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This review is devoted to the theoretical description and laboratory modeling of quasi-two-
dimensional shear flows (including flows in thin layers of liquid and in rotating systems). Such
flows are of interest in connection with the possibility of the appearance of ordered vortex
structures in them as a result of the shear instability. The main attention is devoted to theoretical
models in which the friction of the liquid against the underlying surface is taken into account.
Comparing the theoretical results with laboratory data shows that friction plays the decisive role
in the appearance and evolution of vortex structures. As an application, the large-scale dynamics
of the earth's atmosphere is studied.

INTRODUCTION

Flows of liquid or gas in which for some physical reason
the horizontal component of the velocity field is much
stronger than the vertical component play an important role
in hydrodynamic systems in nature and in technology. Such
flows include, in particular, the large-scale motions of the
ocean and atmospheres of the rotating planets (including
the earth), the circulation on the sun and other stars, the
evolution of galaxies, and flow in a magnetized plasma. Lab-
oratory hydrodynamic experiments, in which the indicated
phenomena are modeled under controlled conditions, are
substantially enlarging the class of such flows.

It should be noted that in the second half of the twenti-
eth century laboratory hydrodynamic experiments acquired
a second wind starting with the experiments of Fultz and
Hide,'-2 in which a serious attempt was made to reproduce
the properties of the general circulation of the atmosphere
and the convection of the liquid inner core of the earth. The
laboratory experimental results obtained in geophysical hy-
drodynamics by the end of the 1970's are reviewed in Refs. 3
and 4. The number of publications on this subject is still
increasing; this can be easily verified by looking through cur-
rent physical and hydrodynamical journals and proceedings
of conferences on nonlinear processes in physics and turbu-
lence. Nezlin's review5 recently published in Soviet Physics
Uspekhi deserves special attention; it is devoted to the labo-
ratory modeling of the so-called Rossby solitons and other
phenomena observed in Jupiter's atmosphere and in galaxies
(see also Ref. 6).

A component of the velocity field of a flow can be sup-
pressed for different reasons, such as, rotation of the system
as a whole, the presence of a constant magnetic field thread-
ing through an electrically conducting liquid, strong density
stratification (as, for example, in the ocean), thinness of the
layer of liquid in which motion develops, or a combination of
these factors. We shall call motions of this type quasi-two-
dimensional. To describe quasi-two-dimensional flows it is
often tempting to invoke the now well-developed theory of
stability of strictly two-dimensional motions (see, for exam-

ple, Ref. 7). Such attempts, as a rule, have ended in failure,
as the authors of such studies themselves point out (see, for
example, Refs. 8 and 9). The reason is that friction against
the underlying surface cannot be neglected (in the classical
theory it is neglected, but it almost always exists in real sys-
tems). It plays the decisive role in the development of tran-
scritical rotational flows, coherent structures, and turbu-
lence.

In this review we present the theory of stability and
transcritical vortex regimes of quasi-two-dimensional shear
flows and its applications to the description of natural and
laboratory flows, modeled for the purpose of studying large-
scale atmospheric processes. The range of application is lim-
ited primarily to the earth's atmosphere; this is connected
with the specific scientific interests of the authors. However
the theoretical and experimental results presented can be
used to describe processes in the atmospheres of other plan-
ets, in the ocean, in plasma, and in magnetohydrodynamics
of a weakly-conducting liquid, i.e., from this viewpoint they
are of importance for physics in general. The material pre-
sented should be regarded essentially as an independent
branch of hydrodynamics that has not yet been reflected in
the physics literature.

1. EQUATIONS OF MOTION, EXTERNAL FRICTION,
SIMILARITY CRITERIA

1.1. Thin layers ("shallow water")

We recall that the motion of thin horizontal layers of an
ideal incompressible liquid with a free surface in a gravita-
tional field is described by the shallow-water equations (see,
for example, Ref. 10)

— = — -V(p + pgH), -I^. + divv=0; (1.1)
<U p ^ H At

here v = v(x, y,t) is the two-dimensional vector field of the
flow velocity, H = H(x, y,t) is the height of the free surface
of the liquid, p and g are the density and the acceleration of
gravity, and the operator d/d/ = d /dt + vV. The condition
that the layer be thin ish^H0^L, where h is the deviation of
the height of the free surface from its average value H0, and L
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is the characteristic horizontal scale of the flow. This makes
it possible to neglect the vertical component of the velocity.
The equations (1.1) are identical to the equations of the two-
dimensional hydrodynamics of a barotropic0 compressible
liquid in which H plays the role of the density. It is pertinent
to note here that the system (1.1) has a Lagrangian invariant
(take the curl of the first equation in Eqs. (1.1) and substi-
tute the result into Eq. (1.2) using the second equation of
Eqs. (1.1))

I = ^L, -SLsO
H At

(£> =curlz v), (1.2)

called the potential vortex." '3 In application to the general
equations of gas dynamics the expression for the potential
vorticity, first found by Ertel,14'15 assumes the form

/= QgradS ^ ( 1 3 )

P

where fl = curl v and S is the specific entropy. Its funda-
mental importance in theoretical and applied problems in
geophysical hydrodynamics is discussed in detail in Refs.
16-19.

The system (1.1) describes, in particular, the propaga-
tion of gravity waves on shallow water with the velocity
c = (gHoy

12, which is the analog of the velocity of sound in
gas-dynamic systems. For this reason, according to the well-
known principle of Ref. 10, to describe slow motions of thin
layers of liquid, for which the Mach number Ma = v/c < 1,
the compressibility can be neglected, setting H = const. The
conditions of incompressibility are satisfied, for example, in
laboratory experiments20'2' on the modeling of the shear in-
stability, where the characteristic flow velocities and the
thickness of the layer are of the order of 1 cm/s and 1 cm,
respectively, and c~30 cm/s. To describe flows of this type
correctly, however, the viscosity must be taken into account;
this creates additional difficulties in the application of the
shallow-water theory owing to the impossibility of eliminat-
ing the bottom friction, which in its turn destroys the strict
two-dimensionality of the flows. In this case, under the as-
sumptions made above, the slow motions of thin layers of
liquid, strictly speaking, can be described by equations in
which the dependence on the vertical coordinate z enters
explicitly:

dv 1 _ , . , d2v . »,— = vp 4- vAv -f- v f- F,
At p dz1 (1.4)

with the boundary conditions on the solid and free surfaces

= 0; (1-5)

Here A = d 2/d%2 + 3 2/dy2, vis the kinematic viscosity, and
F is the external force field. The vertical coordinate is mea-
sured from the free surface.

The system (1.4) and (1.5) can be written, after it has
been made dimensionless with the help of the characteristic
horizontal scales of length L and velocity U of the flow under
study, in the form

At Re Re
(1.6)

div v = 0, = 0,

where Re = UL /v is the Reynolds number and 1 > h = H /
Lis a small parameter. We do not introduce new notation for
the dimensionless variables.

We denote v0(x, y,t) = v|z = 0 the velocity field of the
flow on the free top surface of the liquid. Expanding N( v) in
powers of z around z = 0 and integrating the first equality in
Eq. ( 1 . 6 ) twice over z taking into account the boundary con-
ditions, it is easy to obtain the leading term in the expansion
of N(v0) in powers of the parameter h:

From here it follows that the last equality is satisfied with
accuracy up to terms O(h2), if the dimensional velocity field
on the free surface u = + f/v0 satisfies the equations

divu=0 UR= — ) .

(1.7)

(1.8)

The system (1.7) and (1.8) is called the equations of hydro-
dynamics with Rayleigh friction fR = — A R u. The paradox
of this situation is that in spite of the fact that these equations
are applicable in a seemingly narrow region they describe a
wide range of hydrodynamic phenomena of practical inter-
est, including large-scale processes in the ocean and the at-
mospheres of rotating planets. The determining physical pa-
rameter in them is the coefficient of Rayleigh friction A R , the
expression for which is not always the same as in Eq. (1.8)
and depends on the physics of the hydrodynamic system un-
der study.

1.2. The "shallow water" approximation for a rotating liquid
and in magnetohydrodynamics

1. To describe the global processes involved in the gen-
eral circulation of the earth's ocean and the atmospheres of
rotating planets flows for which the Rossby-Kibel number is
small e = U /2CloL <£ 1; are of greatest interest; here fl0 is the
angular rotational velocity of the system as a whole and U
and L, as previously, are the characteristic velocity and geo-
metric scale of the flow. Flows of this type are in so-called
quasigeostrophic equilibrium when the Coriolis force is ap-
proximately (with accuracy up to terms of the order ofe2)
balanced by the pressure gradient

2[Q0v]» *-Vp. (1.9)
p

The quasigeostrophic equilibrium, which was well known to
meterorologists back in the last century, is a stable state of
global motions. Any local breakdown of this state results in,
as shown in Refs. 12 and 22, the emission of acoustic and
gravity waves, as a result of which the equilibrium is restored
owing to the adjustment of the pressure field to the new wind
field.

The relation (1.9) means, in particular, that mass
transfer in the atmosphere occurs, at first glance contrary to
common sense, not across, but rather along isobars. It is
precisely for this reason that air masses in the vicinity of a
center of low (high) pressure rotate around this center along
spirals converging into it (diverging from it), thereby form-
ing a large-scale vortex-cyclone (anticyclone). The Taylor-
Proudman theorem (see, for example, Ref. 13) according to
which the equality

(Q0V)v«0. (1.10)

holds with the same accuracy, follows directly from the rela-
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tion (1.9) (take the curl of the relation (1.9)) . This means
that there is virtually no mass transfer anywhere in the direc-
tion of rotation of the axis owing to the impermeability of the
walls bounding the liquid. This in its turn gives rise to quasi-
static equilibrium

— -f- gp « 0, (1.11)

where z is the coordinate in the direction of the axis of rota-
tion of the system as a whole.

The indicated fundamental properties of global geo-
physical flows make it possible to simplify substantially the
starting hydrodynamical equations. We shall illustrate this
for the example of a layer of nonviscous incompressible liq-
uid of variable depth with a free surface and rotating around
a vertical axis (Fig. 1). Let the relief of the bottom boundary
of the layer by given by a function z = hl (y) of one of the
horizontal coordinates. We denote by h0 = h0 (x, y,t) the de-
viation of the free surface from the average depth of the layer
H0, so that the depth of the layer is equal to
H = HQ + h0(x,y,t) — h, (y). In application to such a sys-
tem the raylor-Proudman theorem means that the vertical
currents can be neglected, and according to Eq. (1.11)
p = pg(H — z), if z is measured from the bottom boundary
of the layer. The conditions (1.9) of the geostrophic equilib-
rium assume the form

«=-?-, » = ?-. ¥ = Tfto. /=2«o (1-12)dy dx f
(W is the two-dimensional stream function). The smallness
of the Rossby-Kibel number £<^\ implies13 that the ratio
h(/H0~EL 2/L I, is small, if L is not too much greater than
L0 = (gH0)

l/2/f—theObukhov-Rossby scale, which deter-
mines the characteristic horizontal size of global vortex for-
mations. We shall now use the theorem of conservation of
the potential vorticity (1.2), first we transform to a rotating
coordinate system. Then the expression for the potential
vorticity, after expanding in the parameter e, can be written
in the form

(U3)

where a>z = A* is the relative vorticity of the rotating liquid.
From the conservation of the potential vorticity d/ /dr = 0
we obtain the well-known Obukhov-Charney equa-
tion:1,.12.22,23

dt
(1.14)

o_ji /__| f dfti (1.15)
dy H, dy

(in the presence of systematic curvature of the free surface

owing to the effect of centrifugal forces an additional term
analogous to the second term in Eq. (1.15) must be included
here). This equation forms the basis for dynamical meter-
ology and, which is no less interesting from the viewpoint of
physical applications, it describes drift waves in a plasma, if
the parameters in it are given a different physical interpreta-
tion. This is discussed in greater detail in Ref. 24.

We stress that for the model under study the Coriolis
parameter/= 2ft0 is constant, and the so-called /7-effect,
associated with the presence of the additional linear term on
the left side of Eq. (1.14), is obtained here obtained here
owing to orography (dft,/dy^0). For the earth's ocean and
atmosphere the parameter /= 2fl0 sin <p is two times the
earth's angular rotational velocity projected on the normal
to the earth's surface and depends on the latitude <p. In this
case the coordinates x and y are measured along the longi-
tude and latitude eastward and northward, respectively. The
quantity H0 must be interpreted as the height of a hypotheti-
cally uniform atmosphere, whose value is determined from
the condition c2 = P0/Po = gH0, where p0, p0, and c are the
pressure, density, and velocity of sound at the ground near
the earth's surface (H0~% km).

2. The relations (1.9)-( 1.11), used in the derivation of
the Obukhov-Charney equation, serve as a unique fil-
ter22,25-27 t^at majces jt pOssjble to eliminate from the analy-
sis fast acoustic and gravity waves, which have virtually no
effect on the development of global processes, but make it
much more difficult to go "big game hunting." The situation
with slow waves of a planetary scale is different. The exis-
tence of such waves is easiest to illustrate for the /?-plane
model, when the parameter /?, appearing in Eq. (1.14), is
assumed to be constant and independent of the latitude.
Such a model is often employed to describe oceanic and at-
mospheric motions at middle latitudes.l3'27 By direct substi-
tution into Eq. (1.14) it is easy to verify that the function

FIG. 1. Schematic diagram of a layer of liquid of variable depth and rotat-
ing with the frequency ftn.

(1.16)

is the exact solution of the Obukhov-Charney equations, de-
scribing dispersing waves propagating westward with the
phase velocity.

The wave solutions with this dispersion relation are called
Rossby waves and sometimes, in application to a spherical
earth, Rossby-Gurvits waves (in this case they are expressed
in terms of spherical functions; see, for example, Ref. 15).
Rossby waves are an important element of the general circu-
lation of the ocean and the atmosphere. They have a signifi-
cant effect on the characteristics of macroturbulence28'29

and the instability of global flows. In particular, the reso-
nance interaction of Rossby waves in layered media results
in, under certain conditions, an interesting and as yet inad-
equately studied phenomenon of explosive instability,30'31

which the linear theory does not pick up. The so-called
Rossby solitons, which are not covered by Eq. (1.14), but
which play a significant role in cyclogenesis in the ocean and,
possibly, in the atmospheres of large planets (when the radi-
us of the planet R is much larger than L0), occupy a special
place in the family of Rossby waves. The review of Ref. 5 is
devoted to this question. In particular, in Ref. 5 the methods
and results of laboratory modeling of such vortex formations
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are discussed in detail and compared with natural observa-
tions.

The Obukhov-Rossby scale serves as a natural "divide"
between Rossby solitons and the waves and vortex struc-
tures studied here. The point is that formally, according to
the dispersion relation (1.17), the superlong-wavelength
waves with wavelength CRmM =/?Lo =cLo/R have the
maximum velocity of propagation L = lir/K >L0

(K=(k2 + l 2 ) l / 2 ^ > Q ) (under terrestrial conditions
L0zz2000-3000 km). In addition, cRmax is comparable to
the velocity of sound c. For such velocities and scales Eq.
(1.14), still applicable in the vicinity of L0, no longer works,
since the leading term in the expansion (1.13) does not con-
tain terms quadratic in W, which in this case are no longer
small. Including these terms results in the appearance in Eq.
(1.14) of an additional nonlinearity of the type (*2)x ("sca-
lar" nonlinearity in the terminology of Ref. 5), associated
not with advection of the velocity ([ A*,* ]) but rather with
the rise of the free surface of the liquid. This nonlinearity, as
shown in Refs. 32 and 33, is capable of compensating the
dispersing influence of the & effect on a wave packet, as a
result of which solitary anticyclonic vortices—Rossby
wave—can form in the system (in cyclonic vortices the com-
pensation of dispersion by the nonlinearity is impossible, as a
result of which there arises the significant cyclonic-anticy-
clonic asymmetry observed on these scales5'6).

From the viewpoint of the problems studied below, this
limit of the region of applicability of the equations of dynam-
ic meterology is not fundamental, but these equations make
it possible to eliminate the additional technical difficulties in
formulating an experiment and in the theory.

3. Global geophysical flows develop, as a rule, under the
conditions of rapid rotation, when the Ekman number is
small E = v/Qffl2 4* 1. In this case the transverse circulation
of liquid is concentrated in relatively thin Ekman (and, in
the presence of vertical walls or other sharp nonuniformi-
ties, also in the Stewartson) boundary layers,34"36 where ki-
netic energy is mainly dissipated. Thus in the earth's atmo-
sphere up to 70% of the dissipation of kinetic energy occurs
in the Ekman planetary boundary layer. For this reason, if
one is talking about short development times for motions
outside the boundary layers (in the "free" atmosphere) the
Obukhov-Charney equation can be used, as this is done, for
example, in short-range weather forecasting (one to two
days). In the opposite case viscosity must be taken into ac-
count.

We recall that the Ekman layer is a unique pump,
pumping liquid into or out of the free atmosphere at a rate
proportional to the vorticity at its outer boundary:

WE = (1 .18)

where SE is the effective thickness of the Ekman layer and
I" = curlz v.

A striking illustration of the operating principle of the
"Ekman pump" is Karman's problem of the motion of a
liquid in the vicinity of a rotating flat disk, the exact solution
of which is presented in many hydrodynamic texts (see, for
example, Ref. 10).

Using the relations (1.18) the equations of two-dimen-
sional motions and conservation of mass of the free atmo-
sphere assume the form

dp(//-6E)

dt

(1.19)

(1.20)

Here the density p = p(x,y,t)is not assumed to be constant,
in order to show explicitly in what follows how external in-
flows of heat create vorticity in the medium. In this case the
system (1.19) and (1.20) must be supplemented by the heat
transfer equation and the equation of state, for which the
Boussinesq approximation can be used37

P'=«p0r, l = (L21)

here/?' and 7" are the deviations of the density and tempera-
ture from their average values pt and 7\, a is the thermal
coefficient of volume expansion, cp is the specific heat capac-
ity of the liquid at constant pressure, and Q is the inflow of
heat to a unit mass.

From Eqs. (1.19) and (1.20) it follows that the equa-
tion of conservation of the potential vorticity (1.2) is now
replaced by the equation of transformation of the potential
vorticity (the equation of transformation of the potential
vorticity was derived in its most general form in Refs. 22 and
38):

d £ + / v ... E4- /
iTTJ^^^Tiff^r^+T^fcr1*- (L22)

Applying to Eq. (1.22), using Eq. (1.21), the same proce-
dure as in the derivation of the Obukhov-Charney equation
from the theory of conservation of the potential vorticity, we
obtain the following equation describing two-dimensional
geophysical flows with Ekman friction fE = — /IEu;39

-j-at
, ¥] + p - =

ox

(1.23)

(1.24)— n—, q —

where, as before, * = -gh/f,u = dV/dy, v= -
andHs = (H^)112 = #i/2v1/4/-1/4 is the thickness of the
outer Proudman-Stewartson layer.34'35

The equation (1.23) will be used below as the main
mathematical tool for the theoretical investigation of the sta-
bility and vortex structures of quasi-two-dimensional shear
flows. In this connection it is useful to make immediately
several remarks that are important from the viewpoint of the
interpretation and comparison of laboratory and natural hy-
drodynamic objects.

First of all, from the mathematical viewpoint the Ray-
leigh and Ekman friction enter in the same manner in the
equation of motion of thin layers of liquid (1.7) and global
geophysical flows (1.23). They differ only by the expres-
sions for the coefficients of friction (1.8) and (1.24), from
which it follows that in the latter case the measure of effec-
tiveness of the external friction is not the entire height of the
layer H0, but rather the quantity Hs which we shall discuss
in our analysis of the vertical structure of quasi-two-dimen-
sional flows. We note only that ffs is the minimum possible
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scale of the horizontal nonuniformity of a geophysical flow.
If the width of the front or the shear of opposite flows signifi-
cantly exceeds f f s , then the vertical velocities are insignifi-
cant. For this reason the criterion of two-dimensionality of
geophysical flows is the relation L^-HS and not L^>H0

(which is a much stronger criterion).
Second, it is obvious from the expression (1.24) for q

that external inflows of heat are a direct (and not mediated
through the temperature field) source of vorticity for a com-
pressible rotating liquid. Under laboratory conditions this
makes it possible to replace the heating with a mechanical or
some other "drive" that generates a flow with the required
profile.

Third, we note that the equations (1.23) can be used to
describe a magnetized weakly ionized plasma, where the
magnetic field provides the two-dimensionality and the fric-
tion against the neutral component gives the Rayleigh term
-AT.

Fourth, it is easy to show (see also Refs. 40 and 41) that
the equations (1.23) also describe quasi-two-dimensional
magnetohydrodynamic flows of a weakly conducting liquid
located in a transverse constant magnetic field B. Under the
assumption of small magnetic Reynolds numbers Rem

= UL /vm vm = Co/4fl-cr, where a is the electric conductiv-
ity and c0 is the velocity of light in a vacuum) and large
Hartmann numbers42 G = H0/8a (8a =c0B~'(yov/cr)1/2)
the coefficient of bottom friction is equal to AG = v/H 2

a,
where H0 = (J/05G )1/2. Thus in this case the thickness of
the Hartmann boundary layer42 <5G is the analog of the thick-
ness of the Ekman layer, while the magnetic field acts analo-
gously to the Coriolis forces.

Finally, in the last few years the Obukhov-Charney
equation has found application in astrophysics in connection
with the description of the dynamics of galactic disks. In this
case, as was pointed out by M. V. Nezlin, it is also necessary
to take into account the external friction, which could be
caused by the interaction of stars with the interstellar gas.

1.3 Similarity criteria and the possibilities of laboratory
modeling

In applying the equation of quasi-two-dimensional
flows (1.23) to the description of natural systems, such as
the earth's atmosphere and ocean, certain precautions must
be taken. First of all, we note an important limitation, caused
by the fact that baroclinic effects were neglected in the deri-
vation of Eq. (1.23). From the energy viewpoint baroclinic
effects are connected with the transformation of the so-
called available potential energy,l3'43 accumulated in a non-
uniformly heated liquid owing to buoyancy forces, into the
kinetic energy of vertical convective cells, which, in its turn,
is transformed into the kinetic energy of horizontal flows
owing to the deflecting action of the Coriolis forces. Buoyan-
cy forces appear when the isobaric and isothermal surfaces,
the angle between which is a local measure of the excess
potential energy, do not coincide. Because of this a convec-
tive or, as they say in meterology, baroclinic instability, gen-
erated by the nonlinear interaction of the velocity and tem-
perature fields (the advection of the temperature (vV)T),
can develop in the system. The main characteristic of the
convective instability of global geophysical flows is their ver-
tical velocity profile, and in addition the vertical gradient of
the velocity is proportional to the horizontal gradient of the

temperature (the so-called thermal wind ratio13'27). This
can be easily derived from the geostrophic wind equation
(1.9) by writing it in the Boussinesq approximation
(p' =p0aT") and differentiating with respect to the vertical
coordinate.

Thus natural geophysical flows are generated by both
the barotropic (connected with the horizontal shear veloc-
ity) and baroclinic (connected with the vertical shear veloc-
ity) mechanisms of instability. This is a significant obstacle
to the construction of a theory of the general circulation of
the atmosphere and the ocean, not to mention the difficulties
introduced by the orographic and explosive instability. It is
precisely for this reason that it is important to know the
contribution of each of the indicated mechanisms to the pro-
cess of cyclogenesis, especially since under laboratory condi-
tions any of them can be excluded, if it is so desired. Another
favorable circumstance for the application of the barotropic
model is that baroclinic processes develop more slowly than
barotropic processes (for example, the characteristic time
for assimilation of solar radiation by the earth's atmosphere
is of the order of two weeks), which develop over a charac-
teristic time of the order of several days.

Historically, greater attention was devoted first to the
baroclinic instability, and the "nonviscous" theory of the
barotropic instability was first increasingly studied only at
the beginning of the 1970s in connection with the problem of
the predictability of atmospheric motions.44 The "viscous"
theory, which, as will be shown below, fundamentally
changes the picture of cyclogenesis processes, remained vir-
tually ignored.

Scaling the length and velocity to their characteristic
values L and U, the main equation of the quasi-two-dimen-
sional flows (1.23) can be written in the following dimen-
sionless form:

^ /w , * njf-i i D u* __ p ABUT /?7 A^F I F
'"*" dx

(1-25)

dt

here

a- = — . B = VL

V

V

(1.26)

(1.27)

1/2In what follows we shall call the quantity H^
the effective thickness of the quasi-two-dimensional flow,
where 8^ is equal to the thickness of the Ekman boundary
layer 8E = (v/f)1/2 or the Hartmann layer 8Q and by defini-
tion is equal to (\/2)H0 for the standard shallow-water
model. This makes it possible to standardize the formula
for the coefficient of external friction A = v/H2 . The quan-
tity a2 is called the parameter of horizontal compressibility
(for a2 = 0 the Obukhov-Charney equation (1.14) is identi-
cal to the equation of motion of an incompressible two-di-
mensional film in the/? plane or on a sphere), B character-
izes the strength of the 13 effect, R „ is the standard Reynolds
number, and it is convenient to interpret RA as the Reynolds
number with respect to the external friction,45-46 which, it
should be noted, is made up of a combination of all dimen-
sional characteristics (H0, v, 8^, L, U) of the quasi-two-
dimensional flow. We also note that the a priori assumption
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TABLE I. The values of the parameters of the earth's atmosphere at the latitude <I>0 = 45°.

H0, KM

10

I,, KM

3-103

!. c-'

10~4

^E' KM

0.5

H., km

2.2

0, c-'rn-'

1.6 -10-"

V.cmVs

25

U, m/s

10

M

0,03

E

2,5-10-«

that the Mach number (M = U/(gH0)"
2), the Rossby

number (e = U/fL), and the Ekman number £"= v/fH2
0

= S2
E/Hl) are small ensures that the system is self-similar

relative to these parameters, which do not appear in Eq.
(1.25).

The complete investigation of the solutions of Eq.
(1.25), described by the four outer parameters, is a difficult
to grasp problem. For this reason, to choose a concrete direc-
tion of theoretical analysis and to formulate laboratory ex-
periments it is useful to have estimates of the values of the
indicated similarity criteria for real flows. As an example,
Tables I and II give the values of the dimensional parameters
of the earth's atmosphere and the similarity criteria for dif-
ferent scales of atmospheric motions. It should be noted that
in estimating the quantities indicated above v was taken to be
the coefficient of small-scale turbulence, which has a dissipa-
tive effect on flow with scales of the order of hundreds and
thousands of kilometers. From the tables one can see, in par-
ticular, that the conditions for M, e, and E to be small are
satisfied well everywhere except for the neighborhood
L = 100 km where £ ~ 1. An appreciable effect of the param-
eters a2 and B can be expected only for scales of the order of
1000 km and larger. Finally, the characteristic feature of
large-scale atmospheric flows is that for them Rv ^>RA.

In laboratory experiments21 with "shallow water" the
thickness H0 of the layer of liquid, for which water or its salt
solutions (visO.Ol cmVs) is used, is usually of the order of 1
cm, the characteristic horizontal scale of the flow L ̂  3-5
cm, and the characteristic flow velocity U~ 0.1-2 cm/s. In
experiments with a rotating liquid47"49 f!0~l s"1 (~10
rpm), UxO.3-3 cm/s, and Z,~2-10 cm. It is easy to verify
that in experiments of this type the conditions forM, £, and E
to be small are also satisfied. The value of the parameter B
need not be compared, since under laboratory conditions
this parameter can be easily controlled with the help of the
bottom relief (see the formula (1.15)). The values of R^
range from several tenths to tens, as in the atmosphere while
Rv ~ 10-103, i.e., it is two to four orders of magnitude lower
than in the atmosphere. Such a significant difference be-
tween the laboratory values of Rv and the values of Rv found
in nature casts doubt on the possibility of modeling atmo-
spheric processes under laboratory conditions and has often
served as a serious argument against the use of the results of
laboratory studies to explain the processes occurring in the

general circulation of the atmosphere. We note that the
characteristic laboratory value of the Obukhov-Rossby scale
L0 = (gH0Y'2/f ~50 cm, which also creates definite diffi-
culties in modeling flows for which a2~ 1. For this, either
the rate of rotation must be significantly increased5'6 (L0~ 5
cm with 100 rpm) or quite large cylindrical vessels not less
than 1 m in diameter must be used. Thus the questions con-
nected with laboratory modeling of large-scale atmospheric
flows require additional theoretical analysis; this in particu-
lar, will be discussed below.

2. THE LINEAR THEORY OF STABILITY

It has been well known7-50 since the last century that one
of the main reasons for hydrodynamic instability is shear of
the flow velocity, i.e., the existence of inflection points in the
profile of the flow velocity. For example, in the case of a
tangential discontinuity (Fig. 2) the motion of an ideal liq-
uid is exponentially unstable with respect to any wave-like
disturbance, whose increment depends on the wave number
k = 2-ir/A (A is the wavelength) and is equal to 7 = kU (t/is
the magnitude of the velocity shear). Figure 3 shows the
dependence y = y ( k ) for a "diffuse discontinuity" of width
D. One can see from Fig. 3 that eliminating the velocity dis-
continuity stabilizes the flow with respect to small-scale per-
turbations. These examples illustrate not only the fact of
instability of shear flows itself, but they also show that great
care must be exercised in idealizing the profile of a real flow,
on which the characteristics of stability strongly depend. In
any case, the presence of viscosity imposes certain require-
ments on the smoothness of the profile of the flow velocity;
neglecting them can lead to incorrect results.

The viscous and nonviscous theory of the stability of
strictly two-dimensional shear flows is now well developed.
But, as mentioned above, it is not directly applicable for de-
scribing quasi-two-dimensional flows. The situation, how-
ever, changes, if the results of the theory are given a different
hydrodynamic meaning. In this connection we shall now
briefly discuss the basic results of the classical theory.

2.1. The results of the classical theory of stability of two-
dimensional shearflows

The classical problem of the theory of stability for Eq.
(1.23) is formulated as follows. Let the "force" q depend
only on the transverse coordinate;/ and be directed along x.

TABLE II. The values of the similarity criteria for different scales of atmospheric motions.

L,km
£ = U/fL
a2

B
Rv

R>.

100
1

0.001
1.6-10-2

4-10*
20

300
0.3
0.01

1.4-10-1
1.2-108

6.7

500
0.2
0.03
0.39

2 -10s

4

1000
0.1
0,1
1.6

4-105

2

3000
(1.03
1

14
1.2-10"

0,7
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FIG. 2. The velocity profile and the dispersion curve of a tangential dis-
continuity.

Then Eq. (1.23) has a steady-state solution, describing the
"main flow" *00>) with velocity U(y), directed along the*
axis and depending only on y. The problem is to study the
stability of this solution with respect to small perturbations.

In the absence of the j8 effect, external friction, and
"two-dimensional compressibility" (13 = 0, A = 0, L 0 '
= 0) the linear problem of stability reduces to the problem

of finding the eigenvalues of the Orr-Sommerfeld equa-
tion 7-50

\U-(ct+ id)} (<p" — cccp2) — lAp = _i_ (<piv _
a*q>)

(2.1)

with the boundary conditions for attachment on the side
boundaries a<p = rf' = 0 at y = y\ and j>2; here <p is the di-
mensionless amplitude of a harmonic disturbance with the
stream function

ia (x — ct)], c = cr+ ic{, (2.2)

a is the dimensionless wave number and 7 = ac, is an incre-
ment that takes on a positive value for unstable modes. The
theorem of Squires,7'50 according to which the most danger-
ous disturbances are the disturbances lying in the plane of
the main flow, makes it possible to restrict the problem to
two dimensions. The purpose of the linear theory of stability
is to obtain the dispersion dependence y=y(a) of the
growth increment of the disturbance on the wave number.

Most results of the linear theory pertain to the particu-
lar case v = 0—the Rayleigh equation

[U - (cr + ict)] (cp" - U"<? = 0 (2.3)

with the impenetrability boundary conditions cup = 0 at
y=y{ andj>2- Rayleigh's equation, in contradistinction to
Eq. (2.1), is invariant relative to complex conjugation with
accuracy up to a change of the sign of c,. For this reason the
existence of a solution with negative c, implies the existence
of a complex conjugate solution with c, > 0. Therefore in the
non viscous theory any c,^0 means instability—a property

-a/2
U/2

FIG. 3. Same as in Fig. 2 for a "smeared discontinuity.'
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which the solutions of the Orr-Sommerfeld equation do not
have. In this connection it is appropriate to mention the im-
portant result of Lin and Wasov,50'51 according to which
only the growing (c,>0) solutions of Rayleigh's equation
are limits of the solutions of Eq. (2.1) as v—0. Some typical
dispersion curves, obtained by different authors, are present-
ed in Fig. 4.

The curve (/) in Fig. 4 corresponds to a piecewise-linear
profile

for \y\>i.
for

(2.4)

and is described by a formula first derived by Rayleigh (see,
for example, Ref. 52)

Y>«y[«r«« —(1—a*)*]1". (2.5)

The curve (s) for the sinusoidal profile U = sin y is given by
the approximate formula

(2.6)1 1—a2,2 \ i/a

which can be easily derived from the results presented in
Ref. 53. The dispersion curves (e) and (t) for the profiles
U — erf (y) and U = tanh y were obtained by numerical inte-
gration.54"56 We note that except in rare cases Rayleigh's
equation cannot be solved exactly analytically. The asymp-
totic expressions for the dispersion relations and eigenfunc-
tions in neighborhoods of the neutral points a = 0 and
a = as 7^0 (where 7 = 0) for different velocity profiles can
be found in Refs. 50, 55, and 7.

Figure 5a shows the dispersion curves obtained in Ref.
54 (see also Ref. S) for the viscous problem for U= tanhy
by numerical integration with different values of the Reyn-
olds number Rv. Figure 6 shows the neutral curves R *(a)
for the same profile and for U = sin y according to the for-
mula53

(2.7)

It is easy to see that, as opposed to the sinusoidal profile for
which instability starts at Rv > ̂ /l, the profiles (e), (/), and
( t) are always unstable, since in a neighborhood of a — 0 the
long-wavelength modes see the flow as a Helmholtz flow
U = y/\y\. For the same reason near a = 0 the behavior of
the dispersion curves in Fig. 1 is virtually independent of the
profile of the main flow. In addition, for profiles of the same
type ( e ) , (I), and (t) the maximum values of 7 are virtually

y
0.3

ff,2

0.2 OA 0.6 0,8 1.0 a

FIG. 4. Dispersion curves y(a) for U = sinj; (curve 2), eify (curve e),
tanh y (curve t), and a piecewise-linear profile (curve /) in the non viscous
case.5, 53,55,56
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FIG. 5. a) The dispersion curve y(a,Rv) for
C/ = tanhy.5/< b) Surface of neutral stability
F(a,RA,R„) = 0for U = tanhy.45
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identical. We note finally that above some critical Reynolds
number it is the long-wavelength modes a -»0 that are excit-
ed first.

2.2 The role of external friction

The importance of taking external friction into account
in concrete problems has been pointed out repeatedly in the
hydrodynamic literature. Thus in Ref. 9 taking dissipation
in the Ekman layer into account made it possible to match
the theoretical and experimental results for the stability of
shear flows of a rotating liquid, and in Refs. 57-59 this was
done for flows with a sinusoidal velocity profile in a thin
layer of liquid. We call attention especially to Ref. 60, where
a weakly nonlinear theory is actually constructed (see Sec. 4
for a more detailed discussion of this). In the general form,
however, the effect of external friction on the linear stability
of shear flows was analyzed only in Ref. 45.

Consider, once again, Eq. (1.23) with A ^0. The sim-
plest estimate shows that the term with A predominates over
the term with v, if the characteristic horizontal scale of the
flowL exceeds the quantity Lmin = (v/A)1'2 =#„, (see Sec.
1.4). But this condition is also the criterion for the flow to be
two-dimensional! Hence it can be expected that in quasi-
two-dimensional flows the main mechanism of dissipation is
external friction and not internal viscosity (in other words,
the vertical and not the horizontal diffusion of momentum).
Of course, this result must be approached with some care,
since, generally speaking, in the region of large gradients it
could be dangerous to delete from the equations the term
with the highest order derivative (vA2*). We shall study the
consequences of introducing external friction into the vis-
cous equation (1.23) (as before, setting f) = 0, L 0~~' = 0).

It is easy to see that from the viewpoint of the linear
theory of stability external friction only reduces the (dimen-
sional) increments of growth of wave disturbances by an
amount A without changing the form of the dispersion
curves and the eigenfunctions. Indeed, for perturbations of

the form (2.2) the Orr-Sommerfeld equation assumes the
form

(2.8)

\U — (CA + tea, + -—}] (<p" — a\) — £/>L \ <*«x ;j

«/?„

where the real and imaginary parts of the complex quantity c
are given an index A in order to distinguish them from the
case A = 0. This equation is identical to Eq. (2.1) to within
the substitution ca + (a/^J-'-.c,-. Recalling that
F=acu is the growth increment of the disturbance we find
that the dispersion relation for Eq. (2.8) assumes the form
F(a,R^,Rv)r(a,Rv)-R^\ where r = Y(a,Rv) is the
dispersion curve of Eq. (2.1). Now the critical curve (the
curve of neutral stability) is given by the equality

F («, /?fc, /?») SB 7 (a, flv) - R? = 0 (2.9)

(the increment of instability is equal to the damping decre-
ment determined by the external friction). Thus to study the
effect of bottom friction on the stability of shear flows it is
sufficient to use the well-known results of the classical theo-
ry, which thereby are given a new hydrodynamic interpreta-
tion. In particular, the dispersion curves in Figs. 4 and 5a can
be regarded only as curves of neutral stability of shear flows
taking into account the bottom friction, if R A~' instead of y
is plotted along the ordinate axis. However, from this, al-
most obvious, assertion there follow, after some additional
considerations, nontrivial results.

We shall first study two limiting cases of the critical
condition (2.9) for the problem (2.8): the limits RA -»oo
and Rv -» oo (R^ and Rv are independent dimensionless pa-
rameters). Evidently, limF = y(a,Rv) as /?/[-»oo and
lim F = y(a) — R^1 as Rv -> oo, where y = y(a) is the
dispersion relation of Rayleigh's problem (2.3). The latter
equality follows from the above-mentioned result of Lin and

15

10

0,25 0,50 0.75 «
a

10 -

5 -

0.25 0,50
b

0,75"

FIG. 6. a) Neutral curves for U—siny (curves) and tanh y( curve/)
without externaj friction as well as for U= siny with SV/RA — 0.1
(dashed curve), b) Same for U=sinyfor RV/R^ = 1 (curve./) and
oo (curve.?).
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Wasow50'51 for the positive eigenvalues 7 = ac{, whose role
R A ' plays. As one can see by comparing Figs. 4 and 6 taking
into account the new interpretation, the neutral curves cor-
responding to the indicated limiting cases differ fundamen-
tally in their behavior in the neighborhood of a = 0 and the
position of their minima (maxima). It already essentially
follows from here that the external friction gives a new quali-
ty to the characteristics of stability of shear flows. The ques-
tion, however, is whether this new quality is a consequence
of passing to the limit in the dispersion relation for the prob-
lem (2.8) as Rv — oo or, conversely, whether the new quality
is lost as a consequence of passing to the limit as RA -> oo.
Thus the problem reduces to studying the structural stability
of the neutral curves

= v (a, /?v), /?v = Rv («, (2.10)

given by the dispersion relation (2.9) in a neighborhood of
the points R ~ ' = 0 and R ̂  ' = 0, respectively, with re-
spect to small changes in their parameters.

In its general formulation this is a very complicated
mathematical problem. For this reason we shall confine our
attention to heuristic considerations, based on the results of
the classical theory and reinforced with a specific example
and experimental data. In the case at hand the set of points of
neutral stability, determined by the dispersion relation
(2.9), forms a unique conical surface in the space of the
parameters (a,R J ' ,R ~ ') shown in Fig. 5b for U = tanh y.
It is not difficult to construct the indicated surface by using
the data in Fig. 5a taking into account their new interpreta-
tion. The other mentioned profiles of shear flows evidently
also have analogous surfaces of neutral stability with the
only insignificant difference being that for U— sinj> the tip
of the cone lies not at infinity but rather on the R ~l axis at
the point .R- ' = lA/2~(seeEq. (2.7)). The horizontal and
vertical sections of the neutral surface coincide with the neu-
tral curves (2.10) and, as one can see from Fig. 5b, have a
horseshoe shape, with the exception of the single curve in the
plane/? 7 ' = 0(A = 0), which recedes to infinity or crosses
the R ~ ' axis at the point R~l = 1A/2".

Thus from the viewpoint of the new formulation of the
problem the classical critical curve is a special curve, struc-
turally unstable with respect to the inclusion of external fric-
tion. Conversely, the form of the critical curves taking exter-
nal friction into account is insensitive to inclusion or
exclusion of internal viscosity, i.e., the characteristics of sta-
bility do not undergo any qualitative changes as the param-
eter Rv is varied. We shall illustrate this for the example of
the concrete dispersion relation for U = sin y

/?» =

(2.11)

derived in Refs. 57 and 59. One can see that the curve

. .
is not the uniform (with respect to a) limit of the curve
(2.11)as/l0-0.

The qualitative change occurring in the neutral curves
when external friction is included is manifested, in particu-
lar, in the fact that above the threshold of stability the distur-

bances with finite wave number, corresponding to the maxi-
mum neutral curve, and not the long-wavelength modes, as
before, are excited first. Finally, based on what we said at the
start of this section, it can be asserted that in the case of real
quasi-two-dimensional flows with sufficiently large horizon-
tal scales (£>#„ ) the effect of viscosity is in general negli-
gibly small. This means that the transition to instability is
determined solely by the value of the Reynolds number with
respect to the external friction and the neutral curve R J
= R J (a) is found from the dispersion curve for Rayleigh's

equation R J = y(a)~l. In this case, based on the data of
Fig. 4, we can immediately predict the approximate values of
the critical Reynolds number RA ~ 5 and the dimensionless
wave number a0 = aodL ~0.5 of the disturbance arising
after the flow with the shear velocity profile of the type
U = tanh y becomes unstable (the index d denotes a dimen-
sional quantity).

Another important consequence61 of taking into ac-
count external friction is the "vanishing" of the critical lay-
er, since the singular point >>c of the equation of linear stabil-
ity (2.8), in which U(yc) = CA + i/aR* is displaced into the
complex plane (the critical layer is a neighborhood of the
point yc in which the phase velocity of the neutral distur-
bance with A = 0 is equal to the velocity of the flow). As we
shall see below, this substantially simplifies the "nonlinear"
analysis.

Finally, we note that the self-similarity of the problem
with respect to Rv for large values of Rv makes it possible to
eliminate the question of the correspondence between the
laboratory experiments and atmospheric flows and to ex-
plain why relatively regular vortex structures are observed
in the atmosphere on large scales (Fig. 7). The values of Rv

for the atmosphere are of the order of 1012, if the molecular

FIG. 7. map of isobars above the South Pole.
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kinematic viscosity is used for v, and of the order of 106, if the
value of the turbulent viscosity is used. At first glance this
means that the atmosphere should be a turbulent "boiling
cauldron." Now, when we know that the system is self-simi-
lar with respect to Rv and the determining parameter is R^,
the supercriticality of large-scale flows should be evaluated
with respect to the value ofR^. One can see from Table 2 that
RA fluctuates in a neighborhood of the critical value.

Finally it is pertinent to note that the conclusion that
the results of the classical theory of strictly two-dimensional
flows are structurally unstable is of a more general charac-
ter. An analogous situation will occur if stratification, a
magnetic field, or rotation of the system as a whole affects
the liquid instead of the external friction. In particular, the
critical curve for nonviscous shear flow of a stratified liquid
in the parameter plane (Ri, a) (Ri is Richardson's number,
Ri = gH&p/p0U

2, wheregis the acceleration of gravity, Ap
is the characteristic difference of the densities in the liquid,
H is the characteristic vertical scale, U is the magnitude of
the shear, andp0 is the average density), as is well known,
has a horseshoe shape with the maximum value Ri = Ri
= 1/4, (the theorem of Miles62'63). It is easy to understand
that the surface of neutral stability for a viscous flow of a
stratified liquid in the parameter space (Ri, R ~ \ a) will
also have a form analogous to that in Fig. 5b.

In connection with the analogy mentioned above it is
helpful to call attention to a circumstance that is at first
glance paradoxical. We recall that in the absence of internal
viscosity the critical value R * for quasi-two-dimensional
flows of a homogeneous liquid depends, though weakly, on
the form of the profile, while for stratified flows the critical
Richardson's number has a universal value, equal to
Rj* = 1/4, for any stable provile of stratification. This fact
has, however, a simple physical explanation, which, strange-
ly enough, is practically never encountered in the literature.

A stratified liquid can in a certain sense be regarded as
the hydrodynamic analog of a mechanical pendulum.64'65

We shall assume that the state of the pendulum is "stable," if
in its motion it does not reach the top position of equilibri-
um. Then the condition of stability can be formulated in the
form of the inequality 2H/K> 1, where 211 = 2mgh is the
potential energy of the top position of equilibrium relative to
the bottom position of equilibrium, and K = mv2/2 is the
kinetic energy of the pendulum at the bottom point. This
criterion can also be interpreted as the condition for the con-
version of the oscillatory energy of the pendulum into rota-
tional energy, and in application to the liquid as the conver-
sion of wave energy into rational energy.

We shall formally apply the criterion of stability to a
particle of liquid located in a stratified shear flow at a dis-

tance Az from some horizontal plane z = z0. Then taking
into account the action of the buoyancy force the quantity II
can be written in the form n = #AzA^ (kp=p0—p(z),
p0=p(z0)), and in a coordinate system moving with the
velocity of the liquid the quantity K at the point z = z0 is
equal to approximately -^00A«2 = p0(u(z0) — u(z))2/2.
Passing now to the limit Az-»0 and transferring the twos to
the right side of the inequality, we obtain

(A//Az)2 p0 (du/dz)2 4

where Ri, is the local Richardson number. It is easy to see
that an analogous criterion also holds for the global Ri-
chardson number, defined above. Thus we have explained
the universality of the critical value of Richardson's number
and why Ri* is equal to precisely 1/4.

3. LABORATORY EXPERIMENTS

3.1. Methods of laboratory modeling

Experimental investigations of the instability of shear
flows have a long history. However a significant part of the
papers is devoted to the so-called mixing layers (see, for ex-
ample, the reviews of Refs. 66 and 67), in which the instabil-
ity develops downstream. Here we shall study only experi-
ments with a forcing layer that is constant in time. In these
experiments the flows are of steady state or (for large super-
criticalities) of a self-oscillatory character.

Quasi-two-dimensional flows in such experiments are
realized either in thin layers of liquid or in a rotating liquid
(we shall term a liquid rotating, if its depth is much greater
than the thickness of the Ekman boundary layer), where,
according to the Taylor-Proudman theorem, the vertical
motions are impeded. As a rule, these experiments are per-
formed in cylindrically symmetric setups. The liquid con-
fined in a cylindrical or annular vessel can be put into motion
by relative rotation of the end boundaries, a volume force
(for example, Ampere's force) , or sources and sinks of mass.

The flow in all cases has some common features. First of
all, for low slip velocities, as a rule, it is possible to observe a
stable shear layer. As the velocity increases the shear layer
becomes unstable, and a regular chain of vortices of the
"cat's eye" type arises. Further increase of the velocity re-
sults in a decrease of the number of vortices generated by the
shear flow and the appearance of self-excited oscillations,
and the vortex regimes are no longer unique. However the
magnitude of the critical slip velocity and the number of
vortices n0 arising immediately after instability appears are
determined uniquely by the external parameters of the flow
and can be reproduced. Thus in all experiments primarily
the critical parameters — the magnitude of the shear and the

a b
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FIG. 8. Diagrams of the basic types of setups used for
modeling forced shear flows, a) Ref. 68, b) Refs. 70
and 102; c) MHD method (Refs. 71 and others) (B is
the magnetic field,./'is the electric current); d) method
of sources and sinks (Refs. 21 and others) (the thick
arrows mark the position of the sources and sinks).
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number of vortices n0—are measured. In all papers the de-
pendences of the number of vortices (or of the dimensionless
wave number obtained from it) on the amplitudes of the
shear are also presented.

One of the first experiments was the experiment of Ref.
68 on the investigation of the stability of a vertical shear
layer (Stewartson-Proudman layer) in a rotating liquid. The
flow was created in a rotating tank by means of slow relative
rotation of a disk with a small radius placed in the volume of
the liquid (Fig. 8a). In the experiment the rate of rotation of
the tank and the radius of the disk were varied.

An analogous apparatus was employed in Ref. 69 with
the difference that the thin disk was placed at the bottom of
the tank (the construction made it possible to generate both
an isolated shear and a jet flow). The angular rotational ve-
locity of the tank was the variable external parameter.

The stability of a shear flow in the narrow gap between
two rotating disks was studied in Ref. 70. Each disk consist-
ed of a small disk and a ring rotating with different angular
velocities (Fig. 8b). The angular velocities were low, so that
the liquid can be regarded as nonrotating. In the experiment
the thickness of the layer of liquid and the radius of the shear
were measured.

In Refs. 57 and 71-78 the magnetohydrodynamic
method was employed to model shear flows in a thin layer of
nonrotating liquid (Fig. 8c). It is based on the fact that a
weakly conducting liquid placed in a vertical magnetic field
starts to move under the action of Ampere's force FA cc j xB
(j is the electric current density and B is the magnetic field)
when an electric current is passed through the liquid in the
horizontal direction. By varying the form of the magnetic
field it is possible to obtain different velocity profiles of the
main flow. Flows with a sinusoidal velocity profile in a rec-
tangular cell57'75'76 (Kolmogorov flow20'53) and in an annu-
lar channel,71"74 flows with a narrow zone of shear77 (of the
type U = tanh>0, and stream flows78 have been studied. In
the experiments the thickness of the layer of liquid and the
width of the shear zone were varied; the width of the shear
zone was varied by changing the structure of the magnetic
field. It is pertinent to note that in all experiments the value
of Hartmann's number was small, so that the thickness of the
Hartmann layer was much greater than the depth of the liq-
uid, and the flow did not have a Hartmann profile, but rather

a Poiseuille vertical profile of the velocity. The opposite situ-
ation was studied in Refs. 40 and 41.

Another group of investigations is devoted to the study
of a rotating liquid with a "topographic" 13 effect, arising
owing to the sloping of the bottom of the vessel and/or of the
free surface. In Ref. 80 a jet flow was generated by a narrow
ring, rotating slowly relative to the vessel. In Refs. 47-49 and
80-82 the method of sources and sinks was used (Fig. 8d).
This method is based on the fact that forced pumping of the
liquid in the radial direction results in the appearance of
azimuthal flow as a result of the deflecting action of the Cor-
iolis force (this is discussed in greater detail below). We note
that in Refs. 81 and 82, in contrast to other papers, the flow
was turbulent.

Finally, in Refs. 5 and 6 a vessel with a parabolic shape
was employed. This made it possible to study the motion of a
layer with constant thickness and high rotational velocities,
when the scales of the flow exceed the Rossby-Obukhov ra-
dius. A shear was created by independent rotation of rings
placed on the bottom of the vessel, and the relative velocities
exceeded the velocity of gravity waves, i.e., the flows were
"supersonic."

In the next subsection we shall describe in detail the
results of the experiments of Ref. 77, which were specially
formulated in order to investigate the effect of external fric-
tion.

3.2. Shear and jet flows in annular channels

The shear flow in the experiments of Ref. 77 was gener-
ated by the MHD method. The main piece of equipment is a
system of annular magnets or electromagnets, which gener-
ates an azimuthally symmetric magnetic field, whose verti-
cal component changes sign in the radial direction. The ap-
paratus and the magnetic field generated by it are described
in detail in Refs. 71-73. A circular cell with annular elec-
trodes placed in it is placed on top of an electromagnet. A
layer of electrolyte (CuSO4 solution, p = 1.07 g/cm3, and
v = 0.012 cmVs) is poured into the cell. An electric current
(radially directed) from a stabilized source is passed be-
tween the electrodes. The liquid is put into azimuthal motion
by the action of Ampere's force, and the velocity profile is
determined by the profile of the magnetic field and the ar-
rangement of the electrodes.

FIG. 9. Experimental profiles of the azimuthal velocity for the
critical value of the Reynolds number for flows of the type

r'c" U= sin.y in an annular channel" and with "impedance" side
boundaries74 (a); 17= tanh.y (Ref. 77) for H0 = 3 mm (1), 4
mm (2), and 5 mm (3) (b) .c) Jet flow.7*

10 f, cm
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We point out that depending on the distance to the mag-
net the radial profile of the vertical component of the mag-
netic induction changes from almost rectangular (nearby)
to nearly sinusoidal (far away). By changing the configura-
tion of the electrodes and the position of the cell it is possible
to obtain different profiles of the azimuthal velocity. In the
experiments the following profiles were realized: a sinusoi-
dal profile with rigid and impedance (free surface) side
boundaries, flow with a narrow zone of shear (of the type
U = tank y), and a jet flow (Fig. 9). The flow was visualized
by placing aluminum powder on the surface of the liquid. All
measurements of the velocity were performed from track
photographs of the particles in the visualizer. In each experi-
ment the magnitude of the magnetic field, the depth of the
liquid, and the position of the cell were held constant, and
only the strength of the current was changed. This makes it
possible to assume that the profile of the force acting on the
liquid is constant and that the amplitude of the force is relat-
ed uniquely with the current strength. This amplitude is
characterized by the dimensionless Reynolds number
"along the head"

(3.1)
2npc//0v*

where 7 is the current strength, B0 is characteristic magni-
tude of the magnetic induction, p is the density of the liquid,
H0 is the depth of the liquid, v is the viscosity, c is the velocity
of light (in vacuum), and L B is the scale of variation of the
magnetic field.72'73 As we have already mentioned, in these
experiments Hartmann's numbers were small, i.e., 8a >//0,
so that in this case A = 2v/Hg.

For small values of the Reynolds' number the fluid flow
is azimuthally symmetric. The streamlines are concentric
circles. Above the critical value R J the azimuthal symmetry
is destroyed, and an azimuthally periodic rotational or wavy
(jet) flow with symmetry index n0, which depends on the
geometric parameters (Fig. 10), arises. For shear flows the
centers of the vortices lie on the neutral line of the magnetic
field (B2 = 0), where the point of inflection of the velocity
profile is located (see Fig. 9).

The expressions for the two main dimensionless critical
characteristics—the wave number and the Reynolds num-
ber with respect to the external friction—contain the charac-
teristic width of the shear L, which can be defined different-
ly. For this reason, for the quantities characterizing the
profile it is convenient to choose U0, the characteristic (max-
imum) value of the velocity, and U'(yc), the derivative of
the profile at the point of inflection y = yc; these characteris-
tics are determined uniquely from experiments. The the
length scale L is expressed by the formula L = U0/U'(yc),
and the expressions for the Reynolds numbers with respect

FIG. 10. Characteristic photographs of transcritical vortex regimes of
flows for velocity profiles of the type sin y in an annular channel (a, e) and
with "impedance" side boundaries (b, f), of the type tanh y (c, g), and jet
f low (d,h).

to the external friction and the dimensionless wave number
assume the form

V (yc) U' (</c), nL (3.2)
2v

TABLE III. The characteristics of flow with a narrow shear zone (U=tstnhy).

H,, MM

4

5
3
4
5
3

L, CM

0.6,
0.65
0,55
0.65
0,75
0,6

n«

7
7
7
7
5
7

«0

0-40
0,44
0,37
0,44
0,37
0.40

*v

32
32
42
35
38
65

<

8
8
7
8
8
8

H0, MM

4
5
3
4
5

L, CM

0,7
0.8
0.8
0.85
0,9

"o

6
5
5
4
4

OD

0.40
0,38
0,38
0,35
0,33

«v

50
48
122
62
52

<

8
9
8
8
8
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TABLE IV. The characteristics of flow in an
annular channel (V = sin y).

TABLE V. The coefficients of proportional-
ity.

HQ, IBTIl

10
10
10
10
10

L, cm

1.45
1.37
1.08
0.75
0.43

".

3
4
5
7

12

!

a,

0.42
0.53
0,51
0,50
0,50

*v

34
31
29
22
15

«*,

7
7
9

16
26

(R0 is the radius of the point of inflection of the velocity
profile or the maximum velocity of the jet).

We shall now describe the results. Table III gives the
critical velocities of the parameters for a flow with a narrow
shear zone.77 The width L of the shear for the same constant
depth HQ was changed by changing the position of the cell
above the magnet. One can see from the table that in a wide
range of values of H0 and A the quantities R J and a0 remain
approximately constant, while R * varies from 32 to 125.
The same constancy of R * and a0 was observed in experi-
ments with a sinusoidal flow with free boundaries76 R f
= 7 + 1 and a0 = 0.5 (in these experiments the width of the

shear layer was varied with the depth held constant; R *
ranged from 10 to 40), and for the jet flow78 R J = 7 + 1,
a0 = 0.7, and R * ranged from 10 to 45.

We note a result obtained in Refs. 73 and 77. In the case
when the width of the channel is much greater than H0 R f
remains constant and equal to approximately 7. Decreasing
the width of the channel, when it becomes comparable to the
depth of the liquid, results in an increase of R J (Table IV).
This is connected with the increase in the role of friction
against the side walls of the channel.

Aside from investigations of the critical parameters, in
Refs. 77 and 83 the characteristics of transcritical regimes
were studied. One of the most important such characteristics
is the amplitude A of the disturbance and its dependence on
supercriticality. Since, as follows from experiment, the tran-
sition occurs in the soft regime of excitation, it should be
expected that the square of this amplitude is proportional to
the supercritically s = (Re/Re* — 1) (in this case it is not
important how the Reynolds number is determined).

Supercriticality

FIG. 11. The squared tangent of the slope angle of the vortex ( 1 ) , the
squared dimensionless width of the vortex (2), and the mean-square
transverse velocity (3) as functions of the supercriticality for a flow of the
type tanh y.

1= .

~ s
p

s.
A

U = tanhj><!)

0.06

0,02

5

1
3

~85

U *tanby(2)

0,25

0,025

6

1
2

~120

0,15

0,06

14

2
5

~95

The mean-square value of the radial velocity (v2)^ on
the neutral line (along the axis of the stream) as well as the
width and slope angle of the vortex were measured from
photographs of vortex flows with different values of Reyn-
olds number. The streamlines near the center of the vortex
are closed, nearly elliptical curves (see Fig. 10). The slope
angle was determined as the slope angle of the major axis of
the "ellipse" relative to the neutral line near the center of the
vortex. It should be noted that near the center of the vortex
different "ellipses" actually have the same slope angle (p.
The width of the vortex / was taken to be the largest radial
distance between the streamlines which bend around the
vortex and pass through the hyperbolic points separating
neighboring vortices. We shall show that these quantities
characterize the amplitude of the disturbance.

Assume that to a first approximation the stream func-
tion of the disturbance is described by the formula

= U Ay + c.c. (3.3)

Then for sufficiently small amplitudes the following esti-
mates can be obtained for the tangent of the slope angle tan <p
and for (v2):

tg<p»2a41iMO)|, <»?>««' (0)1 (3.4)

Experiments showed that the quantities tg2£>, / 2 and {y2}
increase in proportion to supercriticality. Figure 11 demon-
strates this dependence for a flow with a narrow shear zone
(/is normalized to L while (v2) is normalized to the square
of the characteristic velocity of the flow with the critical
Reynolds number, t/J). The coefficients of proportionality
calculated from the experimental data for the dependences
presented are given in Table V.

The weak dependence (the relative constancy within
the limits of experimental error) of the ratios <I>/17 and A/i;
on the form of the velocity profile of the flow is interesting. It
shows that the slope angle and the width of the vortices can
indeed be used as a measure of the amplitude of the distur-
bance.

Figure 12 shows curves of < v2,) and the amplitude of the
average azimuthal velocity for a jet flow, also normalized to
U J. The experimental value of r; was equal to 0.08. We call
attention to the break in the dependence of the average azi-
muthal velocity on Re. It reflects the redistribution of ener-
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3 s+1

FIG. 12. The average longitudinal velocity (1) and squared transverse
velocity (2) at the center of a jet as a function of the supercriticality.

gy from the main flow to the disturbance and was observed
in flows with other types of velocity profiles.73'74

The flow with a jet-like velocity profile is distinguished
by the existence of an easily measured characteristic—the
azimuthal drift velocity of the vortices (Fig. 13). One can
see that it also depends linearly on the supercriticality. Writ-
ing the drift velocity in the form vd = cr + cogS/a—a sum of
the "linear" drift velocity and a "nonlinear" correction (see
Sec. 4.4)—it is possible to determine the quantities cr = 0.38
± 0.5 and co^/a = 0.18 ± 0.03.

Increasing further the Reynolds number results in in-
stability of the flow with «0 vortices and a reduction of the
number of vortices. Transitions between flows with different
symmetry indices are studied in detail in Subsec. 4.5. In ad-
dition, for large supercriticalities (as a rule, for s = 10-20)
oscillatory flow regimes, connected with the simultaneous
existence of two modes with different values of n, have been
observed.

3.3 Comparison with the linear theory

As follows form the experimental results presented
above, in particular, from the fact that for all flows described
R *R %, the linear theory of quasi-two-dimensional shear
flows with external friction is applicable to the data obtained
in the experiments. Indeed, in experiments with different
flow parameters the critical values R J and a0 remain the
same, while R * varies over a wide range. The measured val-
ues R^'xl are close to the value obtained in the linear theory
RA s;5 and are virtually independent of the form of the pro-

file. A disturbance with a finite wave number is most unsta-
ble, and in addition the experimental values «0^0.4
(U=tanhy) and a0;=0.5 (U=siny) are in good agree-
ment with the theoretical values.

Good agreement with both the results of the given ex-
periments and with the linear theory was found in Ref. 77 in
the analysis of the experimental results obtained by other
authors. For the Kolmogorov flow R J = 8 and a0 = 0.64.
With regard to the experiments of Refs. 68-70 it first needs
to be said that they refer to the degenerate case R^ = Rv.
Indeed, since the forcing action in them (velocity shear at
the ends of the boundaries) has the character of a tangential
discontinuity and is dissipated in the volume of the liquid by
viscous forces, the characteristic width of the velocity profile
is equal to the minimum width L = £min = (v/A)tn and
the values of RA and Rv are always equal. Nevertheless it
turns out that the theory works even here, at the boundary of
the region of applicability.

In the experiments of Ref. 69 the value R J^ 12 was
obtained for a stream flow and R J =; 15 was obtained for a
shear flow. The wave number a0 turned out to be less than
the theoretical values. The calculations performed in this
work based on the linear theory showed that the increase in
R * and the decrease in a0 are related to the influence of
internal viscosity.

In Ref. 70 the critical value of the Reynolds number was
equal to R % ̂  10 and a0 sO.4. Thus the influence of internal
viscosity appears here also, but it is not as strong.

In Ref. 68 there is an additional factor that stabilizes the
flow—the finite thickness of the disk that puts the fluid into
motion. Indeed, by virtue of the Taylor-Proudman theorem,
a vertical column of liquid strives to move without changing
its height, i.e., in particular, without intersecting the cylin-
drical surface constructed above the edge of the disk. This
could be why the values R J x 30-40 are much higher. How-
ever they do not change much when the external parameters
are changed, and the value of a0 remains equal to 0.4-0.5, as
before.

Thus the experimental results presented show that the
transition to instability is determined by the Reynolds num-
ber with respect to the external friction, and in addition R f
and a0 are virtually independent of the form of the velocity
profile of the main flow. We also point out that in experi-
ments with mixing layers66 close values were obtained
a0s;0.38, and the dimensionless growth increments of the
disturbances ysO.2 are close to the values obtained in the
theory and in the experiments (y = l/R J~0.1-0.2).

, cm/s

FIG. 13. The drift velocity of disturbances as a function of the supercriti-
cality for the first mode n = n0 = 5 (1) and for the second mode n = 4
(2).

4. NONLINEAR THEORY OF TRANSCRITICAL VORTEX
REGIMES

4.1. The methods of the nonlinear theory applied to viscous
flows

1. A powerful and universal practical method for solv-
ing the problems of mathematical physics is Galerkin's
method. In this method the solution is represented approxi-
mately as a linear combination of a finite number of func-
tions from some basis with undetermined coefficients and a
system of ordinary differential equations for these coeffi-
cients is obtained. We recall that the famous system of Lor-
enz84 was derived precisely as a Galerkin approximation of
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the equations of hydrodynamics in the problem of rolling
convection.

The classical formulation of the method for linear prob-
lems presupposes the use of the eigenfunctions of the station-
ary boundary-value problem as the natural basis, and this
immediately leads to the optimal values of the coefficients in
the expansion and automatically ensures that the boundary
conditions are satisfied. The choice of the natural basis in
nonlinear problems requires a special analysis. The main
heuristic requirement on the choice of the basis is that Galer-
kin's method must give a dynamical system of minimum or-
der with a given accuracy. It should be noted that even very
simplified Galerkin dynamical systems can reflect correctly
the qualitative behavior of the system being modeled (see
Ref. 59). For example, the stability and transcritical regimes
of a shear flow with a sinusoidal profile are described on the
basis of a third-order dynamical system. This will be dis-
cussed in greater detail below.

One of the commonly employed methods for choosing a
basis consists of using the set of eigenfunctions of the linear
problem of stability (thus, for the problem of stability of a
shear layer these will be the eigenfunctions of Rayleigh's
equation). We note that if the rest state is taken as the main
state (as in the case of convection), then the natural basis for
hydrodynamic problems will be the set of eigenfunctions of
Laplace's operator. This basis is often employed, but for the
problem of the stability of shear flows it still requires taking
into account a large number of terms in the expansion and
integrating numerically the dynamical system obtained.58'72

The problem is that neither the main flow nor the profile of
the most general disturbance, as a rule, belong to the basis
functions used for the expansion. There is, however, a spe-
cial case, when both these functions are very close to the
basis functions—this is the so-called Kolmogorov flow53

U=siny. The application of Galerkin's method to it in
Refs. 59, 85, and 86 made it possible, as was pointed out, to
reduce the problem to a dynamical system of third order
(triplet) and to trace the influence of external friction (see
below).

2. For shear flows the Stewart-Watson method,87'88 the
idea of which goes back to the works of Poincare and Lan-
dau, is often applied. It does not permit, like Galerkin's
method, studying strongly transcritical regimes with self-
excited oscillations and mode degeneracy, though it is not
critically sensitive to the velocity profile of the main flow.
The idea of the method consists of the following. The linear
problem of stability is studied as the first term in the expan-
sion in powers of the small amplitude A of the disturbance,
the expansion is continued, and Landau's equation10 is de-
rived for the amplitude

A = yA + KL | A |'M, A~e.<^\. (4.1)

The linear part of this equation describes the growth of the
disturbance owing to the direct interaction with the main
flow, and the nonlinear term describes the self-action of the
disturbance, which can limit or enhance the growth in its
amplitude depending on the sign of the Landau constant KL.
Physically the self-action is realized owing to the fact that
because of the nonlinearity of the hydrodynamic equations a
harmonic disturbance engenders its second harmonic, dis-
torts the average profile of the longitudinal velocity of the
flow, and then interacts with these secondary disturbances.

Technically the problem reduces to deriving and solv-
ing the equations for the disturbances up to second-order
infinitesimals inclusively (for large Reynolds numbers Rv

> 1 they have the form of Rayleigh's equations, but with a
nonzero right side). After this the evolutionary equation for
the amplitude is obtained as the condition that the third-
order equation be solvable. Its coefficients, including Lan-
dau's constant, are expressed in the form of definite integrals
of the first- and second-order disturbances.

In this review we omit a large number of investigations
devoted to the Stewart-Watson method, its proof, and it ap-
plications to strictly two-dimensional flows. We shall con-
fine ourselves here to only the most general considerations,
which are important for what follows.

We note that if the terms in Landau's equation (4.1) are
infinitesimals of the same order (~e3) , then the time deriva-
tive and the linear increment 7 must be of order e1. This
means that such a weakly nonlinear theory can describe only
slowly growing modes with wave numbers close to the neu-
tral wave numbers (for RA = 0 they are a = 0; as are the
left- and right-hand boundaries of the region of unstable
wave numbers; see Fig. 4). But real flows evolve primarily
owing to the most unstable modes (which, generally speak-
ing, are not "slowly growing"), so that results that are com-
parable to experiment cannot be obtained in this manner
(this can be seen in the corresponding papers; see, for exam-
ple Refs. 8 and 9).

There are several ways to make the increment of the
most unstable disturbance small. High viscosity (Rv~l)
suppresses the short-wavelength disturbances (Fig. 5a), but
it makes the problem more complicated, increasing the order
of the equations, since the linear problem of stability reduces
to the Orr-Sommerfeld equation. Stratification and the /?-
effect, conversely, leave disturbances with wave numbers
close to the second neutral wave number a^zas unstable.
The corresponding amplitude equations are constructed in
Refs. 89 and 90. Another method for limiting the region of
unstable wave numbers and reducing the increments is to
confine the flow in a narrow channel, which also suppresses
growth of long-wavelength disturbances (without affecting
the short-wavelength disturbances).58'91 Finally, a flow in
an annular channel, under conditions when only one wave
number out of a discrete series of admissable values falls into
the unstable region, and moreover near the critical wave
number as, was studied in Ref. 92.

External friction also permits making the increment of
the most unstable mode small, if the Reynolds number RA is
close to the critical value. In this case, however, the form of
the dispersion curve does not change, and the mode with
a = a0 remains the most unstable mode (see Fig. 5b). This
fact turns out to be very important for the theory.

The main technical problem of the Stewart-Watson
method, the problem of regularizing the critical layer, is re-
lated with the closeness of the wave number of the distur-
bance under study to the critical value (with A = 0). From
the mathematical viewpoint the critical layer is a singular
point yc of Rayleigh's equation (2.3) at which the denomi-
nator vanishes. If the wave number is close to the critical
wave number, C; = 0 (we recall that c — cr + ic-t is the com-
plex phase velocity of the disturbance), then the critical
point is close to the real axis, and although the numerator U"
(yc) also vanishes for the traditionally studied antisymme-
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trie velocity profiles U(y) = — U( —y), the singularity
still appears in the next orders of the expansion. To join the
solution of Rayleigh's equation to the right and left of the
singularity, special expansions of different type are con-
structed in the critical layer, depending on which of the
terms in the equation is dominant — the viscous, nonlinear,
or non-steady-state term.

We recall that in the presence of external friction and
for/{v> 1 the right side of (2.8) can be neglected, and in this
case the equation of liner stability reduces to Rayleigh's
equation

U - _ 0«q>> - U"<f = 0, (4.2)

The significant difference introduced by external fric-
tion lies in the fact that the term i/aRA , appearing in Eq.
(2.8) or (4.2) shifts the singular point into the complex
plane, and this term is not small if R^ is close to the critical
value R J . As a result the problem of the critical layer does
not arise. At the same time, it is necessary to solve Rayleigh's
equation with a nonzero right side and complex coefficients.
This can probably be done analytically only for a piecewise-
linear velocity profile V( y), while for profiles of other types
numerical methods must be employed. Such calculations for
flows with £/=tanhj> and U = coth~2 y (taking into ac-
count the/?-effect) were performed in Ref. 60. A compari-
son with the experiment of Ref. 69 showed good agreement.
However only the linear characteristics of stability — the
critical Reynolds number and the wave number of the most
unstable mode — were compared. In Ref. 61 Landau's con-
stant was calculated for a piecewise-linear profile and a col-
lection of smooth profiles in order to compare with the ex-
periment of Ref. 77, in which the growth of the amplitude of
the disturbance as a function of the Reynolds number was
measured for the first time for quasi-two-dimensional flows.
This made it possible to observe the new effects described in
Subsections 4.3 and 4.4.

4.2. Description of the transcritical regimes of a Kolmogorov
flow

The problem of studying the stability of a two-dimen-
sional flow driven by a spatially periodic force (the velocity
profile U= siny, — oo <y< oo ) was posed by A. N. Kol-
mogorov at a seminar he directed.53 Because of the spatial
periodicity it was possible to develop the theory of the Kol-
mogorov flow significantly farther than for shear flows of a
general form. The dimensionless equation for the stream
function in the case when there is no external friction has the
form

AY + [ A¥; Y] = — (A^F + cos y). (4.3)

Representing the solution in the form of a sum of the main
flow and a small perturbation, which is harmonic as a func-
tion of the longitudinal coordinate x with period 2ir/a, we
obtain the Orr-Sommerfeld equation for the transverse
structure of the disturbance. Then, representing the distur-
bance in the form of a Fourier series in y, the linear problem
of stability can be reduced to an infinite system of algebraic
equations for the coefficients of this series; this problem can
be studied by the methods of the theory of continued frac-
tions. A linear theory of the Kolmogorov flow was con-
structed in Refs. 53 and 93. From this theory it follows, in

particular, that the most unstable modes are the distur-
bances with small wave numbers a -> 0, and for a > 1 there
are no instabilities. According to Refs. 53 and 93 the critical
Reynolds number is R *v = 21/2, and the components of the
Fourier series for the disturbance decay rapidly as a -»0. The
latter fact makes it possible to represent the solution, to a
first approximation, in the form

i
¥ = Y0 (t) cos y + ^ *» (0 exp [i (ny + ax)]. (4.4)

-i

Denoting

(4.5)

we obtain the following dynamical system:59'85

A ,
/ / i t •» D~* /I f A
\J —] *n 1 — •*\v 11 — *^/»

a

^-ai/z-=?'
(4.6)

z^=—-

After the decaying component z+ is eliminated there re-
mains a very simple system of the hydrodynamic type
(SHT)-a triplet,59 which for

has a stable stationary solution U= 1, z0 = z_ =0, corre-
sponding to the main flow. For Rv > R * it becomes unstable
and a secondary flow with the following stream function is
established:

r = COS ̂  a«~"

/ *?f¥ \

v / sin ax -\ sin y cos ax \x \ «; /
(4.7)

Using the method of the theory of branching, developed in
Ref. 94 for the problem of the stability of spatially periodic
flows, it can be shown that the expression (4.7) is the first
term of the asymptotic expansion of the exact solution in a
series in the small parameter (Rv — R*)112 around R *.

The properties of the steady-state solution (4.7) are
studied in Ref. 97, where it is shown that it describes the
qualitative structure of the flow observed in the experiment
of Ref. 57, if the value of the dimensionless wave number
a = 0.5 close to the experimental value is used (we note that
the linear theory does not give adequate grounds for making
this choice, since the greatest supercriticality occurs in the
absence of external friction at small wave numbers a->0).
However there are a number of discrepancies between this
theory and experiment. Thus, according to the theory, as we
have already mentioned, the most unstable modes should be
the very long-wavelength disturbances. The critical Reyn-
olds number, according to the experimental data, is R *
zz 2000 and not 2'/2«1.4. Finally, it is shown in Refs. 85 and
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96 that the secondary steady-state and self-excited oscilla-
tory regimes of the Kolmogorov flow with small a are unsta-
ble with respect to the smaller scale disturbances. In this
respect the results of the direct numerical modeling per-
formed in Ref. 97 are interesting. They show that long-wave-
length modes can indeed be excited first in the flow, after
which they are replaced by longer-wavelength modes.

These discrepancies can be eliminated by taking into
account the external friction. The application in Refs. 57 and
59 of the methods of the linear theory, which were developed
in Refs. 53 and 93, to Eq. (4.3) with the additional term
— A4>/?A on the right side (where for a thin layer A. is 2v/

HQ) showed that the curve of neutral stability has the form
shown in Fig. 6 with the minimum corresponding to the
most unstable wave number «0 ~ 0.64. The critical Reynolds
number, according to the corrected theory, became R *
~ 1400, which also approaches the experimental value. In
this case Eqs. (4.6), supplemented with linear terms, which
take into account the external friction (see Ref. 59), correct-
ly describe the transcritical flow regimes.

It should be noted, however, that now the Galerkin ap-
proximation and the stream function of the secondary flow
can no longer be regarded as the first terms of an exact
asymptotic expansion, since the condition a -^ 1 is not satis-
fied. For this reason the good agreement between the ob-
served flow and the streamlines calculated according to Eq.
(47) (Fig. 14—according to Refs. 95 and 59) is a lucky
accident, due to which the next terms in the expansion turn
out to be small.

4.3. Model example with a piecewise-linear velocity profile

It was already pointed out above that the Stewart-Wat-
son method is more effective for studying the stability of
general shear flows. In this connection it is appropriate to
study a well-known example that illustrates this method
analytically and leads to, at first glance, a paradoxical result.

Piecewise-linear, or broken, velocity profiles U( y) are
distinguished by the fact that solving Rayleigh's equation for
them reduces to solving the elementary equation tf>" — a2i/>
= 0 on the linear sections, where U=0 (which gives

i/>= Cle
ay + C2e~ay), and determining the arbitrary con-

stants C, 2 from the conditions of joining at the break points
of U ( y ) . The method of solving Rayleigh's equation for
smooth profiles with the help of their approximation by a
sequence of broken lines is, in particular, based on this.98'99

Rayleigh himself obtained the solution of the linear problem
of stability for an antisymmetric profile.

= y, \y\
= 1,

(4.8)

(see Fig. 4 and the formula (2.5)). The effect of weak viscos-
ity (/?„> 1) on the linear stability of a flow with the velocity
profile (4.8) was investigated in Ref. 100. It follows from the
results presented in Ref. 100 that, in particular (weak) vis-
cosity does not decrease, but rather increases the growth
increment of the disturbances.

Since the Stewart-Watson method requires solving
Rayleigh's equations it is very tempting to study analytically
by this method a flow with the profile (4.8) in the presence
of external friction. Such a study was performed in Ref. 61,
but before we describe the results we must briefly discuss the
mathematical difficulties arising here.

The solution of Rayleigh's equation (2.3) with the ve-
locity profile (4.8) has the form

y<— 1,
\y\<\, (4.9)

FIG. 14. Photograph of the transcritical regime (a) (Ref. 57) and the
stream-lines calculated by Oalerkin's method (b) (Ref. 95) for a Kolmo-
gorov flow.

(the asterisk denotes complex conjugation), where the wave
number a and the phase velocity of the disturbance c = ic(

are related by the dispersion relation (2.5) (in which
Y = ac{). At the points j> = ± 1 the function (4.9) is contin-
uous, but its derivative is discontinuous. At these points the
second derivative U " ( y ) has the form of a 5-function
U"( y) = S(y + 1) — S( y — 1), and this singularity must
be compensated by the singularity of the second derivative
cp"( y). The function <p", which appears explicitly in the
further calculations, must thereby be written as the sum of a
regular part and a singular part. Moreover, speaking impre-
cisely, we can say that the same 5-function that describes U"
appears in the expression for <p ". More precisely, this means
the following.

Let 9n ( y) be a sequence of functions that converges to
the Heaviside function 0( y) =y/\y\ and Sn = 6n. Then all
integrals of the form

1 dnQ$dy (4.10)
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are determined and are equal to \/k. For this reason it can be
assumed that the corresponding integral J<50 kdy is also de-
termined for 9 and the delta-function S to which the se-
quence Sn converges. This will not be the case, if S and 6 are
defined by unrelated sequences of functions. Then expres-
sions of the type $98kdy become "forbidden," as in the stan-
dard theory of generalized functions.

The fact that U( y) and q>( y) are related by Rayleigh's
equation and for this reason have "the same" singularities is
very important in the construction of a weakly nonlinear
theory for the piecewise-linear velocity profile (4.8). The
point is that the higher-order functions of the distubance
have singularities already not only in the form of breaks, but
also discontinuities and <5-functions. As a result the coeffi-
cients in Landau's equation are expressed in terms of inte-
grals of the powers of a 5-function. By integrating by parts,
however, taking into account Rayleigh's equation, they can
be put into the form $80 kdy, and all final expressions are
uniquely determined.

In this manner in Ref. 61 the following expression was
derived for the critical Reynolds number R J in the presence
of external friction and weak internal viscosity (R ~ ' is of
the order of the amplitude of the disturbance)

R"i [ I - 2o.R? (1 - cf) cp] , (4.11)

and Landau's equation was derived neglecting internal vis-
cosity (we recall that Cj is given by the relation (2.5), in
which Y = ffCj)

S = - (4.12)

The expression (4.11) shows that a weak internal viscosity
destabilizes the flow (Cj < 1). A similar effect of dissipation
also appears in other physical situations, for example, in the
case of Poiseuille flow, whose profile does not have inflection
points, and the viscosity is the only source of instability.
Here, for us, it is more important that Landau's constant in
Eq. (4.12) is positive, so that the nonlinearity in this approx-
imation does not stabilize the growth of the instability. This
means that the excitation of the instability must be hard
("subcritical instability"), and the fifth-order term must be
taken into account. However, in the experiments of Refs. 77
and 78, described in Sec. 3.2, the soft regime of excitation
was observed, which clearly contradicts such a conclusion.
The calculations performed in Ref. 60 for the profiles
U=ta.nhy and coth~2j> gave the "correct" sign for the
Landau constant. This makes it necessary to study the de-

pendence of Landau's constant on the form of the velocity
profile of the main flow, since, as we have seen, the effective-
ness of the linear theory for a piecewise-linear profile does
not guarantee that the results of the nonlinear theory will be
in agreement with experiment.

4.4. The characteristics of the transcritical regimes of jet and
shear flows

The characteristics of stability for a large number of
smooth velocity profiles of the shear type were calculated in
Ref. 61. The results are summarized in Table VI.

In this table the values of R J, a0, and 17, which is in-
versely proportional to Landau's constant (with the oppo-
site sign) and measured in the experiments of Ref. 77 (see
Sec. 3.2), are given. The numbers denote the corresponding
velocity profiles:

1-4. Profiles with a linear section between the normal-
ized "tails" of the hyperbolic tangent: two limiting cases 1)
U= tanhy and 4) piecewise-linear; the cases 2 and 3 are
intermediate between cases and 1 and 4.

5. U= 3/4(tanh.y + l/3th4/3.y)— a profile for which
CT"(0) = 0, i.e., close in a certain sense to a piecewise-linear
profile.

6. U= (2/ir)tan-l(iry/2).
1. The profile of the flow of a viscous liquid driven by

piecewise-linear force.
8. U = siny with solid boundaries aty = ± jr.
From this table one can see that the linear characteris-

tics of stability, as expected, depend relatively weakly on the
form of the profile. At the same time, Landau's constant
changes substantially, right up to a change in sign "in the
neighborhood" of the piecewise-linear profile. It is especial-
ly instructive to compare the profiles 1 and 5, which, out-
wardly, are very close (the difference does not exceed 7%).
The values of a0 and R * for them are also close, and here
Landau's constant differs by more than a factor of 5. What is
the reason for this "sensitivity," i.e., the sensitivity of the
nonlinear theory with respect to a change in the profile?

The formal reason61 is that the third derivative q>'",
which is directly related with U'" (through Rayleigh's equa-
tion), strongly affects the results. But for close functions
U( y) U"' can differ very strongly, which is what happens in
this case. This can be given the following physical interpreta-
tion.101

We recall that by virtue of Helmholtz's theorem a parti-
cle of fluid in a nonviscous two-dimensional flow strives to
preserve its vorticity. For a plane-parallel shear flow this
means that the particle is "tied" to a definite value of the
vorticity £ = U'. This restiction on the transverse displace-
ments breaks down only on a streamline on which the gradi-
ent of the vorticity vanishes f = U" = 0 (the existence of

TABLE VI.

Ni

a.
/;*
1

i

0.46
5,3
0.011

2

0.45
5.5
0.5

3

0,43
5.5
<o

4

0.40
5.0
<o

5

0.45
5.6
0,06

6

0,65
6.25
0,003

7

0.38
6.7
0,025

s

0.57
6.25
0,02
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such a streamline therefore serves as a necessary condition
for instability of flow—Rayleigh's criterion). But the ampli-
tude of the transcritical regime, determined from the nonlin-
ear theory, depends on the extent to which the particle can
wander off its streamline. But this is now determined by the
second derivative of the vorticity £ " = U'" at the point where
the first derivative vanishes.

The effect of the strong dependence of Landau's con-
stant on the form of the velocity profile of the main flow has
several important consequences. First, it turns out that it is
impossible to compare directly the theory with experiment,
since it is practically impossible to determine reliably the
actual profile of the flow velocity with an accuracy up to the
third derivative. Second, in situations in which the velocity
profile can change weakly, for one reason or another this can
result in a significant change of the intensity of the vortices
engendered by the instability. It is important that such a
situation can be realized precisely in substantially quasi-
two-dimensional flows, when the unifying effect of the inter-
nal viscosity on the velocity profile is minimum, and it com-
pletely repeats the profile of the acting force. We note in
passing that the strong dependence of the intensity of the
vortices on the shape of the profile could be one reason for
the poor predictability of weather (see Sec. 5.4). Finally, the
experimental data of Ref. 77, presented in Sec. 3.2, confirm
the obtained result, since for two different velocity profiles
with linear characteristics of stability, differing by not more
than 20%, the values of rj differ by a factor of 3 and are equal
to 0.05 and 0.15, respectively.

The experimental values of 77 also agree in order of mag-
nitude with the theoretical values. In particular, they are all
small, v<^\, which explains the unexpectedly good applica-
bility of the weakly nonlinear theory under conditions of
very significant supercriticality s= (Re-Re*)/Re (up to
several units). Indeed, the characteristic magnitude of the
dimensionless amplitude of the disturbance is^ ~ (TJS) 1/2, so
that it remains small, and this is the condition of applicabili-
ty of the theory.

Analogous results are also obtained for jet flows.78 We
shall consider here only the nonlinear characteristics. Aside
from the amplitude of the disturbance (the theoretical val-

ues of?; for the three velocity profiles studied fall in the range
0.025-0.05 and the experimental value is equal to 0.08), for
jets there is one other parameter, easily measured experi-
mentally and allowing comparison with theory. This is the
drift velocity of the vortices. Its value of R^ = R* gives the
real part of the phase velocity of the disturbance according to
the linear theory, and the derivative with respect to Reyn-
olds number is determined from the nonlinear theory. This
derivative (in Ref. 78 it is denoted by co0/a) turned out to
depend weakly on the form of the profile and is equal to 0.2,
which is in good agreement with the experimental value of
0.19 + 0.03.

Thus we can state that the nonlinear theory of stability,
constructed taking the external friction into account, per-
mits describing the main features of real shear flows.

4.5. Change of the vortex modes and the characteristic size
of a vortex in developed quasi-two-dimensional flows

1. Up to now we have been discussing the development
of only the most unstable mode with comparatively low val-
ues of the supercriticality. Meanwhile, the qualitative pat-
tern of the behavior of strongly transcritical flows, when the
number of vortices starts to change, is also a common feature
of all experimental quasi-two-dimensional flows. This hap-
pens, as a rule, as follows. When the Reynolds number Re
(here it is not important how Re is defined) increases qua-
sistatically a stable principal mode with n0 vortices is ob-
served first. For some value Re = Re^' this mode becomes
unstable and there arises a flow with, in most cases, one less
vortex: n, = «0 — 1. When the Reynolds number reaches the
next critical value Re,-,^' this mode is in its turn replaced by
the mode «2 = «0 — 2, and so on, until self-excited oscilla-
tions appear. When the Reynolds number "moves" back
hysteresis is observed, i.e., the mode nk is replaced by the
preceding mode nk _ , with Re = Re< J > < Re^'Z,. From the
diagram shown in Fig. 15 it is evident that hysteresis actually
occurs, leading to nonuniqueness, i.e., the possibility of the
existence of regimes having different numbers of vortices
with one and the same Reynolds number—depending on the
history of the flow and random factors (see below).
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obtaining these regimes by forcing (b — n = n(, = 7,
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It should be noted that other variants are also possible.
Thus in Ref. 76 self-excited oscillations start immediately
after the main flow becomes unstable, and in Ref. 74 the
regions of stable stationary regimes alternate with transi-
tional regions with self-excited oscillations (the number of
vortices changes with the passage of time).2'

The mode changing processes were studied experimen-
tally in Ref. 103, where it is shown, in particular, that the
excitation of one of the possible regimes by impulsive forcing
is of a stochastic character (see Fig. 15). The results ob-
tained in studying the decay of a mode, when the Reynolds
number moves quasistatically out of the region of existence
of this mode, are of greatest interest. Under the experimental
conditions the modes nv = 6 and «2 = 5 were observed with
Re = Re7

2) and the modes n0 = l and n, =6 were observed
with Re = Re;" (see Fig. 15). It turned out that the proba-
bilities of excitation ofn l and n2 with decay of the main mode
n0 (Re, increasing, passes through Re^2') are equal to the
probabilities of their excitation by impulsive forcing with
Re = Re"'. The same thing happens with the decay of the
mode «2 = 5 on the left-hand boundary of the region of its
existence.

These results can be interpreted103 as evidence of the
fact that the autonomous physical objects are not separate
vortices, but rather vortex modes, which are created and
decay as a whole. In the process, the transitions between
regimes with different numbers of vortices occur not owing
to the coalescence or fragmentation of vortices but rather as
a result of the development of new, unstable modes from the
random noise background, followed by their nonlinear com-
petition and "survival of the strongest."3'

2. It is natural to try to describe transitions between
modes (at least the first transition — with ReJ," ) as resulting
from the development of an instability of the secondary sta-
tionary flow. This can be done by two methods. First of all,
the slow spatial change in the amplitude of the harmonic
(along x) perturbation can be taken into account. 104 In this
case the problem reduces to the Landau-Ginzburg equation

)), (4.13)

and the stability of the steady-state solution A 2 = —
relative to periodic disturbances (the modulation instabil-
ity) can be studied.

The second method is connected with a different gener-
alization of the theoretical scheme of the Stewart- Watson
method, when two disturbances with close wave numbers
and independent amplitudes Al and A2 are taken into ac-
count simultaneously. It leads to a system of two coupled
Landau equations

A1 = 7 !̂ + /Cu | A,. |2 4t + /Cu | At P Alt

Kn | ̂  |a A, + /Ci, ] A, |a At.
(4.14)

Both methods are essentially equivalent, since the same
disturbed flow can be represented as being the result of weak
modulation or addition of a different mode:

Without going into details, we note only that this approach
does not permit describing the most important feature of the

phenomenon under study, namely, it turns out that the main
mode a = a0 does indeed become unstable at some Re(2), but
the quantity Re(2)-Re* (where Re* is the critical Reynolds
number for the main flow) depends quadratically on Aa—
the wave number of the modulation (first method) or the
difference of the wave numbers of the disturbance and the
main mode (second method). The transitions to modes with
smaller and larger wave number thereby turn out to be
equivalent theoretically. But experiment, as we have already
mentioned, almost always demonstrates a transition to a
mode with a smaller wave number. It can be shown105 that
only a very special ratio of the coefficients in the system
(4.14), which cannot be obtained on the basis of the approxi-
mation studied, could give this asymmetry. It is also unclear
how the Landau-Ginzburg equation could be modified so
that it would correctly describe the process of mode chang-
ing.

3. In Refs. 5,69,74, and 77 the reduction in the number
of vortices with an increase of the Reynolds number is ex-
plained as follows. The back effect of the vortices on the
average longitudinal flow results in broadening ("spread-
ing") of the profile of the average velocity (this broadening
was demonstrated experimentally in Ref. 78 for a jet). But
for the widest profile the mode with the largest increment
has the smallest wave number, which is what leads to the
change of regime. This explains the physical mechanisms,
but does not permit constructing a theoretical model. A dif-
ferent approach is more fruitful.

In Ref. 69 the increase in the characteristic size of a
vortex is attributed to the so-called phenomenon of reverse
cascade of energy in two-dimensional turbulence. In a two-
dimensional liquid, as a result of the existence of an addi-
tional integral of the motion—the vorticity, the transfer of
energy along the spectrum in the inertial interval proceeds
from large wave numbers to small wave numbers, and not in
the reverse direction, as in the three-dimensional case.106

In Ref. 107 it is noted that the effect of the Ekman fric-
tion on rotating two-dimensional turbulence reduces to es-
tablishing the left-hand boundary of the inertial interval, in
other words, the maximum size of vortices in a two-dimen-
sional turbulent flow. This size is107 D^ = urE, where u is
the rms velocity of the turbulent pulsations, while
TE — H 0 / ( f l v ) l / 2 is the Ekman time. (It is obvious that we
can write D^ = u/A, having in mind a generalization to the
case of nonrotating quasi-two-dimensional turbulence.) The
size DI can be expressed in terms of the specific dissipation
of turbulent energy e, which gives101

<HT)"
Analogously to the Kolmogorov-Obukhov inner scale

in three-dimensional turbulence108 dv = (v/e3)1'4 the "out-
er" scale D^ determines the size of the vortex for which the
characteristic time of one revolution is of the order of the
dissipation time—large (smaller) vortices in two-dimen-
sional (three-dimensional) turbulence simply cannot exist.
However, the left-hand end (with respect to the wave num-
ber) of the inertial interval, in contrast to the right-hand
end, is the energy-containing interval and for this reason DA

can be regarded not simply as the maximum size of vortices,
but as the characteristic size of vortices.

We now note that the rate of dissipation of energy on the
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left-hand end of the inertial interval (e) is equal to the rate of
generation of energy by the external source, which, as in the
case of three-dimensional turbulence (see, for example, Ref.
108), can be estimated in terms of Reynolds number. As a
result the following estimate is obtained for D^ :109>110

£h.~R3^L (4.16)

(L, as previously, is the characteristic width of the shear).
The derivation of this dependence reduces to evaluating

the terms in the starting equation (1.7) and does not require
any assumptions other than the existence of the inertial in-
terval (in which energy generation and dissipation are insig-
nificant). For this reason the formula (4.16) can be applied
to nonturbulent shear flows for describing the growth of vor-
tices with increasing Reynolds number. These experi-
ments68'69'77'79'80 confirm the dependence (4.16). In particu-
lar, Fig. 16 shows the dependence (converted to logarithmic
coordinates) of the dimensionless wave number on the
Reynolds number according to the data of Ref. 69. The
straight line in this figure has a slope of — 3/4, which corre-
sponds to the dependence (4.16). It was drawn along the
lower boundary of the "cloud" of experimental points, since
the dependence (4.16) describes the maximum size of a vor-
tex, i.e., the minimum wave number (see also Fig. 21 in Sec.
5.3). Thus external friction is the determining factor not
only for weakly transcritical but also for developed quasi-
two-dimensional flows.

In conclusion we shall give an estimate101 of the scale
DA for the earth's atmosphere. Taking e = 5 cmVs3 (see, for
example, Ref. I l l ) we obtain Z>A ~ 1500 km, which is the
characteristic size of large-scale atmospheric motions (see
also the remark6' mentioned below).

5. GEOPHYSICAL APPLICATIONS

5.1. The effect of the Ekman layer on the stability of Rossby
waves

As follows from the similarity criteria presented in Sec.
1.4, under certain assumptions the earth's atmosphere can
be regarded as a thin layer of a nonviscous, incompressible,
rotating fluid. The fact that this fluid is "poured" on the
surface of a sphere plays a significant role in large-scale at-

Ificc

'1.5

2.0

2.5

3.0
2.0 2.5 3,0 3,5 In Re

mospheric motions. As a result the effective rotational fre-
quency is equal not to fl0 = 27T/day but rather to the projec-
tion on the normal to the earth's surface fln sin <p, where <p is
the geographical latitude. As a result each particle of fluid,
striving to conserve vorticity, turns out to be fixed on its own
parallel, and when it is deflected along the meridian a return
force arises. This is the mechanism of the oscillatory motion
in Rossby waves.

Since transverse motions are concentrated in a small
interval of latitudes, to study the stability of Rossby waves it
is sufficient to use the /7-plane approximation, in which the
stream function of an elementary Rossby wave (neglecting
two-dimensional compressibility, kL(} > 1) has the form

ty= Acos[k(x + ct)], c= —. (5.1)\ £2

This solution of the Obukhov-Charney equation describes a
periodic shear flow, related to the Kolmogorov flow, but
with an explicit time dependence. Such a shear flow may
turn out to be barotropically unstable; this was first pointed
out by Lorenz44 in connection with the problem of the pre-
dictability of atmospheric motions. The decay and paramet-
ric mechanisms in the "nonviscous" theory of instability
were studied in a series of subsequent works (see references
in Ref. 39). Here we shall consider the question of the effect
of the Ekman friction on the barotropic instability of Rossby
waves.39

As in the case of the Kolmogorov flow, the equation of
the linear problem of stability (linearization of Eq. (1.23)
relative to (5.1)) has periodic coefficients, which makes it
possible to seek the solution in the form of a Fourier series.
The infinite system of algebraic equations for the coefficients
of this series is solved by the continued-fraction method pro-
posed in Ref. 53 and extended in Ref. 39 to the case of com-
plex coefficients (their imaginary parts differ from zero
owing to the fi effect). The stability of the wave relative to
disturbances periodic in x and_y with period along the longi-
tudinal coordinate x that is a multiple of the period of the
wave itself, was studied. The threshold of stability with re-
spect to the amplitude of the velocity is given by the formula

FIG. 16. The dimensionless wave number as a function of the Reynolds
number in the experiment of Ref. 69 on a logarithmic scale. The slope of
the straight line is equal to — 3/4.

where A. is the coefficient of Ekman friction and /is the trans-
verse wave number of the superposed disturbance.

The result is presented in Fig. 17 in the form of neutral,
curves in the coordinates "transverse wave number-wave
amplitude" taking into account and neglecting the external
friction (for the parameters of the real atmosphere of the
earth). One can see that the external friction, as in the pre-
viously studied cases, does not simply increase the threshold
of stability (in this case—from zero to a finite value), but it
also separates the most unstable wave number. It is signifi-
cant that the Rossby wave with amplitude 12 m/s and global
wave number (the number of periods fitting into the latitude
circle) «0 = 6, given by Lorenz44 as typical, turns out to be
unstable in the absence of external friction and stable when
external friction is taken into account (circle in Fig. 17). It
should be noted that Rossby waves, being a large-scale ele-
ment of the general circulation of the atmosphere, carry in-
formation about the weather. For this reason, it is very im-
portant to take Ekman friction into account when describing
the Rossby waves.
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FIG. 17. The critical curves for Rossby waves with dimensionless wave
number n = 6: /) according to nonviscous theory,44 2) taking into ac-
count the Ekman flow.39 £ is the dimensionless transverse wave number of
the disturbance.

5.2. The three-dimensional structure of the quasi-two-
dimensional flows of a rotating fluid

Since for the atmosphere Ekman's number E = v/ClH I
is small, the structure of the flows in it has a number of
characteristic features, the most important of which is the
appearance of boundary layers on solid surfaces and above
singularities in the boundary conditions (this could be
breakdown of smoothness of the bounding surfaces, sharp
velocity shears or localized sources and sinks of mass). Dif-
ferent examples of boundary layers of this type can be found
in the book of Ref. 36. Here we shall concentrate our atten-
tion on the question of the extent to which the motion of a
rotating fluid can be regarded as two-dimensional. In this
connection we shall study the "fine structure" of the steady-
state zonal shear flow of a rotating liquid under the tradi-
tional assumption that the Rossby Ro = U0/L£l and Ekman
numbers are small.

In this case the smallness of Ro makes it possible to
linearize the Navier-Stokes equations with respect to the fast
general rotation. The small Ekman number, however, ap-
pears as a coefficient in the terms with the highest-order
derivative (viscous terms), as a result of which the problem
can be separated into two problems—for the boundary layer
on horizontal boundaries (on the bottom and, possibly, on
the cover—these are the Ekman layers) and for the "free
atmosphere" outside the boundary layers. Then the circula-
tion in the free atmosphere, taking the Ekman layer into
account, is described by the following equations (see, for
example, Ref. 36):

(5.2)2 (X (y, 0) - XB (y)) = - £l/" («in, 0) - UB (y)),
2 (x (y, i) - x« (y)) = -£1/J («(y , i) - «„ («/)),

where u is the longitudinal (zonal) velocity, % is the stream
function of the transverse circulation in the meridional plane
( y,z) (do not confuse with the horizontal stream function!),
%tib and wtib are the boundary values at the top and bottom
boundaries, and the lengths are normalized to the depth of
the fluid. These equations were obtained by the usual meth-
od of joined asymptotic expansions. They refer to a problem
that is homogeneous along the longitudinal coordinate x.

The cylindrically symmetric case can be studied analogous-
ly.

We note that it follows immediately from the form of
the boundary conditions that a flow can be excited, with
equal success, by the diiferential motion of boundaries ( u )
or by sources and sinks of mass at the boundaries (x).

Analysis of Eqs. (5.2) shows34'35 that there are two
characteristic scales 8^ = E 1/3and<5£4) = £"M. If the char-
acteristic distance over which the boundary conditions
change greatly exceeds the largest of them <5£4)), then the
terms with the small parameter E in Eq. (5.2) can be ne-
glected, and the flow is two-dimensional, d /dz = 0. In labo-
ratory experiments, however, it is much more convenient to
work with discontinuous boundary conditions—when sepa-
rate annular sections of the bottom move with different ve-
locities, or sources and sinks of mass, localized on circles are
present (discontinuity in the boundary values of u or x, re-
spectively). In this case free Proudman-Stewartson layers
arise above the discontinuities. They have a double struc-
ture: in the inner sublayer 8^ the viscous forces smooth the
discontinuity of the vertical velocity while in the outer sub-
layer S(

s
4' they smooth the discontinuity of the zonal veloc-

ity. Thus intense vertical motions occur predominantly in
the Proudman-Stewartson layers, and the entire transverse
circulation is concentrated in the Ekman and Stewartson
boundary layers (a diagram of the transverse circulation for
the case of a jet flow excited between the annular source and
sink of mass, as in Ref. 80, is presented in Fig. 18b). In the
inner sublayer the dependence on the vertical coordinates is
already significant. To establish how significant this depend-
ence is, it is necessary to solve the system (5.2).

FIG. 18. a) Theoretical (curve) and experimental (dots) velocity profiles
of the jet in Fig. b;8" the velocity is normalized to the maximum value and
the transverse coordinate is normalized to the position of the sources and
sinks, b) Schematic diagram of the streamlines of transverse circulation
for a jet exicted in a rotating fluid by a source and sink (arrows). The
Ekman (<5E ) and Stewartson (Ss) layers in which the transverse circula-
tion is concentrated are indicated.
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The solution of the system (5.2) is sought with the help
of a Fourier transformation with respect to the transverse
coordinate>». Then the Fourier integrals obtained can be em-
ployed to obtain the asymptotic expansions (asE-*0) of the
series36'69'79 approximating u( y,z) and ^(^z). However
these series converge very poorly in the region, of interest to
us, near the discontinuity in the boundary condition. For
this reason it is better to study the asymptotic behavior of the
solutions in this region starting directly from their integral
representation. By this method it can be shown80 that even in
the inner Proudman-Stewartson layer the dependence on the
vertical coordinate is significant only in an asymptotically
small region z < E '/8, y — y0 < E3/ti ( y0 is the position of
the discontinuity). This makes it possible to regard, with
good accuracy, the flow in the experimental apparatus as
two-dimensional and to calculate its profile. The theoretical
and experimental velocity profiles according to the data of
Ref. 80 are compared in Fig. 18a.

5.3. Effect of differential rotation

The /? effect, which leads to the appearance of Rossby
waves, also significantly affects the stability of latitudinal
flows. Indeed, the total vorticity is now equal to U' — f,
where/is the Coriolis parameter (the doubled effective rota-
tional velocity of the system as a whole; the minus sign is
connected with the chosen direction of the axes and the
earth's actual direction of rotation, and for instability of
shear flow it is now required that somewhere the sum
U " — P should vanish, where /? =/' appears in Eq. (1.14).
This generalization of Rayleigh's criterion was obtained by
KuoinRef. 112.

It is obvious that the /? effect can in principle suppress
the instability of the shear flow, if/9>max U".4] For this
reason it is important to clarify the role of external friction
compared with the /? effect in the real atmosphere. This was
done in Ref. 101; here we can confine ourselves to a qualita-
tive analysis only.

Let the velocity profile U( y) of the main latitudinal
flow be fixed and let only its amplitude U0 and width L vary:
u ( y) = U0 U( y/L). We shall assume that the profile is anti-
symmetric and normalized so that U'(0) = U( ± oo ) = 1.
We denote m = max U". We shall determine the form of the
neutral curve of stability in the coordinates (L,l'f)). In the
absence of external friction stability is determined by the
modified Rayleigh criterion, in accordance with which the
critical velocity is expressed by the formula

Ul = m (5.3)
m

(the corresponding parabola in Fig. 19 is marked with the
letter 0). On the other hand, in the absence of the 0 effect the
critical velocity is

Ifa, m/s
200

Yo
(5.4)

where y0 is the maximum linear increment for the profile
U( y), obtained from the solution of Rayleigh's equation
(the curve A. in Fig. 19). It is obvious that the total neutral
curve taking into account both stabilizing factors passes
above these two curves and asymptotically approaches Eq.
(5.3) for large L and Eq. (5.4) for small L. In other words,
there exists the characteristic scale LA/3 = mA, /yg/3 (the
point of intersection of the curves (5.3) and (5.4), such that

100

u 1 L^p 2 L,10S km

FIG. 19. The neutral curves for a shear flow under the influence of exter-
nal friction (curve /i), the (3 effect (curve 13), and both factors together
(thick curve)"" with the values of A and /3 characteristic for the earth's
atmosphere.

for L > L^p the 0 effect predominates and for L < L^ the
external friction predominates. For estimates we shall use
the values of A and /?, presented in Sec. 1, for the earth's
atmosphere at middle latitudes, and the characteristic value
y0;r0.2, and we note that the minimum possible value of m
for antisymmetric monotonic profiles is mmm = 1/2 (it is
achieved on the profile with a piecewise-constant second de-
rivative; the maximum value m = oo corresponds to the
piecewise-linear profile). This estimate gives

, (1/2) - 5 - 10-° s~ '
0.2 • 1,6-

1000km, (5.5)

and in addition, since here the minimum value of m was
used, this is a lower limit. Hence, under the conditions of the
earth's atmosphere external friction cannot be neglected,
even for the flows with the largest scales.5'

The influence of the (3 effect on the stability of shear
flows was studied experimentally in Ref. 80 on the example
of a jet (we recall that the 13 effect arises in a fluid whose
depth varies as a function of the radius). The parameters of
the apparatus made is possible to generate flow with L>/l/lj8,
and the results thus fall primarily on the curve (5.3) (Fig.
20; in this figure the dots show all the observed stable re-
gimes and not only those that are close to the neutral curve).
It should be noted that although the theoretical profile of the
flow velocity agrees well with the experimental profile (see

SO 80 Lfi/*.

FIG. 20. Diagram of stability of a jet flow:*0 the dots denote the observed
subcritical regimes.
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Subsection 5.2), the value of the dimensionless maximum of
the second derivative m, calculated from the experimental
data on stability with the help of the formula (5.3), was
equal to mexp =; 1/2 and not m = 2, as if found from the theo-
retical profile. This shows once again how sensitive the char-
acteristics depending on the higher order derivatives can be
to "small" differences between the experimental and theo-
retical profiles.

The P effect also affects strongly transcritical, includ-
ing turbulent, flows, since as the scale of the vortices in-
creases they start to transform into Rossby waves. In the
investigations devoted to this phenomenon (Refs. 28 and 29;
see also the review of Ref. 113) it is shown that this occurs on
scales of the order of e~l/5/3 ~3/5 (£ is the specific dissipa-
tion) and results in the formation from isotropic turbulence
of structures, stretching in the latitudinal direction. From
here it follows that in the presence of the/9 effect the formula
for the characteristic size of vortices in developed quasi-two-
dimensional flows (4.16) must be modified. Apparently two
characteristic dimensions must appear—in the latitudinal
and longitudinal directions. In addition, in bounded vessels
an alternative mechanism of dissipation—transport of ener-
gy by Rossby waves to the side walls6'—must be taken into
account.

The formula (4.16) nonetheless is applicable also for
the experiments of Refs. 79 and 80, in which a jet in the/9
plane was modeled (the graph of the dependence of the wave
number on the supercriticality, constructed in Refs. 109 and
110 using the results of Ref. 80, is presented in Fig. 21). This
is explained by the fact that Rossby waves, which can propa-
gate only "westward," were channeled in these experiments
in an "eastward" jet and could not carry off the energy of the
flow to the side walls. For this reason external friction re-
mained the main mechanism of dissiption.

CONCLUSIONS

The main physical conclusion following from the fore-
going analysis that the characteristics of stability of quasi-
two-dimensional shear flows can be divided into two groups:
virtually independent of the form of the profile (in particu-
lar, the critical Reynolds number, the wave number of the
most unstable mode) and sensitive to the form of the profile
(the second Landau constant, responsible for the intensity of
vortices in transcritical flows). This means that even weakly

Ina
0

-0.5

-1.0

-1.5
0.5 1.0 2.0 ln»t/P»*

FIG. 21. The dimensionless wave number as a function of the Reynolds
number for transcritical regimes of a jet flow*" on a logarithmic scale. The
slope of the straight line is equal to — 3/4.

transcritical regimes of quasi-two-dimensional shear flows
are poorly predictable, since under natural conditions some
physical factors always contribute to changing the profile of
the main flow. In the atmosphere, for example, the profile of
the zonal flows is changed primarly by baroclinic effects as
well as the interaction (though weak) of the motions in the
boundary layer and in the free atmosphere.

If the appearance of the vortex structures can be ex-
plained by the small supercriticality of large-scale flows,
with respect to which the small-scale turbulence plays a dis-
sipative role, then their spatial-temporal variability is con-
nected with the weak change in the velocity profile of the
main flow. Since in the process the intensity of the vortices
varies much more strongly than their size and form, such
formations can be classified as coherent structures. This ex-
plains one of the main mechanisms of self-organization in
turbulent flows.

In quasi-two-dimensional motions the reverse cascade
of energy along the spectrum, bounded above by the scale
DA, in which the main part of the kinetic energy is concen-
trated, also contributes to self-organization. With respect to
external friction, owing to the small-scale tubulence, such
motions are weakly transcritical (precisely because dissipa-
tion on the scale Z>A is related with external friction). Thus
external friction plays a fundamentasl role in the formation
of many hydrodynamic processes, which cannot be under-
stood correctly if it is neglected.

We thank M. V. Nezlin for carefully reading the manu-
script and for a number of valuable remarks.

"A barotropic fluid is a fluid whose equation of state is given by the de-
pendence/) = p(p), i.e., the pressure is a function of the density only.

2)This unexpected result was obtained in the experiment of Ref. 102. Ac-
cording to Ref. 102, the lower boundaries of the regions of existence of
the modes Re^1 fall precisely on the neutral curve Re(a). In the experi-
ments of other authors, as Re decreases quasistatically the mode nt

becomes unstable before the critical Reynolds number, determined on
the basis of the linear theory for the corresponding wave number, is
reached. Nonetheless the result of Ref. 102 appears to be reliable, since
the authors of this paper observed a reduction of the amplitude of the
mode right up to the complete vanishing of the mode at the moment
when Re = ReJ(, as should happen when the neutral curve is reached.
The preceding mode nk_, was excited only after this. One possible ex-
planation is that the carefulness in preparing the apparatus, to which
great importance was attached in Ref. 102, reduces to a minimum the
random perturbations necessary in order for the instability of the sec-
ondary transcritical flow to develop during the observation time (the
characteristic time of this instability can be much longer than for the
instability of the primary flow).

3)In some physical situations vortices can be regarded as autonomous ob-
jects. Thus under the conditions of the experiments of Ref. 5 screening at
the Rossby-Obukhov radius effectively isolates vortices from one an-
other. Strong turbulence possibly plays an analogous role in Refs. 81 and
82. We note that in both cases it is possible to observe regimes with one
localized vortex.

4lWe note that the form of the velocity profile plays a significant role here
also. Thus the "angular" profile of the piecewise-linear type is not stabi-
lized by the /? effect.

"It is interesting that from the results of Ref. 92, in which the main stabi-
lizing factor was the (i effect and external friction was taken into account
as a small correction, it follows that even in this case the friction funda-
mentally changes the behavior of the steady-state transcritical regimes.

6)Here it should be noted that in the real earth's atmosphere quite a num-
ber of mechanisms capable of affecting in some way the characteristic
size of vortices is present. It is remarkable that the corresponding scales
of the dimension of length—the earth's radius, the Rossby-Obukhov
radius, the "outer" scale of turbulence, and the scale e~"s/S ~3 ' 5 men-
tioned above—are close in order of magnitude. This, in particular, deter-
mines the extreme complexity of the atmosphere as an object of research.
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