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1. INTRODUCTION

Soon after Maxwell formulated his celebrated equa-
tions, it was realized that the field of a moving source (e.g., a
point charge in uniform motion) differed in geometry from
the field of a source at rest, and the differences would become
more pronounced as the velocity of the source approached
the velocity of light. An exact solution of Maxwell's equa-
tions for the field of a point charge in uniform motion was
first derived by Heaviside. He was apparently also the first to
understand that the case in which a charge is moving at a
velocity greater than the velocity of light in a medium would
be of particular interest.' Des Coudres and Sommerfeld2 lat-
er took up a problem related to that studied by Heaviside: the
motion of a charge not in a refractive medium but in empty
space, in the case in which the charge is moving at a velocity
above the velocity of light in free space. A common aspect of
the results of Heaviside, on the one hand, and those of Des
Coudres and Sommerfeld, on the other, was that the field
propagation velocity (the phase velocity of the electromag-
netic waves) played the role of a threshold: When this veloc-
ity was crossed, the field of the source changed abruptly in
nature. It was shown that if the source velocity goes above
the velocity of light in the medium in which the source is
moving (Heaviside1) or in free space (Des Coudres and
Sommerfeld2) a characteristic type of radiation should arise.

Soon after the papers by Des Coudres and Sommerfeld
were published, the special theory of relativity was formulat-
ed. It turned out that material objects could not move at
velocities above the velocity of light in free space. The results
of Des Coudres and Sommerfeld were thus no longer taken
seriously. Their work was soon forgotten, and the work of
Heaviside along with it, although Heaviside had studied a
physically realizable case: the motion fo a charge in a medi-
um (rather than in free space) at a velocity above the phase
velocity of waves in the medium. The work by Heaviside as
well as that by Des Coudres and Sommerfeld lay forgotten
until the discovery of the Cerenkov effect (or the "Vavilov-
Cerenkov effect") and the derivation of a theory for this
effect by Tamm and Frank.3

For the discussion below it is important to recall one
aspect of the prohibition against motion faster than light in
the special theory of relativity: The special theory does not
forbid all motions faster than light but only motions which
could lead to a disruption of cause-and-effect relationships.
For example, as a material object (an elementary particle)
moves, its position and velocity at a certain time determine
its entire subsequent motion and in this sense are the "cause"
of its positions at all subsequent times. In turn, the position

and velocity of an object at any time are a "consequence" of
its positions and velocities at earlier times. These and similar
motions cannot occur at velocities above the velocity of light
in vacuum. There are, however, objects (completely materi-
al) whose motion is not a manifestation of cause-and-effect
relationships of this sort and which thus can move at veloc-
ities above the velocity of light in vacuum. The best-known
object of this sort is a reflected spot of light (of sunlight, in
particular). This and other examples of superluminal mo-
tion have been discussed in several places, in particular, in a
book by Ginzburg.4 Interestingly, one object capable of
moving at velocities above the velocity of light in vacuum, is
a charge. We are of course not talking about a charged mate-
rial object (e.g., an elementary particle); we have in mind
instead an effective charge formed in some special way. Such
a charge arises, for example, when a plane electromagnetic
wave is incident obliquely on the surface of a metal. If the
electric vector of the incident wave lies in the plane of inci-
dence, a nonzero surface charge will form at the metal sur-
face. This charge will form an alternating-sign periodic
structure, which will move as a whole along the metal sur-
face at a velocity above the velocity of light. The radiation
excited by this structure will evidently produce a reflected
wave also. Yet another example of a source moving faster
than light will be constructed below.

In this methodological note we would like to call atten-
tion to the circumstance that the electrodynamics of effec-
tive "superluminal" charges of this sort is a comparatively
new and interesting field of research, possibly more interest-
ing than the field of subliminal motions.

The most interesting feature of the radiation by sources
moving at a superluminal velocity is that an observer at rest
sees not a single real radiator but several spatially separated
radiating objects.5 They will be called "images" below. This
multiplicity of images is seen in all the examples discussed
below.

Although many studies of superluminal motions, par-
ticularly in connection with the Cerenkov effect, have been
carried out, most have used a spectral expansion of the fields
in Fourier integrals (or series). In the present note we use a
method of retarded potentials. This approach leads to a clear
space-time picture of the radiation.

2. MOTION OF A CHARGE AT A VELOCITY ABOVE THE
VELOCITY OF LIGHT IN VACCUM

In this section of the paper we use a specific example to
demonstrate that a lumped effective charge distribution can
be formed and put into motion at a velocity above the veloc-

477 Sov. Phys. Usp. 33 (6), June 1990 0038-5670/90/060477-11 $01.00 © 1990 American Institute of Physics 477



ity of light in vacuum by means of subliminal motions of real
charges. Our purpose in discussing this example is not to
give a blueprint of some real device which would realize a
distribution of this sort (although we do not rule out the
possibility that this could be done) but simply to show that
distributions of this type are theoretically possible.

We will first illustrate the idea of a lumped charge dis-
tribution moving at a velocity higher than the velocity of
light by considering two examples. Let us assume that we
have two dielectric bars, differing in length, whose faces bear
negative and positive charges, respectively. If the charge per
unit length is the same for the two bars, and if the bars are
pressed tightly against each other, making contact with their
charged faces, then the charges will cancel out over the dis-
tance L (Fig. l,a). It will look as though there were only
some effective negative charge at the left end of the distribu-
tion. We now assume that the positively charged bar is
moved a distance AZ, to the left over a time Af in such a way
that its velocity V = AZ, /Af is below the velocity of light in
vacuum. As a result of this motion, the effective negative
charge appears at the right end of the distribution (Fig. 1 ,b);
i.e., the effective charge has moved a distance L. The velocity
at which it has moved is

L ,, L
C/eft = = V .

M AL

Since L > AZ,, this velocity can be, in particular, higher than
the velocity of light. The velocity ratio

"eft = L

V M

is roughly equal to the ratio of the average length of the two
bars to the difference between their lengths, and it can be
made arbitrarily large. As in the case of ordinary charges,
the motion of this effective charge is accompanied by a cur-
rent. This current is formed by the positive charges which
are moving along with the bar.

It is a straightforward matter to generalize these argu-
ments to charge distributions which are infinitely long. Let
us assume that a negatively charged bar is infinitely long
(Fig. 2). We cover the top of this bar by positively charged
bars of length L in such a way that there is a small gap AZ, in
one place. There will obviously be an effective negative
charge in this place. If the bars L to the right of the gap are
now moved in turn to the left, to fill the gap AZ,, the effective
negative charge will move to the right, at a velocity

L ,, L
^ = 17 = V ZT'

where Af = AZ, / Fis the time over which one bar Z, moves to
the left, and Fis its velocity in the process. Since the ratio Z, /
AZ, can be made arbitrarily large, the velocity yeff can be
made higher than the velocity of light in vacuum.

This idea of a superluminal motion of an effective
charge can be realized as a continuous process also. Let us
assume that positive and negative charges are distributed
along some straight line. The positive charge per unit length
is a constant

L +AL

FIG. 1. Model of a charge moving a finite distance at a superluminal
velocity.

= O, (1)
where a is some constant value, independent of the coordi-
nate and the time. The negative charges are assumed to be
distributed in accordance with

o<-> = - {a + a0 exp [- a (x - trf (2)

where a and v are constants. We thus have a net negative
charge, in a bell-shaped distribution around the point x = vt
at time t. This distribution is moving along the x axis at a
velocity v = ueff, which, as we will show below, can be higher
than the velocity of light in vacuum. Summing cr(+) and ai~>,
we find the distribution of the total charge along the straight
line:

t) = a<+> + CT<-> = CTO exp [— a (x — vt)*\\ (3)

this is an effective lumped charge distribution which is capa-
ble of moving a velocity v = ue(r which is higher than the
velocity of light in vacuum, as we will see below.

Since the current associated with this motion of charge
is expressed in terms of actual charges and their velocities,
once we have determined this current we can find the veloc-
ities of the actual charges and compare them with v. The
current can be found from charge conservation, i.e., from the
continuity equation

- .
dt ^ dx

Using (3 ), we can verify that this equation holds for

/(*,/) -»o. exp [— a (*-»/)'].

(4)

(5)

We can also write another expression for this current. Since
the positive charges are at rest, we have

t), (6)

where V(~\x,t) is the velocity at which the actual negative
charges move (it is because this is the velocity of actual
charges that it cannot be greater than the velocity of light in
vacuum). Comparing (5) and (6), and using (2), we find

'(x,t) = v-
o,, + a exp [a (x — vt)*]

The maximum value of F(~' is evidently

(7)

At,

FIG. 2. Model of a charge moving along a straight line at a superlu-
minal velocity.
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"0

so we have

(8)

(9)

Since the ratio of the constant part of the negative charge
density to its net part,

7 = - f» (10)

can be arbitrarily large—much greater than unity—the ve-
locity yefl- can thus also be made much larger than v^. In
particular, the velocity vcff can be higher than the velocity of
light in vacuum. According to (3), the velocity ueff is the
velocity at which the effective charge distribution and the
accompanying current distribution J(x,t) move. It has thus
been shown that although the actual charges are moving at
velocities below the velocity of light the effective total charge
is moving at a velocity ycff greater than the velocity of light.
These arguments could of course been generalized to more-
complex, nonrectilinear trajectories.

Could effective charges and currents of this sort serve as
sources of radiation in Maxwell's equations? They evidently
could, since effective charges and currents are the sums of
corresponding actual charges and currents, so the substitu-
tion of such quantities into Maxwell's equations as sources
would be equivalent to the substitution of actual charges and
currents into these equations.

To realize lumped effective charges and currents of this
sort, we need a special mechanism to arrange a subliminal
motion of the actual charges and currents (a mechanism to
move the dielectric bars in the first example, and a mecha-
nism to move the charges ai~} at a velocity F(~* in the sec-
ond). We might assume that, ideally, this mechanism has no
effect on the electromagnetic field (e.g., it might be made of
a material which is transparent to electromagnetic radiation
over a broad spectral range). The radiation by these lumped
effective superluminal charges and currents would then be
the same as the radiation by point superluminal charges in
vacuum. In this sense, the old results found by Des Coudres
and Sommerfeld can be rehabilitated.

3. LIENARD-WIECHERT POTENTIALS FOR SUPERLUMINAL
MOTION

In this section of the paper we derive Lienard-Wiechert
potentials for superluminal motion, basically following the
arguments of Ref. 5. We recall that the Lienard-Wiechert
potentials are the vector and scalar potentials of the electro-
magnetic field which is produced by a point charged particle
moving in accordance with some arbitrary prespecified law.

In general, the vector potential A and the scalar poten-
tial if obey the equations

where j is the current density, andp the charge density. Sys-
tem (11) for the potentials A and <p is valid when the poten-
tials satisfy the well-known Lorentz gauge condition

«• * i l dfo f.
div A -) — = 0.

c dt

Solutions of these equations can be expressed in terms of
retarded potentials:

A (r, 0 = - f f dr' df j (r', Ofl('~'', ( | f , , *'m »(< - O,
£ J J l r r I

(12)

<p (r, 0 = f f dr' Wp (T', t') 6(t-t'-^r-r'\/e)) ft (/ _ f)_
J J 1 ^ * 1

(13)
For point charged particles moving in accordance with

r = r0(0, (14)

the current and charge densities are

(15)

(16)

where

—rc(0),
r , r) = <76(r-r0(r)),

is the velocity of the charged particle. It is assumed below
that there is no limitation

\v(t)\<c . (18)

In other words, it is assumed that the charge is capable of
moving at an arbitrary velocity, including velocities above
the velocity of light.

Substituting expressions (15) and (16) for j and p into
( 12) and ( 13), and integrating over r', we find

A (r, 0 = dfv (O - -
c J I r — r0 (r ) I

(19)

-t'). (20)
I r — ro (O I

For the integration over t ' we use the well-known formula
-, 6 (* — *„)

where F(x) is a function of the variable x, and xa is the root
of index a of the equation

F(x)=0. (22)

An important point is that the summation on the right side of
( 2 1 ) is over all roots of Eq. ( 22 ) . From ( 2 1 ) we have

f + l|r-r0(O|

(23)

(24)

~ I 1 - (1 /c) [v (ta) (r - r» (ta))/\ r - r0 (ta) \ ] |

where t 'a is the roots of index a of the equation

/-f =-lr-r0(f)|.

Using (23), we integrate over t' in expressions (19) and
(20) for the potentials:

A(r, 0 = -

<P(r,
a | f l ( / a )[ l-( l /c)n(yv(/a)] l

(25)

(26)
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here

(27)

is a vector directed toward the observation point r from the
point of the radiating charge at the time t 'a, and

r» a \

(28)
*<<o)

is the unit vector in the same direction. Since the unit step
function (Heaviside function) d(t — t') appears in the inte-
grands in (19) and (20), the summation in (25) and (26) is
over those roots of Eq. (24) for which the condition t > ta

holds.
We see that Eq. (24) is playing an important role here.

It determines the number of terms in the expressions for the
potentials, i.e., the number of spherical waves coming in to-
ward the observer at the given time /, and also the properties
of these waves. We know that Eq. (24) has a unique solution
in the case in which a radiation source is moving at a velocity
below the velocity of light, and the condition t>t' holds.6

For superluminal motion of the source, in contrast, this
equation may have several roots.

To prove this assertion, we will build slightly on argu-
ments presented by Landau and Lifshitz in their Classical
Theory of Fields? When relation (24), thought of as a func-
tional dependence of r on t for a given position of the source,
r0, and for a given radiation time t', is combined with the
condition t > t', it describes that part of a light cone with a
vertex (r0,f ') which is in the absolute future. If we instead
look at relation (24) as a function dependence of r0 on t' for
given r and t, we see that it, combined with the condition
t' < t, also describes part of a light cone, but the vertex in this
case is at the observation point (r,f) and lies in the absolute
past. Equation (24) (t > t') is thus simply the condition that
the source is on the past part of the light cone of the observer
or the condition that the observer is on the future part of the
light cone of the source. These two conditions are equiva-
lent; we will make use of the first of them below.

In the coordinates x, ct, these parts of the light cones
degenerate into two pairs of rays. One pair emerges from the
radiating source, while the other goes into the position of the
observer (Fig. 3). The motion of this source at a subluminal
velocity is imaged in these coordinates by some world line
AB. The tangent to this world line at any point on this line
makes an angle no greater than 45° with the ct axis. An ob-
server at the point x0 has as world line a straight line running
parallel to the ct axis. It can be seen from this figure that only

FIG. 3. World lines of an observer and a radiator which is moving at a
subluminal velocity.

FIG. 4. World lines of an observer and of a radiator which is in rectilinear
motion at a superluminal velocity.

the radiation which is emitted by the source as its world line
intersects the light cone of the observer will reach the observ-
er at the time t. This intersection will be unique, since after
the very first intersection the world line of the source can
only move away from the light cone of the observer.

The situation changes radically if the velocity of the
charge can exceed the velocity of light. In this case Eq. (24),
which determines the radiation time t', generally has more
than one root. Simple geometric arguments demonstrate this
point. Line AB in Fig. 4 is the world line of a source whose
velocity exceeds the velocity of light (the angle between AB
and the ct axis is greater than 45°). As before, an observer at
the point x0 has as world line a straight line running parallel
to the time axis.

We denote by t0 the time at which the world line of the
source, AB, intersects the world line of the observer. Up to
the time /„, say, at the time t', the observer obviously receives
no signals at all from the moving charge. If t>t0, on the
other hand, the observer receives signals from two points on
the world line of the source simultaneously: from the pionts
?, and t2 in the diagram. At the times corresponding to these
two points the source radiates light signals which arrive at
the point x0 (at the observer) at the same time /. Conse-
quently, in the case shown in Fig. 4, Eq. (24) either has no
solutions at all or has two solutions. These kinematic argu-
ments regarding the behavior of world lines and radiated
light signals, like the arguments to follow, do not depend on
whether this point source is a charge, a dipole, a quadrupole,
or something more general. In particular, we will see below
that the diagram in Fig. 4 corresponds to the classical prob-
lem of the radiation of sources which are moving at a super-
luminal velocity (see, for example, the work by Tamm and
Frank3).

Furthermore, it is not difficult to imagine cases in
which Eq. (24), which determines the radiation time t', has
more than two solutions. One such example is shown in Fig.
5. Line AB in this figure is the world line of an oscillator
which is oscillating along the x axis. The velocity of the oscil-
lator exceeds the velocity of light on certain parts of the tra-
jectory. Let us assume, as in the preceding example, that an
observer is at the point x0. We see that at the time r, the
observer receives signals radiated at three different points on
the trajectory of the oscillator, while at the time t2 the ob-
server receives signals from five different points. Signals ra-
diated at different times and at different points along the
trajectory of the oscillator arrive at the observer at the same
time. The evolution of the picture in Fig. 5 is interesting. As
the observation time increases, the radiating points in a sense
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FIG. 5. World lines of an observer and of a radiator which is oscillating at
a superluminal velocity.

appear and disappear in pairs.
To conclude this section of the paper, we present with-

out derivation expressions for the Lienard-Wiechert poten-
tials for the case in which a charge is moving through a dis-
persionless medium with a dielectric constant e and a
magnetic permeability//:

, , ,
I R (<<,) {1 - [en/c)1/2 n (y v (/„)} 1

, (29)

Here t 'a are the roots of the equation

t — t'="

(30)

(31)

which satisfies the condition t>t'a, and the summation in
(29) and (30) is over all such roots. The electric field E and
the magnetic field H are expressed in terms of the potentials
as follows:

- - - ,
c dt dt

(32)

4. UNIFORM RECTILINEAR SUPERLUMINAL MOTION OF A
CHARGE AND A DIPOLE

The problem of the radiation by a charge in uniform
rectilinear motion at a superluminal velocity has been exam-
ined in many places.13'7 It has become a standard problem,
since many of its conclusions can be generalized, at least
qualitatively, to more-complex motions of a charge. This
problem is usually studied by a spectral approach. In the
present paper we solve it by means of Lienard-Wiechert po-
tentials, and in so doing we obtain a clear space-time picture
of the radiation by the charge.

We thus assume that a charge is moving along the z axis.
Its equations of motion are

X(, = 0, (/o = 0, z=vt. (33)

If the observation point has the coordinates x,y,z, then Eq.
(24), which determines the number of terms in expressions
(25) and (26) for the Lienard-Wiechert potentials, takes the
form

This equation obviously has two roots:

/ i

- (ff - 1) (x2 + y*)f* -ct + pz>. ( 35 )

where 0 = v/c. The denominators in (25) and (26) are

«; (36)

in the case at hand, they are identical for the two roots of Eq.
(24). Consequently, under the condition

the potentials in (25) and (26) are
. 2ev

c[(ut — z)s — (B2 —

2e

(37)

(38)

If condition (37) does not hold, Eq. (24) has no roots at all,
and the potentials are zero. The factor of 2 in the expressions
for A and <p appears specifically because Eq. (24) has two
roots, which make different contributions. In the subluminal
case there is only a single root, and the factor of 2 does not
appear. The equation

(^-z)2-(p2-l)U2 + {/2)=0 (39)

describes the Mach cone: the surface which separates the
part of the space in which there is field from the part in which
there is not. The vertex angle of this cone is specified by

(40)

In other words, this is the cone characteristic of Cerenkov
radiation.

The position of the source of the radiation on the z axis
at the time of the radiation is specified by the coordinate

2i.i=»f;.i. (41)

It follows from this result and relations (35) that the observ-
er receives signals from two sources, although there is actu-
ally only a single source: a charge moving at a superluminal
velocity. The number of roots of Eq. (24) which satisfy the
condition t > t 'a is thus equal to the number of radiation
sources which the observer sees in the case of a single real
radiation source. We will call these sources which are "seen"
by the observer "images." It can be seen from (41) and (35)
that when the radiation first reaches the observer, i.e., on the
Mach cone, the two images are at the same point

(42)

dx
dz

1

vt — z

(B2 — 1) x
1

(B2— I)1'2 B

c
V

*!.« =
B 2 — 1

. (Vt'—zYY'1—c(t—tr) =o. (34)

since the expression in the radical in (35) is zero at this time.
The images subsequently move off in different directions,
since t ( decreases with increasing t, while t'2 increases (Fig.
6).

Let us take a brief look at the question of whether it is
possible to observe the images separately. This question is
particularly pertinent to our problem of the radiation by a
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FIG. 6. The times t J and t '2 as functions of t. The time t'-, increases, while
t \ decreases.

superluminal charge, since the two images make absolutely
identical contributions to the field throughout the space-it is
for this reason that there is a 2 in (38). The question should
be answered in the affirmative in the sense that it is possible
to separately observe the images. To demonstrate this point,
we assume that a charge moves uniformly at a superluminal
velocity only up to the point

_ P'z — vt
z°~ & 2 - i (43)

and then comes to a halt or begins some other type of motion.
The observer will then detect only the field radiated by the
image moving in the negative z direction and also the field
from the rest of the trajectory, which now differs from the
field of the image which is moving in the negative z direction.
This simple argument resolves the question of whether the
images can be observed separately. In other cases, in particu-
lar, in cases discussed below, there are further possibilities
for a separate observation of images. For example, separate
observation would be made possible by a difference in the
frequencies at which the images radiate.

To complete the picture, we write expressions for the
Lienard-Wiechert potentials in the case in which the charge
is in uniform rectilinear motion at a superluminal velocity in
a dispersionless medium with a permittivity e and a magnet-
ic permeability jj.;

A (r, /) = -Q-
c

<P(M) = f

(44)

(45)

These expressions obviously describe the Cerenkov effect in
a dispersionless medium. The fields in this case are expressed
in terms of the potentials as in (32), and the Mach angle ̂
(the vertex angle of the Cerenkov cone) is determined by the
usual relation:

sin \|; = cos 60 = — . (46)

Here 6?0 is the angle between the wave vector of the radiation
and the velocity of the charge.

The problem of the radiation by a dipole in uniform
rectilinear motion at a superluminal velocity was solved in
1942 by Frank.8 He treated the case in which an electric
dipole whose magnitude is a sinusoidal function of the time
moves through a medium with a refractive index n > 1 at a

velocity v greater than the phase velocity of light, c/n. In this
case, Frank showed the following: If the observer receives
waves radiated by the dipole which are propagating in a di-
rection which differs from that in which the dipole is moving
by an angle 6 < 60, where 90 is the Cerenkov radiation angle
(cos 00 = c/nv, where v is the velocity of the dipole), then
the frequency co of the wave which is received is given by

i < arccos — =6,
no (47)

(nvjc) cos 9 — 1

In this expression, H is the dipole oscillation frequency. Un-
der these conditions the denominator in expression (47 ) for
the wave frequency is obviously positive.

If waves propagating at a direction making an angle
d>00 with the direction in which the dipole is moving are
received, their frequency is given by

(6>eo). (48)
^ '1 — (nv/c) cos 9

Expression (48) is characteristic of the ordinary Doppler
effect, which occurs if the velocity of the sources does not
exceed that of the signal. Expression (47), on the other
hand, holds in the case of a superluminal velocity of the
source and at observation angles 0 < d0. The behavior de-
scribed by (47) was called an "anomalous Doppler effect"
by Frank.

In Ref. 8 and in some subsequent studies,9-10 attention
was focused for the most part on spectral components of the
field of a moving dipole, i.e., equations relating the frequen-
cy, wave vector, and amplitude of the radiated waves. Below
we solve the same problem expressed in terms of the retarded
potentials. The approach makes it possible to see some
space-time features of the superluminal Doppler effect.11'14

We first consider the radiation by a dipole in uniform
rectilinear motion at a superluminal velocity in vacuum:
v > c. The moving dipole is described by the polarization vec-
tor

P(r, 0 = (49)

As before, the solution for the fields could be expressed in
terms of Lienard-Wiechert potentials, but in the case at hand
it is more convenient to describe the fields by a Hertz vector
II(r,?), which satisfies the equation

). (50)

The electric field E(r,f) and the magnetic field H(r,t) are
expressed in terms of this Hertz vector in the following way:

= graddivII — — —, H=-rotn.
c2 dP c

(51)

A solution of Eq. (50) is expressed in terms of the retarded
function

n <r. 0 = f f dr' d/'P (r', f)
J J

& (t _ n

(52)

Substituting expression (49) for polarization vector P(r,f)
into this solution, and using the rules for integrating <5-func-
tions, we find an equation which describes the space-time
features of the radiation by a dipole in superluminal motion:

Po (53)
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Here it has been assumed that the dipole is moving in the
positive z direction. As in the case of a charge, Eq. ( 34 ) plays
an important role: It has two roots, so there are two terms in
expression (53) for the Hertz vector. The times t , and t2 are
expressed in terms of t in accordance with (34), which can
be rewritten in the following way for given coordinates of the
observer (x,y,z):

[ (p+ 1) (vt'-z)-(vt-z) ] [ (p— 1) (of— z)

We thus see that the behavior off , and t2 as a function oft is
described by a branch of a hyperbola (Fig. 6). It can be seen
from this figure that the Hertz vector becomes nonzero at
the time t0 given by

It is also clear that /, is a decreasing function of the time t,
while t2 is an increasing function. We will show below that
the first term in (53), which is proportional to e'n'' , de-
scribes the anomalous Doppler effect, while the second, pro-
portional to e'ni- , describes the normal Doppler effect. We
formally introduce the frequencies

«,., =
At

< — z)

(54)

this expression has the physical meaning of a frequency only
in the case in which the frequency depends weakly on the
time, as the wave amplitude in (53) does. Each of these re-
quirements is met in the limit t -»oo. In this case the relation-
ship between t and t, 2 becomes particularly simple. Taking
the limit ?-» oo in (35), we find

(55)

i.e.,

_L_, tt = -!—. (56)
P-l P + l

This result means that the phase of the term eifi'< in the
square brackets in (53) decreases, while the phase of the
term e'nt- increases, with the time. If the signal is radiated by
the source at the time tlt then the source is at the point
z, = vtt at the time of the emission. It is not difficult to see
that as a dipole moves along the positive z direction the point
z, moves along the negative z direction. An observer follow-
ing the source of radiation, which is at the point z, = vtlt

therefore sees this source move opposite to the direction in
which the dipole is moving. The observer thus sees both im-

ages, as in the case of a charge. These images are seen at
angles

co, 9i ^ _("'-') ± P [("< - z)2 - (P2 - l
( - 2) ± ((Vt- Z)* _ (p»_l

(57)

When the radiated signal first reaches the observer [the
expression in square brackets in (57) vanishes in this case],
the two sources are seen at the same angle, namely, the Cer-
enkov angle (Fig. 7,a). The angle at which an observer fixed
at point # (Fig. 7,b) sees the first image then begins to de-
crease,

and it ultimately vanishes. The angle at which the observer
sees the second image increases,

622560 ,

and tends toward IT (Fig. 7,b). The first image is at point 1
and moves to the left; the second is at point 2 and moves to
the right. The actual position of the charge at the time of
observation is the vertex of the cone. After a long time
(f-» oo ), the signals from the different images thus arrive at
the observer from opposite sides.

Since both the frequency (a and the angle 6 depend on
the time, the time t can be eliminated from these functional
dependences, and we can construct a functional dependence
of, say, the frequency a> on the angle 9. Curiously, this func-
tion dependence,

is exactly the same as ( 48 ) , although the physical meaning of
co and 6 here is completely different from that in (48).

The first term in square brackets in (53) describes a
wave with a frequency

(58)

in other words, this term describes the radiation associated
with the anomalous Doppler effect. We also note that the
minus sign in the argument of the exponential function in
this first term [see (56)] stems from the time reversal, i.e.,
from the circumstance, mentioned above, that f , is a decreas-
ing function of t. Figuratively speaking, in the case of the
anomalous Doppler effect, the later the waves are radiated
by the dipole, the sooner they reach the observer. The term
with e'n'= in (53) describes radiation associated with the
normal Doppler effect.

The reversal of time in the anomalous Doppler effect
was first noted in the field of acoustics.12 Since it is vastly
simpler to realize supersonic motions than superluminal mo-

FIG. 7. The Mach cone at various observation times,
a—At the time at which it passes the observer; b—
after it has passed the observer. The observer sees two
images.
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tions, the question of the anomalous Doppler effect and time
reversal is of greater interest in acoustics than in optics. This
question was studied in Ref. 13, where a doubling of the
images was also noted in this case.

Time reversal can be sensed even better in the following
example, which is a slight alteration of the preceding exam-
ple. We assume that a dipole moment is varying not in accor-
dance with (49) but in accordance with the slightly more
complex law

P(r, t)= (59)

In other words, the dipole moment has a certain envelope
/(t) in addition to its sinusoidal time dependence. A solution
of Eq. (50) in this case is

U ( r , t )

Po
/(ft) «««•).

(60)

It can be seen from this solution that if, for example, the
function/(r) increases then the normal Doppler signal (the
second term in this expression) also increases, since t2 is an
increasing function of t. The anomalous Doppler signal [the
first term in (60) ], on the other hand, decreases, since t, is a
decreasing function of t. We also assume that the source is
periodically radiating some asymmetric signal (so that we
can distinguish between its beginning and its end; Fig. 8,a).
The anomalous Doppler signal will then be time-reversed
(Fig. 8,b), while the characteristics of the normal Doppler
signal will occur in the same sequence as in/(r) (Fig. 8,c).

The normal and anomalous Doppler effects found by
Frank as spectral features of the field radiated in the course
of superluminal motion can thus now be assigned to two
different sources which are "seen" by the observer: two im-
ages.

We now write without derivation equations which de-
scribe the radiation by a dipole in uniform, rectilinear, su-
perluminal motion in a refractive medium for the simplest
case, in which the permittivity £ and magnetic permeability
/n of the medium do not depend on the frequency. We assume
as before that the dipole varies in accordance with (59). The
Hertz vector II (r,0 then satisfies the equation

f(t)

f(tf (t))

r(t,<td

FIG. 8. a—Signal radiated by the source; b, c—signals received by the
observer from the different images.

- 4-?;)n(r, t) = 4nP(r, t) = 4npbf(0«(r- W), (61)
<r of/

where n = (£fi ) ' /2 is the refractive index. The fields-electric
and magnetic-are expressed in terms of Hertz vector
II(r,0 ) in the following way:

E-Lgraddivn-J^L, H.-XS" (62)

As in the absence of a medium, the solutioin of Eq. (61)
describes the radiation of two images,

Po Me""'+ /(««"*)»

(63)

and the times t , and t2 are related to t by

- I)' (64)

As before, f , is a decreasing function of the time, and t2 an
increasing function. The observer sees images at angles 0,
and #2 which satisfy

e,<e0, e2>e0, (65)

where 00 = arccos( \/nfi) is the Cerenkov angle. The fre-
quencies of the radiation received by the observer from the
different images are (f-» oo)

Q .. Q,<B,= (66)

We see that the frequencies in (66) and conditions (65)
agree with (47) and (48) which were derived by Frank on
the basis of spectral arguments.

5. UNIFORM SUPERLUMINAL MOTION OF A CHARGE ALONG
A CIRCLE

The radiation by a charge in uniform motion along a
circle at a superluminal velocity is a problem of considerable
interest. We recall that the corresponding problem with a
subluminal velocity, i.e., the synchrotron radiation problem,
has been the subject of a formidable number of studies.3 Let
us examine the basic features of this problem.

A charge is moving counterclockwise along a circle in
accordance with

where

(66')

(67)

We also assume that the observation point 0 lies in the orbital
plane of the charge and has coordinates (0, — DJQ), so the
overall picture is as shown in Fig. 9. The number of terms in
the expressions for the Lienard-Wiechert potentials in (25)
and (26) is determined by the number of roots (with respect
to t ' ) of Eq. ( 24 ) . For the case in which a charge is moving
along a circle, this equation becomes

1/2— c(t— O=0. (68)

This equation describes the dependence of the roots t 'a on
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of pair

X
Appearance
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FIG. 9. The images seen by an observer at point 0 as the radiator moves
along a circular orbit at a superluminal velocity.

the instantaneous time t; it is transcendental and can be
solved numerically. More important, however, is the quali-
tative behavior of the solutions of this equation, which can be
seen from the plot of this solution in Fig. 10. This figure is a
plot of the left side of Eq. (68). The intersections of this
curve with the abscissa are obviously the roots of Eq. (68).
Equation (68) could have a large number of roots: The high-
er the frequency co or the linear velocity v of the charge, the
more frequent the oscillations of the function g(t') and thus
the greater the number of roots for given values of/? and D.
The number of roots is always odd. At small values of CD, i.e.,
when the oscillatory curve is stretched out greaterly in the
horizontal direction, there is obviously only a single root. As
co increases, the additional roots always appear in pairs, so
the total number of roots always remains odd. During the
superluminal motion of a charge along a circle, an observer
at point 0 thus sees an odd number of images.

We have a few words to say about taking the limit from
motion along a circle to motion along a straight line. This is
not a totally trivial point, since for motion along a circle
there are always an odd number of images, while for motion
along a straight line there are only two, i.e., an even number,
as was shown in the preceding section of this paper. When we
take the limit of rectilinear motion, we let R and D go to
infinity in such a way that the difference D — R = d (the
distance from the observer to the trajectory of the charge)
remains finite. The retardation times t — t' also remain fi-
nite. According to (67), the frequency co vanishes at
v = const. It then follows that the square root in Eq. (68)
can be finite only near the value of t' corresponding to
sin cat' = — 1. In this case, the square root is approximately
d = D — R. Expanding sin cot' in a series around this value of
t', and retaining the first two terms, we see that Eq. (68)
becomes Eq. (34) for rectilinear motion, with the two roots
of that equation. The other roots go off to infinity because
the oscillations of the functions g ( t ' ) become progressively
more infrequent in the limit w^O. In the case of rectilinear
motion, as in the case of circular motion, the number of im-
ages can thus be assumed to be odd, but only two of the
images are at a finite distance from the observer.

FIG. 10. Graphical solution of Eq. (24).

Let us take a more detailed look at Eq. (68). The left
side of Eq. (68) is a linear function of t, so the corresponding
plot simply undergoes a uniform downward shift as t in-
creases. Over one period of the motion of the charge along
the circle, the plot of g(t') moves a distance Ag downward
(Fig. 10); this distance is equal to the vertical distance
between two neighboring maxima. It follows that during one
orbit of the circle by the charge one pair of images disap-
pears, and another pair appears. The times at which the im-
ages appear and disappear correspond to cases in which the
curve of g(t') is tangent to the abscissa. At this points, the
derivativeg'(t ') vanishes; i.e., we have

g' (t') = c | 1 _ p (/,!) cos 0 (t'{) ! = 0 • (69)

This is the condition that the projection of the velocity of the
charge onto the direction from the charge to the observer is
equal to the velocity of light. For a given position of the
observer on the trajectory of the charge (on the circle), there
are thus two special points. At one of these points, two im-
ages merge and disapper, while at the other two images ap-
pear and move away from each other.

The quantity cot 'a is the azimuthal position of image a,
so after a pair appears one of the images of this pair moves
counterclockwise (Fig. 10; t'a increases), while the other
moves clockwise ( t ' a decreases). Consequently, before a
pair disappears, its constituent images are moving opposite
to each other. The total number of images moving counter-
clockwise is an odd number, and the number of images mov-
ing clockwise is smaller by one.

The quantity in (69) appears in the denominator of the
Lienard-Wiechert potentials in (25) and (26). Consequent-
ly, these potentials become infinite at the time at which a pair
of images appears or disappears. This result is understand-
able on physical grounds. Since the projection of the velocity
of the charge onto the direction to the observer is equal to the
velocity of light at the points at which images appear and
disappear, the charge and the wave which is radiates toward
the observer move together "for a long time," so the wave
amplitude has time to grow to infinity.

Unfortunately, it is not possible to write explicit expres-
sions for the Lienard-Wiechert potentials in this case, be-
cause Eq. (68) cannot be solved explicitly. We thus turn to
another characteristic of the fields: the surface on which the
fields are discontinuous, and on one side of which the fields
become infinite. In the case of uniform, rectilinear, superlu-
minal motion of a charge along a circle, this surface is not a
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FIG. 11. Mach curve for superluminal motion of a radiator along a circular trajectory. The velocity increases in the order a-f.

cone, so we will call it simply a "Mach surface." The line
along which this surface intersects the orbital plane is then a
"Mach curve." The shape of the Mach surface or curve does
not depend on the nature of the radiator, i.e., on whether it is
a charge, a dipole, etc.

Let us consider a Mach curve which has been formed by
the time t = 0. This curve is evidently the envelope of a fam-
ily of circular fronts radiated by the charge before this time.
The circular front radiated by a charge at a point with an
azimuthal angle q> at the time t = 0 is described by the equa-
tion

(x-Xo)2+((/-//0)2
(70)

where

The phase <p is related to the radiation time by

—v

(72)

(73)

By condition, both <p and t take on only negative values. We
treat the circular wavefronts as a family of curves which
depend on the parameter^?. The envelope of this family — the
Mach curve — is then determined by the system of equations

(x— Rcos(f)2+(y— /?sinq))2— (7\p)2 = 0, (74)

R sin tp (x— R cos cp)— R cos q> (y— R sin cp)— Pcp = 0, (75 )

the second of which is found by differentiating the first with
respect to the parameter op ( as is easily verified ) . Solving this
system of equations for x and y, we find

(76)
= Rl ±1 (1 — f2) 1/2(p sin (p — f(f cos q> + sin q>] ,

which are the equations of the Mach curve in parametric
form (7 = (3~l = c/v). Calculating the curvature K of the
Mach curve by the standard rules, we find

1
K- (77)

where the plus sign refers to the internal branch of the Mach
curve, and the minus sign to the external branch (Fig. 11).
We see that in the case

~ (1 — Y8)1'2 CIS}
CD = CP = — (1°)

the curvature of the internal branch becomes infinite. At the
value of <p determined by (78), there is a cusp on the internal
branch of the Mach curve.15

Figure 11 shows Mach curves plotted in accordance
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FIG. 12. Electric field in the case of superluminal motion of a radiator
along a circular trajectory.

with (76) for various velocities of the circular motion of the
radiation source. The velocity increases in the order a-f in
Fig. 11. The Mach curve divides the entire space into regions
in which the observer sees different numbers of images of the
source. The entire curve is of course rotating around the
center of the trajectory, at the same frequency as that of the
charge. The observer thus sees different numbers of images
at different times, although in all cases there is a region in
which the observer always sees one image: when the observer
is closer than the cusp on the Mach curve to the center of the
trajectory.

The Mach curve has certain symmetries. Inside the tra-
jectory, the Mach curve has mirror symmetry with respect to
the straight line which connects the cusp to the center of the
trajectory. The two external branches of the Mach curve are
similar to each other; they coincide if one of them is rotated
through an angle 2cp.

In Fig. 11,a the velocity of the source is just slightly
greater than the velocity of light, the angle <p is small, and the
observer sees three sources for only a brief interval, while it is
in region 3. In Figs. 1 l,b and c, the Mach curve is shown for
larger values of ip. In Fig. 1 l,d, the angle <p is equal to ir, and
the external branches of the Mach curve coincide. In this
case an observer not on the trajectory always sees three im-
ages. At larger values of ep (Fig. ll,e) a region appears in
which the observer sees five images. At larger values, op >
2ir, a region appears in which the observer sees seven images;
and so forth.

Substituting (78) into (76), we easily find that the dis-
tance from the center of the trajectories to the cusp on the
Mach curve is T= yR. As the source velocity and corre-
spondingly the angle q) increase, this distance decreases. The
cusp on the Mach curve reaches the center of the trajectory
only if the velocity is infinite.

As we have already mentioned, it is not possible to de-
rive analytic expressions for the Lienard-Wiechert poten-
tials or thus the fields in this case. However, knowing the
Mach curve, we can sketch a qualitative picture of the field,
drawing from the analogy with rectilinear motion. This pic-
ture of the field is shown in Fig. 12 for the case in which a
negative charge is moving along a circular trajectory. The
point of greater interest is the field near the cusp on the Mach
curve, but efforts to calculate this field have not yet succeed-
ed.

As it receives signals from images moving in the same
direction as the radiator, the observer detects the normal
Doppler effect and the normal time sequence of events. The
signals from images which are moving in the direction oppo-

site that of the radiator, in contrast, are characterized by the
anomalous Doppler effect and a time reversal.

6. CONCLUSION

We hope that we have been able to demonstrate just
how interesting the field of superluminal motions of charges
and studies of the radiation accompanying this motion are.
There is already an extensive literature on superluminal mo-
tions. For the most part, however, it deals with the radiation
accompanying uniform motion, i.e., phenomena associated
with the Cerenkov effect, the anomalous Doppler effect, etc.
In this note we have attempted to call attention to the cir-
cumstance that a source in superluminal motion may be
thought of as a set of several images, whose resultant field
gives the field of the source, for both uniform and acceler-
ated motion of the source. From this standpoint, the anoma-
lous Doppler effect is also seen in a new light. The decay of
one source into several images is seen in all the examples
which have been considered.

The multiple-image effect could undoubtedly be seen
experimentally; in fact, it might even be put to work in prac-
tical electronics. The topic of greatest interest for further**/
study from that standpoint would be Cerenkov radiation in a
magnetic field (i.e., on a circular trajectory of a charge) in a
medium. It would not be necessary to observe the entire cir-
cular trajectory in order to observe a doubling of a radiation
source or the disappearance of a pair of images; it would be
sufficient to observe only the part of the trajectory which has
the points at which the source doubles or the pair of images
disappears.

We wish to thank V. L. Ginzburg, F. V. Bunkin, A. A.
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