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The results of investigations of nonlinear waves of first and second sound in HeII are reviewed.
The equations of hydrodynamics of HeII in the standard and Hamiltonian formulations are
presented. One-dimensional nonlinear waves and effects such as nonlinear conversion of waves
into one another, formation of shock fronts, renormalization of the velocity of sound, and others
are described. The effect of damping and dispersion is studied. A description of multidimensional
waves is followed by a description of the phenomenon of self-focusing. Next, stability is discussed,
the solution of the problem of the stability of a pressure shock wave is presented, and stochastic
wave processes in acoustic turbulence are discussed. Experimental investigations of nonlinear
waves in HeIIare presented. In conclusion the paths for further development of the problems
touched upon are discussed.

INTRODUCTION

In the last few years interest in intense sound waves in
superfluid helium has increased. In my opinion, this is at-
tributable to several factors. First, the theory of nonlinear
waves is a rapidly developing field, in which a number of new
general methods and results, which can be transferred to the
case of helium II, have appeared. Second, superfluid helium,
as is now being widely discussed, can be employed as a refrig-
erant in different cryogenic systems: solenoids, resonators,
etc. This also stimulates the study of the hydrodynamics and
acoustics of Hell. Finally, the increased interest in nonlinear
waves is also due to, so to speak, "internal" factors. The
point is that acoustic methods play an important role in the
study of the properties of Hell. In this sense nonlinear
acoustics is much more promising, since the physics of non-
linear phenomena is much more diverse than the linear theo-
ry and a large number of effects could be connected with the
properties of helium. We note, by the way, that the question
of the applicability of the linear theory can be resolved sys-
tematically only on the basis of nonlinear acoustics.

In superfluid helium, like in many other media, "stan-
dard" nonlinear wave phenomena, such as steepening of the
wave profile, formation of discontinuities, self-focusing of
wavy packets, etc., are observed. At the same time there are a
number of specific features that are characteristic solely of
this liquid. The distinctive feature of Hell from the view-
point of nonlinear acoustics is that Hell has two coupled
wave modes, one of which—temperature waves—is a unique
phenomena with no classical analog. The existence of two or
several waveguide modes, of course, is not an exception. The
situation is the same for plasma waves or, for example, ocean
waves. In contradistinction to these systems, however,
waves in helium exhibit virtually no dispersion of the veloc-
ity of sound in a wide range of temperatures. In some situa-
tions, for example, in the study of one-dimensional waves,
the absence of dispersion is a simplifying factor, since the
propagation of waves is described by a system of first-order
differential equations (see Sees. 2.1-2.5). In other cases, for
example, when Hamiltonian methods are employed, the ab-
sence of dispersion complicates the analysis, since the small
parameter in the perturbation theory is related with the dis-
persion.

A characteristic feature of Hell is that its properties are
strongly temperature dependent. Since acoustic phenomena

ultimately are determined by the "play" of thermodynamic
quantities (from the formal viewpoint) they are also strong-
ly temperature dependent. On the other hand this leads to
interesting new effects, such as, for example, steepening of
the trailing edge of waves of second sound (see Sec. 2.5). On
the other hand, the strong temperature dependence of the
acoustic properties makes it necessary to give a justification
for whatever approximation is used in the equations of mo-
tion.

Another characteristic feature of helium is that for
some fully achievable parameters of the sound waves the
properties of helium change so sharply that the chosen hy-
drodynamic model becomes inadequate. For example, suffi-
ciently powerful and prolonged heat pulses engender in heli-
um a vortex structure that cannot be described on the basis
of the classical equations of two-velocity hydrodynamics. A
further increase of the amplitude or (and) duration can re-
sult in the fact that a film of vapor of Hel appears in helium
II. A Hell-Hel phase transition can also occur in an intense
pressure wave, since the A. curve has a finite slope of the order
of 110 at/deg in p, T coordinates. Of course, strong waves
can significantly change the properties of the usual media
also. An example are cavitation phenomena in sound waves
in a liquid or, say, ionization of a gas in a strong shock wave.
These cases, however, refer to extremely (record) high val-
ues of the parameters of the sound waves, while in Hell the
generation of quantum vortices is observed in heat pulses,
which, as it was still recently believed, are described by irro-
tational equations of two-velocity hydrodynamics. The
propagation of sound pulses, which engender vortices, has
thus far been little studied, and there are virtually no theo-
retical works on the subject. We shall not discuss these ques-
tions in this review, rather we shall confine our attention to
some remarks in the conclusions.

By nonlinear acoustics of Hell we shall mean below the
theory of intense sound waves, whose propagation laws can
be explained on the basis of classical two-velocity hydrody-
namics. This review is devoted primarily to theoretical re-
sults. The reason for this is not only and even not so much
because I am a theoretician but rather because the theory of
nonlinear waves in Hell is a more or less developed field,
which cannot be said about experiment. With few excep-
tions, the existing experimental works concern primarily the
relatively particular question of the dynamics of intense
pulses of second sound. In addition, the purely nonlinear
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effects observed in the works cited are confused with phe-
nomena connected with quantum vortices. As regards other
questions concerning the dynamics of nonlinear waves in
Hell, they have virtually not been studied at all by experi-
menters. For this reason I felt it would be best to discuss the
questions connected with the experimental investigations in
a separate section. It consists of two parts. In the first part
the experimental investigations are briefly reviewed. The
main purpose of this review is to describe how experimental
investigations are developing and the main trends. Special
attention is devoted to experimental studies that illustrate
the results described in the first sections of this paper. The
second part of this section is, so to speak, of a "promotional"
character. In it a number of experiments that are either of
interest in themselves or could serve as a tool for studying
Hell by the methods of nonlinear acoustics are proposed.

This review is organized as follows. The equations of
hydrodynamics of Hell in the standard and Hamiltonian
formulations are given in Sec. 1 for reference purposes. The
laws of propagation of one-dimensional nonlinear waves are
studied in Sec. 2. Section 3 is devoted to the study of the
evolution of weakly multidimensional wave packets. In Sec.
4 the stability of nonlinear waves is discussed and the solu-
tion of the problem of the stability of a pressure shock wave is
presented. In Sec. 5 stochastic wave processes are discussed.
Section 6, as I have already mentioned, is devoted to experi-
ments.

1. THE EQUATIONS OF HYDRODYNAMICS OF HELIUM II
1.1. Classical two-velocity hydrodynamics

For purposes of continuity as well as to introduce the
notation, we shall write out the equations of hydrodynamics
of Hell in the standard and Hamiltonian variables. The hy-
drodynamic description of Hell is made with the help of a
collection of eight variables. They can be, for example, the
momentum density j ( r , t ) , the velocity of the superfluid
component vs (r,t), as well as the mass densityp(r,t) and the
entropy density S(r,t).

Taking dissipative effects into account the dynamical
equations for the enumerated quantities have the following
form:1

(1.1)

dt

dx,

dS , .. c j-—- + divSvn = div

dx. dx,

6/* (Si div (j — pvn) + £3 div vn) , (1.

,-f (1.3)

nl. (1-4)

The quantities appearing on the left sides of the rela-
tions (1.1)-(1.4) can be determined with the help of the
expression for the energy density E0 in the coordinate system
in which there is no superfluid motion. The quantity E0 de-
pends on p and 5 as well as on the momentum density j0 in
the superfluid system, related with the vector j by the expres-
sion

The differential of the quantity E0(p,S,j0) is

d£0 = T AS + n dp + (vn — vs, dj0). (1.6)

The last term serves as a definition for the velocity vn of
normal motion. It expresses the fact that the derivative of the
energy with respect to the momentum is equal to, by defini-
tion, the velocity. Aside from yn the relation (1.6) deter-
mines the temperature Tand the chemical potential p,.

From symmetry considerations it follows that the vec-
tor j0 is related with the relative velocity yn-vs by the follow-
ing relation:

JO = Pn (Vn — V.), (1.7)

which can be regarded as a definition of the density of the
normal component pn . The density of the superfluid compo-
nent ps is correspondingly equal to ps = p —pn. It follows
fromEqs. (1.5) and (1.7) that

j=PnVn + PsVs. (1 .8)

The momentum flux density tensor is defined as follows:

H* = pfriPi* + iWo* 4- Vskjai + P&ik, (1.9)

or, equivalently,

Tlik — PsfsiPsfe + f>nVniVnk + p8(»; (1.10)

here the pressure is, as usual, equal to the derivative of the
total energy with respect to the volume,

/» = - -^ l -=-£«+7 'S + |ip + (vn-vi,J0). (1.11)

The quantities T, fj,, p, ps, and pn are functions of p, 5,
and the vector j0. For small values of the relative velocity
w = Tn-vs dependence on j0 is replaced by dependence on w
and can be determined from Maxwell's relations. '

The nondissipative equations of motion (1.1)-(1.4)
lead to the law of conservation of energy E, in the laboratory
system equal to

£0(p,S,j0),

which has the following form:

dt
+ div Q = 0;

here Q is the energy flux density, equal to

«=

(1.12)

(1.13)

(1.14)

(1.5)

Terms related with dissipation enter on the right side of
the expressions (1.1)-(1.4). The notation is as follows: 77 is
the coefficient of shear viscosity; K is the thermal conductiv-
ity; £„ £2> £3* and £4 are the coefficients of second viscosity,
and owing to Onsager's symmetry principle g, = £4. The dis-
sipative function R is a quadratic form of the gradients of the
variables introduced with the coefficients 17, x, and £,; an
explicit expression for R is given in Ref. 1.

1.2. The Hamiltonian form of the equations of motion

An alternative to the nondissipative system (1.1)-
(1.4) is the representation of the equations of motion in the
so-called Hamiltonian form. The method of the Hamilto-
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nian formalism is very effective for studying nonlinear waves
(see, for example, Refs. 2 and 3). For Hell the Hamiltonian
representation of the equations of motion was obtained in
Ref. 4. As shown in Ref. 4 the Hamiltonian variables are
three canonically conjugate pairs (p,a), (S, 0), and the so-
called Clebsch variables (f, 7). These quantities are related
with the variables introduced earlier as follows:

In the new variables the equations of motion of Hell
acquire the canonical form

' — -^H ' — _ -6H s — 6H

So. 6p 6p
(1.16)

Q 6H f bH 8#

here the Hamiltonian His the energy E ( 1 . 1 2 ) , expressed in
canonical variables. It can be verified by direct calculations
that the relations (1.16) are identical to the dissipation-free
equations (1.!)-(!.14).

The canonical equations (1.16) can be derived in the
standard manner from the Lagrangian formalism and the
principle of least action for the hydrodynamics of a super-
fluid liquid, as described in Ref. 5.

To study problems in nonlinear acoustics it is conven-
ient to change from the variablesp, a, S, and/?over to the so-
called normal coordinates, separating in the linear case the
first and second sound modes.1' This change is based on the
fact that the canonically conjugate variables are not unique,
and there exists an entire class of transformations, called
canonical,2 from one set to another, and in addition the
Hamiltonian structure of the equations of motion remains.
In particular, it is possible to change over to variables in
which the quadratic part of the Hamiltonian H (correspond-
ing to the linear equations) will be diagonal with respect to
the variables characterizing first and second sounds. The
change from the Fourier components of the quantities p, S,
a, and /? over to normal coordinates a ^ ( t ) (the indices
v = + 1 and + 2 identify the wave mode and the minus sign
indicates complex conjugation) is performed in Ref. 6.2)

The normal coordinates av
k ( t ) , which are also called com-

plex amplitudes, satisfy the following equations:

dt
• — signv- (1.17)

The Hamiltonian H is a series in integral powers of the
variables a£ . The quantity H has the following form up to
third order inclusively:

H = J coia^1 dk + f dk

+ 2 f VwStfM
. „ V

V, =3:1.2

K/ sign Vj 1 dkt dk2 dk3;

(1.18)

here &1 =c,|k| and «£ =c2|k| are the dispersion laws of
the two types of sound. The sound velocities cl and c2 can be
calculated in the standard fashion from the linearized equa-
tions (1.16), in which the Hamiltonian H is expressed in
terms of the variables 8p, SS, a, and/? with quadratic accura-
cy with respect to these quantities. Neglecting the quantity

(J3T is the coefficient of expansion), which is small in practi-
cally the entire range of temperatures, the velocities c, and c2

are equal to, respectively,

- W/a

- ~) ' Co =

PnP

1/2

(1.19)

The coefficients F£',£k', > which contain all information about
the nonlinear interaction of waves (in this approximation),
are called matrix elements or the vertex parts (vertices).
They can be calculated in the standard fashion by expanding
the energy E(p,S,j0,vs) in the deviations from equilibrium
and then changing over to the quantities a£. We shall not
write out here the unwieldy expressions for the vertices V.
We only note the important fact that they all have the follow-
ing structural dependence on the arguments k:

_
' k,kzk, —

pv.v
* 1

+ '
i pViVaVl kl^a \

1̂*3 /
(1.20)

i.e., they are homogeneous functions of degree 3/2. In what
follows we shall employ the terminology introduced in Ref. 6
for the different types of nonlinear processes. If two of three
indices Vj are equal to + 2, then such processes are called
decomposition processes. If two of three indices Vj are equal
to + 1, then the corresponding processes are called Cheren-
kov processes. If, finally, all indices are equal to ±1 (or
+ 2), then such processes are called characteristic nonlin-

ear processes in the first (or second) sound modes, respec-
tively.

2. ONE-DIMENSIONAL NONLINEAR WAVES

2.1. The characteristic form of the equations of nonlinear
acoustics

In this section we shall study the laws of propagation of
one-dimensional nonlinear waves. We shall start with the
simplest case of dissipation-free equations (1.1)-(1.4). We
assume that the waves propagate along the x axis. We choose
the following quantities as the variables: the perturbation of
the density p', the x-component of the mean-mass velocity
ux (v = j / p ) , the perturbation of the entropy per unit mass
a'', and the x-component of the relative velocity
wx (w = vn-vs). This choice is convenient in that in the lin-
ear case the first pair p', vx describes first sound and the
second pair o1, w describes second sound. Up to terms of
second order in these quantities (in this section we confine
our attention to this accuracy everywhere except in Sec. 2.9)
the equations of motion can be written as follows:

dt
+ OP) = 0 < . ' , /= 1,2, 3, 4); (2.1)

here cp is a column vector consisting of the quantities <pl = p,
<p2 = v,(p3 = ff',qp4 = 6) (we drop the index X). The depen-
dence of the matrix elements A(j(<p*) on the variables <pk is no
stronger than linear. The matrix Afj (tp) is written out in an
explicit form in Ref. 7.3>

In the linear case (see Sec. 2.2) the matrix Av has a
block-diagonal form and the system of equations (2.1) de-
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composes into two subsystems, each having wave solutions
in which only the quantities p' and v (first sound) or <j' and M;
(second sound) oscillate. Any general solution is a superpo-
sition of these two sounds. In the nonlinear case the matrix
A0-(<p) is not a block-diagonal matrix, the sounds are "en-
tangled," the pairs p', v and a', w no longer represent "pure"
wave modes and the excitation of any mode results in oscilla-
tions of all variables. It is intuitively obvious that in this case
both types of waves arise in helium, but what kind of waves
they are, what they transport, how they propagate, interact,
etc. remain open questions. Significant progress has been
made in the study of this problem with the help of the meth-
od of Riemann invariants, which can be developed here for
waves traveling in one direction along the x axis.

Following Ref. 8 we multiply Eqs. (2.1) by the left row
eigenvector l(q>), defined as follows, for the matrix Atj((p):
2 lj (<p)Ay = £/,, where £ is an eigenvalue. For different ei-
genvectors / (M)(^) we have

dx
= 0 = !, 2, 3, 4). (2.2)

In order that Eqs. (2.2) not contain infinitesimals of
order higher than second the dependence of the elements of
the row vector l,(q>) on the quantities cpk must not be strong-
er than linear. The form of the equations of motion presented
above is distinguished by the fact that in each of the four
relations (2.2) all variables are differentiated in the same
direction in the*, / plane. These directions, called character-
istics, are determined by the equalities Ax/At

For different eigenvectors
" ("} (<p) have the following form:

the characteristics

(2.3)

(2.4)

If the Pfaffian S,-/,00^)^,- can be integrated, i.e., it is a
total differential of some quantity 7M (<p), then Eqs. (2.2)
can be further simplified:

( =1,2, 3, 4). (2.5)

The remarkable property of the system (2.5), which
makes this equation exceptionally convenient for studying
concrete problems, is that each of the equations (2.5) de-
scribes a conservation law of the quantity IM(<p) along the
characteristic direction. The quantities 7^ (<p) are called
Riemann invariants (RIs). If only one RI is given initially,
then, as follows from Eq. (2.5), it will remain the only invar-
iant. Thus the disturbances transported by RIs are in this
sense independent. This fact as well as the relatively simple
form of the system (2.5) permit regarding the waves de-
scribed by the Riemann invariants 7t and 72 as well as 73 and
74 as analogs of first and second sounds.

2.2. Linear acoustics

In the limiting case of infinitesimal amplitudes, when in
the quantities/"° (<p) and gift> (<p) the dependence on q> can
be neglected, the Pfaffians are a sum of differentials d<p, with

constant coefficients. Such forms, of course, can be integrat-
ed. The linear RIs 7° have the following form:

/•., = p' ± -£- v, (2.6)

The evolution of the quantities 7° is described by Eqs.
(2.5), in which £u'2) = ± c, and |<3'4> = + c2. Thus we
have arrived at the classical result (see Ref. 1) that Hell
supports two types of sound waves. One can see from the
expressions (2.6) that with an initial perturbation of the
density/?' and (or) the velocity v only the first-sound wave
propagates in the liquid. Conversely, with an initial pertur-
bation of the entropy a' and (or) the relative velocity w only
a second-sound wave will propagate in helium. Thus, neg-
lecting the terms connected with the coefficient of expansion
PT, the wave modes are independent.

The particular case of waves traveling in one direction
can be obtained by setting the RIs I ° and 7° equal to zero.
In this case there are no waves traveling to the left along the x
axis, while a "hard" dependence between the quantities p'
and u in first sound and a' and i; in second sound appears in
waves traveling to the right:

pc2

(2.7)

In the linear case it is not difficult to include in this
scheme terms containing /?r. As the calculations show, for
waves traveling to the right the RIs have the following form:

: p — a./ dp/dT
do/dT '

c» dp ,

P a r p > (2.8)

Aside from RIs the velocities of sound c, and c2 change
by small amounts ( °c/?r). Unlike Eqs. (2.6) the expressions
(2.8) contain cross terms (for example, the variable a',
characterizing second sound, appears in 7f) , which are
small terms of order {3T. The existence of these cross terms
results in "coupling" of the two types of sound. For example,
in the process of pulling out a piston it is possible to detect, in
addition to the standard density wave, an entropy wave mov-
ing with velocity close to c2. In addition, the density wave
itself, moving with a velocity close to c,, contains a small
"admixture" of an entropy perturbation a'. However it is
more accurate to talk here not about coupling of the two
types of sound but rather about a different representation of
the sound modes. The independent oscillations are not the
oscillations of the density p' and the entropy a' but rather
some combinations of them which, evidently, are identical to
the RIs. In connection with the results described above we
call attention to the recent paper,81 in which a general for-
malism is proposed for describing linear "coupled" acoustic
systems, in particular, for Hell.

2.3. Reimann invariants in the nonlinear case

In the case of finite (but small) amplitudes the Pfaffians
are a sum of four differentials dtp, with coefficients that de-
pend on q?k (not more strongly than linearly). Such forms,
generally speaking, cannot be integrated, and the RIs cannot
be obtained in the general case. However it turned out that
this can be done for waves traveling in one direction.7

We shall recall what waves traveling in one direction or
simple waves, as they are called in standard gas dynamics,
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are. The apparatus of simple waves, developed by Reimann,
played a very important role in the solution of different gas-
dynamic problems (see Refs. 8 and 9). From the mathemat-
ical viewpoint simple waves are a particular case of the solu-
tion of Euler's equations, in which the unknown/?' and v are
related by some functional dependence v = v(p'). To obtain
the evolutionary equations for simple waves the following
device is employed. The function y(/?') is substituted into
Euler's equation, and derivatives of the type dv/dt are ex-
panded as (dv/d/?)dp'/dt, etc. This gives a system of alge-
braic equations for the derivatives dp'/dt and dp'/dx. The
condition that this system be compatible permits determin-
ing the function v(p'), with whose help it is easy to derive the
evolutionary equation for the quantity/)' (x,t).

In the case of superfluid helium the analogous tech-
nique cannot be employed. Indeed, as shown in the preced-
ing section, in the linear case the quantities/?' and v as well as
a' and w in waves traveling to the right are related by a
functional dependence of the following form (see Eq. (2.7)):

u u yp ft u y y o } . \£.y)

In the linear case the matrix Atj (<p) is not a block-diag-
onal matrix. It contains off-diagonal elements, as a result of
which cross terms, which are quadratic in the variables <pk,
appear in the equations of motion. It is thus natural to as-
sume that in the linear case the relations (2.9) are functions
of the following form:

a,= .p*±2L
dp p

v—v (p', a') , v; (a', p') , (2.10)

and the dependence on the second argument is of second
order.4' If, next, the functions v(p',a') and o)(a',p') are
sought from the condition that the algebraic equations (for
the variables dp'/dt, dp'/dx, do'/dt, da'/dx be compatible,
then we obtain one condition for two functions, i.e., the de-
pendences sought cannot be found in this manner.

Let us see what simple waves are from a somewhat more
fundamental viewpoint. For the standard gas dynamics the
scheme described above for deriving the RIs can be realized
for isentropic flows. Indeed, in this case there are only two
variables (p', v) and the Pfafnan form can always be inte-
grated. As a result, in the standard gas dynamics there are
two RIs, corresponding to two different characteristics. If
one of them is identically equal to zero, then the remaining
RI describes a simple wave. Thus the two basic properties of
waves traveling in one direction (following trivially one
from the other in the standard gas dynamics) are as follows:
first, the existence of a functional dependence between the
variables and, second, waves traveling in the other direction
vanish identically. These two properties can be employed to
extend the apparatus of simple waves to the case of super-
fluid helium. Referring the reader to Ref. 7 for the details of
the calculations, we write out the final result.

Waves propagating in the positive direction along the x
axis can be described with the help of the RIs 7[ and 73, which
are equal to

/i=p'+ai(p')2+ai(o')2, (2.11)
/ / I D /~'^2 i iQ *'-*' / ") 1 O \

S===O ~T~ Pi \O / "T" P"P U , \£.lt.)

where we used the notation

_ J_ /_i_j^£ i_
ai ~ 2 ( 2cl dp" p

fii-4- + ̂ L.
dT/da p

P2 = 4p ci —

Pn

P

- l - ^ — l - (2.13)
J

P n /

The Riemann invariant 7, and 73 satisfy Eqs. (2.5), in which
the characteristics £ ( ' ' and J"(3> must be expressed in terms
of 7, and73.

Thus in the case of waves traveling in one direction the
starting system of four equations (2.1) can be reduced to two
equations of the type (2.5), each of which describes a conser-
vation law for 7, (or 73) along the characteristic direction
S, (" (or £(3 '). The asymmetric character of the dependence
of the RIs 7, and 73 on the variables/?' and a' is a consequence
of the fact that the thermodynamic quantities depend on the
relative velocity w and, of course, they do not depend on the
mean mass velocity v (see Sec. 1.1 and also Ref. 1).

2.4. The nonlinear decomposition of an entropy wave

The special form of the equations of motion written in
the form of RIs significantly simplifies the study of different
concrete problems.

As an example we shall study the propagation of waves
in Hell in two cases: a) a density disturbance is created at
the boundary x = 0 (a piston moves); b) an entropy distur-
bance is created at the boundary x — 0 (a wall is heated).

Before we attack this problem it is useful to express the
dependence of/?' and a' on the RIs 7, and 73 in an explicit
form. To the order considered the dependence sought will be
as follows:

P' = /i — «x/? — «2/J, (2.14)

a' = i3 _ fail _ p^/^ (2.15)

In the case a) we have at the boundary x = 0
p'(0,t) = p0(t) and cr'(0,t) = 0. In accordance with the for-
mulas for the RIs (2.11 )-(2.12) in this case only one of the
RIs 7, is different from zero. This invariant, in accordance
with the first of the equations (2.5), remains constant along
the characteristic J"( ' ' . Thus it describes a wave propagating
with a velocity close to cr. In this wave, as one can see from
the inversion formulas (2.14)-(2.15), there is only a distur-
bance of the density/?', while the disturbance of the entropy
a' is equal to zero. Thus in the case of a density disturbance
at the boundary of the liquid only a wave of density/?' (and,
of course, pressure p' and velocity u) propagates in the vol-
ume of the helium.

In the case b) the situation turned out to be somewhat
more interesting. If an entropy disturbance cr'(0,f) =a0(t)
is created at the wall x = 0 (and p'(Q,t) = 0), then, as one
can easily see, both RIs are different from zero. Since the
waves related with II and 73 propagate with different veloc-
ities, in the x, t plane they separate, as shown in Fig. 1. The
wave carrying the invariant 7, leads with velocity £ ( 1 ) =c,.
In this wave, as one can see from the inversion formulas
(2.14)-(2.15), the density disturbance/?' is, in order of mag-
nitude, /?'~«2<7l2, and the entropy disturbance a' = 0. A
wave transporting 73 moves with velocity £( 3 ) xc2 immedi-
ately behind the wave transporting 7,. Both the density dis-
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FIG. 1. Illustration of the nonlinear decomposition of an entropy pulse
a' (O,/), arising when a wall is heated during a time /„. The wave transport-
ing the Riemann invariant /, propagates along the characteristics filling
the band 1. In this wave, as follows from Eqs. (2.14) and (2.15), only the
disturbance of the density is different from zero. The slope of the band 1 is
equal to dx/dt — |""' s. c,. The wave transporting the Riemann invariant
/2 propagates along the characteristics filling the band 2. In this wave both
the disturbance of the density and the disturbance of the entropy are dif-
ferent from zero.

turbance p'~ — a2a^ and the entropy disturbance a' ~a0

are related with 73.
Thus the following picture is observed in the case of

pulsed heating of a wall. A "precursor"—a density wave—
moves away from the wall with the velocity of first sound. A
"mixture" of density and entropy waves follows immediate-
ly behind it with the velocity of second sound.

We shall examine the magnitude of the described effect.
One can see from the expression (2.11) for the RI /, and the
inversion formulas (2.14)-(2.15) that the measure of the
transformation of the second sound into a "precursor" is
determined quantitatively by the coefficient a2 [see Eq.
(2.13)]. Therefore the pressure 8p in the "precursor" will be
as follows:

dp p
(2.16)

Numerical estimates show that the second term in the paren-
theses is always greater than the first term (compare with
Ref. 12). In the presence of a heat pulse with amplitude Wot
the order of 10 W/cm2 (T~ 1.8) the pressure in the precur-
sor will be of the order of Spx — 104 g/cnvs2.

The question of the creation of a pressure wave accom-
panying the pumping of second sound into the system was
discussed previously in Ref. 12. However the method of
successive approximations in the form employed in Ref. 12
did not make it possible to describe the nonlinear distortion
of the wave and separate the signal into a "precursor" and a
main pulse.

As analysis shows, taking into account the thermal
compressibility of helium /3T results in the fact that in both
cases studied there arise two waves, in which there are dis-
turbances of all hydrodynamic variables.82 Two mecha-
nisms for transfer of wave energy into a "foreign" mode can
be distinguished: first, thermal decomposition, studied in
Sec. 2.2, and second, the nonlinear decomposition described
in this section. The coefficients a and 0 appearing in the
expressions (2.11)-(2.12) for the RIs and describing the
nonlinear decomposition change by amounts proportional
to fir. It is shown in Ref. 82 that under real experimental

conditions it is important to take both mechanisms into ac-
count.

2.5. The evolution of intense waves

We shall study in greater detail the propagation of non-
linear waves in accordance with the evolutionary equations
(2.5). We shall first consider second sound. As shown in the
preceding section, under the conditions of an entropy distur-
bance at the boundary there arise two waves in helium. In the
leading wave the amplitudes of the disturbances are small, as
a result of which the characteristic g(I) is equal to c, to the
order considered. As a result, the evolution of this wave is
determined by the first of Eqs. (2.5),in which |"(1) =c,,i.e.,
it is described by the usual linear theory. In the trailing wave,
transporting 73 (in this wave 7, = 0), the characteristic £ ( 3 )

differs from c2 already within the chosen accuracy and de-
pends on the values of the oscillating variables p', v, a', and
w. However not all these variables are independent. First of
all, we have the functional relations v = v(p',a-') and
a) = o)(a',p') [see Eq. (2.10) ]. Second, the fact that in the
trailing wave the RI I3(p', cr') vanishes imposes a relation
between// and a'. In reality in such a wave there is only one
independent variable, for example, w(x,t). It is more con-
venient, however, to work not with the variable w but rather
with the related quantity vn. Expressing the characteristic
J"(3) and the RI 73 in terms of yn and substituting them into
the third equation of Eqs. (2.5) we arrive at the following
result:

dv
— ̂

Of

dv

dx
=. = 0; (2.17)

here «2 ( T ) is the coefficient of nonlinearity of second sound,
equal to

/T,, aT d / 3 da
a, (/ ) = ca2 V ' C, dT \ dT

(2.18)

Analogous arguments lead to the conclusion that with an
initial density perturbation the leading wave can be de-
scribed by the single variable v(x,t), the equation for which
has the following form:

here
ai(r) = ( 1 + if¥, -1 -i d'nel

d l n p

(2.19)

(2.20)

The results presented essentially are identical to the re-
sults obtained previously by Khalatnikov," who found the
nonlinear corrections to the velocities of the different types
of sound (he actually calculated a,(T) and a2(T)), using
the method of simple waves for the starting system (2.1),
i.e., under the assumption that all variables sought/)', v, a',
and w are functionally related with one of them. In the meth-
od of RIs there are two such variables, but in the particular
case described in this section, when one of the RIs is equal to
zero, there arises an additional (with respect to the relations
(2.10)) relation between the starting variables, as a result of
which there remains one independent function. In other
words, the vanishing of one of the RIs indicates a transition
from simple waves of rank 2 (see footnote 4) to standard
simple waves.

There is no special difficulty in solving the boundary-
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FIG. 2. Schematic diagram of the evolution of a pulse of first sound (a)
and a pulse of second sound with a negative coefficient of nonlinearity
a2 (T) < 0 (b). The wave profiles are shown in coordinate systems moving
with the corresponding sound velocities. The numbers 1-3 enumerates
sequential moments in time.

value problem for equations of the type (2.17)-(2.19) (see,
for example, Refs. 8, 9, and 13). For greater clarity, how-
ever, we shall describe the solution starting from qualitative
considerations. For infinitesimal amplitudes (the linear
case) Eqs. (2.17) and (2.19) describe the propagation of
initial disturbances as a whole with velocities c2 and c,, re-
spectively. For finite but small amplitudes the expressions
a2(T)vn [ora,(7>]inEqs. (2.17) and (2.19) canbeinter-
preted as corrections to the velocities of propagation of the
different sounds c2 (or c,), which, however, depend on the
local value of the oscillating quantity vn (or y). This means
that different sections of the wave pulse move with different
velocities and the wave profile (the form of the wave in the
coordinates u n , x — c2torv,x — c , t ) becomes deformed. The
wave steepens and a shock front forms, after which the equa-
tions are no longer valid and additional considerations re-
garding the further evolution of the waves are required.

The case of first sound is identical, right up to the nota-
tion, to the standard gas-dynamics. The quantity a, ( T ) for
helium is equal to approximately four, i.e., it is positive. As a
result the pulse of first sound with a positive density distur-
bance p'>0 (v>0) behaves as follows. The more intense
sections move with a high velocity, the hump catches up
with the base of the wave, the leading edge becomes steeper,
and a discontinuity forms on it. The evolution of pulses is
shown schematically in Fig. 2a. The characteristic time of
formation of a discontinuity rd is equal to
rp ~(cti(T)vk) ~ !, where k ~' is the spatial size of the dis-
turbance. In the case of a negative pulse (p1 <0, v <0) the
hump lags behind, and a discontinuity forms on the trailing
edge of the wave. In the Fourier representation this process
describes the creation of higher-order harmonics.

FIG. 4. Schematic diagram of the propagation of pulses of second sound
after the formation of a discontinuity. The coefficient of nonlinearity

0.2 0.6 7,0 1.4 W
I, T, £.

FIG. 3. The coefficient of nonlinearity a,( T) as a function of the tempera-
ture." The dots correspond to the experimental results of Ref. 15.

The case of second sound is somewhat more interesting.
The coefficient a2( T) is a complicated function of the tem-
perature (Fig. 3). One can see from the figure that there are
regions of both positive and negative values of a2(T). If
a2(T) <0, then the entropy pulse with cr'>0 (un >0) be-
comes steeper and a discontinuity forms on the trailing edge
of the wave (Fig. 2b). For positive a2(T) the situation is
identical to the case of first sound (Fig. 2a). At temperatures
Ta ^ 1.88 K and Ta ~0.9 K the quantity a2(T) is equal to
zero, the quadratically nonlinear term vanishes, and the evo-
lution of the pulses is driven by the terms of the next higher
(third) order (see Sec. 2.9). The formation of discontinui-
ties on the trailing edge of the wave is a phenomenon specific
to Hell.

The evolution of the pulse after the discontinuity forms
can be described with the help of the conservation law for the
quantity

c«

J VadX,

which follows from Eq. (2.17) (for definiteness we shall
consider the case of second sound). From this law it follows,
in particular, that the discontinuity with amplitude At>n

moves with the velocity Ud equal to

tfp = C2 -f- (2.21)

The evolution of the wave is shown qualitatively in Fig.
4. Since the discontinuity moves (in the comoving system)
with velocity a2(T)Lvn/2 (2.21) the spatial extent of the
pulse increases. From the conservation law for the quantity

it follows that the amplitude of the discontinuity Aun should
decrease. Asymptotically the solution is described by a trian-
gle, whose amplitude decays with time as t ~ 1/2. We call
attention to the fact that in spite of the decrease in the ampli-
tude, it is still not possible to transfer to the linear case at any
stage of the propagation of the wave. The described behavior
of intense heat pulses has been observed in many experimen-
tal works.13"19 Good quantitative agreement has been ob-
tained for the quantity a2(T) (Ref. 15) and for the transit
time of the pulse, calculated according to Eq. (2.17).13

2.6. Damped waves

In this section we shall study the effect of the dissipative
terms on the propagation of one-dimensional waves. The
dissipative terms can be taken into account in the derivation
of the equations for traveling waves on the basis of perturba-
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tion theory, regarding the waves as small disturbances.
Actually, the nonlinear and viscous terms must be infinitesi-
mals of the same order of magnitude. We shall derive the
equation for the wave of second sound. Adding dissipative
terms to the last two equations in the system (2.1) we obtain

da' _,
~r. -- Tdt

dw .— 4-

do' .
~^ -- rdx

da' .

dw
~Sox

dw

x oV
~pC~l?'

b— •
dx* '

(2.22)

(2.23)

here Ay are the elements of the matrix Atj (<p) (see Sec. 2. 1 )
and the quantity b is equal to

In Eqs. (2.22)-(2.23 ) we drop terms including/)' and v since
they are third-order infinitesimals (see Sec. 2.5).

In the absence of dissipative terms Eqs. (2.22)-(2.23)
have a solution in the form of a traveling wave, in which
there is a functional relation between the variables
w = w(a') [see Eq. (2.10)]; we recall that
Ii(p',a1') = 0=$p' =p' (</)• In the presence of dissipation
this relation is not satisfied. It can be assumed, however, that
viscosity will change this relation by some quantity if>(x,t),
which is a second-order infinitesimal, i.e.,

, t). (2.24)

Solutions of the type (2.24) are called quasisimple waves.20

The function if>(x,t) can be found by the methods of pertur-
bation theory (see Ref. 20). Using next the dependence
(2.24) in the system (2.22)-(2.23) we arrive at the follow-
ing equation for vn:

(2.25)

where
Ps Pn*

PSC

An equation of the type (2.25) is often encountered in
the theory of nonlinear waves and is called Burgers equation.
In a reference system moving with the velocity c2 (x ->x-c2t)
Burgers equation can be reduced, by making the substitution

„ __ 2fe 5 In<p
dx

to the heat-conduction equation

As a result the problem of the evolution of a nonlinear wave
in a viscous medium can be solved in a closed analytical form
(see the monographs of Refs. 20 and 21). The calculations

show that the initial behavior of the wave is close to the
nondissipative case. For example, the nonlinear term
a2(T)vndvn/dx describes, as before, the steepening of the
wave profile. In contradistinction to the nonviscous case,
however, this steepening does not result in the formation of a
discontinuity. Indeed, as the steepening increases, the ini-
tially small dissipative term/z2 d

2vn/dx2 increases owing to
the increase in the velocity gradient and prevents further
distortion of the wave profile. Comparing the order of mag-
nitude of the nonlinear and viscous terms in (2.25) we find
that the characteristic extent of the wavefront is
8x~[i2/a2(T)&un, where Aun is the amplitude of the pulse.
The starting stage of the evolution of the pulse is shown sche-
matically in Fig. 5a. The further evolution of the wave oc-
curs in accordance with the conservation law for the quanti-
ty

(see Sec. 2.5), which also holds for Burger's equation. The
extent of the pulse increases and the amplitude of the pulse
decreases in a manner such that the area of the wave profile
remains constant. As the amplitude decreases the extent of
the steep front increases Sxao l/Aun. The final stage of the
evolution, when the "spreading" of the front Sx becomes
comparable to the size of the pulse, can be described on the
basis of the linear theory. This is what makes the propaga-
tion of a damped wave different from the nondissipative
case, where the linear limit does not exist. The evolution of a
pulse after steepening of the leading edge is shown schemati-
cally in Fig. 5b.

2.7. Dispersion of second sound

The linearized Burgers equation (2.25) leads to the fol-
lowing dispersion law for a>\. for a monochromatic wave in
which vn <xexp[/(<a£f — kr)]:

(Ok : (2.26)

The expression (2.26) can be regarded as the first terms
of the expansion of the frequency <y£ in powers of the wave
vector k. The second term, describing the damping, is an
imaginary quantity. The next term in the expansion de-
scribes the dispersion of the velocity of sound. We shall write
the frequency of second sound col m the following form,
taking into account the dispersion of the velocity:

(ojl = c21 k | + iD2k? + D3k
3. (2.21)

Unlike Eq. (2.25) here we denote the damping constant
as D2, having in mind the fact that it can differ from the
quantity ̂ 2. Actually the dispersion (and, by the way, the
damping also) is connected with the existence of an internal

Vn

7 2 3

Sx

FIG. 5. The evolution of a nonlinear pulse of second
sound in a dissipative medium. At the first stage (a) the
wave profile becomes steeper and a "diffuse" shock front
is formed. At the second stage (b) the duration increases
and correspondingly the amplitudes decrease.
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structure of the liquid (temporal or spatial) and the expres-
sion (2.27) is the expansion of the quantity <o\/c2k in pow-
ers of the dimensionless parameter kl, where / is the internal
scale of the system. For example, in the standard acoustics /
is determined by the mean free path of the molecules. The
first term in Eq. (2.27) corresponds to the Euler approxima-
tion, the second term corresponds to the Navier-Stokes ap-
proximation, and the third term takes into account the Bar-
nett corrections. In helium at low temperatures / can be the
free path of the quasiparticles.

One region where the effect of dispersion could be sig-
nificant is the neighborhood of the A transition. Near TA the
dispersion of the velocity of second sound is caused by relax-
ation effects and the interaction of sound waves with devel-
oped fluctuations of the thermodynamic quantities.1'22'23

According to the fluctuation theory of phase transitions, the
dispersion law for second sound is a function of the dimen-
sionless parameter kg, where g is the correlation radius (see
Refs. 22 and 23). We shall rewrite the expression (2.27),
taking into account what was said above, in the following
form:

The coefficient A2 can be determined from measure-
ments of the damping of second sound2"6 or experiments
on the scattering of light,27 and is of the order ofA2~0.\.
The situation is more complicated in the case of A3. The
point is that the dispersion is very small and it is virtually
impossible to measure the dispersion by the methods of lin-
ear acoustics. Indeed, even such record-high frequencies for
second sound as v~ 104 Hz result in a relative change of the
velocity Ac2/c2 equal to 10 ~ 6 at TA — T~ 51 mK (here the
fact that A 3 is of the order of unity was employed for the
estimate). In the nonlinear case, as one can see from the
preceding presentation, high-frequency harmonics arise
spontaneously in the wave and the dispersion can play a sig-
nificant role in the evolution of sound pulses.

Taking the dispersion into account the evolutionary
equation for a wave of second sound has the following form:

It can be derived in a manner similar to Burgers equation
(2.25), under the assumption that the terms on the right side
do not exceed in magnitude the nonlinear term.28 The rela-
tion (2.29) is also encountered in the theory of nonlinear
waves and is called the Korteweig-de Vries Burgers equa-
tion (KdVB).

If the parameters of the waves are such that the first
term on the right side of the KdVB equation is much greater
than the second term, then dispersion can be neglected and
evolution of the wave occurs in the manner described in the
preceding section. In the reverse case, when the dissipation is
small, the relation (2.29) reduces to the well-known KdV
equation (see, for example, Refs. 20, 21, and 29). The KdV
equation can be solved analytically with the help of the so-
called inverse-problem method of the theory of scattering
(IPMTS). One of the most remarkable results of IPMTS is
the conclusion that the initial pulse decomposes into a num-
ber of separate soliton disturbances, whose form remains
constant and which move with constant, amplitude-depen-
dent, velocities. The details connected with the IPMTS and

the solution of the KdV equation can be found in the mono-
graph of Ref. 29.

In reality, for helium the starting pulses, as a rule, do
not contain higher harmonics, and their evolution at the first
stage is described by Burgers equation. As the profile of the
wave becomes steeper, however, the term with the third-
order derivative in Eq. (2.29) grows in magnitude and dis-
persion starts to affect the evolution of the wave. Numerical
studies of the KdVB equation20 show that the profile of the
wave can acquire a soliton form, and the front acquires an
oscillatory structure. The condition under which these soli-
ton-like bursts can form can be derived by comparing the
dissipative and dispersion terms in the KdVB equation
(2.29). The term with the second-order derivative is of the
order of Z>2Ai>n/(&O2, where Ai>n is the amplitude of the
pulse of second sound. The dispersion term is equal to
Z>3Ayn/(<5.x)3. Choosing for Sx the magnitude of the
"spreading" of the shock front Sx~D2/a2(T)&.vn we find
that the dispersion and dissipative terms are comparable if

•,1/2 (2.30)

The criterion under which the oscillatory structure of
the front can be observed can be derived in a more rigorous
fashion by studying the specific form of the initial perturba-
tion. For example, for a steady-state shock wave a criterion
of the type (2.30) is given in the next section.

In connection with the analysis of the propagation of
second sound in the vicinity of the A transition, it is impor-
tant to study the behavior of the nonlinear term
a2 (T) vn dvn /dx as a function of the temperature. It follows
from the formula (2.18) and the scaling relations that
a2(T) <x (TA T) ~ ' i.e., it increases rapidly as TA is ap-
proached (Fig. 6). In this connection it is necessary to dis-
cuss the correctness of the linear formulation of acoustic
problems near the A transition. As TA is approached the ve-
locity of second sound c2 decreases, c2 cc | 7\ — T \1/3; there-
fore the parameter Aun /c2, with respect to which the formal
linearization of the equations is performed, increases (with a
constant pump amplitude Au n ) . But even if the condition on
Ayn /c2 is satisfied, the nonlinear term is still not small owing
to the large value of a2 ( T ) . This must be kept in mind in
studying Hell in the region of a phase transition by acoustic
methods. It is entirely possible that the overestimation of the
value of the absorption coefficient for second sound, ob-

FIG. 6.
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tained in Ref. 24, is due to an invalid linear interpretation of
the experiment.

2.8. Stationary solutions of the Burgers and KdVB equations

The Burgers and KdVB equations derived above have
steady-state solutions in the form of a traveling wave with a
constant profile, vn = vn(x — Ut). We shall first obtain this
solution for Burgers equation. With the substitution
vn = va (x — Ut) the relation (2.25) becomes an ordinary
differential equation

(—U + ct + at(T)va)v'n = ]itv^, (2.31)

where the prime denotes differentiation with respect to the
argument g = x—Ut. Integrating Eq. (2.31) with the
boundary conditions vn ( o o ) = 0, v'n ( o o ) = 0 leads to the
following result:

i- r ft IT\ Art \ i

(2.32)vn (x, t) = At;n f 1+ fexp-^—^) (x - Ut)]
L \ *M^ / '

The solution (2.32) is a step with a "diffuse" front,
moving from left to right with velocity V, and a jump Aun in
the quantity vn , related with U by the following expression
U=c2+a2(T)kvn/2 [compare with Eq. (2.21)]. The
width of the transitional region Sx is equal to 2[j,2/a2 ( T) A vn

( compare with Sec. 2.6). The solution is shown schematical-
ly in Fig. 7. As /j,2-*Q the solution transforms into a shock
wave of second sound, described in Ref. 1. The same result
was derived in Ref. 83 without using Burgers equation.

We shall now explain how dispersion affects the struc-
ture of the shock wave. Substituting the solution
vn = vn(x — Ut) into the KdVB equation (2.29) and inte-
grating it once with the conditions un = v'n = i£ = 0 as
x-> oo we obtain the following second-order equation:

— D3i>; = «2 (T) -- + (c3 — U) on — (2.33)

Equation (2.33) cannot be solved in the general form,
but the solution can be studied qualitatively with the help of
a mechanical analog based on the fact that Eq. (2,33) has the
form of the equation of motion of a particle of mass D3 in a
field with the potential P(va) given by

(2.34)

and the force of friction D2un .
20 The form of the potential

P(yn) is shown in Fig. 8. The quantity —1"= — x+ Ut
plays the role of time. At the time t~> — oo (|"=oo) the
particle is located at the origin of coordinates (un = 0). By
the time t — oo (£ = — oo ) the particle, having undergone
several oscillations, "drops" to the bottom of the well.

FIG. 8.

This behavior corresponds to the solution vn (x — Ut)
shown in Fig. 9. It consists of a step with a jump in vn equal to
Ai>n = un ( — oo) — vn (x), which is related with the veloc-
ity of propagation by the well-known expression
U = c2 + a2 (T) (A vn /2). The shock front of this step has an
oscillatory character. In the case of weak friction the oscilla-
tions are solitons with amplitude 3or2( T) Ayn /2 and moving,
of course, with velocity U. If the viscosity is large, the motion
of the particle will be aperiodic. This means that the wave-
front will be monotonic, as in the purely dissipative case. The
values of D2cr, separating the oscillatory and monotonic
cases, can be derived, as in the preceding section, by compar-
ing the dissipative and dispersion terms in order of magni-
tude. This estimate gives, naturally, an expression of the type
(2.30). More accurate calculations (see Ref. 20) change this
estimate by a factor of -J2 and thus

D _(2c[ (7")Af D )'/z (2.35)

Using the definitions of D2 and Z>3 [see Eqs. (2.27) and
(2.28) ] we find that the relation (2.37) is equivalent to the
following equality:

(2.36)

If the right side in Eq. (2.36) is less than the left side, then
D2 > Z>2cr and the shockfront has a monotonic form. In the
opposite case Z>2 < D2cr and oscillations can be observed on
the shock wavefront.

2.9. Cubically nonlinear effects

The behavior of nonlinear waves of second sound, as
shown previously, depends strongly on the temperature. De-
pending on the sign of a2 (T), steepening of both the leading
and trailing edges of the wave is possible. For this reason the
temperature range where «2 vanishes is of special interest
(see Sec. 2.5). In this case there are no quadratically nonlin-
ear terms, and the evolution of the wave is determined by the
next higher order (cubic) terms in the equations of motion.
In this approximation the perturbations of the density/?' and
velocity v engendered by it affect the propagation of the

x-Ut

FIG. 7. The profile of a shock wave of second sound in a dissipative medi-
um.

x-Vt

FIG. 9. The profile of a shock wave in a dispersive medium with coeffi-
cient of viscosity less than the critical value.
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wave. The interaction with these disturbances as well as the
nonlinear, third-order effects "inside" the second acoustic
mode determine the structure of the wave packet. A cubical-
ly nonlinear medium has one remarkable property. It can
support nonlinear steady-state (i.e., the profile does not
change) monochromatic waves of the type
a' ocexpffX&ij^f — k0r)], where <uj;ci is the frequency renor-
malized owing to the nonlinearity. We recall that in a
quadratically nonlinear medium a sinusoidal wave first be-
comes deformed and then transforms into a sawtooth wave.

It is convenient to solve the problem of a nonlinear
monochromatic wave in the Hamiltonian form (see Sec.
1.2) for the quantity

) = (2jt)-8/2 \ ak
±2 exp I (k - k.) r dk,

which is the complex envelope of the wave packet. The trans-
formation from the variables a^1 to the function V(r,t) is
canonical, which makes it possible, given the Hamiltonian
//(*), to write out directly the equations of motion.30 The
quantity H is found by simply going through all contribu-
tions to the energy in the given approximation. For example,
the contribution of the interaction of the starting wave with
the first sound engendered by it can be taken into account as
follows (compare with Ref. 31). In the presence of first
sound the frequency ta^ of the second sound changes by the
amount &a ̂ , equal to

. s daf , . daa

OCOk. = —P +-.—-V.
dp dv

(2.37)

The last term describes the Doppler shift and is obviously
equal to k0- v. The change in the frequency &u2 corresponds
to the following change in the quadratic part of the Hamilto-
nian:

(2.38)

Having gone through in this manner all possible processes it
is possible to write out the Hamiltonian H(^) and to obtain
from it, according to general rules, the following equation
for the function V(x,t):

; (2.39)

Here Fk) is the vertex of the process

+ kldT/ds T^s«2Pn;

It is easy to see that Eq. (2.39) has the following solution:
r-Z t

¥ = ¥„«' k° ; (2.40)
X

Here o)\a is the renormalized frequency, equal to

The relation (2.44) describes a monochromatic wave with
the wave vector k0 and the frequency <£>;; , The perturbation
of the density p' and velocity v are equal to

. _ . Jfo_ i \p
P °

(2.42)

i.e., the velocity v is oriented in the direction opposite to the
direction of propagation of the wave. The velocity of propa-
gation of the wave c2 — ̂ i,/k0 depends on the amplitude.
Numerical analysis shows that the nonlinear correction to
the velocity of sound Ac2 at Ta x, 1.885 K is equal to

(2.43)

Thus the nonlinear wave moves more slowly than the
linear wave. The Doppler interaction of the wave under
study with the first sound engendered by it makes the main
contribution to the change in the velocity of the wave. Thus
effective interaction between quanta of second sound is real-
ized through ordinary sound. This situation is reminiscent of
the theory of superconductivity, where the interaction
between the electrons is realized through lattice vibrations.

3. MULTI-DIMENSIONAL WAVE PACKETS

3.1. Self-focusing of a monochromatic wave

In Sec. 2 we studied some nonlinear phenomena in-
volved in the propagation of one-dimensional waves. The
one-dimensionality of a wave means that the surfaces of con-
stant phase are planes in the y, z coordinates. In reality, of
course, waves have a finite transverse size, as a result of
which nonuniformity arises in the y and 2 directions. For
waves with an infinitesimal amplitude taking the transverse
nonuniformity into account results in diffraction phenome-
na. In the case of finite amplitudes a number of fundamental-
ly new effects, connected with the combined action of non-
linear and diffraction terms in the equations of motion, can
arise. In this section we shall study the propagation of a non-
linear wave of second sound, weakly modulated in the trans-
verse direction, i.e., under the assumption that the nonlinear
and diffraction terms are of the same order of smallness.

We shall study the case of a cubically nonlinear medium
(see Sec. 2.9), for which it has been shown that a monochro-
matic nonlinear wave of second sound can exist in a neigh-
borhood of the temperature T"a ~ 1.88 K. We shall study the
effect of a transverse nonuniformity on the evolution of such
a wave.

As in Sec. 2.9, we shall give the description in terms of
the function V (r,0, which, unlike the case studied previous-
ly, depends on the spatial coordinate r. The weak depen-
dence of the function ^(1,1) on r can be represented as the
appearance of harmonics with wave vectors k close to k0 in
the main wave. This changes the quadratic part of the Ham-
iltonian H2, a consequence of which is that the equations of
motion contain terms describing linear diffraction. The
complete Hamiltonian H can be derived by simply going
through all the cases, as done in the preceding section. Refer-
ring the reader to Ref. 30 for the details of the calculations,
we write out the equation for the complex envelope
(in the steady-state case):
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I pe 7. (3.1)

Here Wk(i is the matrix element of a six-wave process and O'
and £l" are the first and second derivatives of the frequency
fijj^ with the respect to the density p.

A relation of the type (3.1) was first derived for the
passage of laser radiation through matter (see Ref. 20 and
the references cited there) and is called the nonlinear para-
bolic equation. It has been studied in a number of papers
(see, for example, Ref. 32). Following the results of Ref. 32,
we shall describe the behavior of the wave under study.

The coefficient in front of the term I*!2* (the expres-
sion in the first brackets) is a positive quantity and is equal to
zz2.\%k3

Q/c-ip>Q. The fact that this quantity is positive
means that the velocity of propagation of the wave decreases
with the amplitude (see Sec. 2.9). As a result at the periph-
ery of the wave packet, where the amplitude is smaller, the
velocity of the wave is higher than on the axis of the beam.
The wavefront bends, as shown in Fig. 10, and focusing of
the packet starts. As a result of the focusing action the ampli-
tude on the axis increases, which results in an even greater
difference between the velocity of propagation of the peri-
pheral and central sections. This intensifies the focusing ef-
fect even more. Thus the nonlinear self-focusing of the wave
packet is a consequence of the fact that the coefficient in
front of |*|2* is positive.5'

The diffraction term Ax* in Eq. (3.1) results (in the
absence of nonlinear effects) in spreading of the packet in
the transverse direction. For this reason, to observe self-fo-
cusing the energy flux must exceed some threshold value /cr.
Calculation gives the result 7cr ss0.6-107v~2w, where v is
the frequency of the sound in hertz (see Ref. 30). We note
that Icr can be evaluated from Eq. (3.1) by equating in order
of magnitude the diffraction and nonlinear terms. The inten-
sity /cr can be achieved experimentally, and self-focusing
can realistically be observed.

Thus the fourth-order nonlinear terms in the Hamilto-
nian describe the compression of a wave beam. As a result
the amplitude on the axis increases rapidly, and the further
behavior depends on the higher-order terms, in our case,
sixth-order terms. As the calculations show (see Ref. 30),
the coefficient in front of the term I*)4* (the expression in
the second set of square brackets in Eq. (3.1)) is negative.
This is equivalent to the six-wave Hamiltonian Hb being
positive, which corresponds to three-particle repulsion.

FIG. 10. This figure explains qualitatively the appearance of the self-
focusing effect. The arrows indicate the direction of motion of the wave-
front. The lengths of the arrows correspond to the velocities of propaga-
tion of the sections of the wave.

Competing with two-particle attraction, the latter process
stabilizes the wave packet and prevents it from collapsing to
zero dimensions. This qualitative argument is confirmed by
the results of the numerical solution of an equation of the
type (3.1) (see Ref. 32). Ultimately the beam is compressed
to a size for which the fourth- and sixth-order diffraction and
nonlinear terms "balance" one another and the packet, as it
is said, enters the regime of self-channelization. The size of
the channel S can be estimated from the following relation:

1/2 (3.2)

here cr, is the dimensionless coefficient in front of the term
|*|4* in Eq. (3.1), cr,~ -2-10'2. The condition (3.2)
means that for values of / greater than 7cr the beam can be
compressed to a very small size. In this case, high energy is
concentrated on the axis of the beam, and this can give rise to
significant overheating and make it easier to observe the ef-
fect.

3.2. Wave beams in a quadratically nonlinear medium

In this section we shall describe the behavior of the wide
beams of second sound in quadratically nonlinear media,
where the self-focusing phenomena are accompanied by
steepening of the wave and the formation of a shock front.

We shall assume that in the evolution of the wave the
dissipative and diffraction effects are of the same order of
smallness as the nonlinear effects. Actually, the smallness
parameter, related with the transverse nonuniformity, must
satisfy the relation k\/k2

x =0(Aun/c2), where k^1 and
k ~' are the transverse and longitudinal dimensions of the
wave pulse and Ai>n is its amplitude. The equation for the
evolution of sound pulses in ordinary media was derived in
Refs. 33 and 34 under these assumptions. Analogous calcu-
lations give an evolutionary equation for nonuniform distur-
bances of second sound (in the reference frame moving with
velocity c2):

_£_/J
dx V dx -tv dx*

(3.3)

Compared with the nonlinear parabolic equation (3.1),
Eq. (3.3) has not been studied much. One reason for this is
that there are no steady-state waves with constant profile.
Indeed, the nonlinear term a2(T)vndvn/dx describes the
formation of shock fronts, on which strong dissipation oc-
curs and the amplitude of the wave must decrease. In addi-
tion, in the case of Eq. (3.1) the effect of the nonlinear term
can be reduced (at least qualitatively) to the bending of the
front (see Fig. 10), whereas here the situation is more con-
fusing. Indeed, the quantity a2(T)vn, which plays the role of
a nonlinear correction to the velocity of sound, is different at
different points in the wave, as a result of which nonuniform
deformation of the wave profile, also complicated by diffrac-
tion phenomena, will occur.

There are, however, quite a large number of investiga-
tions of the numerical solution of Eq. (3.3). These studies
are reviewed in detail in the book of Ref. 35 (see also Ref.
55). We shall describe, following Ref. 35, the main charac-
teristics of the evolution of the wave, whose characteristic
transverse size is k ~l. The calculations show that one of the
main parameters affecting the evolution of waves is the
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quantity JV = Ldiir/Z,dis; here Ldis = c2/a2(T)kvnkx is the
distance along the x axis at which a discontinuity appears in
a one-dimensional wave (see Sec. 2.5) and Z-diff = kx/k \ is
the characteristic distance of diffraction spreading of the
packet. For N<, 1 there is enough time for the wave to be
transformed into a diverging wave before nonlinear effects
become significant. The further evolution of the packet pro-
ceeds as in a nonlinear spherical wave (see Ref. 55). As N
increases the nonlinear effects come into play earlier. As in
the one-dimensional case, they lead to deformation of the
wave profile and formation of a shock front. This deforma-
tion, however, does not occur identically for different dis-
tances from the axis. The discontinuity forms first on the
axis of the beam (rL =0). Next the peripheral sections are
drawn in. The distance at which a shock front forms on the
axis of the packet is of the order of £dis, though it fluctuates
somewhat as a function of N and the starting distribution.
After the discontinuity forms intense dissipation of wave en-
ergy starts and, just as for small values of N, the packet trans-
forms into a diverging wave. It should be noted that prior to
the formation of the shock front some similarity to self-fo-
cusing is observed, namely, the amplitude on the axis in-
creases and for beams with sharp edges the amplitude in-
creases by a factor of two and more, while the transverse
distribution becomes narrower, i.e, the beam is compressed.
This process, however, does not last very long and steady-
state self-focusing, apparently, does not occur in a quadrati-
cally nonlinear medium.

Analogous phenomena occur with isolated (positive or
negative) pulses (see Ref. 55). For them, just as for periodic
waves, nonuniform distortion of the profile occurs and a
shock front forms. Prior to the formation of the shock front
the width of the packet decreases (if a2( 71 Ai>n < 0) and the
amplitude on the axis increases. Just as for periodic waves,
however, this does not result in transverse collapse. Indeed,
the characteristic length £col = ( — c2/a2(T)kvnk

2
i\

>/2, at
which nonlinear compression of the beam occurs (see Ref.
55), satisfies the condition Z,^Ol = LdisLdiff, i.e., either
Lcol > Ldiff or Lcol > Ldis. In the first case diffraction effects,
resulting in spreading of the packet, predominate. In the sec-
ond case the shock front forms before the beam is focused.
After the discontinuity forms strong dissipation arises, the
amplitude decreases, and the wave packet transforms into a
diverging wave in accordance with the laws of linear acous-
tics.

4. STABILITY OF NONLINEAR WAVES

4.1. Nonlinear transformation of first sound into second
sound

The study of the stability of solutions is an important
part of the theory of nonlinear waves. First of all, this per-
mits determining the region of values of the parameters for
which the solution found is realized. Second, the possible
instability of the wave is related with the nonlinear character
of the equations, and for this reason stability questions are
ideologically close to the nonlinear theory. The stability is
studied within the framework of the standard scheme (see
Ref. 36). The variables describing the system are represent-
ed as a sum of two parts, one of which is the starting solution
and the other is a small correction, connected, for example,
with fluctuations. Next the general equations are linearized

with respect to the small corrections, and in this manner the
problem is reduced to studying a system of linear equations
(with coefficients which depend on both the starting solu-
tion and the properties of the medium). At this stage the
question of the time dependence of the starting solution is
very important. For time-dependent solutions the problem
turns out to be very complicated and can be solved in only
very few cases. Problems in which the starting solutions do
not depend on the time are relatively simple (traveling
waves with constant profile, in which the variables are func-
tions of the combination x — Ut, are also of this type). In this
case the coefficients of the linearized system do not depend
on the time and the equations have solutions in the form of a
superposition of exponentials 2,-e '', where A, are functionals
of the starting solution and the properties of the system. If in
the set of/I, there are functionals such that Re/I, >0, then
small corrections grow exponentially, which means that the
solution under study is unstable.

There is one other interesting aspect to the question of
the stability of the waves. Suppose that a wave of first sound
is excited in helium. Suppose further that small distur-
bances, associated with the second-sound mode, are unstable
in the presence of this first sound. Then they grow and can be
detected experimentally. This effect can be interpreted as the
generation of second sound by first sound.6) It is from this
viewpoint that the stability of first sound was studied in
Refs. 6 and 56. Assume that we have initially a monochro-
matic wave of first sound. It can be written as follows in the
Hamiltonian variables:

= 0. (4.1)

Generally speaking, a solution of the type (4.1) does
not satisfy the nonlinear equations (1.17) with the Hamilto-
nian (1.18) (see the beginning of this section). The results
obtained in Refs. 6 and 56 nonetheless are very important for
understanding the nonlinear interaction between the differ-
ent types of sound, and the problem at hand is thus of a
model character.

When three-wave processes are taken into account
there are two possible mechanisms for development of insta-
bility which are associated with the appearance of second
sound. These are the decomposition and Cherenkov pro-
cesses, which have the following schematic form:

(4.2)

It is well known from the general results (see Ref. 2 and 3)
that the instability develops under conditions of resonance,
i.e., aside from the satisfaction of the condition k = kt + k2

(this condition is a consequence of the spatial uniformity and
is a consequence of the S functions in the Hamiltonian H
(1.18)), the analogous condition for the frequencies must
also be satisfied:

k = e>k, 4- (4.3)

The simultaneous satisfaction of the conditions on the fre-
quencies &>£ and the wave vectors k delimits the region in k
space in which Cherenkov and decomposition processes are
allowed, and this gives a basis for studying them separately.

Consider, for example, the decomposition process. We
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FIG. 11. Section of the surface on which lie the tips of the vectors k, and
k2, satisfying the resonance conditions (4.4) in the decomposition pro-
cess.

FIG. 12. Section of the surface on which lies the tip of the vector k, of the
quantum of first sound in the process of Cherenkov emission. The surface
is determined by the relation (4.8).

shall write the conditions of resonance in the following form:

k0 = k1 + k2. (4.4)

From here one can see that the momenta k, and k2 of the
emitted quanta lie on the surface of an ellipsoid of revolution
( Fig. 1 1 ). As a result of the condition c2 -^ c , the correspond-
ing ellipse has a small eccentricity, and the momenta k, and
k2 are almost oppositely oriented. The equations for the
small disturbances f}^ and (3^ comprise a system of two
ordinary linear differential equations, which have solutions
of the form /3 (

k
2} ( t) <x exp ( vdK7 - itol t) , and in addition

here y£2> is the damping of second sound. One can see from
the relation (4.5 ) that above some critical amplitude a > adec

the increment vdec acquires a positive real part and the per-
turbations grow exponentially. The threshold value odec is
equal to

Fdec (o), 6)

1/2

(4.6)

here Fdec(«,#) is the vertex of the decomposition process
yl~2~2, expressed in terms of the starting frequency and
the angle of emergence 9 of a quantum of second sound,

Fdec (co, 8)

—^— cos2 e - PnP dpn' , 1 ay/do8 \
2p5 ap 2 ar/aa /

(4.7)

The threshold amplitude adec depends on the direction of
emergence and its minimum value obtains at 9 — 0, i.e.,
emergence in the forward direction occurs. The second
emerging quantum moves in almost the opposite direction.

Analogous calculations and relations also are obtained
for Cherenkov emission. For this process the resonance con-
ditions have the following form:

k0=k1-r-k2. (4.8)

Since the velocity of second sound is much less than the
velocity of first sound, c2<c,, the conditions (4.8) hold
when |k0[ s: |k, |, i.e., the tips of the vectors k and k, lie on an
almost spherical surface (Fig. 12). We denote by x the angle
between k0 and k,. As a function of ca and j the vertex of the

Cherenkov process has the form6

., , (\7 im v ) =v°' w
3/2 dp/dT

dp/do

Ci 2

\
+ (4.9)

The vertex of the Cherenkov process (4.9) depends on
the angle x- Its maximum value occurs for % close to ir, i.e.,
the quantum of first sound is emitted almost backwards. The
frequency of the quantum of second sound is, in this case,
close to 2toc2/c,. The threshold value of the amplitude for
which the increment vcher acquires a positive real part satis-
fies the following condition:

(4.10)

Figure 13 shows the behavior of the ratio of the thresh-
old amplitudes in the Cherenkov and decomposition pro-
cesses <a£ber/adrc- One can see from the figure that with the
exception of a narrow "window" near the temperature
Tzz 1.15 K the Cherenkov process precedes the decomposi-
tion process.

An analogous study was performed for 3He-4He mix-
tures in a recently published paper84 (see also Ref. 85). In
contradistinction to pure 4He the Cherenkov process is
much more efficient in the 3He-4He mixture. The author
suggests that the corresponding nonlinear process be used to
observe a specific phenomenon: wavefront reversal.

4.2. Stability of a pressure shock wave

As we have already mentioned, a monochromatic wave
of first sound is not a solution of nonlinear equations of mo-
tion. On the contrary, an initially sinusoidal wave becomes
steeper and transforms into a sawtooth wave (from the for-

FIG. 13. The ratio of the threshold amplitudes of Cherenkov and decom-
position processes aCner/aiec as a function of the temperature.
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mal viewpont steepening is a consequence of nonlinear pro-
cesses occurring "inside" the first sound which were neglect-
ed in Refs. 6 and 56). It is of great interest to study the
conditions under which this sawtooth wave can emit second
sound. However the corresponding stability problem is very
complicated, first, because the starting solution depends on
the time and, second, because it contains singularities (dis-
continuities).

It is nonetheless possible to alter the emphasis in this
problem and to clarify the role of discontinuities in the sta-
bility of the wave, i.e., to raise the question of the stability of
an idealized shock-wave step, moving from left to right and
having definite values of the variables on the shock front.
This question is also of interest for the following reason. The
point is that the equation of entropy transport is important
in the study of the stability of shock waves in ordinary media
(see, for example, Refs. 3, 37, and 38). Some differences can
arise in Hell, where entropy transport is realized, unlike in
all other media, by a wave mechanism.

The question of the stability of a pressure shock wave
was studied in Ref. 39. The problem was solved based on the
Hamiltonian equations of motion in the class of generalized
functions for the starting solution and small corrections.
This made it possible, in contrast to the traditional methods
(see Refs. 37 and 38), to study the stability of the shock wave
not only relative to weak distortions of the wavefront ("rip-
ples"), but also with respect to disturbances incident on the
discontinuity. In an idealized shock wave—a step moving
from left to right—the hydrodynamic variables are propor-
tional to a unit step function 6( — x + Ut), where C/is the
velocity of the discontinuity. In the Hamiltonian variables
such a step is described by the following relation:39

/2 e (k*} exp (~ ik*Ui)

kx±iO
(4.11)

here AD is the amplitude of the discontinuity and the term
± iO in the denominator gives the rule for circumscribing
the pole: it corresponds to a wave moving from left to right.
Because the Cherenkov vertex is small the system of equa-
tions for the small disturbances of the first /? £ and second /3 £
sound modes separates into two structurally identical rela-
tions of the following form:

dt TO J k2x—kx+i(

Lfr^rtT^ = ° (v=1.2);u J k + k + iO
(4.12)

here A k^ are some functions of k and k2, related with the
vertices of the nonlinear processes. The denominators
^2X ± kx + ® arose formally from the Fourier representa-
tions of the step function (see Ref.39). By means of special
transformations the relation (4.12) can be reduced to a sys-
tem of singular integral equations with rational coefficients.
The solution of such equations (see Ref. 57) is related with
the reconstruction of a piecewise-analytical function (of the
complex variable kx) from its discontinuity on the real axis
in the kx plane. The calculations performed in Ref. 39 lead to
the following result. The disturbances /? £ (0) arising, for ex-
ample, owing to the fluctuation "force" G(k,f), later devel-
op according to the law

here G(k,/t) is the Laplace transform of the function G(k,?),
and F(/l,k) is a linear operator whose form can be deter-
mined from the complete solution of the problem. Corre-
spondingly, /3i<xe '', where A, is the pole of this operator
and thus the stability problem reduces to finding the poles of
the operator F(A,k). Investigations show that there are
three branches for /I,, two of which are as follows:

(4.13)

= i(U- to) kx -f

The physical significance of these branches is that they de-
scribe oscillations behind and in front of the shock wave (in a
coordinate system tied to the discontinuity). The quantity
Re/I = 0, i.e., the branches found do not lead to instability.
The third branch of the poles of the operator F(/l,k) is dis-
crete (it does not depend on kx). Its physical significance is
that it describes the evolution of disturbances on the shock
front. For disturbances of the second sound type the opera-
tor F(/l,k) does not have poles of the indicated type. As
regards disturbances of the first-sound type, they, as is well
known (see Ref. 9), lead to acceleration and distortion of the
wavefront, creating "ripples" on it, whose evolution is de-
scribed by the branch under study. In other words, the indi-
cated branch of the poles of the operator describes the stabil-
ity of the shock wave relative to weak distortions of the
surface of discontinuity. This formulation of the problem is
identical with investigations of the stability of shock waves
in ordinary liquids (see Refs. 37 and 38). The calculations
performed in Ref. 39 lead to the following simple result. The
starting distortions g(ritt)\t = 0 of the shock front will subse-
quently decay exponentially with decrement UlkL,
(C/i = U — Ay is the velocity of the liquid behind the discon-
tinuity), which means that the shock wave is absolutely sta-
ble. This result is identical to the results of Refs. 37 and 38,
where the stability of shock waves in ordinary liquids was
studied.

Summarizing the results of this section we can say that
pressure shock waves in Hell are stable relative to distor-
tions of the surface of discontinuity, and they are a very sta-
ble type of flow, as in the case of ordinary media.

We call attention to the fact that if the specific form of
the initial disturbance G(\t,t) is given (for example, if it is
assumed that G(k,f) oc<5(k — k0)exp(/&>£/)), then the
method described in this section can be used to describe the
interaction of this disturbance (sound) with a shock wave.

5. STOCHASTIC NONLINEAR WAVE PROCESSES

5.1. Solution of the kinetic equations

In the preceding sections we studied some questions re-
garding the propagation of nonlinear waves based on the
dynamical equations of motion. A somewhat different ap-
proach arises in the problem when a wave packet containing
a large number of harmonics which are not correlated with
one another is excited in Hell. This can actually happen as a
result of the instability of waves or, for example, random
pumping of pulses (heat or pressure) into the volume of the
liquid.
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Suppose that we have some source of wave energy that
generates harmonics with a characteristic wave number of
the order of k + , which is usually assumed to be (in order of
magnitude) the inverse size of the system, k + ~L ~ '. As a
result of nonlinear processes harmonics with higher values
of k, which, in their turn, generate still higher harmonics,
appear in the system. For very large values ofk, of the order
of k _ , viscous terms come into play in the equations of mo-
tion, and waves with momenta k~Zk_ decay rapidly. Ulti-
mately some distribution of waves, which is characterized by
the transfer of energy from large-scale motions to small-
scale motions, is established in k space. This picture is typi-
cal for turbulent phenomena, and since we are talking about
sound waves it is called acoustical turbulence (AT).

In Sec. 5 we shall study acoustical turbulence in Hell, a
characteristic feature of which is that the cross interaction of
first and second sounds is added to the above-described wave
interaction. Stochastic wave processes can be described sys-
tematically on the basis of the nonequilibrium diagrammatic
technique (DT).40'41 The diagrammatic technique for the
case of Hell was developed in Ref. 42. Under the assumption
that the nonlinearity is small, the relations of the proposed
DT (Dyson's equation) reduce to a system of kinetic equa-
tions (KEs) for n£. denned as n£<5(k - k') = «akT

 V)I—
pair correlation functions of the complex amplitudes or
spectral densities (spectra). In the stationary and spatially
homogeneous case the system of KEs has the following
form: (Ref. 42) 7)

« {«> = S I dki dk2 [Dffig (nf,n£ - nk
vn£ -

= 0] (v = 2);
(5.1)

here

The equations (5.1) are identical to the kinetic equa-
tions employed to describe phonon systems (see Refs. 36 and
43) with the difference that in Eqs. (5.1) the spontaneous
processes are omitted (owing to the fact that #<nk). It can
be verified in the standard manner (see Ref. 41) that the
KEs (5.1) have a solution of the form:

^T» "̂

(5.2)

here Tisa constant, which plays the role of temperature. The
solution (5.2) is the equilibrium Rayleigh-Jeans distribu-
tion; it is characterized by the absence of any flows (in k
space) and, correspondingly, it is not appropriate for the
problem of acoustic turbulence.

In the nonequilibrium situation the formulation of the
problem of finding the spectra of acoustic turbulence nk pre-
supposes, aside from Eq. (5.1), the existence of a source and
sink of waves. Generally speaking, the solution «k depends
on the specific form of the source (and sink). As often hap-
pens, however, the regions where the source and sink are
influential are strongly separated in k space, i.e., k + <k _ .
In addition, in the range of wave numbers k far from both
k+ and&_ (i.e., k+ < & < £ _ ), in the so-called inertialin-

terval (II) some distribution «k which does not depend on
the form of the source (and sink) and is determined solely by
nonlinear interaction of the waves can be established.

Thus the problem of finding the spectra of acoustic tur-
bulence reduces to finding solutions of the KES (5.1), which
make the energy flux />k in k space constant. This problem is
very difficult, since it is related with finding the solution of a
system of nonlinear integral equations. Even in the simpler
case of a single wave mode the exact solution can be found
only in the isotropic situation and with very stringent re-
strictions on the form of the functions &>k and Fkkjtj, name-
ly, these quantities must be homogeneous functions of their
arguments. This requirement as well as the condition
k + <^fc _ , by virtue of which we can set k + = 0, k „ =00 ,
leads to the assumption that the problem is scale invariant,
i.e., there are no characteristic dimensions for k. This sug-
gests that the solution nk has a power-law form: nk = Aks.
The exponent ^ can be calculated with the help of the so-
called Zakharov transformations (see Ref. 44 for a detailed
discussion). With the help of these transformations it is pos-
sible to factorize the integrand in the kinetic equations (5.1),
and in the process one of the cofactors leads to the solution
nk~ks, characterized by a constant flow of energy in k
space. In particular, Zakharov and Sagdeev45 found by this
method the spectrum of acoustical turbulence in an ordinary
liquid. They found that s = — 9/2, and calculated the rela-
tion between the amplitude spectrum A and the power P of
the source of wave energy.

In Hell, owing to the existence of several types of non-
linear processes, the collision integral cannot be factorized
directly. Nonetheless, as we shall now show, the system of
kinetic equations (5.1) has an isotropic scale-invariant solu-
tion of the following form:

with the same exponent s (see Ref. 42).
This assertion can be proved as follows. Substitution of

the spectra (5.3) into the kinetic equations (5.1) reveals the
following important fact. Because all vertices Vk'ik;k' (1.20)
have the same degree of homogeneity and because both dis-
persion laws &>k are linear the external argument k appears in
all terms in the form of the factor k5 + 2s. As a result, after
canceling ks + 2s, the kinetic equations (5.1) reduce to a sys-
tem of bilinear algebraic equations for the quantities A and
B:

+ XABAB + XBBB* = 0,

+ YABAB + YBB& = 0. (5.4)

The quantities X and Fcan be calculated from the inte-
grals appearing in the kinetic equations; they are functions of
the parameter s. Since the system (5.4) is homogeneous
(with respect to A and B) a solution exists only for certain
values of s, which play the role of eigenvalues. It will be
shown below that s = — 9/2 is an eigenvalue of the system
(5.4).

We shall write out the terms in the kinetic equations
(5.1) that correspond to decomposition processes (it will be
seen from the presentation given below that for Cherenkov
processes the situation is completely analogous). Denoting
them by /122 and /212, where the first index indicates the
number of the equation and the other two indices denote the
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type of process, we obtain

J™ = J DS.(nifil-ninl- ninl)dc,dkt, (5.5)

- J £>$* «rtk - nlnl - ninl) dk, dkz

j. (5.6)

Consider the second term in Eq. (5.6). The conserva-
tion laws appearing in the factor D 12£^ require that the fol-
lowing conditions be satisfied:

Cj j q21 = ca | k | + cz | qj |, q2 = k + qx, (5.7)

Analogously, the conservation laws in the integral J222 have
the form

We illustrate the triplet of vectors coupled by the conditions
(5.7)-(5.8)in Fig. 14; the triangles are chosen to be similar.
We rotate the triangle q2kq, so as to orient k along k, in the
first triangle kktk2 and stretch it by a factor ofk/klt after
which both triangles coincide, as shown in Fig. 15. These
operations are equivalent to the following substitution of
variables:

(5.9)

Using the substitution ( 5.9 ) and the homogeneity of the
quantities F^J^, «£, and «k> the term under study can be
put into the form

Dkl
2,k, (nlnl - nlnl - n^l) dk, dk2> (5.10)

which differs from / ' 22 by the factor ( k /k , ) 8 + 2j in the inte-
grand. Analogous calculations show that the first term in
Eq. (5.6) assumes the form of J122 with the factor
(k/k2)

s + 2s in the integrand. Next, multiplying/122 by c,
and J212 by c2 and adding the two expressions we obtain

FIG. 15.
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It is not difficult to see that for 8 + 25 = — 1 (i.e., for
s = — 9/2) the expression in the brackets in Eq. (5.11) is
identical to the argument of the frequency 8 function appear-
ing in D l22 , so that the integral vanishes. Thus, irrespective
of the dependence on the amplitudes A and B of the spectra
for s = — 9/2 the quantities JU2 and /2l2 are related with
one another by the expression c,/122 + c2J

212 = 0. In partic-
ular, if a relation is chosen between A and B such that /122

vanishes, then J212 will also vanish. As a result the contribu-
tions of decomposition processes to Iv

st{n} vanish in both
equations of the system (5.1). Contributions from the non-
linear processes "inside" each wave mode vanish (for
s = — 9/2) automatically, since the situation is entirely
analogous to acoustical turbulence in ordinary media, as de-
scribed in Ref. 45. Thus by selecting the relation between A
and B ( and setting 5 = — 9/2 ) both collision integrals in the
kinetic equations (5.1) can be made to vanish; in other
words, a solution of the form (5.3) can be obtained. The
relation between A and B can be established with the help of
any of the equations (5.4). The results of the calculations are
presented in Fig. 16, where the ratio A /B is shown as a func-
tion of the temperature. We call attention to the fact that in
order of magnitude A /B is close to ( 1/2) (2c2/c,)9/2 (the
latter is shown in Fig. 16 by the dashed line). This fact can
also be given a physical explanation. As calculations show,
the contribution of decomposition processes to the quanti-
ties X and Y [see Eq. (5.4) ] can be much greater than the
contribution of the Cherenkov processes. But in decomposi-
tion processes, as shown in Sec. 4.1, one quantum of first
sound with momentum k decomposes into two quanta of
second sound with momenta k2 and k1; and in addition
A:j,A:2~Cifc/2c2.Thustherelation2«i ~«2,k/2c, is satisfied in
order of magnitude, whence, taking into account the fact
that «£ oc k ~ 9/2, we obtain

A
B

8/2

We shall illustrate schematically the spectra of the first
and second sounds as functions of the wave number k (Fig.
17). Region I is the region of influence of the source and in
region III viscous damping of the waves is significant. Re-
gion II is the inertial interval, in which the spectra «£ and «£
found above are realized.

We shall evaluate the energies e('' and e(2) stored in the
wave fields. These quantities can be obtained by averaging
the quadratic part of the Hamiltonian H (1.18). For E ('' we
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have

= f = 4jxc A f ! d /e- (5.12)

The integral is cut off at k + ~L \ where L, we repeat, is
the size of the system. Analogously, for second sound we
have e(2)~8irc,5/A:^2. The ratio of the energies
£(1) and £(2) is equal to e(1 Ye(2) ~ (2c2/c, )7/2, i.e., the ener-
gy stored in the second, softer mode greatly exceeds the ener-
gy of the harder first sound. This is a characteristic feature of
a nonequilibrium distribution, since for the Rayleigh solu-
tion (5.2) the energies en) and e(2) are equal, which agrees
with the law of equipartition of energy (see Ref. 46).

As regards energy transfer, calculations show that irre-
spective of the method of excitation of the wave energy the
flows Pk

n + /'k2' are distributed in the same manner along
the spectrum of the first and second modes and they are
related with the amplitudes of the spectra A and B by the
following expressions:

PPn
(5.13)

where at(T) and a2(T) are the coefficients of nonlinearity
of the first and second sounds (see Sec. 2.5). The total ener-
gy flux P^ + P(

k
2), of course, is equal to the pumping ener-

gy (or dissipation) per unit volume. It is interesting to note
that in spite of the general nonequilibrium nature of the sys-
tem the "gases" of the quanta of first and second sounds are
in equilibrium with one another and the total energy flux
from one mode to the other is equal to zero.

5.2. Acoustical properties of turbulent helium

The acoustical properties of helium II in which acousti-
cal turbulence has been excited are different from those of
the undisturbed liquid. Indeed, any sound wave propagating
in turbulent helium will interact with the wave fields. The
result of this interaction is some additional damping Fk and
dispersion Ak.

It can be shown with the help of the diagrammatic tech-
nique (see Refs. 41, 42, and 47) that the damping F£ and
dispersion A£ of the wave of the vth mode are the imaginary
and real part of the following expression:8'

Vi.V»=±l J-,l " I

(5.14)

The integration in Eq. (5.14) must be performed in accor-
dance with the formula

x + iO

We shall first perform calculations for first sound, i.e.,
we set v = 1. We shall study the contribution to Fk and Ak

of the interaction with the wave field of the first mode, i.e.,
we assume v,,v2 = ± 1. The calculations of the damping
Fk" and dispersion Ak

u (the first index is the number of the
external mode and the other two indices denote the form of
the process contributing to the quantity under study) are
practically identical to the calculations of these quantities
for sound propagating in a system of phonons with a linear
dispersion law.9) Referring the reader to Refs. 42 and 43 for
the details of the calculations, we present the final result:

- S - . (5.15)
2np fci/aR+

In the calculation of the relations (5.15) the fact that the
spectra nk have the form (5.3) was used and the integrals
were cut off at the lower limit k + (~L ~').

We shall now study the contribution of the decomposi-
tion interaction of the external wave to F^, i.e., we set
v= — 2andv2= — 2 in the formula (5.14). The damping
Fk

22 has the following form:

IT =«J|VKaj»nlloK-«l1-<BU)dk1. (5.16)

The calculation of the integral in (5.16) reduces to integra-
tion over the surface (4.4) (see also Fig. 4.1). Carrying out
the integration and neglecting terms of order (c2/c, )2 with
respect to the retained terms, we obtain

r12Zl ^-p' / ZC3

I* —~r~—. T~16npl\ c, j
(5.17)

here (ap) is the angle-averaged expression in the brackets in
the formula (4.7). It is of the order of unity.

We shall now calculate the contribution of decomposi-
tion processes to the dispersion of first sound Ak

22, equal to

ni.dk,
(5.18)

The integral in Eq. (5.18) is a principal value integral.
Near the resonance surface the integrand has a singularity of
the type (k — krcs) ~ ' of different sign on both sides of the
surface. The integral nonetheless is different from zero in
view of the fact that the integrand contains a rapidly decay-
ing function nki oc k j~9/2. We shall estimate the dispersion
Ah

22, neglecting the directional dependence of the matrix ele-
ment V1'2'3, i.e., we assume that V'k~l~k,
= const- (ktk2k3)

1/2. In this case it is possible to perform
the integration over the angle between the vectors k and k,
analytically. As a result the integration of singularities of the
form (k — kres) ~' splits into two singularities of the loga-
rithmic type. The infrared region kt -»0 as well as the region
near the logarithmic singularities make the main contribu-
tion to the integral. The first (infrared) region leads to the
following (in order of magnitude) expression for the disper-
sion:

J3 k_
n'p fti/>

(5.19)
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Estimates made for the regions with logarithmic singu-
larities give the following expression for 2A

•A"' = ̂ L Bkl/\

122.

(5.20)

The contributions of the Cherenkov processes to the
damping F^22 and the dispersion A^12 can be calculated anal-
ogously. The results are qualitatively similar, i.e., the quanti-
ties Tl

k
22 and A^22 have a square-root dependence on the wave

number k, similarly to the case of decomposition processes.
Quantitatively, however, these quantities are much less than
in the case of decomposition processes owing to the fact that
the Cherenkov vertices are small and the phase volume of
integration in the processes

is also small.
We shall now consider the problem of calculating the

correlation characteristics of second sound. By analogy to
first sound here we have the contributions F2.22 and A2.22 con-
nected with nonlinear processes inside the second mode and
equal to

AJ" = 2 s -^-ln
n«ppn •"*

(5.21)

Analogously to the case of first sound cross nonlinear
processes contribute to the damping and the dispersion. As
calculations show (see Ref. 42), however, these contribu-
tions are small compared to F2,22 and A2.22 and they can be
neglected.

We shall briefly summarize the results obtained. A
wave of first sound propagating in turbulent Hell is subject
to additional damping and dispersion. The decomposition
processes (F£22>rkn,Ai22>Aiu) make the largest contri-
bution here. The damping F^22 has a square-root dependence
on the wave number k and can be easily observed experimen-
tally. The dispersion consists of two parts [see Eqs. (5.19)
and (5.20) ]. The first part is linear in the wave number k
and thus reduces to renormalization of the velocity of sound.
The second part has a square-root dependence on k and re-
sults in the "true" dispersion of the velocity of sound, and in
addition AcJ22 <x k ~ 1/2. The damping and dispersion of sec-
ond sound are determined primarily by nonlinear processes
occurring "inside" the second wave mode. The quantities
F2.22 and A2.22 are proportional to the wave number k. The
dispersion A2.22 results in renormalization of the velocity of
sound, Ac222 = A2.22 = A2.22/jk|. As regards the damping,
first of all, it exceeds the viscous damping 7^2) <x k2 and, sec-
ond, it differs from the viscous damping in that it depends on
k and can also be observed experimentally.

6. EXPERIMENTAL INVESTIGATIONS

6.1. Brief review of experimental work

As mentioned in the introduction, the experimental
study of nonlinear waves is not as well developed as the theo-
retical work. Most experimental investigations concern the
dynamics of intense pulses of second sound. It is important

to note that in the course of these studies the investigators
gradually shifted their attention toward observing phenome-
na connected with quantum vortices, such as critical veloc-
ities, the dynamics of a vortex cluster, overheating, boiling,
etc. These phenomena are undoubtedly important and inter-
esting, but on the one hand their description falls outside the
framework of nonlinear acoustics (and even outside the
framework of classical two-velocity hydrodynamics) and,
on the other hand, being mixed with purely nonlinear effects,
they complicate the overall picture. For this reason, in de-
scribing the experimental work we shall concentrate only on
the results which are associated with purely nonlinear pro-
cesses.

Furthermore, although the dynamics of nonlinear heat
pulses is undoubtedly interesting from the viewpoint of non-
linear waves, as one can see from the foregoing discussion it
is only a small part of the nonlinear theory. Most other ques-
tions and effects predicted by the theory have remained out-
side the field of view of experimenters. It is thus best to di-
vide this section, devoted to experiments, into two parts. The
first part will be devoted to existing experimental investiga-
tions and a discussion of the results obtained there from the
viewpoint of the theory. The second part (see Sec. 6.2) con-
sists of suggestions for experiments which are of interest in
themselves or are concerned with the study of the properties
of Hell (phase transition, dissipation, Kapitsa jump, etc.)
by the method of nonlinear acoustics.

Osborne's experiment must apparently be regarded as
the classical experiment providing the impetus for studying
nonlinear waves in Hell.14 He was the first to observe the
steepening of the trailing edge of a wave of second sound—a
phenomenon which at that time had no analog in classical
gas dynamics.I0) An explanation of this effect was given, in a
somewhat altered form, in the papers of Khalatnikov.5'11

These results are described in Sees. 2.5-2.6. The experimen-
tal study of nonlinear waves was continued by Dessler and
Fairbank.15 The main goal of their work was to measure the
coefficient of nonlinearity a2(T) (see Sec. 2.5), which was
calculated theoretically by Khalatnikov. Dessler and Fair-
bank employed a novel method for measuring a2(T). A
short "rider" pulse was applied from above to the main pulse
of second sound, which had a square shape. Depending on
the temperature, the "rider" moved along the main pulse
forward or backward with a velocity proportional to the am-
plitude of the main pulse. The coefficient of proportionality,
evidently also equal to a2 ( T ) , is shown in Fig. 2. It should be
noted that the accuracy of the experiment was quite low.

The cited works refer to the mid-1950s. After a hiatus of
almost ten years interest in this subject has reappeared. One
of the first investigations was the series of papers by Gu-
lyaev. His results are described in detail in Ref. 65. Using the
method of Schlieren photography Gulyaev obtained shadow
patterns of acoustic disturbances in Hell with pulsed heat-
ing on flat and cylindrical heaters. One of the main results is
the conclusion that there are two types of waves propagating
with velocities c, and c2 (compare with Sec. 2.4). True, the
shadow method, based on recording changes in the density,
does not permit identifying in detail the structure of the dis-
turbances. The author himself believes that the waves travel-
ing with velocity c\ are pressure waves which arise as a result
of boiling of the liquid and formation of a film. On this basis
he questions the results of Refs. 11, 14, and 15, where he
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believes the distortion of the shape of the waves of second
sound are related with boiling and not with nonlinear effects.
In 1979 there appeared a paper by Pomerants,66 who also
recorded two waves with pulsed heating at the source. He
recorded both waves with the help of a thermometer. The
leading wave had the form of a cooling pulse, from which the
author concludes that the coefficient of expansion is nega-
tive.

Since the second half of the 1970s the number of experi-
mental and theoretical works started to grow rapidly. This
was due both to the increased interest in nonlinear effects in
Hell and to the wider experimental possibilities. Thus Cum-
mings, Schmidt, and Wagner16 employed a quite unusual,
for that time, sensor to record short temperature waves. The
sensor consisted of a film of superconducting material de-
posited on a quartz substrate. The superconducting transi-
tion in such a system occurs in an extended temperature
range, and such a device can serve as a sensitive and, which is
very important, short-time-constant thermometer. In Ref.
16 oscillograms of the nonlinear pulses are presented; the
pulses have the distinct form of the characteristic Burgers
triangles with steep leading or trailing edges. To compare
their experiments with theoretical predictions the authors
measured the transit time of a nonlinear wave between two
sensors. The low time constant makes it possible to do this
with high accuracy. The average transit time, which the au-
thors called the nonlinear velocity of the signal, depends on
the injected power, but by no means linearly, which, one
would think, contradicts the theory (see the relation (2.21)).
The contradiction obtained was resolved experimentally by
Tsoi etal.n In this work it was pointed out that although the
relation (2.21) is correct on the discontinuity of the wave,
the dynamics of a separate pulse, in particular, its velocity
and transit time, satisfies more complicated dependences
(compare with Sec. 2.5 as well as Ref. 73). The computed
transit time agrees well with the measured value. In this arti-
cle it is pointed out that for more intense pulses (W^
W/cm2) systematic deviations from the theoretical predic-
tions appear. Having a method for calculating the depen-
dence of the transit time, Tsoi solved experimentally the
problem of measuring the nonlinearity coefficient a2(T).kl

The results obtained determine the quantity sought with an
accuracy somewhat higher than that achieved by Dessler
and Fairbanks. In particular, the temperature Ta at which
a2(T) vanishes was determined with high accuracy. As al-
ready mentioned, it was pointed out in Ref. 13 that for very
high intensities there are deviations from the classical non-
linear theory. It was suggested that these deviations are con-
nected with the generation of quantum vortices. It must be
said that previously vortices were observed only in steady-
state flows (or transitional flows). The characteristic heat
fluxes were of the order of fractions of W/cm2, while the
development time of a vortex structure is of the order of tens
or hundreds of seconds. It seems that if the heat fluxes are
significantly increased, these times can decrease to millisec-
onds. This proposition was confirmed experimentally in Ref.
49. It is interesting to note that the additional damping of the
probe wave, owing to the presence of vortices, was recorded
by the methods of nonlinear acoustics (the dependence of
the transit time on the amplitude of the wave was em-
ployed).

A large series of experimental studies of nonlinear

waves was performed by Iznankin and Mezhov-Deglin.17'18

In these investigations the increase in the pulse width pre-
dicted by the theory (see Sec. 2.5) was observed qualitative-
ly. The authors observed the interesting phenomenon of the
appearance of a negative temperature pulse behind the main
signal. This effect, connected with the nonplanar nature of
the wave, analogous to a rarefaction wave in ordinary acous-
tics (see, for example, Ref. 9), was first observed for second
sound. The problem of a spherical nonlinear pulse of second
sound was studied theoretically by Atkins and Fox.72 In the
papers cited the dynamics of waves accompanying pulsed
heating in Hell was studied thoroughly in a wide range of
intensities and durations. It was shown that for moderate
intensities the dynamics of the waves is in good agreement
with the theoretical predictions. In particular, steepening of
pulses on the trailing or leading edges (as a function of the
temperature) is observed. It was shown that the form of the
pulse remains unchanged at Ta. Waves propagating with the
velocity of first sound were also recorded. As in Ref. 13,
deviation from the theoretical predictions was observed at
high powers. A paper by Kitabatake and Sawada68 appeared
at approximately the same time. In this article the dynamics
of a pulse of second sound was studied experimentally and it
was shown that it agrees with Burgers equation (see Sec.
2.6). Nonlinear waves of both first and second sounds were
studied in a series of investigations by Tsvetkov et al.,69~71

which were performed during the same period. Unlike the
traditional methods, the sounds were excited with the help of
optical pumping of a germanium crystal immersed in Hell.
The parameters of the sound waves had record-high values,
for example, the duration was of the order of 10 ns. It is
unclear whether or not hydrodynamic equations can be used
at all for second sound with very high intensity and short
duration. As regards first sound, it was shown that the veloc-
ity of propagation of shock waves of first sound is propor-
tional to the square root of the injected power, i.e., it is linear
with respect to the jump in the pressure (compare with Sec.
2.5). The coefficient of proportionality is close to the coeffi-
cient given by the relation (2.20).

It should be noted that during this period investigators
gradually shifted their attention from purely nonlinear ef-
fects to phenomena occurring in transcritical (relative to
vortex formation) regimes. A series of investigations carried
out at the California Institute of Technology was performed
in this spirit (see, for example, the works by Turner).74'75 In
these investigations Turner observed the typical nonlinear
phenomena, such as steepening of the trailing and leading
edges or generation of a pressure wave with thermal excita-
tion (compare with Sees. 2.2-2.4). For example, for pump-
ing intensities of the order of 10 W/cm2 he recorded a pres-
sure pulse Ap ~ —0.1 bar, which agrees with the formulas
(2.8) and (2.16). By further increasing the pumping ampli-
tude Turner observed a deviation from the theory, based on
which he concluded that there exists a limiting intensity of
the thermal wave, which he attributes to an "internal critical
velocity." The papers of Torczynski51'76 are devoted to the
same subject. The experiment with a converging shock wave
of second sound is interesting. This formulation of the prob-
lem made it possible to obtain very high intensities in the
wave, which refutes Turner's conclusion that there exist
limiting amplitudes. It seems that Turner observed the addi-
tional damping of a wave of second sound caused by damp-
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ing on vortices generated by the second-sound wave itself.
An analogous series of investigations was performed re-

cently at the Max Planck Institute (Gottingen).77'78 The
authors of these papers studied the dynamics of very power-
ful heat pulses in planar and cylindrical geometries. They
showed that the experimental results are described well by
the nonlinear theory, in which additional terms owing to the
appearance of vortices in the wave are introduced (the equa-
tions of hydrodynamics of superfluid turbulence (see also
Refs. 48 and 60)). It is interesting to note that to calibrate the
temperature sensor they employed a nonlinear wave of sec-
ond sound with known parameters.

A recent paper by Borisenko, Efimov, and Mezhov-
Deglin79 is devoted to purely nonlinear effects. In this inves-
tigation the nonlinear waves of second sound in a resonator
were studied experimentally, but the theoretical questions
were not studied. However, if one ignores the nonlinear
transformation of waves of first and second sounds, then it
should be expected that the dynamics of the waves will be
close to that of the nonlinear waves of ordinary sound in a
resonator. Indeed, the authors observe saw-tooth waves
however, not standing waves (as in the linear case), but
rather waves traveling along the resonator. This picture cor-
responds to the theoretical predictions of Chester.80 The ori-
entation of the peaks depended on the temperature. It is in-
teresting that at Ta the waves had a sinusoidal form. This
means that the nonlinearity coefficient a2 (T) vanishes not
only for traveling but also for standing waves.

Among other experiments we must call attention to the
recent work of Danil'chenko et al., in which powerful pulses
of second sound in Hell are studied with the help of phonon
signals reflected into the heater.86 The authors of this paper
arrive at the unexpected conclusion that the mechanism of
heat transfer at the helium-solid boundary is identical for
Hel and Hell. The work of Kotsubo and Swift,87 in which
intense second sound is obtained, unlike in traditional meth-
ods, by forcing liquid through a porous barrier, is also inter-
esting from the experimental viewpoint.

6.2. Experimental applications

The brief review of experimental investigations shows
that most experiments are devoted to the dynamics of in-
tense pulses of second sound. Meanwhile, as follows from
the content of this review, the physics of nonlinear phenome-
na in Hell is much "richer" and more diverse. In this section
we shall discuss the type of experiments that must be per-
formed in order to observe the effects predicted by the theo-
ry-

Two of the most important theoretical results are the
conclusion that the initial disturbances of the temperature or
pressure decay nonlinearly and the determination of the
quantitative characteristics of this process (see Sees. 2.4-
2.5). Generally speaking, the formation of two types of
waves accompanying pulsed liberation of heat has been ob-
served by many authors (see the preceding section), though
different interpretations were given for this phenomenon.
However the experimental methods for recording waves did
not permit determining the detailed structure of the distur-
bances. In all probability, calibrated pressure and tempera-
ture sensors, which permit determining quantitatively all
quantities transported in the waves formed, must be used
simultaneously in an experiment. Another interesting, from

our viewpoint, result is the conclusion that a nonlinear mo-
nochromatic wave of second sound is self-focused at a tem-
perature Ta x 1-885 K (see Sec. 3). To observe this effect it
is necessary to have a flat heater with nonuniform heating
over its surface and a mobile temperature sensor. The theory
predicts that the width of the wave beam will decrease away
from the heater and at the same time the amplitude on the
axis of the packet will increase. It would also be interesting to
observe single heat pulses of finite width at other tempera-
tures. Here transverse deformation of the packet and partial
self-focusing are also possible (see Sec. 3.2).

The questions of decomposition and merging of mono-
chromatic waves owing to instability under resonance condi-
tions are classical questions in the nonlinear theory (see Sec.
4.1). It would undoubtedly be interesting to observe the gen-
eration of second sound accompanying the passage of a mo-
nochromatic pressure wave in Hell. Such an experiment
could be performed in the inverse arrangement also. For ex-
ample, two almost oppositely directed beams of second
sound should merge into one wave of first sound with an
approximately five times lower frequency. The problem of
the interaction of weak acoustic disturbances with a pressure
shock wave was described in Sec. 4.2. It would be interesting
to perform an experiment on determining the laws of refrac-
tion and reflection of waves of second sound at a surface of
discontinuity.

The existence of power laws for the correlation func-
tions of hydrodynamic quantities in turbulent phenomena
has always been quite intriguing. Especially interesting is the
manifestation of these laws in acoustically "coupled" sys-
tems, of which Hell is one. The wave turbulence described in
Sec. 5 can in principle be created by stochastic pumping of
low-frequency first and second sounds. The correlation
functions can be measured directly using temperature and
pressure sensors by methods which are well known in the
theory of turbulence. These quantities can be determined
indirectly by measuring the additional damping of the
sounds (see Sec. 5).

The experiments proposed above pertain directly to the
nonlinear effects predicted by the theory. Another aspect of
the experimental applications is connected with the use of
the methods of nonlinear acoustics for studying the proper-
ties of superfluid helium.

We shall present a number of examples of which of the
results obtained can be used for this purpose.

One of the main features of the nonlinear theory is that
the amplitude of the wave is related with other acoustic char-
acteristics, such as, the velocity of propagation of the waves,
the size of the wave channel, the damping, etc. This is very
important, because there are serious and often insurmount-
able difficulties in performing direct measurement of the
temperature (especially in non-steady-state cases). The re-
lations of nonlinear acoustics make it possible to proceed
from measuring perturbations of the temperature S T to mea-
suring other characteristics, for example, the transit time of
an intense pulse over a fixed distance, which is a simple prob-
lem. For example, the following, fundamentally new, meth-
od for measuring the Kapitsa resistance R K was proposed in
Ref. 48. Analysis of the boundary conditions shows that
when a surface bounding Hell is heated a relaxation process
with the characteristic time T = R k C where C is the heat
capacity per unit surface area, occurs at the wall. For this
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reason, if, for example, heat with intensity W is released at
the wall in a time t < r, then not all of this heat enters the
helium; part of the heat is retained in the substrate. As a
result the amplitude of the heat pulse Aun will be less than
expected Ay° = W/ST, and in addition the decrease in the
amplitude is functionally related with the Kapitsa resistance
R K. Furthermore, since the transit time of a nonlinear pulse
depends on the amplitude it will also be functionally related
with RK. Thus the Kapitsa resistance RK can be determined
by performing an experiment on the propagation of a heat
pulse in Hell. Another example of this approach is to use
nonlinear second sound to probe Hell containing vortex fila-
ments. Here a relationship can also be established between
the transit time of a nonlinear signal and the characteristics
of a vortex cluster (see Refs. 49 and 50). The transit-time
method can be used in a similar manner to measure the pa-
rameters of some processes, for example, to determine the
heat released on some heated surfaces. This ideology could
find application in metrology. In particular, in Ref. 59 it is
proposed that the temperature Ta = 1.885 (see Sec. 2.9) be
used as a reference temperature point. The procedure for
establishing this reference point is connected with the prop-
erty that the transit time of a nonlinear pulse of second sound
(at T= Ta ) is, with high accuracy, independent of its am-
plitude.

Furthermore, it was shown in Sec. 2.4 that in the case of
pulsed heating of a wall a "precursor"—a pressure wave—
propagates in the helium in addition to entropy waves. The
intensity of the heat pulse released at the wall can be deter-
mined from the amplitude 8p of this "precursor." This could
be useful in applied problems, for example, for developing a
control system in cryogenic installations.

Nonlinearity acoustics gives new possibilities for study-
ing the damping of second sound. For example, such damp-
ing can be determined from the "spreading" of the shock
front of a nonlinear pulse (see Sees. 2.6 and 2.1). The thresh-
old amplitudes of the decomposition and Cherenkov pro-
cesses are related with the coefficients of viscosity, and the
latter coefficients can be determined from measurements of
the threshold amplitudes. The damping of spin waves in fer-
romagnets is measured in a similar manner (see Ref. 3).

Many quantitative relations presented in this review
could serve as a basis for measuring thermodynamic quanti-
ties. We note, by the way, that the good agreement between
the experimentally determined value of a2(T) (see Refs. 13
and 15) and the value calculated using the formula (2.27) is
confirmed by the dependence found for the thermodynamic
quantities as a function of the relative velocity vn — vs |. In
this connection we once again call attention to the results of
Sees. 2.7-2.8. The coefficients a2(T), D2, D3, and /z2, ap-
pearing in Eq. (2.29), carry very rich information about fun-
damental processes in Hell, such as the interaction of quasi-
particles, the dynamics of fluctuations, etc. Comparing the
analytical solution found with the experimentally observed
dynamics of heat pulses makes it possible to elucidate in this
manner the basic features of these processes. In this way it is
possible to measure the kinetic indices of the thermodynam-
ic quantities near TA, to determine their absolute values, etc.
The examples given above illustrate to a certain extent the
assertion that the methods of nonlinear acoustics provide
extensive possibilities for studying the properties of super-
fluid helium.

As mentioned in the Introduction, Hell is a unique
acoustic system. Properties such as the existence of two
modes of different physical nature, which makes it possible
to record separately both types of sound, the strong tempera-
ture dependence of the acoustical parameters (such as the
coefficient of nonlinearity, the coefficient of viscosity, the
dispersion, the velocity of second sound, etc.), the steepen-
ing of the trailing and leading edges, the existence of a mono-
chromatic wave in a nondispersive medium—all this makes
Hell an extremely interesting object from the viewpoint of
the nonlinear theory of waves. This diversity of the proper-
ties of Hell makes it possible to model in an experiment a
large number of different exotic situations for propagation
and interaction of nonlinear waves.

CONCLUSIONS

This review encompasses practically all traditionally
studied problems in the theory of nonlinear waves. Thus the
subject is in some sense complete. In experimental studies of
the dynamics of intense waves, however, there arises a new
approach. The nonlinear acoustics of superfluid helium, pre-
sented in this review, is based on the classical equations of
two-fluid hydrodynamics and, as a consequence, it is valid
only on the basis of the assumptions under which these equa-
tions were derived. In real situations, for example, in the
study of wide powerful pulses or, conversely, waves with
wavelengths comparable to the free path of quasiparticles,
these assumptions do not hold, and there are a number of
ways in which one can move beyond the model employed.

One such possibility that we want to discuss here is con-
nected with vortex formation in intense pulses of second
sound. In such pulses the relative velocity vn — vs | has a
large value, which for a short time is capable of developing a
vortex structure (see Refs. 18, 49, 51, and 52).

The generated vortices affect the wave that engendered
them, as a result of which this wave will evolve differently
than in the manner described in this review (see Sec. 6.1). A
number of experimental articles on the study of powerful
heat pulses in Hell indeed indicate that the observed effects
disagree with the predictions of the nonlinear theory. These
disagreements include the facts that the pulse does not have
the shape of a Burgers triangle (see Sees. 2.5 and 2.6) or that
the measured correction to the velocity of second sound is
quantitatively different from the computed value. The disa-
greements also include the observed formation of a film of
vapor with intense heating of a wall for a short period of
time. Indeed, according to the formulas of acoustics (see
Sec. 2), even in very strong pulses (up to 100 W/cm2), the
amplitude of the temperature in them does not exceed a val-
ue of the order of 0.05 K. This is often not enough simply to
reach the Hell-vapor equilibrium curve (in p-T coordi-
nates), while it is known that much larger overheatings (up
to 2 K) are necessary in order to form a vapor film. The
experiments of Refs. 53 and 54, concerning not very strong
(up to 1 W/cm2) but very long heat pulses1'' also cannot be
explained on the basis of the classical two-velocity hydro-
dynamics. It seems that the phenomena observed in the cited
papers can be explained on the basis of the equations of hy-
drodynamics of superfluid turbulence, i.e., the equations of
motion of Hell containing randomly oriented vortex fila-
ments. Some results of this theory are presented in Refs. 50
and 60.

450 Sov. Phys. Usp. 33 (6), June 1990 S. K. Nemirovskfr 450



Vortex formation in sound waves is an example of the
impossibility of describing the evolution of thermal distur-
bances on the basis of the classical hydrodynamics of a su-
perfluid liquid. Another example are problems associated
with very short durations or length scales, comparable to the
free path of quasiparticles. In this case the dynamics of ther-
mal disturbances can be described correctly only on the basis
of the kinetic approximation. What we have said above per-
tains especially to nonlinear waves, since in the process of
evolution of such waves the scales over which the parameters
change are significantly smaller. An example is the descrip-
tion in Sec. 2 of the steepening of the wave profile and the
formation of a shock front. Based on the kinetic theory one
should apparently solve problems concerning the propaga-
tion of thermal disturbances near solid surfaces, in particu-
lar, the question of a boundary heat wave (see, for example,
Ref. 61).

In the process of evolution of the temperature field ac-
companying the propagation of thermal disturbances in
Hell the helium can be heated up to temperatures close to
7^. In the neighborhood of TA care must be taken in using
the classical two-velocity hydrodynamics. Aside from the
fact that because of the singularities of the thermodynamic
quantities the acoustics problems become very specific (we
recall, for example, the divergence of a2( T) in Sec. 2.7 and
Fig. 3), the hydrodynamics itself may become inapplicable
owing to the increase in the correlation radius. In this case
the methods employed for studying disturbances involve
very complicated and subtle questions regarding the dynam-
ics of fluctuations or the use of the * theory of superfluidity
(see Ref. 62).

A number of fundamentally new problems arising in the
study of thermal disturbances concern the study of waves in
which the conditions for the phase transitions Hel-Hell,
Hell-vapor, or Hell-Hel-vapor are satisfied. These prob-
lems are the analogs of Stefan's problem for Hell and, for all
practical purposes they have not been studied (see, however,
Refs. 63 and 64).

Thus it can be suggested that the further study of the
dynamics of thermal disturbances in Hell should be con-
ducted outside the "framework" of the standard two-veloc-
ity hydrodynamics, while the description of such distur-
bances by the methods of classical nonlinear acoustics is a
stage that has been completed.

In conclusion I thank I. M. Khalatnikov and V. V. Le-
bedev for numerous discussions and a number of helpful re-
marks. I also thank A. N. Tsoi for selecting and discussing
the experimental investigations.

" The variables 7 and/ describe nonpotential flows of the normal compo-
nent and can be set equal to zero for acoustics problems.

2 > Everywhere in what follows in the variables a^ and o)'k as well as
rti',r£ and A£ (see Sec. 5) the quantities v = + I and + 2 are indices
(not powers)!

"In Ref. 7 the problem, described below, of calculating the Riemann
invariants is solved neglecting the terms containing the coefficient of
expansion /3T = — p~lXdp/dT, which is valid in the range 0.8
K< T< 1.6 K. Taking into account the terms related with fir, this prob-
lem can be solved in the particular case when either only the distur-
bance of the density p' or only the disturbance of the entropy a' is given
as the boundary conditions. However the corresponding calculations
are extremely unwieldy, and in this review we confine ourselves to pre-
senting the results of Ref. 7.

41 The solution of the system of n quasilinear equations, in which n — 2
variables are functionally related with 2 (of the n) variables, is called a

simple wave of rank 2.lo Correspondingly, the waves described by Rie-
mann are called simple waves of rank 1.

51 This fact can be given a different interpretation. The positiveness of the
quantity under study means that the fourth-order Hamiltonian H4 is
negative, i.e., the two-particle interaction between quanta of second
sound is attractive, which is what leads to the self-focusing of the wave.

61 This process of generation of second sound by first sound, connected
with the instability of the waves, must be distinguished from the nonlin-
ear decomposition of waves of entropy and density (see Sec. 2.4), which
was a consequence of the fact that the variables/?' and a' do not describe
"pure" wave modes.

7) This equation can also be derived by calculating directly the changes in
the number of sound quanta in the nonlinear processes.58

81 The relation given below for the damping T'k can also be derived from
the system of kinetic equations (see Refs. 36 and 43).

9) With the difference that the form of the spectrum n];2 is different from
the Planck distribution.

10) An analogous phenomenon was recently observed in classical media
near the critical point.89
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