confined to very narrow pseudora-
pidity bins. Subsequently such events were observed and
carefully studied at particle accelerators.®® One event is re-
produced in Fig. 4. A very narrow rapidity bin Ay = 0.1
contains ten charged particles, a factor of approximately 40
larger than the mean inclusive density p(y).

As the total rapidity window is reduced, the multiplic-
ity distribution normalized by the bin-averaged number of
particles per bin (i.e. expressed in KNO variables) becomes
wider as the bin size decreases. This indicates fluctuation
enhancement. The first obvious question is whether this ef-
fect can be understood in the simplest cases, where fluctu-
ations are either purely statistical or driven by weak pair
correlations, like fluctuations in dilute gases. In this regard,
consider a fluctuation in the rapidity distribution of particles
P. (¥) produced in a given event. We define a fluctuation
with respect to the inclusive distribution as follows:
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FIG.4. A 7 p-interaction event at 250 GeV that produced 10 particles in
anarrow rapidity range Ay = 0.1 (a) and the corresponding histogram of
particle rapidity distribution (b).°
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Pe (4}
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In systems with weak pair correlations the behavior of this
fluctuation obeys the Gaussian law

Ple(y))= % €xp l_ %jﬁ dzdz,e () R (l 5 —2 I) e (Zz)] ,

(8)

where?’

N={1de@ew |~ [ dadze@ R (a—2z)e )]
9)

with R(z,~z,) given by formula (6).

Experimentally, in a given event there is some probabil-
ity of observing k peaks exceeding some threshold ¢ located
atpointsy; (i = 1, ..., k). In order to calculate this probabili-
ty one computes the functional integral

o o k
Py (y)= ( dr, ...SdrkS[da]P[e] MoEw)—ry). (10
bt H =1

If the threshold ¢ is set sufficiently high (very dense groups
of particles), a single event will contain either one such peak
or none at all. Consequently, we can obtain the probability of
strong fluctuations from a single term

[ R(©)\ ' exp(— /2R (0)) v/ 1\m (9 1\ R(O))
Pl—( L ) %( Hym @2m ”“(T
(11

Evidently, the Gaussian distribution reappears in a slightly
modified form but with a definite exponent. A comparison of
this distribution with the experimental results obtained by
the NA22 collaboration is shown in Fig. 5. Experimentally
the number of fluctuations falls exponentially with peak
height, whereas the theory predicts a much sharper decay.
Hence it follows that we are either dealing with real many-
particle correlations that cannot be reduced to pair correla-
tions, or that the pair correlations are so strong that they
produce sizable many-particle correlations by multiple pair-
ing (see Refs. 4). The latter hypothesis was developed in
Refs. 11, 12-we shall return to it below. For now let us point
out that Monte Carlo modeling of fluctuations in the dual
parton'® and Fritiof™* models demonstrated that our theo-
retical picture again cannot explain the experimental results,
since the number of fluctuations predicted by these models is
considerably smaller and their decay with increasing peak
height is considerably faster than what is actually observed
(see Fig. 5). It is likely that fluctuations were the first strik-
ing experimental fact that could neither be explained by
theoretical models nor accounted for by adjusting the model
parameters, although as we have already discussed the (less
dramatic) two-particle correlation problem had not been
theoretically resolved either.

Clearly, fluctuations are a manifestation of many-parti-
cle correlations and the central problem is to describe their
dynamical evolution. To this end several approaches have
been proposed. In addition to the traditional suggestions of
reducing this problem to known results (for example, ex-
pressing all correlations in terms of two-particle correla-
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FIG. 5.. Experimental multiplicity distribution in groups containing a
fixed number of particles # in a bin Ay = 0.1 for 7 * p-interactions at 250
GeV (points).® The solid curve is the Gaussian parametrization (11);'°
the dashed curve is the result of the FRITIOF model.'*

tions) or uncovering some heretofore neglected properties of
existing theoretical models, there have been hypotheses
about stochastic dynamics of multiparticle production relat-
ed to intermittency and fractality, similar to turbulence.
Since the latter concepts have only recently been introduced
to particle physics, we shall briefly define both in the follow-
ing sections. We will find that the two ideas are closely
linked, although I believe fractality is somewhat more far-
reaching, since it follows directly from the geometrical prop-
erties of an object or from distributions over it.

4_INTERMITTENCY AND FACTORIAL MOMENTS

The concept of intermittency has been borrowed from
the theory of turbulence. There it represents the following
important property of a turbulent liquid: vortices of differ-
ent size alternate in such a manner as to form a self-similar
structure. Mathematically this property is defined by a pow-
er-law dependence of the vortex distribution moments on
the vortex size.

When intermittency is applied to multiparticle produc-
tion, ' it is defined analogously to turbulence theory as the
power-law increase of multiplicity distribution moments
over rapidity bins as the bin size is reduced. Clearly in order
to extract the dynamical behavior one must exclude the
purely statistical fluctuations due to the finite number of
particles in the problem. This is particularly important in
studying small bins, where the number of particles can be
very low. A method of suppressing statistical fluctuations
was proposed in Ref. 15. We are interested solely in the be-
havior of real distribution moments averaged over dynamic
fluctuations only. Experimentally, however, we cannot dis-
tinguish real dynamical fluctuations from statistical ones,
and the measured characteristics are therefore averaged
over both types of fluctuations. Bialas and Peschanski dem-
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onstrated'” that if the statistical fluctuations can be de-
scribed by the Bernoulli distribution, then the factorial mo-
ments calculated from experimental data are identical to real
moments averaged over dynamical fluctuations only. In this
case, the factorial moment or order g of the multiplicity dis-
tribution over rapidity bins of size 5y can then be written as
follows:*’

/M
\E ny (g —1)... (nk—q+l)>
Fq(8y) = Mo k=1

) (12)
n>?

where M is the number of bins of width p in the total rapid-

ity window Y (i.e. Y = Mdp); averaging is carried out over

all events; n, is the number of particles in bin 4.

Assuming the factorial moments defined in (12) are
identically equal to real moments averaged over dynamical
fluctuations, we can define intermittency (analogously to
the procedure for a turbulent liquid) as the power-law de-
pendence of factorial moments on bin size:

Fy(by) ~ (8y)~*,

thatis, In F, increases linearly with -In 6y for a given ¢. Note
that the ordinary moments C, [see formula (2)] must ap-
proach a constant’’ if the average multiplicity in a narrow
bin is smaller than unity. The formulae (12) and (13) are
valid if the interval falls within the plateau. Outside the pla-
teau, ¥, should be divided by

(13)

1 M v - 1 M -q
Ro(b) = 36t ( 57 3 pk) :
k=1 ‘ k=1

Factorial moments have been calculated from experi-
mental results of many reactions at various energies. The
values of parameters ¢(q), known as slope parameters, turn
out to be relatively small (several-fold smaller than values
characteristic of full-blown turbulence), but clearly differ-
ent from zero, at least in the 0.1 < 8y < 1 region. The linear
increase of F,, with §y is shown on logarithmic axes in Fig. 6,
with experimental data taken from the NA22 collaboration
that studied 7 * p-interactions at 250 GeV. Physically the
enhancement of factorial moments in smaller rapidity bins is
a consequence of fluctuations characterized by large particle
densities. The general tendencies in the behavior of the slope
parameters can be summarized as follows (see a review by
Kittel and Peschanski,’® who compiled an exhaustive refer-
ence list of experimental and theoretical studies*’ ):

1) ¢(g) increase with g;

2) for the same initial energy the intermittency powers
@(g) are greater in electron-positron annihilation than in
hadron interactions; in turn, the latter are greater in nucleus-
nucleus interactions;

3) ¢(q) decrease with energy;

4) at a given energy ¢(q) decrease as the multiplicity
increases;

5) @(g) decrease as the transverse momentum in-
creases;

6) @(g) are smaller if the analysis is one-dimensional
(rapidity bins only) rather than two-dimensional (rapidity
bins and azimuthal angle windows);

7) experimental values of ¢ (g) are larger than predict-
ed by Monte Carlo simulations based on MCDPM and FRI-
TIOF models;
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FIG. 6. Factorial moments as functions of the rapidity bin size in 7* p-
interactions at 250 GeV.

8) values of @(g) are practically independent of the
charge of secondary particles.

Although the notion of calculating factorial moments
arose by analogy with turbulence because of indications that
chaotic dynamics play an important role, first it is of interest
to consider what our standard picture would predict for the
behavior of these moments and how these predictions com-
pare with experimental results. We have already seen (prop-
erty 7) that slope parameters predicted by the standard theo-
ries’? underestimate the importance of fluctuations in
experimental data. This is possibly due to an insufficient de-
scription of two-particle correlations or an inadequate treat-
ment of Bose-Einstein correlations. However, the weak de-
pendence of the intermittency powers on particle charge
(property 8) seems to indicate that the role of Bose—Einstein
correlations is relatively weak, although they have been oc-
casionally invoked to interpret experimental intermittency
results.'” Note that theoretical predictions of Ref. 19 require
the slope parameters for particles of the same charge to be
twice as large as for oppositely charged particles.

In this connection we should note Ref. 20, which dem-
onstrated the Bose-Einstein correlations can be significantly
enhanced above the limiting values usually employed in cal-
culations. Moreover, the links between channels for produc-
ing oppositely charged particles and their consequently wide
distribution®' could markedly alter the ratio of their slope
parameters. This question requires further study.

As we have discussed earlier, two-particle correlations
evidently do not suffice to explain the observed fluctuations,
which require a contribution from many-particle correla-
tions. Significant progress in understanding the dynamics of
multiparticle production could be made if the experimental
results could be explained by expressing many-particle cor-
relations in terms of two-particle correlations. Naturally,
this was attempted by various authors.’""'? In these studies
many-particle correlations were expressed as products of
two-particle correfations which, in turn, were approximated
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by simple or Gaussian exponential terms. The authors of
Refs. 11, 12 claimed that the proper selection of fitting pa-
rameters brings these approximations into good agreement
with the observed behavior of factorial moments. Yet an ex-
amination of the approximations involved casts doubt on the
reliability of the fitting parameters and the feasibility of
quantitative descriptions at various energies. The exponen-
tial parametrization of two-particle correlations employed
by both groups'"!? is known to give a sharp peak in narrow
rapidity bins at high energies s> 2200 GeV (the conclu-
sions of Refs. 11 and 12 differ somewhat on this point),
which is not in good agreement with experiment. Capella
and coworkers'? had problems in describing the lowest fac-
torial moment F,(8y), whereas Carruthers and Sarcevic''
succeeded in describing the experimental results completely
(except for higher moment irregularities in small bins). The
Gaussian parametrization of Ref. 12 proved less accurate in
describing factorial moments, although it is more suitable
for two-particle correlations. A careful examination of the
plots in Ref. 12 shows that in small bins the calculated slope
parameters are practically zero, and hence considerably
smaller than experimental values. This agrees with the ear-
lier result's that factorial moments become bin-independent
for Gaussian clusters that are broader than the bin size. Con-
sequently, while the conclusion that many-particle correla-
tions play an important role in fluctuations is beyond doubt,
the actual form of these many-particle correlations remains
to be established. Also, the decomposition of many-particle
correlations into two-particle correlations sheds no light on
the dynamics of the former. In particular, it is quite possible
that it is precisely the many-particle correlations which lead
to intermittency in cascade models.

The slope parameters are the simplest parameters of
many-particle correlations. In principle, they can be re-
placed by other, possibly more convenient quantities.

Essentially, factorial moments are determined by mul-
tiplicity distributions p, (8y) over given bin sizes 8y:

A1) (g 1) P (8y) \

7
AN (Zren o0 ) '

(14)

Fq(y) ~

They can be calculated easily for the negative binomial dis-
tribution, for example. This distribution is characterized by
two parameters, {(n) and k, and has the form

T(n+k (<n>ik)"
T (n+ DT (B [1 <+ (o)™ (15)

P (n, {n), k)=

The resulting factorial moments depend only on & (8y):

Fo=1+¢k",
Fo=(1+£"1) (1+2k%), (16)
Fi=(1+k") (142672 (1+3£7%). ..

Consequently, the dependence of & on 8y determines
the behavior of all factorial moments. This assumption
about multiplicity distributions yields good agreement with
experimental results. Hence it turns out that all measured
moments can be reproduced from a single moment. The par-
ametrization indicates that the properties of many-particle
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correlations are determined by a single function k(8y). Note
that this parametrization is only approximate because the
product of two generating functions of the negative binomial
distribution over two adjacent bins does not yield a correct
generating function for the sum of these two bins. Still, as
long as only the distribution tails are important, the negative
binomial distribution is well-approximated by the gamma-
distribution, which does yield the correct function for a
summed bin, thus avoiding the contradiction.

To conclude, factorial moments characterize the multi-
plicity distribution by averaging over certain domains in the
phase space and depend on the extent of these domains. Ob-
viously any model that accurately describes multiplicity dis-
tributions will also predict the behavior of factorial mo-
ments. The advantage of studying factorial moments instead
of the usual multiplicity distributions lies in their emphasis
on the improbable but strong dynamical fluctuations and the
useful analogies with turbulence.

5.FRACTALITY

A more profound and unified description of experimen-
tal results can be reached by invoking the concept of fractals.
The power-law behavior of distribution moments as a func-
tion of bin size indicates that either the object itself or the
distributions over the object have some fractal structure.
Furthermore, the properties of the distribution moment pa-
rameters are linked with the dynamics of the appearance of
self-similarity, which permits phase transitions at certain
values of these parameters.

Fractals are self-similar objects of nonintegral dimen-
sion. The fractal dimension is a generalization of ordinary
topological dimensionality to nonintegers. At first, it ap-
pears difficult to visualize a fractal object if dimensionality is
taken to mean the number of independent measurements (or
directions) which characterize a given object. Yet if one re-
verts to the definitions of Kolmogorov or Hausdorff the situ-
ation becomes transparent. They define the fractal dimen-
sion D to be the quantity which gives a finite limit

0 <lim N (e) e°F < oo (17)

for the product of the minimal number of hypercubes N (&)
of linear extent /=¢ (Kolmogorov definition) or /<&
(HausdorfT definition)*’ required to cover the object and
the quantity £ as £ - 0.

This definition becomes more physically intuitive if the
mass (M) of the object is taken to depend on the linear ex-
tent / by the power-law

M ~ IPF, (18)

We are accustomed to objects for which D .. coincides with
topological dimensionality (for a line D¢ = 1; for a square
Dy =2;foracube Dg = 3;etc.). Yet objects with noninte-
gral Dy are not so rare in everyday existence. Our lungs, the
clouds, the coastline, polymers, and, generally, any object
with complex self-similar structure-all of these are fractals.

Consider some geometrical figures that have fractal
structures. First, construct a Koch curve according to the
following algorithm. A line segment is divided into three
equal parts, an equilateral triangle is built using the middle
part, and then the base of the triangle is erased. This proce-
dure is repeated with each of the remaining four segments,
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FIG. 7. The Koch curve is obtained by an iterative procedure, the first
steps of which are shown in this figure.

etc. The resulting self-similar curve (Fig. 7) has a fractal
dimension D = In4/In 3=1.26, as can be easily verified
from expression (18).

If in the preceding example we simply drop the middle
segment and repeat the tripartite division we arrive at the so-
called Cantor set (Fig. 8) of an infinite number of points
with dimension D =1In 2/ln 3=0.63.

Analogous procedures exist for two- and three-dimen-
sional objects. The resulting fractals can have dimensionali-
ties that are both larger and smaller than those of the original
objects.

At small /, the probability p; (/) of belonging to a given
(ith) hypercube out of their total number N(/) is propor-
tionalto/ °F. Asa result, the sum of the moments in a fractal
is

2 pl(l) ~ I°F (Dp= const). (19)
One can envisage more complicated self-similar objects con-

sisting of differently weighted fractals with different dimen-
sionalities. Such objects are called multifractals and for them

S pf () ~ £, (20)
whe}e
?(g) =qdyy,. 21

The quantity d,, , , is known as the Renyi dimension® (or
generalized dimension). It depends on g; in fact, it can be
shown ** that it must be a decreasing function of g.

Sometimes it is more convenient to characterize multi-
fractals not by dimensionality, but rather by spectral proper-
ties. The spectral function f(«a) is defined by the number of
hypercubes required to cover the subset S(a) with the same
probability behavior p; ~/* (/-0):

dNe (1) =dp (a) -1, (22)

The Renyi dimension is related to the spectral function by
the following expression

FIG. 8. The Cantor set is obtained by an iterative procedure, the first steps
of which are shown in this figure.
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which leads, by the steepest descent method, to
1. 1~ —
dy= ——min (ag, f(@)) = — (a9 — [ (@) (24)
9—1 @ g—1
with a defined by
df —
o ’_ =4q(a) (25)
{7
as long as

] <o. (26)

da? |-

The spectral function f{a) is widely used in the analysis of
multifractals. Neglecting the finer details (see Ref. 22 for a
more detailed description), let us note one of its fundamen-
tal properties: if the spectral function is linear over some
interval, this could indicate a phase transition that is diffi-
cult to detect by other means. It is also worth noting that
there exists a well-developed thermodynamic formalism for
multifractals that emphasizes their close analogy to spin sys-
tems.”* The Renyi dimension generalizes several concepts
proposed for different applications, such as the fractal di-
mension

dy=Dy=—9(—1), 27
information dimension

d,=D,=¢"(0), (28)
and correlation dimension

d,=v=2(1) (29)

with the general relation D > D, > v (since dd, /dg <0).
What information can be extracted by analyzing the
dimensionality of a system?
1. The number of degrees of freedom #; is given by the
integral part of the fractal dimension

ny=[Ds]+1. (30)

2. The Renyi dimensionalities are related to the singu-
larities in the measure of the multifractal f(a) by (24), and
also to the slope parameters (see below).

3. Fractal dimensions are related to the type of nonlin-
earity in the fundamental equations and effective Lagran-
gians. This relation is complicated, however, and can only be
established numerically at present.

4. Dimensionality can provide information on the re-
gions of enhanced dissipation, intermittency, and fractal
space-time structure of the interaction region (in a quark-
gluon plasma, for example).

5. Properties of cascade models are closely related to the
Renyi dimension of the appropriate cascade (see Sec. 6 of
this review).

6. The Renyi dimension can be employed to classify
inelastic events, as long as these are treated as purely geo-
metrical objects.

Consider this last statement.”** Each particle pro-
duced by an inelastic interaction can be represented as a
point in a three-dimensional phase space which fixes the
endpoint of its momentum vector. Since the transverse mo-
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mentum is bounded, these points are concentrated in the so-
called cylindrical phase volume centered about the longitu-
dinal momentum components. Yet even inside this phase
cylinder the point distribution is nonuniform. The geometri-
cal characteristics of the set of points should be governed by
interaction dynamics. We can attempt to classify these sets
of points using Renyi dimensionality in the same manner as
this is done for the Cantor set or for strange attractors. For
simplicity, consider the projection of the phase volume onto

_ therapidity axis y and define the corresponding probabilities

p; (1} in a single event as

pi() =——D8(—|g:—y; )

n—1i

3D

where 7 is the number of particles in the event; y,; are the
rapidities of the ith (j th) particle normalized by the total
rapidity Y. We can write the moments in the form

C=2 3 pH0=L3 (- S0u— 10— u))

i
(32)

and calculate the Renyi dimension from the behavior of the
moments

C, (l) ~ 1%an, (33)

According to this prescription individual events can be clas-
sified using the Renyi dimension (this analysis was applied
to experimental data in Ref. 27).

The finiteness of the number of particles®’ means that
the limiting (/—0) form of the definition of Renyi dimen-
sionality cannot be used, since the dimensionality of a finite
number of points is always zero. As always, one should in-
stead select a physically meaningful binsize / for the calcula-
tion of dimensionality. Different selection criteria have been
proposed: Kittel and Peschanski'® suggested the same bin
size 0.1 <8y <1 employed in the intermittency analysis,
while Sarcevic and Satz*¢ considered only fairly large bins
8y 2 1-2 (eliminating two-particle correlations). These pro-
cedures can lead to markedly different results, as we will
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FIG. 9. Particle distribution moments of two events that produced 20
charged particles behave differently in the relatively homogeneous
(monotonic curve) and strongly inhomogeneous (nonmonotonic curve)
events.? This indicates that spike-containing inhomogeneous events are
characterized by different fractal dimensions in large and small rapidity
bins.
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demonstrate using two concrete pp-interaction events>>?’ at

400 GeV, each producing 20 charged particles. These events
are chosen because in one the produced particles are quite
homogeneously distributed on the rapidity axis, whereas the
other produced a sharp spike of several particles in a narrow
bin. The moments C, (/) for these two events are quite differ-
ent (Fig. 9). In the homogeneous event C,(/) changes
smoothly with /and can be approximated by a simple power-
law expression with the power slightly smaller than unity. In
the inhomogeneous case C,(/) contains two regions (neg-
lecting values near unity where purely kinematic effects
dominate) that can be approximated by power laws with
markedly different powers. This means that inhomogeneous
events with significant fluctuations cannot be treated as mul-
tifractals. Given the small multiplicities and finite statistics,
it appears unhelpful to describe the regions inside and out-
side the spikes as different multifractals. Nonetheless, the
above examples indicate that a formal fractal analysis should
yield larger Renyi dimensions (i.e. smaller slope param-
eters) for smaller bin sizes. Moreover, the use of relatively
large bins /~0.3 makes it possible to distinguish homoge-
neous events from fluctuation-dominated ones and hence
classify events.””?’ Note that if the boundary separating
large and small bins is held fixed on the rapidity scale, this
boundary shifts towards smaller values of reduced rapidities
! = 6y/7Y as energy increases. In other words, the domain of
“large” bins where the single dependence is valid increases
with energy.?*

To date it is not clear whether above-discussed proper-
ties are in any way related to the space-time structure of the
interaction region, although it is tempting to assume that the
distribution fractality is a consequence of the interaction re-
gion’s fractal properties. This problem can be approached by
various means. For example, in the study of fractal polymer
chains one often investigates the diffusion of some foreign
particle. The review by Sokolov?® describes a mathematical
model of random walks in such a polymer chain located on a
plane (see Fig. 10). It is demonstrated that particle motion
inside a complex object is much more convoluted than the

h

FIG. 10. Particle random walk inside a fractal (dark regions) is consider-
ably more complicated than simple Brownian motion in a plane. The size
of the dark region traversed by the particle is much smaller than expected
in free Brownian motion.”*
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FIG. 11. Connection between diffraction cone slope and mean multiplic-
ity leads to higher internal dimensionality of parton walks.?

usual Brownian motion in a space that contains no obstacles
or divisions. Even after a large number of steps the particle
cannot travel far from its original position. An analog of this
process in the field of inelastic interactions is the motion of
the exchange parton:*? in a simple multiperipheral ladder it
coincides with Brownian motion in the plane normal to the
collision axis. The distance of the parton in the transverse
plane p determines the slope of the elastic diffraction cone b,
while the number of steps n, corresponds to the multiplicity
n, since each step produces a particle (resonance or cluster).
In the multiperipheral ladder, as in Brownian motion, we
have

b~p~t~n,~n, (34)

and both b and » increase logarithmically with energy ( ~In
5). Experimentally this relation between b and » is not ob-
served, however (Fig. 11); instead it turns out® that

b ~ n?/Pw (35)

where for pp-interaction D,, = 7.5 4+ 1.5. The quantity D,,
is known as the inside dimensionality of parton random
walks~-the fact that it is much larger than the characteristic
Brownian quantity D,, = 2 indicates a complex trajectory of
parton motion with much retracing of steps. This provides
evidence of the complex fractal space-time structure of the
interaction region. Here we refer the reader to the “instanton
polymer vacuum” hypothesis.*

Significant evidence for this picture is furnished by in-
vestigations of the shape of the deconfinement domain at the
phase transition point, performed in lattice gauge theor-
ies.?!® It was demonstrated that the relation between the
volume V and the surface area S of this region in SU(2)
theory is

V~Sutz (36)

This indicates that the volume is clearly fractal and contains
large “voids” filled with the “hadron” phase. The fractal
dimension of the domain occupied by the ‘“deconfinement”
phase turns out to be 2.5.

Interestingly, the world lines of the monopole conden-
sate in the confinement phase also form a fractal,*'® indicat-
ing their possible role in string formation. Here the fractal
dimensionality of the condensate can serve as the order pa-
rameter, since it becomes unity in the “deconfinement”
phase, testifying to a phase transition at the same tempera-
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tures as computed previously in the studies of the number of
degrees of freedom and Wilson loops.

It would appear likely that the complex structure of the
interaction volume should determine the distribution of the
produced particles in the phase space, just as the presence of
intermittent vortices in a turbulent liquid results in a fractal
structure of regions of enhanced energy emission. However,
the verification of this hypothesis requires solving difficult
time-dependent nonlinear problems.

6.CONNECTIONBETWEENINTERMITTENCY AND
FRACTALITY

The above-discussed formulae for fractal distribution
moments underscore their direct connection with intermit-
tency properties. Moreover, it is not difficult to establish a
relation between the Renyi dimension 4, and the slope pa-
rameter ¢(gq):*>

— P (9)

dg=1— =1 (37)
Clearly, by connecting the observed dimensionality with the
geometric and thermodynamic properties of an object, the
concept of fractality goes beyond a purely formal definition
of intermittency. In studies of inelastic processes fractality
promises to shed light on the space-time structure of the
interaction region, the nature of the phase transitions, and
perhaps the character of nonlinearities in the effective La-
grangian.

The spectral function f(a)”’ is also widely used. It de-
fines the multifractal distribution over fractal dimensions.
For a single fractal of a given dimension f(a) reduces to a §-
function in the absence of fluctuations. When, in addition to
self-similarity, fluctuations become important, multifractals
acquire distributions of considerable width in a. As we have
seen above, Renyi dimensions and slope parameters are di-
rectly related by the spectral function. This relation is sum-
marized in the following set of formulae:

e@Q=Ff@+q(l—a)—1,
df kil

w | =0 <O
o _,_ 3 S (T (38)
S —1—ae), o (daz); >0,
o) = — zi(ﬂ‘ﬂ;‘)
f () i . ,
b f=df] e~
dp= — (ada 'a f(a)).

$dme of these formulae were derived earlier, the others can
be obtained by simple transformations. They are valid in the
limiting conditions where the concepts of fractality and in-
termittency can be defined with mathematical rigor. They
can be employed in the analysis of geometric objects as well
as theoretical models of particle production processes. Their
practical application to inelastic processes raises the same
objections we discussed earlier:

1. The transition to the limit of a vanishingly small bin
size is impossible. What length scales contain information on
the “real” dimensionality of the sets of points?

2. How does the finiteness of the number of points affect
the results?

3. What changes if the number of points is altered?

4. How does summing over all bins in a given event
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FIG. 12. Fractal dimension of a random set of 4096 points, calculated
using expressions (17), (18) as a function of bin sizes /.**

(horizontal analysis) or averaging over many events (verti-
cal averaging) affect the results?

These questions are best answered by analyzing situa-
tions characterized by a known dimensionality.** For exam-
ple, if a sufficiently large number of points is randomly scat-
tered over a unit window in a uniform inclusive distribution,
the actual dimensionality of a finite set of points (which is
zero) will manifest itself only when the size of the covering
bins / becomes noticeably smaller than the inverse number of
points. At larger bin sizes the set of points will appear as a
continuous line, i.e., the minimal number of bins covering
the set will increase proportionally to /="' as the bin size
decreases—leading to an apparent “dimensionality” of one.
This is explicitly demonstrated in Fig. 12, showing the re-
sults of computer calculations for a set of 2'2=4096
points.*?

The Cantor set provides an even more interesting exam-
ple. The segment division process can be treated as some
type of a cascade if the centers of the resulting segments are
identified with “particles”. By cutting off the iteration pro-
cedure after some number of iterations v we obtain a “pro-
cess” that produces 2 particles. We have seen already
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FIG. 13. True fractal dimension of the Cantor set after 12 iterations can-
not be determined if the scanning of / has insufficient resolution.**
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that the fractal dimension of the Cantor set is Dy

=1n 2/In 3 ~0.63. However, if the size of the covering bins
is scanned in large steps, even a large number of iterations
(v = 12,2'% = 4096 “particles”) does not suffice to give the
correct dimensionality (Fig. 13). On the other hand, if the
scanning is performed with fine resolution, i.e. the bin size is
varied almost continuously, one obtains the “fine structure”
of the above dependence and individual points yield accurate
information on the fractal dimension of the set (Fig. 14).

Clearly these point correspond to cases of bin sizes be-
ing multiples of the segment lengths in the Cantor set after
the given number of iterations. Consequently the distances
between these points are multiples of — In(1/r) =1In 3,
where r = 3 is the number of segments into which an original
segment is divided at each step. All moments show this
structure.

Yet inelastic processes usually produce fewer particles
than the example considered above. Accordingly, it is of in-
terest to examine the Cantor set after a smaller number of
iterations. Cutting off the iteration procedure after 5 itera-
tions (v = 35) we obtain 32 “particles”. We can repeat the
procedure of covering this set with bins of size /, once again
defining the “dimensionality” as Dy = —dInN/dIn/,
where NV is the number of covering bins. By changing the size
/in small steps we again obtain the same downward spikes as
in the case of many iterations, where single points gave the
correct dimensonality. But there is also additional “band”
structure at small bin sizes with parallel and equidistant
bands. This effect probably arises in inelastic processes (see
below).
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FIG. 14. If / is varied smoothly the true dimension of the Cantor set
manifests itself at certain points.* (For clarity, different moments are
shifted vertically by the amount shown in the figure).
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FIG. 15. Behavior of factorial moments of the Cantor set (after 12 itera-
tions) resembles that of the fractal dimension.*’

The factorial moments of the Cantor set behave analo-
gously. If the number of ““particles” is large and the scanning
of bin size proceeds in large steps, the factorial moments
increase approximately linearly, whereas fine resolution in
bin size reveals peaks in the factorial moments (Fig. 15).
Straight lines drawn through the peak positions have slopes
that are related to the fractal dimension by formula (37).
Consequently factorial moments provide a means of deter-
mining the fractal dimensionality. We should note here that
the slopes of straight line fits through the main groups of
points in Fig. 15 are similar to lines drawn through the
peaks. This argues in favor of employing factorial moments
even if the bin size resolution is coarse. Evolution of the
second moment as a function of iteration (“‘particle””) num-
ber is illustrated in Fig. 16. If the particle number is large,
both the peaks and the main group of points appear to lie on
parallel straight lines whose slopes agree with the fractal
dimension obtained from (37). If the number of particles is
smaller the factorial moments fall off as the bin size de-
creases. In even smaller sets of particles the decaying section
of the factorial moment comes to exhibit the characteristic
structure of bands with slopes different from the intermit-
tency slope parameters. At this stage it appears that the fi-
niteness of the number of points comes into play, ‘‘activat-
ing” thezerodimension D¢ = 0, i.e. theslopesp(g) =¢q — 1.
It remains unclear what determines the distances between
the bands. Also, if the number of particles is small, the peaks
tend to exaggerate the values of the intermittency slope pa-
rameters.

The same procedure can be applied to a specific inelas-
tic 7 * p-interaction event at 250 GeV that produced 26 par-
ticles. This is the same event discussed earlier and illustrated
in Fig. 4. If we ignore uncertainties in the measured positions
of the particles, this event can be analyzed down to very
small bin sizes < 10~ 2. The second through fifth factorial
moments obtained in this analysis are shown in Fig. 17.*?
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Here we find no clear peaks, although there is a group of
three points on the left that might conceivably be described
as such. Interestingly, the fractal dimension one obtains
from these points is very close to zero, as expected from our
discussion for an event with sharp spikes. At small bin sizes
the band structure is evident in all moments, although the
bands are no longer equidistant. Evidently the contribution
of this event to lower-lying moments is so small as to be
invisible on the scale of Fig. 6. But in the fifth moment, espe-
.. cially at small bin sizes, this event makes a dominant contri-
bution. Clearly, by limiting the analysis to 8y = 0.1, as was
donein Fig. 6, one can hardly predict the band structure seen
in Fig. 17 at smaller bin sizes. Only with the knowledge of
band structure obtained from Fig. 17 can one attempt to
discern it in the fifth moment of Fig. 6 by drawing the dotted
lines.

Thus we find that even the first attempts to analyze the
connection between intermittency and the fractal structure
of events in phase space appear quite promising, although a
complete understanding of all details is not yet available.
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FIG. 16. Second factorial moment for different numbers of intera-
tions of the Cantor set.

7.THEORETICAL MODELS

The existence of large fluctuations and, more generally,
the properties of multiplicity distributions in small (pseudo)
rapidity bins have always attracted scientific interest. Meth-
ods that employ factorial moments and fractal dimensions
make it possible to describe these properties in a very clear
fashion. Nonetheless, the efforts to connect them with
many-particle correlations'""'? and symmetry properties of
identical particles'® have not fully succeeded to date.

Generally speaking, a dynamical description of the ob-
served phenomena in high-energy physics is still lacking, de-
spite the multitude of hypothesis and clear analogies to other
branches of physics. Since the theoretical models are obvi-
ously incomplete and limited, we will discuss them only
briefly with the aim of referring the interested reader to more
detailed sources in the literature.

All theoretical approaches to this problem can be tenta-
tively classified into two groups depending on preference for
ordinary or stochastic dynamics, although no clear demar-
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cation between the two exists. The former group is com-
prised generally of QCD parton shower models and their
phenomenological partners: the dual topological model and
quark-gluon string models;"*** cluster models;****>*¢ clan
models;*”*® narrow hadron jet emission;*® coherent gluon
jet emission (Cherenkov gluons in particular);*>*! statisti-
cal correlations in partially coherent radiative systems;***
formation and decay of cold quark-gluon plasma.***’

The second group of models'****? is based on analogies
with turbulence theories.'>* These models invoke random
cascades characterized by independent probabilities and
leading to phenomena resembling phase transitions.

Despite the difference in theoretical underpinnings, the
imprecision of this division into two groups is obvious al-
ready from the fact that all branching processes (including
QCD parton showers) lead to some degree of stochastiza-
tion. In fact, the division should be attempted using some
definite numerical parameter (say, the extent of stochastiza-
tion).

In the plane normal to the collision axis, single events
exhibiting strong particle number fluctuations in a narrow
pseudorapidity bin (such as illustrated in Fig. 4) appear as
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FIG. 17. Factorial moments of the single event shown in Fig. 4 calcu-
lated down to very small bin sizes.>

rings with relatively uniform azimuthal distributions of par-
ticles emitted at similar polar angles. Precisely for this rea-
son the first attempts to explain the number fluctuations
proceeded by analogy with Cherenkov photon radiation.
The hypothesis of coherent emission of gluon jets*>*' (pos-
sibly involving the Vavilov—Cherenkov mechanism) pre-
dicted that these jets should be emitted in a narrow pseudo-
rapidity bin at large angles in the center-of-mass system of
the colliding hadrons. All subsequent models did not predict
any particular angular dependence for the dense groups of
produced particles. This specific feature was experimentally
verified in pp-interactions at 205 and 360 GeV energies.>* It
turned out that the distribution of dense particle group
centers on the pseudorapidity axis contained several peaks
superimposed on a fairly strong background (Fig. 18). Con-
sequently the proposed mechanism of coherent jet emission
in hadron interactions probably does exist but is not domi-
nant. The existence of another mechanism responsible for
the fluctuations is indicated by their presence in electron-
positron annihilation, where the necessary conditions for co-
herence are difficult to imagine.

Traditional models, which posited emission from ex-
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change partons' or the breaking of quark-gluon strings,’
proved incapable initially'>!* of describing either the num-
ber of fluctuations and their behavior as a function of peak
height, or the growth of factorial moments in small bins.
Agreement with experiment probably requires initial fluctu-
ations to accompany the breaking of each string, which
would necessitate new parameters. In this regard, models
based on clusters**>*¢ or clans*’*® appear more flexible, as
they allow for the variation of several parameters. Van Hove
demonstrated*® that the existence of clans leads to a power-
law increase of factorial moments in small bin sizes. No
quantitative comparison with experiment was attempted,
however. As for cluster models, in some cases they succeed-
ed in describing multiplicity distributions in symmetrical ra-
pidity bins of various sizes.*”*® This could prove insufficient
for explaining the behavior of all factorial moments, how-
ever, since these are sensitive to the fine details that are not
discernible by the usual methods of presenting distributions.

The cold quark-gluon plasma model**** has problems
explaining the large values of slope parameters in electron-
positron annihilation compared to hadronic and nuclear
processes, since this model predicts the largest slope param-
eters in nuclear-nuclear collisions.

Multiparticle production is described somewhat differ-
ently in Refs. 42, 43, where new particle emission is ex-
plained by two types of sources—chaotic and coherent. Dy-
namical models of such sources could be constructed
involving emission by virtual and leading partons respective-
ly.

All the above approaches attempt to describe multiplic-
ity distributions in terms of the negative binomial distribu-
tion (or some modification thereof). In the cluster model
this is accomplished by varying the cluster parameters. In
the clan model the negative binomial distribution is ap-
proached by convolving the Poisson distribution over the
number of clans with a logarithmic distribution of decaying
particles. In the statistical model with two types of sources,
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FIG. 18. Distribution of the centers of dense isolated particle groups on
the pseudorapidity axis in pp-interactions at 360 GeV indicates presence
of peaks on the pseudorapidity scale of + 0.3.%*
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the negative binomial distribution naturally describes the
chaotic sources, while the coherent sources contribute a
Poisson component. It would appear that all these models
should accurately describe the higher factorial moments by
successfully fitting the lowest one. And there is a sufficient
number of fitting parameters: the mean number of clans and
the particles they contain; degree of chaos and the correla-
tion length,; etc.

Of course, one would expect that QCD parton showers
complemented by the hadronization hypothesis will even-
tually describe the comprehensive experimental picture, in-
cluding the intermittency phenomenon. This expectation is
based on the fact that all branching processes possess fractal
properties. Yet no concrete advances in this direction have
been accomplished to date. Instead we are offered either
purely phenomenological models of sequential branching®®
or investigations of the simplest theoretical models like the
tree diagrams of the @ * model, simplified QCD®"*? also
based on tree diagrams, or the Schwinger tunneling transi-
tion.’ Some of the predictions are experimentally verifiable.
For example, the model of sequential branching of the initial
system into two rapidly moving subsystems of relatively
small mass*® predicts very narrow “pencil” jets consisting of
groups of particles emitted into narrow polar and azimuthal
angle windows. This should increase the slope parameters in
a two-dimensional analysis. But experimentally™*™ the
dense particle groups on the rapidity axis have a fairly iso-
tropic azimuthal distribution.®” At the same time, the slope
parameters have been noted to increase when the azimuthal
angle windows are further restricted.'®***™ This requires a
detailed study of particle group definitions, etc.

An analysis of the equations of the branching pro-
cesses’'* in the uniform division model, in the @ * theory,
and in the first logarithmic QCD approximation, indicates
that the totality of produced partons exhibits intermittency
and can be subjected to the full multifractal analysis de-
scribed earlier. The slope parameters depend on the concrete
form of the kernel of the integral equation which describes
the process. They prove to be quite significant in e * ¢ ~ -anni-
hilation®*® if the hadronization of partons is assumed to
have little effect. In this case the singularity spectrum of
S (&) [see (22)] is wider than in the @ * model because of the
broader rapidity distribution.’” By incorporating an integral
of multiplicative terms the iterative solution of the branch-
ing equations should lead to stochastization. The complexity
of the solution, however, has hindered the derivation of clear
stochastization criteria. For this reason the simplified cas-
cade models constructed by analogy with turbulence'” have
proved to be more popular.

The random cascade models involve some probability
distribution #( W) with corresponding moments:

W= [ awrm)ws, (1y=(W) =1.
These probabilities govern the fluctuations as the rapidity
window is broken up into ever smaller bins. The probability

P, of appearing in the mth bin is given by the multiplicative
expression

1 v
Pm=—;4— an,
n=1

(39)

(40)

where M = A" is the number of bins obtained by breaking up
each bin into A parts at each of the v iterations. In this pro-
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cess a sequence of indices n leads precisely to a predeter-
mined bin m. The multiplicative form of expression (40)
naturally results in large fluctuations and intermittency.

The simplest type of distribution r( W) is the so-called
a-model given by

r(W)=pbé(W—a) + (1—p)&(W—>b), (41)

where 0<a <1 <b and pa + (1 —p)b =1 because of the
normalization condition (39). This model was widely used
in turbulence theory, as well as in the theory of spin glasses.
As the parameters p and A are changed the model predicts
various phase transitions. Interestingly, intermittency of do-
mains with ordered spins also appears in the two-dimension-
al Ising model near the phase transition.””*®* We should
again recall the fractal structure of the deconfinement
phase,*' discussed earlier in this review.

On the whole, cascade models are presently at the point
of evaluating the qualitative results and cannot be compared
with experiment because of difficulties in treating the finite
number of particles, conservation laws, etc. The proposed
versions which take these requirements into account®® cur-
rently fix their parameters by turning to experimental data.
They point to the necessity of complementing string models
with initial fluctuations in the breaking of each string.

In the limiting case of a large number of cascades the
product of independent probabilities in expression (40)
should produce a log-normal distribution.®®’*’> Factorial
moments furnish information on the tail of this distribution.
Distribution parameters and properties in the main body of
this distribution will require logarithmic moments of the
(In n)q variety.®® It is not clear what energies will be re-
quired to reach this limiting case.”

8.CONCLUSION

I would like to conclude this review by noting that the
details of the theoretical computations have been omitted for
the sake of brevity. I attempted to present the fundamental
ideas and discuss their interconnections in a concise form.
The brevity of this review—really a list of theoretical models—
is also motivated by the fact that these models are far from
complete. Currently they are designed to establish quantities
like fractality and intermittency slope parameters only. The
modest goals of these models are evident in the proposals for
bringing more advanced Monte Carlo models of showers
into conformity with experiment by establishing a new sto-
chastic dynamics or determining the effective Lagrangians
that govern particle production at high energies. The hydro-
dynamic theory of multiparticle production is yet to speak
on this subject.

The future will tell which of these approaches will prove
the most productive. For now it is clear only that the con-
cepts of slope parameters and fractality have ignited new
interest in the problem of correlations in multiparticle pro-
duction processes and brought forth new ideas on the dy-
namics of these processes.

D Here we refer to a version of the model that allows several “ladders”.

2 The square brackets around de(y) indicate a functional.

¥ We should note that formula (12) employed by experimentalists differs
somewhat from the result of the Bialas and Peschanski.'® The latter
reduces to (12) in events with multiplicity significantly exceeding the
order g, more precisely when n> ¢ — 1. The order of averaging over a
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given event (horizontal) and over an ensemble of events in a given bin
(vertical) are discussed in detail by Hwa.'®* Mathematicians refer to
factorial moments as the empirical assessment of ordinary moments.

¥ For convenience of the reader the references cite experimental stud-
ies®'-"* that complement the earlier work>~® discussed in the review.

*) The difference between the two definitions is not relevant to our topic
and we will omit a detailed discussion.

® The significance of this effect will be discussed in the following section.

? For example, to reveal phase transitions in the linear ranges of this
function.

® The contribution of jets with large transverse momenta is small and
their width is usually quite large, much larger than 0.1.
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suffices to describe multiplicity distributions in the total rapidity win-
dow at high energies. In smaller rapidity bins, however, one runs into a
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