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The current state of the problem of the local field of a light wave in liquid crystals is analyzed in
the theoretical and experimental aspects. The fundamental properties of the local-field tensor are
studied within the framework of various theoretical approaches. A connection is established
between the anisotropy of the local field and the molecular and macroscopic parameters of liquid
crystals, their orientational and translational order, and the character of the intermolecular
correlations. The effects of the local field in refractometry, absorption spectroscopy, and Raman
scattering in liquid crystals are discussed. The strong influence of the anisotropy of the local field
on the moments of the orientational distribution function (the order parameter), as determined
from molecular-optics experiments, the molecular susceptibility tensors, and the spectrum of
intrinsic and impurity absorption and other characteristics of liquid crystals are studied.
Experimental methods of determining the parameters of the local field in liquid crystals are
examined.

INTRODUCTION

The intensive development of the phenomenological
theory of liquid crystals (LCs) in recent years has led to a
successful description of the fundamental types of response
of LCs to external agents that are used in practice. '"* The
expansion of the field of application of LCs has required the
elucidation of the molecular foundations of the physical
characteristics of these materials and the development of a
molecular-statistical theory of mesophases. 5~6 It has also be-
come clear that the nature of the phase transitions in LCs
involves the subtle balance of the intermolecular forces,
which depend on the structural features and the physicoche-
mical properties of the molecules,7J) while the change in the
molecular parameters (conformation, electronic structure,
polarizability, etc.) in phase transitions occurs in mutual
correlation with the change in the parameters of long-range
orientational and translational order of the molecules in me-
sophases of different types.9-12-102 The molecular-optics and
spectral methods of study, which yield information both on
the molecular parameters that directly determine the phys-
ical properties of the LCs (linear and nonlinear susceptibili-
ties, energy spectrum, electronic structure, and characteris-
tics of the anisotropic intermolecular interaction), and on
the structure and dynamics of LCs (order parameters, their
dispersion, orientational distribution functions, molecular
diffusion coefficients, relaxation parameters, etc.), have de-
veloped rapidly.

However, the relative simplicity and high accuracy of
the methods of molecular optics are compensated by the dif-
ficulty of obtaining quantitative information on the struc-
ture and the molecular parameters of LCs, owing to the need
to take account of the effects of the local field (LF) of the
light wave in interpreting the experimental data. We must
note that in the case of LCs one cannot directly use the rich
experience amassed in the microscopical theory of the opti-
cal properties of crystals, 1 3~1 5 since LCs lack a space lattice,
while strong fluctuations exist in the position and orienta-
tion of molecules. On the other hand, the anisotropy of the
medium and the concomitant strong orientational correla-
tions of the molecules lead to substantial differences between

LCs and isotropic liquids, for which also a rather well devel-
oped theory exists.16'17 Owing to the complexity of LCs as
objects of theoretical and experimental study, there has been
a lack until recently of molecular-statistical methods of de-
scribing their optical properties while taking account of the
anisotropy of the LF, as well as of methods of determining
the parameters of the LF from the experimental data. This
has led to the propagation in the physics literature on LCs of
a large number of model and semiempirical approaches to
the problem of the LF that often contradict one another and
lead to nonphysical conclusions from the experimental data.
All of this has hindered the development of molecular-optics
methods of studying LCs and of the theory of these objects.

However, in the past several years rather consistent
methods have been developed for theoretical description and
taking account of the effects of the local field in LCs, as well
as methods of determining the parameters of the LF in these
objects from experimental data. The known effects have
been explained, and new ones have been predicted and found
involving the features of the local field in LCs. Their proper-
ties have been elucidated with a large number of objects. The
proposed theoretical and experimental methods can be used
to study also other partially ordered molecular media, in-
cluding polymers, ensembles of amphiphilic molecules, and
Langmuir-Blodgett films, ordered biological structures, etc.

The aim of this review is to analyze the current state of
the problem of the LF and the concomitant problems of the
molecular optics of LCs on the theoretical and the experi-
mental levels. The first part discusses the fundamental prop-
erties of the LF tensor in LCs within the framework of differ-
ent theoretical approaches, the connection is established
between the anisotropy of the LF and the molecular and
macroscopic parameters of LCs, their orientational and
translational order, and the character of the intermolecular
correlations. The physical meaning of the approximations
on which the different semiphenomenological models are
based is elucidated, and the limits of applicability of the lat-
ter are indicated. The second part is devoted to analyzing the
effects of the LF in refractometry, absorption spectroscopy,
and Raman scattering in LCs. The influence of the anisotro-
py of the LF on the molecular and structural parameters of
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the LF in LCs determinable experimentally is discussed. The
third part examines the experimental methods of determin-
ing the parameters of the LF in LCs.

1. THE LOCAL FIELD OF A LIGHT WAVE IN A LIQUID
CRYSTAL

In an optically continuous condensed medium in which
the distances between the molecules are comparable with the
dimensions of the molecules themselves, the amplitude £", of
the local field of the light wave acting on them differs from
the amplitude E of the macroscopic field in the medium.
Owing to the finite dimensions of the molecules, the field Et

is obtained by averaging the microfield over the volume oc-
cupied by the given molecule under the condition that one
excludes from this microfield the field created by the mole-
cule itself.18 The mean macroscopic field E is obtained from
the total microscopic field by averaging over the ensemble.
The difference between the fields E, and E leads to the so-
called local-field effects, many of which are known and have
been studied in crystals13"15 and liquids.16>17'19

In the liquid-crystal case the most significant correc-
tions to the local field of the light wave are those that must be
taken into account for quantitative, and in a number of cases,
even qualitative interpretation of the experimental data ob-
tained by the various optical methods. The magnitude and
form of these corrections depend on the concrete model of
the local-field tensor/ Here the use of the different models
proposed in the literature for calculating, e.g., the anisotro-
py of the polarizability of the molecule A 7, from refractome-
tric data lead to values of A^ differing severalfold,71'87 while
the discrepancy in the values of the order parameter S can
reach several tens of percent.2'27'89

The existence of long-range orientational order in a LC
leads to a macroscopic anisotropy of the medium. Therefore
the local field in a LC generally also must be anisotropic.
Neglect of this anisotropy leads to the appearance of non-
physical regions of the anomalous dispersion of the compo-
nent 7, in the region of transparency of the LC.6 When one
uses the methods of Raman light scattering47 and two-pho-
ton absorption,51 it can also lead to a sign change in the
moment (P4> of the orientational distribution function47 or
to a nonphysical temperature dependence of this param-
eter.51 We see even with these examples that inadequate
models of the local field often do not allow even a qualitative
joint interpretation of the results of the different optical
methods and the obtaining of reliable quantitative informa-
tion within the framework of a single method. Thus, to de-
scribe the LF in a liquid crystal, it does not suffice to use
some particular semiphenomenological models. One must
conduct a microscopical treatment in as great detail as possi-
ble, despite the evident complexity of the problem. Part of
the questions that arise in such a treatment can be posed by
analogy with the simpler case of molecular crystals. For ex-
ample, an exact microscopical calculation of £, in molecular
crystals requires one to take simultaneous account of such
factors as the contribution of the higher multipoles to the
molecular polarization,13 the nonlocality of the molecular
polarizability,15 and the renormalization of the effective po-
larizability of the molecules owing to interaction with the
nearest coordination shell.20 At the same time, many fea-
tures of the LF in LCs have no analogy in either the theory of
liquids or in the theory of crystals.

1.1. The effective local field and the lorentz tensor in a liquid
crystal

A very simple description of the properties of the local
field can be obtained in the case of an ideal molecular crystal
with one molecule in the unit cell. The polarization P of such
a crystal in the molecular point-polarizability approxima-
tion has the form

P = -f (1.1)

Here the local field E, js related to the polarization by means
of the Lorentz tensor L, which depends on the crystal lattice
structure; 7 is the tensor of the effective polarizability of the
molecule in the medium, and N is the number of molecules
per unit volume.

The properties of E, vary substantially upon going from
molecular to liquid crystals, in which the field E, (r ,) acting
on the molecule is a fluctuating quantity that depends on the
random positions and orientations of the surrounding mole-
cules. This field induces in the molecule the random dipole
moment

Here 7 (#,) is the polarizability tensor of the molecule /,
which depends on its orientation 0,. Moreover, the experi-
mentally measurable polarizability of the liquid crystal

P = (1.3)

depends on the correction between the local field and the
polarizability tensor of the molecule, and is not expressed in
terms of the mean local field (E^r, )}. Comparison of Eqs.
(1.1) and (1.3) shows that one cannot draw an analogy
between the local field in crystals and the mean local field in
LCs, since the latter does not enter into the expressions for
the mean microscopical polarization, the permittivity, and
other parameters. On the other hand, taking a microscopical
account for each molecule of the LC of the fluctuating tensor
<t>(£, = 4>£) corresponding to it considerably complicates
the difficulties noted above in taking consistent account of
an entire set of factors. Further, one must take account of the
correlations of the molecules caused by steric and dispersion
intermolecular interactions.22'23

At the same time, one can introduce in a liquid crystal
an effective nonfluctuating local field EefT and an effective
Lorentz tensor Leff such as to allow keeping and using ex-
pressions of the type of ( 1. 1 ) and thus describing the optical
properties of liquid and solid crystals in one common lan-
guage. Let us define the field Eeff as the nonfluctuating elec-
tric field that induces in the individual molecule / the dipole
p, such that its mean value equals the true mean dipole (p, }
induced by the fluctuating local field E, (r, ) :

p, = <Y(e,)>E,ff = <p,> = (1.4)

Now we can introduce also the effective Lorentz tensor by
analogy to (1.1):

Eeff = E (1.5)

and the effective local-field tensor/, which is defined by the
relationship Eeff =/E. This definition of the effective quan-
tities Ee(r ,Lcff, and/23"25 corresponds to the phenomenologi-
cal approach21'26'27 to determining the form of the tensor/, in
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which the difference between the local fluctuating fields act-
ing on different molecules is neglected.

In line with the definitions (1.4) and (1.5), the effective
tensors/and Leff are macroscopic quantities. That is, they
can be represented in the form of an average over the ensem-
ble of certain functions of the microscopical variables. As is
well known, the symmetry of such averaged quantities is
determined only by the macroscopic symmetry of the medi-
um (although the short-range order in the orientation of the
molecules can have a lower symmetry). Thus, in a uniaxial
LC the tensor/is uniaxial and has the components

for a polarization of the light wave parallel and perpendicu-
lar to the optic axis; here the f, are the components of the
permittivity tensor of the LC in the optical frequency range.

The introduction of the effective local field enables one
to treat a liquid crystal as an ensemble of identical molecules
averaged over the possible set of orientations. The analysis of
the optical properties of LCs based on the formulas taken
from the welljdeveloped theory of crystals proves valid if we
take E1 and L to be the corresponding effective quantities.
At the same time, one must always take account of the differ-
ence between the effective and microscopical local fields in a
liquid crystal.

For nematic and uniaxial smectic LCs, the relation of
the components EJ to the components 7, and/ has the form

(1.7)

Vl = Y—ISAY —,-GAY',
(1.8)

Here we have used the notation

(1.9)

(1.10)

The orientational order parameters

O = Ozz, (j = Syy Sxx

of biaxial molecules in a uniaxial liquid crystal are expressed
in terms of the components of the matrix:'

Sa = -J- (3 cos2 e,B -1 > (» = *, y, z), ( i . i i )

Here 6in is the angle between the fth axis of the intrinsic
coordinate system of the tensor y and the director n of the
liquid crystal.

We note that the parameter G, which differs from zero
only for biaxial molecules, has no relation to macroscopic
biaxiality of the liquid crystal. Actually the parameter G
characterizes the preferential orientation of one of the short
axes of the biaxial molecule with respect to the plane formed
by the director n and the long axis a of the molecule. With
respect to this plane the orientational ordering of the mole-
cules is actually biaxial. However, the system lacks long-
range order in the orientation of such planes (in the labora-
tory system of coordinates) for different molecules, so that
only the uniaxial symmetry of a nematic LC is conserved
after averaging over the ensemble.

In a cholesteric LC one can introduce28 the effective
uniaxial tensor/, in the coordinate system of the optic axis
normal to the quasinematic planes within whose limits the
uniaxial tensor/ is defined. The relationship between the
anisotropy A/=/|-/ of these tensors has the form29

Af, = — -AA,. (1.12)

and it does not depend on the concrete form of the tensors/,
and/.

1.2. General properties of the effective Lorentz and local-
field tensors

In line with (1.4)-(1.7), the influence exerted on an
individual molecule by its close neighbors, which depends on
the intermolecular correlation,20 formally takes account of
the difference between the effective polarizability 7 and the
polarizability a of the molecules in the gas. For the isotropic
phase of a liquid crystal as a homogeneous liquid dielectric,
in the dipole approximation the macroscopic expression for/
has the form:30

f P fj>B\

e — 1 I dp ]T ' (1.13)

Herep is the density. If we take into account the high accura-
cy of fulfillment of the following relationships3' for LCs and
isotropic phases of mesogens:

2/LCs

i e— n
p e + 2

= const, (1.14)

where e= (e^ +2fi)/3, then we obtain from (1.13) the
well known Lorentz formula

/=l(e + 2). (1.15)

The condition (1.14) for applicability of Eq. (1.15) to li-
quids is equivalent to the assumption of independence of the
mean value 7 in (1.9) of the density, since when 5 = 0, Eqs.
(1.7) and (1.15) imply the Lorentz-Lorentz (L-L) for-
mula18

(1.16)

Equations (1.5)-(1.7) are formally analogous to the
corresponding expressions in the theory of the optical prop-
erties of crystals. Therefore we can say by analogy with crys-
tals that the anisotropy of the tensor L, T = (L]} — L± )/3
characterizes the structural anisotropy of the medium. In
the case of liquid crystals the structural anisotropy is deter-
mined mainly by the anisotropy of the intermolecular corre-
lations. However, we shall see below that the relation
between the orientational and translational degrees of free-
dom has the result that the anisotropy of the Lorentz tensor
depends also on the optical anisotropy of the liquid crystal
Ae. By using the parameters r and A£, we can write Eq. (1.6)
in the form27

A/ = lAe + ST (e 1) + — Ae,
O

(1-17)

(1.18)

Hence we see that the structural and the optical anisotropy
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of the LC contribute to the mean value/ with this contribu-
tion always being negative (r <0) and small in comparison
with the isotropic component. The magnitude and sign of
the anisotropy A/are determined by the balance of the con-
tributions of the optical and the structural anisotropy of the
medium. In the first approximation in A£ these contribu-
tions enter into (1.18) additively, which is a consequence of
the overall expression (1.6), according to which the anisot-
ropy of the tensor of the effective local field in a^C can arise
both from the anisotropy of the Lorentz tensor L and direct-
ly from the optical anisotropy As. The mutual compensation
of these contributions under the condition

then to good accuracy Eqs. (1.19) and (1.27) imply that

T = T t = — •
L&S

3 [e-1+,(4E/3))

leads to isotropization of the tensor/

11 (As)2

9 [B - 1 + (Ae/3)]

( 1 . 1 9 )

(1.20)

In order to take the limit (1.17) in (1.15), we must set
L = 1/3, which is fulfilled also within the framework of the
continuum,27,32,33 the lattice, 1 and the semimicroscopi-
Cap6 38 approaches to calculating the effective tensor L in a
liquid crystal. In this case, instead of (1.20), we obtain27

2 (Ae)1

2 7 [ e — 1
(1.21)

The expression (1.24) coincides with the empirical formula
ofVuks31-39

/ = y ( e + 2 ) , (1.22)

which is widely used in optical and spectral studies of LCs
upon neglecting the second term in (1.21), which is small in
comparison with the parameter (ks/s)2. ^

The general properties of the tensors L and / can be
elucidated40 on the basis of empirical facts that have been
confirmed for a large number of objects. For example, for
uniaxial LCs the proportionality he—pS (Refs. 6, 41) is
well known in the optical region. Upon using the relation-
ship27

Ae = 7 A/ (1.23)

and taking account of the fact that A/<3/ we have

Af~Ae~S. (1.24)

Upon writing (1.18) in the form

(1.25)

(1.26)

we obtain from (1.24)

1(\ -)= const,
TkJ

or, upon neglecting a possible weak dependence L(T), we
have

T (S) = const -r^S). (1.27)

Since in the optical region we usually have Af < 3 ( £ — 1),
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T~Ae~S. (1.28)

For a fixed liquid crystal the parameter T is only a func-
tion of the temperature, while rk depends also on the wave-
length A owing to the dispersion of the components £|W (/I).
Hence, at a certain value A=A0 the equation (rk (/t0) = r
can hold, together with the spectral isotropization
A//U0) = 0 of the effective tensor/40-42'43 Comparison of
(1.25) with (1.27) shows that the value of A0 that corre-
sponds to const = 1 is the same for the entire temperature
interval of the mesophase. Owing to the normal dispersion of
the parameters At and \rk \ when A«JO, we have const «J 1
and A/^0 in (1.27). The isotropic approximation (1.21),
(1.22) holds in the vicinity of A0. With strong dispersion of
Tk (A), this region is narrow,40'43 while for a LC with weakly
polarizable molecules and a small birefringence, the approx-
imation A/= 0 can be justified over the broad region A. 3jO.M

The mean value of/is mainly determined by close-
range order effects, and it weakly depends on S and on the
phase state of the liquid crystal. According to (1.24) and
(1.27), the anisotropy A/ depends on the long-range order of
the LC, just like the difference of the ratio///| from unity.
This is important to note, since in studying the orientational
order of a liquid crystal by the methods of infrared29'35-44-45

and ultraviolet spectroscopy,2'11'26'35 and by Raman scatter-
ing,46^49 luminescence,50 two-photon absorption,5' and opti-
cal harmonic generation,52'53 taking account of the anisotro-
py of the local field is reduced to taking account of the
difference of/ // from unity, which actually corresponds to
taking account of long-range order effects. We obtain from
(1.4), (1.7), and (1.8) the relationship29

. — ' 1 + (25 Ay/3y) + (GAy'/3y)

— ' I —(SA7/3y)-(GAy'/6y)
(1-29)

This does not depend on the concrete form of/and estab-
lishes the connection between the anisotropy of the local
field and the optical anisotropy of the liquid crystal, the ani-
sotropy of the polarizability of the molecules, ^and their
orientational order. This implies that the tensor/becomes
isotropic as the birefringence of the LC and the anisotropy of
polarizability are decreased owing to a change in the elec-
tronic structure of the molecules while their geometric ani-
sotropy and orientational order are maintained. This effect,
which is new in the optics of anisotropic molecular media,
and was first observed experimentally in Ref. 29, substan-
tiates the earlier assumptions of a small anisotropy of the
local field in nematic54'55 and cholesteric liquid crys-
tals28-56'57 having a small optical anisotropy. In the region
/i //i ~ 1 tne s'gn °f A/"can change upon a change in the
chemical structure of the mesogenic molecules, as was ob-
served' ' for a liquid crystal with extremely small values of
the birefringence A«. These consequences of (1.29) are valid
also for other uniaxial orientationally ordered molecular
media such as stretched polymer films, liquid-crystalline
polymers, layers of surface-active substances, cell mem-
branes, etc.

For the form (1.6) of the tensor/ Eq. (1.29) implies
that, for a fixed anisotropy of form and orientational order of
the molecules, and change in the parameters Ae and Ay
owing to a change in the electronic structure of the mole-

E. M. Aver'yanov and M. A. Osipov 368



^v

cules, the anisotropy of the tensor L must vary according
to:5

T = '

Here we have used the notation

x, =

(1.30)

(131 )V '

The isotropization of the tensor L found in Refs. 11, 29, and
43 by different methods shows that the tensor L is not only
determined by the shape of the molecule and other structural
characteristics of the LC, but it depends on the anisotropy of
the polarizability Ay and the features of the electronic struc-
ture of the molecules.

We note that all the approaches existing in the literature
lead to expressions for the effective local field, which natu-
rally reduce to the common form (1.6), so that these ap-
proaches differ only in the methods of calculating L.

1.3. Continuum and lattice models

The natural way to construct a simple model theory of
the refractive indices of a liquid crystal consists in generaliz-
ing the continuum model of the spherical cavity of Lorentz
to the case of an anisotropic liquid. Here, in the simplest
case, one maintains a spherical cavity of spherical form and
takes account only of the optical anisotropy of the medium.
One can formally generalize the Lorenz-Lorentz relation-
ship for an isotropic medium to the case of an LC by replac-
ing the isotropic qualities £ and 7 with the corresponding
components. As a result one obtains the anisotropic local-
field tensor.-74-75

(1.32)

At the same time, in terms of the Lorentz tensor this model
corresponds to the isotropic approximation L\\ = LL = 1/3
in (1.6) and (1.7). On the contrary, in the model of Vuks the
Lorentz tensor proves to be essentially anisotropic. We shall
see below that the Vuks formula corresponds far better to the
experimental data for real liquid crystals.

The physically most consistent model includes an an-
isotropic ellipsoidal Lorentz cavity that reflects the struc-
tural anisotropy of the LC. However, here the question
arises of the degree of anisotropy of the cavity, which cannot
be determined unambiguously within the framework of such
a semiphenomenological approach. Different authors asso-
ciate the anisotropy of the cavity with the geometric anisot-
ropy of the molecule,4' the optical anisotropy of the medi-
um,42'88 or the anisotropy of the correlation function.36'38

The second question that arises in using an anisotropic Lor-
entz cavity consists in determining the mutual orientation of
the cavity and the polarizability tensor of the molecule
placed at its center. Evidently an answer to this question
requires information on the correlations between the orien-
tation of the molecule and the (microscopic) local field in
the LC. In the simplest case we can assume that a molecule
with a polarizability averaged over the orientations with ac-
count taken of the nematic order lies at the center of the
effective spheroidal cavity, which is oriented along the optic
axis of the nematic LC. Here the principal axis of the mean
polarizability tensor lies along the axis of the cavity. When

S = \, the shape of the cavity corresponds to the shape of the
molecular spheroid, whose semiaxis a and c can be found
from the molecular model. In this case the field in the cavity
is determined by the known formulas for a dielectric ellip-
soid, which corresponds to the general expression (1.6) with
Sp L = 1 and

2e 2<?m2 (1.33)

For incomplete orientational order we have 5^1, and the
shape of the cavity has a smaller anisotropy than the shape of
the molecule, while the temperature variation of the anisot-
ropy of the Lorentz tensor is approximated by a relation-
ship27 equivalent to (1.28):

An,,
-An-(r c— T). (1.34)

Here Tc is the temperature of the LC-isotropic liquid transi-
tion, rmax = (1/3) — LL, while the birefringence A«max of a
fully ordered specimen is determined by the known relation-
ship60

(
1 — —

' 1
(1.35)

Here T, > Tc and 13 are adjustment parameters. This model
can also be interpreted within the framework of concepts of
the effective local-field tensor (see above), whose axis are
always oriented parallel to the axes of the tensor e, which
coincide with the axes of the averaged polarizability tensor
of the molecule. Here Eqs. (1.33) and (1.34) define a very
simple model of the effective Lorentz tensor. We note also
that the model of an anisotropic cavity effectively takes ac-
count of part of the long-range orientational correlations of
the molecules. An equivalent method29'42 of determining the
semiaxes of the effective cavity when S ^ 1 is based on using
x-ray data on the correlation functions in the liquid crys-
tal.6'-63

In the general case the principal axis of the molecular
ellipsoid is oriented arbitrarily with respect to the optic axis
of the LC. For such a system analytical expressions for the
local field in the cavity were first derived by Segre32 within
the framework of the Onsager model. After averaging E,
over the molecular orientations for the nematic phase, ex-
pressions equivalent to (1.6) and (1.7) are obtained for the
permittivity and the local-field tensor. Here the anisotropy
of the effective Lorentz tensor is T = rma^S [which coin-
cides with (1.28)].

Completely different variants of the answers to the
questions posed above were chosen by de Jeu and
Bordewijk,41 who proposed that the cavity always has a con-
stant anisotropy involving the shape anisotropy of the mole-
cule, while the orientation of the axes of the local-field tensor
is rigidly associated with the instantaneous orientation of the
polarizability tensor of the molecule. In the model of Ref. 41
the local field in the cavity is also determined by the formulas
for a dielectric spheroid, which are analogous to (1.33).
However, the local field was understood to be the micro-
scopic local field, whereas in the models of Refs. 27 and 42 it
was the effective field.

Analysis of the model of de Jeu and Bordewijk from the
standpoint of the molecular-statistical theory shows22 that
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the model is actually based on the hypothesis of complete
correlation of the orientations of adjacent molecules of the
LC. To obtain formally the results of Ref. 41, one must also
assume that the orientations of adjacent molecules are corre-
lated only if their centers of mass do not lie simultaneously
inside a single molecular ellipsoid.22 Evidently the latter fol-
lows from the mutual impenetrability of the molecules.
However, actually the steric repulsion of two anisotropic
particles defines the so-called excluded volume, which is not
equal to the volume of the molecule, and which depends on
their mutual orientation. It is also essential that the mean
anisotropy of the excluded volume is not constant, but is
approximately proportional to the order parameter S.

We note that an analogous hypothesis of complete cor-
relation between the orientation of the molecule and the lo-
cal field is used also in the model of Petrov and Derzhanskil.
However, in the latter model the anisotropy of the ellipsoidal
cavity is determined by the anisotropy of the LC.88

A common feature of all the models that employ an
ellipsoidal Lorentz cavity is that they do not take sufficient
account of the intermolecular correlations (primarily the
short-range ones) in the LC. Actually the field created by
the anisotropic molecules at the center of the anisotropic
cavity generally does not equal zero, and it contributes to the
overall susceptibility. Strictly speaking, even a spherical
Lorentz model yields a result that coincides with the result
of the microscopical calculation only in the case of a cubic
lattice. Even in an isotropic liquid a fluctuating field arises at
the center of the cavity that involves the thermal motion of
the molecules. In the case of a liquid crystal, along with the
translational fluctuations, also strong orientational fluctu-
ations exist, which play a large role in anisotropic liquids.
Therefore it is difficult to estimate from general consider-
ations the accuracy of the results obtained within the frame-
work of the ellipsoidal-cavity model; the decisive argument
here is comparison with experiment. At the same time one
can state that the polarizability of a molecule found within
the framework of the cavity model should not be identified
with the polarizability of an isolated molecule, e.g., in the gas
phase. It is more consistent to assume that a molecule lies at
the center of the cavity having an effective polarizability re-
normalized owing to the interaction and correlations with
the closest neighbors.

Another approach to the problem of the local field in a
liquid crystal consists in using lattice models, the simplest of
which amounts to a tetragonal lattice with one molecule per
unit ceH.21 In the point-polarizability approximation the
tensor 4> has the form of (1.6), with r < 0 for extended mole-
cules, and with \r rapidly increasing with increasing axial
ration m. Even at m0= 1.4 the component L^ changes sign,21

and the real values of the anisotropy of the molecules of the
LC correspond to strongly elevated values of T. This overes-
timate of the role of the structural anisotropy of the LC
arises from not taking account of the distribution of the po-
larizability throughout the volume of the molecule and of
the translational fluctuations of the molecules. The most po-
pular model based on the lattice theory is that of Neuge-
bauer,34 in which the relation of the components ea and ya is
formally reduced to Eqs. (1.6) and (1.7) with account taken
of SpL = 1. However, the extension of lattice models to the
case of a liquid crystal leaves indeterminate the choice of the
symmetry group and the lattice parameters. In the Neuge-

bauer model this difficulty is avoided35 by using the assump-
tion that the Lorenz-Lorentz formula is valid in the isotropic
phase of the LC, and that the mean polarizability of the mol-
ecules is constant in going from the isotropic to the nematic
phase. The latter assumption would be justified if the polar-
izability of the isolated molecule were used in the model.
However, as was noted above, it is more consistent to assume
that in the studied models the polarizability y is the effective
quantity renormalized owing to the short-range interac-
tions. This conclusion corresponds to the empirical relation-
ship (1.14), in which we have27'42

e— 1 _ 4 n / V - / . 3A8-T
e + 2~ 3 Y

25AV-AA (1.36)

We see from (1.36) that fulfillment of the relationship
(1.14) does not_ ensure the constancy off, but the constancy
of the product y [ . . . ] . Yet if we assume that the quantity y is
constant, then, within the framework of the Neugebauer
model, Eqs. (1.14), (1.36), and (1.25) imply a severe re-
striction on the sign of the anisotropy of the local field

A/>0, (1-37)

for all liquid crystals independently of their electronic struc-
ture and spectral region of study. A number of other features
of the Neugebauer model have been treated in Ref. 71.

The relation between the cavity model and the lattice
models of LCs is of interest. As we have already noted above,
the local field of a spherical Lorentz cavity coincides with
the local field calculated exactly for a cubic lattice of point
dipoles. Recently analogous studies were performed also for
the case of anisotropic media. In Ref. 33 the local field was
calculated in a molecular crystal having one molecule in a
hexagonal unit cell by using the model of an ellipsoidal cav-
ity. The results were compared with the exact calculations
within the framework of the lattice theory.15 Here, to take
account of the shape of the molecule and the polarizability
distribution in the microscopical calculation, a molecule
having the axial ratio m was modeled in the form of m frag-
ments lying along its axis. We note that the tensor L for a
molecule is obtained as a result of averaging the submolecu-

0,3

0,2

0.1

2 4 6 K m

FIG. 1. Dependences of the component Ll{ of the Lorentz tensor on the
axial ratio m of the dimensions of the molecule as calculated for a crystal
with one molecule in a hexagonal unit cell within the framework of the
statistical theory (solid line)" and of the continuum theory by (1.32)
(dashed line), for a nematic LC with S= 1 by (1.43) (dot-dash line), and
bv (1.44) (dotted line).
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lar tensor Z-k,l5'33 and it has a smaller anisotropy than in the
point-polarizability approximation. As we see from Fig. 1,
for typical mesogenic molecules with m S 5, the results of the
statistical and the continuum theories coincide. This can
serve as an argument in favor of the applicability of the cav-
ity model for calculating the dielectric properties of LCs for
5:= 1. Comparison with the results noted above21 shows that
taking account of the nonlocality of the polarizability within
the framework of the microscopical calculation leads to rap-
id increase in the parameter mn = m(L^ = 0). It is natural
to assume that, when S =£ 1 in the LC, the model of an effec-
tive ellipsoidal Lorentz cavity is adequate for fixing the mol-
ecule in a lattice having the same spatial anisotropy, while
the shape of the cavity must reflect the anisotropy of the
radial distribution function of the molecules.27-36-42 Yet it
remains unclear to what degree the correspondence of these
two approaches is preserved upon taking account of the
translational and orientational fluctuations in real liquid
crystals.

1.4. Taking account of intermolecular correlations

The first attempt to take explicit account of the correla-
tions of the molecules was undertaken in Refs. 36 and 37, in
which a statistical approach was used jointly with the Lor-
entz approach. The aim of Ref. 36 was to construct a form of
the cavity in the LC that would ensure the vanishing (on the
average) of the field at its center arising from the rest of the
molecules within the cavity. However, this problem cannot
be solved exactly, and the corresponding result was ob-
tained36 only within the framework of a simplified model
that did not take account of the orientational fluctuations of
the anisotropic polarizability of the molecules, while all the
quantities were subjected to a prior averaging with respect to
orientations. Consequently the orientational correlations
and the correlations between the position and orientation of
a molecule, which play an important role in LCs owing to the
rather dense packing of the anisotropic molecules, also were
not taken into account. With allowance for the approxima-
tions made, the mean field at the center of the cavity is writ-
ten in the form

du a (r) (1.37')

Here g2 (r) is the anisotropy of the pairwise correlation func-
tion, /n is the mean induced dipole of the molecule, u = r/r,
while the integration over r in (1.37) is performed within the
limits of the cavity, as defined by the equation (/• = kF(n),
where the explicit form of the function F(u) is found in Ref.
36. Thus having eliminated the contribution of the mole-
cules within the cavity, the local field created by the mole-
cules outside the cavity can be found in the continuum limit,
since the dimensions of the cavity can be made sufficiently
large. Consequently the expression for the local-field tensor
also has the form (1.6), where La = (1/3) + rja,

•na = — (4JI)-1 f In F (u) (3u* — 1) du, (1.38)

Here we have Sp£ = 1. Upon taking account of the steric
correlations between the rigid ellipsoids in Ref. 38, the fol-
lowing expression was obtained for the parameters r/a apart
from quadratic terms in S:

(1.39)

When 5=1, Eq. (1.39) implies that L[{ <0 when w>3.8.
Comparison with the results of the previous section and Fig.
1 shows that the model being studied occupies an intermedi-
ate position between the two lattice models,21'33 one of
which takes account of the nonlocality of the molecular po-
larizability, while the other neglects it. Here taking account
of the statistics of the translational distribution of the mole-
cules reduces the anisotropy of the tensor, but to a far
smaller degree than when one takes account of the nonloca-
lity of the polarizability.

References 22, 72, and 73 developed different ap-
proaches to the molecular-statistical description of the opti-
cal properties of LCs within the framework of the point-
polarizability model. However, here various simplifying
assumptions were made that did not allow obtained suffi-
ciently general results. For example, in Ref. 73 the final ex-
pressions were derived without taking account of the orien-
tational correlations between the molecules of the LC. We
note that a rather consistent treatment was conducted in
Ref. 72. However, its generality was restricted by the as-
sumption of independence of the correlation functions of the
orientation of the molecules. Here Ref. 72 actually contains
a simplified variant of the consistent statistical theory pub-
lished earlier.23-24

In Ref. 22 a theory was constructed of the refractive
indices of nematic LCs with account taken only of the pair-
wise steric correlations. Here the components of the effective
Lorentz tensor have the form

1 — xS
(1.40)

Here we have x = Ay/Sy, while the parameter
w= (2/45)ln[m(m -f l)/2] characterizes the shape of the
molecule. When S=Q we have £ ] |=£ 1 <l /3 and
SpL = 1 — 6wx. In the mesophase we find L1 >£,( and for
typical values K~0.3, wehaver~5 to high accuracy. When
5=1, then we have SpL = 1, and the model being discussed
is formally equivalent to the models discussed above of the
effective local field. As we see from Fig. 1, as m increases,
one observes a sign change of L ( characteristic of the point-
dipole approximation, which points out the need to take ac-
count of the nonlocality of the polarizability. We can neglect
the weak L (A) dependence throughout the region of optical
transparency of the LC.58

A consistent molecular-statistical theory of the high-
frequency permittivity of LCs was developed recently.23'25

However, here rigorous results as yet have been obtained
only in the dipole approximation within the framework of
the point-polarizability model. Within the framework of this
model one can construct formally exact expressions for the
refractive indices of LCs with account taken of multiparticle
correlations, which are then used to obtain concrete ap-
proximate formulas for different phases of the LC, and also
to elucidate the physical meaning of the approximations that
the various semiphenomenological theories are actually
based on. Below we shall examine the fundamental concepts
and results of this theory, which was developed by analogy
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with the theory of anisotropic liquids.
In a condensed molecular medium one can determine

the microscopic polarization pm(r,?)> which is determined
by the dipole induced in the molecules of the medium at the
given point r.

- r((0), (1.41)

Here p, is the dipole of the molecule /. The microscopic
polarizability is related to the microscopic electric field Em

in a nonmagnetic medium by the following known equation:

Here we find that the operator H = F when |r — r' | ~>D and

(1.42)
v- ui- c~ vt~

whose general solution can be written in operator form:

EM = E0-JF(r-r',ft))PM(r',co)dr', (1.43)

Here E0 is the external field, while the operator F(R,ca) has
the form

(1.44)

Within the framework of the molecular optics of liquid crys-
tals, the quantity R = r — r' is practically restricted to the
correlation radius £, which is always smaller than the wave-
length of light (£</l). Therefore we have coR /c<^ 1, and the
operator F(R,<a) in the optical range acquires the simple
form of a dipole-dipole interaction operator:

The dipole moment p, of the molecule is induced by the mac-
roscopic local field EL (r, ) created by all the rest of the di-
poles induced in the other molecules of the medium:

P(-a(e,,<D)Et(r,f o>), (1.46)

EL (rt, co) = Ee - 2 P (r,- - r/, co) p/ - -J- (P - P*) p,-, ( 1 .47 )

**
Here F + is the operator conjugate to F. The third term in
( 1 .47 ) is defined as the so-called self-interaction of the mole-
cule i, which in the nonrelativistic case is reduced to radi-
ation friction.

As was shown in Refs. 23 and 24, one can use Eqs.
(1.43)-(1.47) to obtain a closed equation for the micro-
scopic polarization:

PM (r, co) = v' (9) [Efl - J fi (r - r'. co) PM (r', co) dr'] ,

where we have

, e,*)de,

(1.48)

(1.49)

and the quantity p amounts to the microscopic density of
number of particles in the phase space (r, 6):

P (r, 6, 0 = 2 6 (' ~ * (0) 6 (0 - 6, (<)),
t

(1.50)

The macroscopic permittivity of the liquid crystal
X = (£ — l)/4»r relates the macroscopic polarization
P= (PM ) and the field E = (EM } in the medium; (...) de-
notes averaging over the ensemble. By using Eqs. (1.48) and
(1.43) one can obtain a formally exact expression for the
permittivity of the liquid crystal within the framework of the
adopted model:

((1

(1.51)

(1.52)

Thus the general expression for the high-frequency per-
mittivity of the LC in the dipole approximation has the form
of a generalized Clausius-Mossotti relationship, in which,
instead of the polarizability of the individual molecule, the
effective quantity /& appears. The latter is the renormalized
polarizability with account taken of the interaction with the
rest of the molecules and of the intermolecular correlations.
We note that Eq. (1.52) amounts to a generalization of the
corresponding formula for an isotropic liquid consisting of
isotropic molecules.

In Eq. (1.52) the fluctuating quantity is the polarizabil-
ity y*, which depends on the microscopic density p. One can
expand the renormalized polarizability P in a power series in
the fluctuation of the polarizability Aj'*:

- pi (2n)-9 J dk' d9 dO'ft (k - k', 6, 6')

(1.53)

Here K = (1 + p0Hy) 1H, y is the mean polarizability of
the molecule as determined by the general formulas (1.8),
and g2 (k, k', 6,0') is the pairwise correlation function of the
liquid crystal. The subsequent terms of the expansion (1.53)
are determined by the higher-order correlation functions.
We can assume that the correlation corrections of higher
order make a rather small contribution to the effective polar-
izability owing to the weakening of the multiparticle correla-
tions and the relative smallness of parameter p0y in which
the expansion is being performed [p07~ 10 ~ ' f°r real LCs].
This assumption is confirmed also in the theory of isotropic
liquids, where it has been shown that expressions of the type
of (1.53) in which only the pairwise correlations are taken
into account describe very well the relation between the po-
larizability of the molecules and the refractive index of a
large number of simple liquids.

By using the renormalized polarizability £ we can also
write general expressions for the effective local field and the
Lorentz tensor, which in the case of nematic liquid crystals
have the simple form:23

•A +2 n\ + 2 1 +

reft

(1.54)

(1.55)

Here %(( and XL are the correlation corrections to the renor-
malized polarizability xk ={$k —p0yk (fc = 1,||).

The expressions (1.53)-(1.55) are rather general, so
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that concrete formulas can be derived with the aid of these
expressions using various approximations. In particular, one
can define approximations on which a number of the semi-
phenomenological theories discussed above are actually
based, and also elucidate their physical meaning.70'71 The
simplest formulas for the refractive indices are derived in the
molecular-field approximation, in which one neglects all the
correlation corrections. In this case we have p = Ny, and
Eqs. (1.51) and (1.52) go over into the generalized Clau-
sius-Mossotti formula [cf. (1.32)], which was discussed
above. Thus the zero-order approximation of this theory
corresponds to the Lorentz theory. At the same time, the
generalized Clausius-Mossotti formulas can hardly be used
for calculating the parameters of thermotropic LCs, since
the neglect of the correlations, which play an important role
in such systems, can lead to considerable errors.71 We note
also that, in line with the formulas of ( 1 . 55 ) , the anisotropy
of the effective Lorentz tensor is fully determined by the
intermolecular correlations. The first and the subsequent ap-
proximations in the expansion in (1.53) correspond to tak-
ing account of the contribution of binary, ternary, etc., inter-
molecular correlations in the formation of the local field in
the liquid crystal. Here the first correlation correction, as a
rule, plays a substantial role, since the expansion parameter
pHy is insufficiently small.

One can derive more exact expressions for the refractive
indices of liquid crystals only if one has sufficiently detailed
information on the pairwise correlation function of the LC
g2(r,2, &„ 02) that enters into (1.53). However, at present
only the behavior of g , 2 ( l ,2) at small intermolecular dis-
tances, where it is determined by the excluded volume eifect,
and at large distances, where the correlations are governed
by the energy of the dispersion interaction, is well known.
Upon taking account of these properties of the correlation
function in liquid crystals, the following expressions were
derived25 for the refractive indices of the nematic phase:

n+2

4.T
—

3
4n
—
3

+ Afv \Sf -1 (

. 2
-H-

3

- S +

(1.56a)

' 4jt \ra 4n A? (~ 1 <?A= — Ami = — N J. v -- SA-y
3 3 V 3

+ Afv2 [3Sf + S (1 + S) A^ + { S (S + 2)(Ay)2] J

V M = ,In

(1.56b)
. . ,_.(1.57)

The corresponding expressions for the effective-field tensors
and the effective Lorentz tensor can be derived by using the
general formulas (1.6) and (1.7) by substituting Eqs. (1.54)
and (1.55) into them.

The components of the effective polarizability /7(1 and
f3L in (1.56) substantially depend on the correlation param-
eter v2, which amounts to the difference between two quanti-
ties. One of them is determined by the short-range steric
correlations and depends only on the geometric parameters
of the molecules, whereas the second term v2a — \6-ir G2/\5

contains the unknown parameter G2, which characterizes
the correlations of molecules not in contact, mainly involv-
ing their attraction. Thus the magnitude of the correlation
correction is determined by the balance of attractive and
repulsive forces of the molecules, as is characteristic also for
describing other properties of LCs, including the onset of
orientational order itself.

Analogously one can derive expressions for the refrac-
tive indices of a biaxial smectic C phase24 in which the direc-
tor n is inclined by the angle 6 to the smectic layers formed
by the molecules of the liquid crystal. At small angles of
inclination 6 2 < 1 we have

, (l-58a)

-3 sin' 9)],

;i.58b)

(1.58c)

Here cr is the fraction of the nearest neighbors of a mole-
cule lying in the same smectic layer with it. The z axis is
directed perpendicular to the smectic layers, while they axis
lies in the plane of the layers perpendicular to the director. A
smectic A phase has the angle 0 = 0, and the principal re-
fractive indices are n\\ = nz and ni = nx = ny for Q = 0.

The refractive indices in smectic A and C phases were
measured in Refs. 77 and 150 for two homologous series of
liquid crystals. In particular, it was found that, in going from
the A to the C phase, the refractive index ny is a "continu-
ation" of the index nL, the authors of Refs. 77 and 150 having
found no explanation for this. However, this result can be
easily explained by using Eqs. (1.58), since the refractive
index ny does not depend on the angle 9, and ny = nL. The
expressions of (1.58) imply that the difference nK must in-
crease linearly with the temperature for small deviations
from the A-C transition point since, when 0 2 < 1 , we have
nx — ny ~&2~TAC — T. Moreover, we see from Eq.
( 1.58a) that a jump in the derivative dn,/3T must occur at
the A-C transition point. We note that all the listed features
of the temperature dependence of the refractive indices of a
C smectic actually have been observed experimentally.

The theory of the optical properties of liquid-crystalline
mixtures and doped LCs has been developed in Refs. 58 and
78-81. Here Refs. 79 and 80 employed the isotropic approxi-
mation ( 1.22) for the molecules of the matrix and the do-
pant. For mixtures of LCs, the difference between the effec-
tive fields acting on molecules of different types a is taken
into account by the difference in effective Lorentz tensors,
while the effective tensor/, has the form78'81

Here e is the high-frequency permittivity tensor of the mix-
ture, which is given by the expression

Y«//«/, H - 60 )
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nent a, while the components are given by Eq. (1.8). On the
basis of these general considerations and a number of addi-
tional assumptions, one can explain58'78'81 the empirical rules
of additivity of the molecular refractions (1.14)82~85 and
more complicated combinations of the parameters £^,86'87

and indicate their conditions of applicability.
The molecular-statistical theory of the high-frequency

permittivity of a liquid crystal8' as a whole can be construct-
ed by analogy with the one-component case. Here one must
take account of the fact that the molecules^of the different
components have different polarizabilities -ya and that dif-
ferent microscopic local fields act on them. As a result one
obtains the following general expressions for the refractive
indices of a multicomponent nematic liquid crystal:1"

f ga6 (R - R', 9. 9') 7« (6) ft (R - R', 01)

xv6(9')dRd6d0' ( f e = l l , J L ) ,

(1.61)

(1.62)

Here the gaS are the pairwise correlation functions for the
molecules of the components a and S.

In line with the formulas of ( 1 .6) , the refractive indices
of mixtures of LCs must have a nonlinear dependence on the
concentration of the components. Here we must distinguish
two cases. In the first case the molecules of the different
components differ weakly from one another and one can ap-
proximately assume that AaS=z(Aaa +/lM)/2. Then the
concentration dependence in ( 1 .6 1 ) becomes linear, and Eq.
(1.61) implies an additivity rule of the refractions, which
has been established empirically for a number of LCs. We
can expect that this rule will also be fulfilled for the most
varied mixtures of nonpolar LCs, since in such mixtures the
deviations from a linear concentration dependence of the
different parameters are generally small. At the same time,
in a mixture of weakly and strongly polar molecules, the
corresponding dependences are substantially nonadditive.
This involves the strong dipole-dipole correlations, includ-
ing the forming of the diameters. For such mixtures the addi-
tivity of the refractions must appreciably break down, and
we can no longer represent the quantity (3 as a weighted sum
of the effective polarizabilities.

By using the formulas of (1.61) one can also obtain
expressions for the components of the effective local-field
tensor and the Lorentz tensor of a mixture of nematic liquid
crystals:8 '

/txfe .[l- N 2 *&*>
6 (1.63)

4nV<x*P*

The equations of (1.63) imply that the effective local fields
acting on the molecules of the different components general-
ly must differ. This difference is manifested most graphically
in the case of a liquid crystal with a dopant for which
x, = xd ~0, x2 — xm ~ 1: the local field acting on a mole-
cule of the dopant is determined by the correlations between
the molecules of the dopant and of the matrix of the LC,
while the field acting on a molecule of the matrix is deter-

mined by the correlations only between the molecules of the
matrix. If the structure and the dimensions of the molecules
of the dopant and of the matrix differ appreciably, then also
the corresponding effective fields must differ. However, we
must note that the existing experimental data58 indicate a
weak dependence of the effective local field on the type of
dopant. The reason for this disagreement as yet remains un-
clear, and we can only assume that this case manifests a de-
fect of the theory involving neglect of the distribution of
polarizability throughout the volume of the molecule.

1.5. Of what does the problem of the local field in liquid
crystals consist?

Analysis of the different approaches to the theoretical
description of the local field in liquid crystals has shown
that, despite the considerable advances achieved in recent
years in constructing a consistent molecular-statistical theo-
ry of the optical properties of LCs, the level of development
of the theory as yet does not enable quantitative calculations
of the parameters of the effective local field for concrete sys-
tems. The latter involves the simplifications on which the
theory is based (primarily the lack of taking account of the
distribution of polarizability throughout the molecular vol-
ume) and the insufficient information on the short-range
correlations in LCs. Therefore, from the practical stand-
point, certain simple models of the local field retain great
significance and do not contradict the fundamental qualita-
tive conclusions of the statistical theory.

From the standpoint of analyzing the experimental
data, an adequate model of the tensor/must satisfy the fol-
lowing requirements:581) The form of/should be the same
for all methods of molecular optics and spectroscopy, inde-
pendently of the spectral region. 2) The results of determin-
ing the characteristics of the structural order of the mole-
cules throughout the region of the mesophase by different
optical and spectral methods must agree among themselves
and with the results of independent physical measurements
(NMR, x-ray diffraction, magnetometry, etc.) that do not
require taking account of the corrections to the local field. 3)
The results of determining the molecular parameters must
agree with the spatial, chemical, and electronic structure of
the molecules in the different spectral regions.

We note that these requirements presuppose the exis-
tence of dispersion, as well as a dependence of the effective
local field on the chemical and electronic structure of the
molecules. Thus the problem of the local field in liquid crys-
tals is reduced to the following problems: establishment of
the relation of the measurable optical and spectral param-
eters of the liquid crystal to the anisotropy of the tensor/of
(1.8); the theoretical or experimental determination of L;
the determination of the structural and molecular param-
eters of liquid crystals from optical measurements with ver-
ification of fulfillment of the requirements 2) and 3) indicat-
ed above. Realization of this program enables us to proceed
from noting the variety of models of the local field and the
difficulties of quantitative interpretation of the optical ex-
periments 1.76,88.90 to analyzing objectively the degree of ade-
quacy of these models, to explaining the effects correspond-
ing to them, and to elucidating the possibilities of
experimental solution of the problem of the local field in
liquid crystals.
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2. EFFECTS OF THE LOCAL FIELD IN THE MOLECULAR
OPTICS OF LIQUID CRYSTALS

The anisotropy of A/of (1.24) is proportional to the
long-range orientational order parameter of the LC. Conse-
quently it makes a contribution to the anisotropy of all the
optical properties of the LC, which contains a leading term
linear in A/. Therefore the corrections for the anisotropy of
the LF to the experimentally determinable molecular and
structural parameters of the LC also begin with terms linear
in A/, while one can decide on the decree of applicability of
some particular model of calculating L already from the sign
of A/in this model, having taken as the zero-order approxi-
mation A/= 0 and upon comparing the values of the struc-
tural and molecular parameters corresponding to it with
those measured by independent methods.

2.1. Refractometry

The Lorenz-Lorentz formula (1.16) is valid for an iso-
tropic liquid having isotropic molecules. For anisotropic
molecules, taking account of the intermolecular correlations
leads to the appearance on the right-hand side of (1.16) of
correlation corrections that depend on the anisotropy of the
molecular shape and on Ay.16'22'72'91 However, experiment92

shows that (1.16) is fulfilled with high accuracy, both for
isotropic and for strongly anisotropic molecules of rod- and
disk-shaped form. This indicates the actual smallness of the
correlation corrections and serves empirically to substanti-
ate the applicability of (1.16) to the isotropic phase of LCs
(see also (1.13)-( 1.15)). Comparison of (1.36) with
(1.14) and (1.28) shows that, when A/<0, the isotropic liq-
uid-nematic LC (I-N) phase transition and the increase in 5
are accompanied by an increase in y. This agrees with the
theoretical 18-2a92'93 and experimental15'94'95 facts of increase
in y owing to renormalization of the polarizability caused by
the intermolecular interaction.

If one has absolute values of S known from independent
measurements, one can use Eqs. (!.?)-(1.9) to determine
^51,60,64-70,104,105 jj^ ̂  ̂ ^ substantially depends OH

taking account of the anisotropy A/40-43-88'89 For uniaxial
molecules the relationship is fulfilled that27'58

ships of the components of the polarizability:

e — 1 (As/3)2

(2.1)

Here the parameter a has the meaning of a correction for the
local field to the value of 5 determined from refractometric
data. Upon taking account of (1.14), (1.21), (1.27) and the
fact that Af <3(£ — 1), we see from this that the fundamen-
tal contribution to a comes from the term independent of S,
while o-^O when A/^0, or T\ «? \rk \. Equation (2.1) implies
a quite definite relationship between the values of the anisot-
ropy of the molecular polarizability Ay calculated by using
the set of models discussed above:

Ay,.M < Ayv < AyASh. (2.2)

Here the subscripts PM and V pertain, respectively, to the
models of Palffy-Muhoray36"38 and Vuks,31 and the sub-
script ASh to the model proposed in Ref. 27. In the Vuks and
Palffy-Muhoray models the value of y in (1.16) is the same,
and we obtain from (1.36) and (2.2) the following relation-

(2.3)

These inequalities are general consequences of the assump-
tions on which the determination of the components L\\a is
based in the corresponding models of the local field. They do
not depend on the properties of the concrete objects, and are
confirmed by all known results of studying uniaxial liquid
crystals.

One can decide on the correctness of any model of the
local field within the framework of refractometry on the ba-
sis of comparing the values of Ay found by using (2.1) with
the same quantities measured by independent methods in the
isotropic phase of the LC or in an isotropic solution. For
example, for 5CB the value Ay = 26.5 A3 (/I = 589 nm)
found by extrapolation to T= Tc of the Ay (AD relation-
ship89 calculated by Eqs. (1.33)-(1.35) and (2.1) agrees
with the value Ay = 27 A3 found from data on the optical
Kerr effect in the isotropic phase of 5CB.96 The closeness of
the value Ay = 23.6 A3 (A = 633 nm) found for MBBA by
Eqs. (1.22) and (2.1) in the approximation a = O26 to the
value Ay = 27.4 A3 measured97 by the light-scattering meth-
od in an isotropic solution indicates a small anisotropy
A/< 0 for MBBA in this region of the spectrum, as is also
confirmed by calculation by (1.29)40 and by experiment.43

When the values of Ay are known from independent
measurements, one can determine by Eq. (2.1) the absolute
values of 5 from refractometric data. For fixed Ay and <7«JO,
Eq. (2.1) implies that S^.S,, where S, = S(a = 0). A weak
o-(AJ) dependence leads to similar temperature depen-
dences of S and S^T*).53'98 For all uniaxial liquid crystals
studied up to now in the visible region of the spectrum we
find A/< 0 and a < 0. Therefore, for fixed Ay for the local-
field models discussed above, the following inequalities
should be fulfilled:

SPM<SV<S' (2.4)

They explain the known discrepancy in the values of 5 yield-
ed by the two first models from the results of independent
nonoptical measurements of s.2-2™7'82^8 \ve should note
that the difference bet ween the values of Ay in (2.2) found in
the first two models from the refractive indices of monocrys-
tals of mesogenic compounds compensates the difference in
values of S in the mesophase, and the first inequality in (2.4)
goes over into an approximate equality. Figure 2 shows a
comparison of the data on 5" for the nematic LC ofp-azox-
yanisole (PAA) obtained by refractometry within the
framework of different models of the local field with the
results of independent measurements.

For cholesteric liquid crystals the analog of (1.23) is
the relationship28'101

Aex = (2.5)

which is written in the coordinate system of the optic axis of
the planar texture. Upon taking account of (1.12) and
kex = — &£H/2,2'W2 we find that the relative contribution
of the anisotropy A/x to &£x coincides with the relative con-
tribution of A/, to A£,, within the limits of a quasinematic
layer. For cholesteric LCs with a small birefringence of the
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FIG. 2. Temperature dependence of the order parameter of PAA. /—
calculation by (1.32)-(1.34) and (2.1), 2— "C NMR data,"" 3—NMR
of protons of benzene rings," 4—calculation by (1.22) and (2.1) for
a = O,*2.5—calculation by (1.39), (1.40), and (2.1 );100 solid lines—in-
terpolation.

type of cholesteryl pelargonate (CP), one can restrict the
treatment, according to (1.12) and (1.29), to the isotropic
approximation A/= 0. As we see from Fig. 3, the values of S
for CP found from refractometric data and measured by the
nuclear quadrupole resonance method coincide throughout
the region of the mesophase. For cholesteric LCs with a large
birefringence neglect of the anisotropy/within the frame-
work of refractometry leads to depressed values of 5", as com-
pared with the data of NMR.u>4

Above we have treated the effects of the local field in-
volving the sign and the magnitude of A/. In refractometry
also an important role is played by allowing for the disper-
sion A/(/l) (see Sec. 1.2), especially in studying the disper-
sion dependences YI,, (A) of the components of the molecular
polarizability.40'58 The relation between the true value y,,
which corresponds to taking correct account of the anisotro-
py A/ and the value y, found in the isotropic approximation
has the form

(2.6)

When there is a spectral inversion of the sign of A/( A) at the
point A = A0, the inequalities rk — r$0 and Y^^-Yi are ful-
filled when A ̂  A0. If A/< 0 for the liquid crystal in the visible
region of the spectrum, then with increasing A the isotropic
approximation leads to an elevation of the values of y, (A) as

•o.

o -1

• -2

0,5

0.4

FIG. 4. Qualitative form of the dispersion relationships of the anisotropy
A/ the difference Y, — Y,, and the component f , upon spectral inversion
of the sign of A/

compared with Y,, and can replace the normal dispersion of
y, (A) with an anomalous dispersion at A = A2 (Fig. 4), as
has been observed in Refs. 6, 41, 67, and 105. When A < A0,
the increment to 7, in (2.6) is negative and rapidly increases
with decreasing A.This can lead to the appearance of another
region of anomalous dispersion of A \ when A < A, in a region
of transparency of the LC as has been observed in Refs. 40
and 43.

The relation between the longitudinal components of y,
and YI has the form

(2.7)

FIG. 3. Temperature dependences of the order parameterSin quasinema-
tic layers of cholesteryl pelargonate from the data of the methods of re-
fractometry57 (/) and nuclear quadrupole resonance"" (2).

and we have Y?^Yi when /l^/l,,. Throughout the region of
transparency of the LC, the dispersion y, (A) is normal and
stronger than the dispersion of the true magnitude ^,(/l).
Owing to the independence of A0 of the temperature of the
mesophase (cf. Sec. 1.2), all the graphs of Y\ (A) correspond-
ing to different temperatures must intersect in the single
point A = Aa where the values of rk (Aa,S) coincide with the
true values of r(S) for the LC being studied. This enables
one to determine the components L[IL from refractometric
data.43

2.2. Absorption spectroscopy

Upon taking correct account of the anisotropy of the
local field, one can obtain from the polarized infrared and
ultraviolet absorption spectra of the LC also quantitative
information on the subtle features of the orientational order
of the molecules as a whole26'15'106 and of their individual
fragments in different phase states,107 the orientations of
the moments of the vibrational45'108 and electronic transi-
tions,109'"0 and mutually consistent variations of the struc-
tural and molecular parameters, ".i2.89-"0-112

Within the framework of the effective local field, the
corrections to the spectral position of the intensity of absorp-
tion bands of the LC caused by resonance dipole-dipole in-
teraction of the molecules can be obtained by the method of
Ref. 13, which was developed for molecular crystals. The

376 Sov. Phys. Usp. 33 (5), May 1990 E. M. Aver'yanov and M. A. Osipov 376



results of this approach coincide with those obtained within
the framework of exciton theory. 35i"3~'16 Let us study an
isolated, nondegenerate transition having the frequency &>0

in the isolated molecule, where the direction of the transition
moment /j. is given in the molecular coordinate system by the
angle 13 between fi and the z axis and the angle (p between the
x axis and the projection of /n on the xy plane. Renormaliza-
tion of the molecular spectrum by the static interaction of
the molecule with the environment causes the frequency a> ,
of the transition being studied to deviate from a(t. In the
vicinity of the transition being studied, one can represent the
components 7, in (1.8) in the form

•W («) = Vf + —
O^fy/tJI/V

l — u2 + iTta
(2.8)

Here o>p is the plasma frequency, yj is the background con-
tribution to Yj from all the other resonances, A is the oscilla-
tor strength of the transition, and we have

(2.9)

— 1), Gp,,=-(3sin2p.cos2<[>). (2.10)

Substitution of expressions of the type of (1.7) for
O) and yj into (2.8) yields

(2.11)

(2.12)

Renormalization of the oscillator strength of the transition
is formally reduced to replacing^ by the new effective value
A (/*)2. The position of the maximum u>jm of the absorption
line does not coincide with &>y, while <a, <<nim • For absorp-
tion bands that are not too strong58 we have

/m — CO; = (2-13)

When E° = 2, Lj = 1/3, the frequency eajm lies in the middle
of the interval cOj. . .ca,. Since in a liquid crystal usually one
has L| 5 2L|i, then we have

(2.14)

When the anisotropy of the tensor L is large enough, the
difference &)|-£y||m can change sign from positive to negative.

The resonance dipole-dipole interaction of the mole-
cules in the excited state leads to a deviation in the position of
the polarized absorption bands58

(2.15)
2(0!

That is, it causes a resonance splitting analogous to the Da-
vydov splitting of exciton absorption bands in molecular
crystals.'3 When 0</? < 54. T, the magnitude of the splitting
A&> = (i>im — a>||m is determined by the balance of the contri-
butions, opposite in sign, of the orientational order of the
molecules and of the anisotropy of the local field; here the

cases Ao)^0 are possible. When /? = 54.7° and <p = 45°, for
which Sp = G0r = 0, the splitting is Sco < 0 and it is induced
only by the anisotropy of the local field. The case (3 = 90°
and <p — 0, which has not been studied yet, is the most prob-
able situation for observing resonance splitting of absorption
bands in liquid crystals.

The integral optical density Dt of a band (or the absorp-
tion coefficient) does not depend on the renormalization of
the parameters <y, in the different components of the spec-
trum. The magnitude of Dj for a real liquid crystal involves
the magnitude D - for the model corresponding to it of an
oriented molecular gas of the same density and with the same
effective molecular parameters by the relation35

D'. (/"h2

Dy=_l^-, (2.16)

Here we have nj = (£y
b)1/2, with this relationship for coj > F

being valid even for intense absorption bands.
For an isolated band of dopant absorption lying in a

region of transparency of the liquid-crystal matrix, the posi-
tion of the maxima of its polarized components is given by
the expression58

<»;m = COj (2.17)

At a concentration of dopant x < 1 we have cojm ^co{,
while the values of ej practically coincide with the corre-
sponding components £j(a>) for the matrix in the dopant
absorption band. For fixed Lj and Fs the approach of <w, from
below to the frequency fl0 of the intrinsic absorption of the
matrix leads to a resonance-type increase in the quantities e*j
and/)" and an increase in the difference a> , — a)jm , i.e., to an
effective repulsion of the dopant absorption band from the
absorption band of the matrix. Another interesting conse-
quence of the anisotropy of the local field on the dopant is the
difference in the frequencies a>\\m and coim for a spherically
symmetric dopant molecule having F^ = F±. Equation
(2.16) is applicable also to dopant absorption.

On the experimental level the corrections of greatest
interest are those for the anisotropy of the local field to the
dichroism of the absorption bands and the order param-
eter."" Equations (2.16) and (2.8)-(2.10) imply that the
integral optical densities D\\ ,Dl , and D, of a planarly orient-
ed uniaxial LC can be written in the form29'"7

Ptft

(2.18)

Ai—
3

Here C = const, and n, and A, are the background quanti-
ties. In the absence of reasons for a change in the oscillator
strength A in the I-N transition, '"•"°-1 12 the experimentally
measurable dichroic ratios

V ! - — , «,•
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the parameter

(2.19)

The latter has the meaning of the order parameter character-
izing the orientational order of the axis parallel to the dipole
moment of the transition of the molecule with respect to the
director of the liquid crystal. Equation (2.18) implies that

= 1 -NA, S3 = (#<#, - 1), (2.20)
*

Here the correction factors gk have the form

(2.21)

We must note that the simple formulas of (2.18) (just like
(2.16)) are approximate, while the question of their exact-
ness has not yet been solved. At the same time a comparison
with independent data for liquid crystals of different chemi-
cal classes (see below) allows us to assume that the exactness
of Eqs. (2.18)-(2.21) suffices for practical use of them in
the spectroscopy of LCs.

We see from Eqs. (2.20) and (2.21) that the anisotropy
of the local field substantially affects the parameter 2,. Here
the corrections for the anisotropy of the LF to the parameter
2^ substantially depend on the type of dichroic ratio used in
the calculation,89 while for all 2^ the sign of the corrections
to the quantity 2W y* (A/= 0) is identical and positive when
the true value is A/< 0. This situation is typical of liquid
crystals in the infrared and visible regions of the spectrum,
since the isotropic approximation yields depressed values of
2, obtainable from the spectral data, as compared with the
independent magnetic and radiospectroscopic data.2'26'35'44

The models of (1.39) and (1.40) with A/> 0 correspond to
an even greater discrepancy 2A < 2* kj than the model of
(1.22). Here this discrepancy becomes greater with decreas-
ing/I.

If actually A/=^0, then the isotropic approximation
(1.22) leads to a deviation in the values of 2 t. In particular,
when A/<0, Eqs. (2.20) and (2.21) imply that 2,{ <22i,as
is confirmed by experiment for pure and doped LCs of differ-
ent chemical classes.12-29-89-'07'"8-120 Such a difference in the
parameters 2* is nonphysical, while the actual values of L^
must satisfy the system of equations

21 = 23 = 2,, S p L = l , (2.22)

of which the three equations 2y = 2^ are equivalent. This
yields a method of determining the effective parameters L
and/in the LC from experimental data of absorption spec-
troscopy and refractometry.29'44 For spherically symmetric
dopant molecules with S = G = 0 we have all
2* = 0, gk = \/Nk; this method is equivalent to the known
spherical-probe method,2 which was first realized for the
dichroism yV,.26

2.3. Raman light scattering (rls)

The interest in studying Raman scattering in liquid
crystals has been stimulated by the possibility of obtaining

information on the mean values (P24(cos#)} of the Le-
gendre polynomials, where Q is the angle between the long
axis of the molecule and the director of the LC. This enables:
reconstructing the distribution function for the different
molecular fragments;121"123 obtaining information on the
dispersion Ap = {/°2} — (P2)

2 of an oriented distribution
of molecules, which determines the static splitting of polar-
ized absorption bands of the LC and other stationarily or-
dered molecular media;114'124 and verifying the predictions
of theories of the liquid-crystalline state.47-49'12'-'21 Such
characteristics of LCs of practical importance as the ratio
K3/K, of the elastic moduli of nematics,6'125 which deter-
mines the operational parameters of liquid-crystal displays,2

the temperature variation of the helical pitch of cholesteric
LCs, and other properties, strongly depend on the param-
eters </>2,4 >.

In a uniaxial LC the spontaneous Raman-scattering
tensor of the molecule ajk renormalized by the intermolecu-
lar interactions with the nearest coordination environment
is associated with the corresponding tensor as'jk in the model
of an oriented molecular gas by the relationship46

f / , » \ ' £ / , . A /" o ^ T \ay*= I a (ws) a/fc/** v")i (1.25)

Here co and a>s are the frequencies of the incident and the
scattered light, respectively, polarized along the k andy axes
of the coordinate system of the director. Within the frame-
work of the classical theory of Placzek (see Ref. 127), the
Raman-scattering tensor of the molecule

(2.24)

is expressed in terms of the derivative of the effective polariz-
ability of the molecule with respect to the normal coordinate
of the corresponding normal intramolecular vibration. The
Raman-scattering intensities for a molecule in a liquid crys-
tal and in an oriented gas are connected by the relationship

_ V •fiy (««)/** (»)'/*, (2.25)

Here the njk art the refractive indices of the LC at the corre-
sponding frequencies. When the tensors a'Jk and J'jk are sym-
metric, the anisotropy and dispersion of the tensors/and e
break the symmetry of the tensors ajk and J j k . Just as in the
case of absorption spectra, the form of the relationship
(2.23) is directly connected with the form of the tensor/of
(1.6), both for liquid and for solid molecular crystals.128'129

Use of the implicit form of the tensor/without concretizing
the/(£,7) dependence does not allow one automatically to
write a relation (2.23) for it.

The phase difference for different molecules of the mo-
lecular vibration under study in spontaneous Raman scat-
tering imparts an incoherent character to it, while the inten-
sity of molecular scattering is J'jk ~ { ( a ' J k ) )2. The intensity
tensor J'Jk in a uniaxial LC has four independent compo-
nents (xx, yx, xz, and zz), which we can represent in free
rotation of the molecules around the longitudinal axes in the
form121'122

4 = const - (E,k + Fik </>2 (cos 6)) + HjK (Pt (cos 6)»,
(2.26)

Here the coefficients Ejk, Fjk, and H,k depend on the geome-

378 Sov. Phys. Usp. 33 (5), May 1990 E. M. Aver'yanov and M. A. Osipov 378



try of the experiment, the orientation of the eigenaxes of the
tensor a' with respect to the axes of the molecule, the param-
eters a = a'xx/a^ and b = a~/a^ of the tensor a' in the
intrinsic coordinate system, and the angle P between the z
axis of this system and the longitudinal axis of the molecule.
The measurable relative quantities are the degrees of de-
polarization of the Raman lines

if
/,

y*
- — (2.27)

which are connected with the corresponding parameters R 'k
by the relationships46

"II +"

n. +n

A2 = A /?2, R3 — Rg, (2.28)

Here n is the refractive index of the cell containing the LC
and all the quantities «,«,, and/ correspond to the frequen-
cy of the scattered light. [One can derive Eq. (2.28) from
(2.23) and (2.25) by complete analogy to the way in which
Eqs. (2.20) and (2.21) were derived for the dichroic ratios. ]
In the general case there are six unknown parameters
((P24),a,b,l3J'L/f^) and four measurable quantities (/?,_,
and /{,•) dependent on them. Study of Raman scattering by
vibrations having a uniaxial tensor a' that does not depend
on the phase state and with a known value of/3 enables one to
determine simultaneously the parameters (1*24) and
f /f 5!t
/1//II-

Neglect of an anisotropy A/<0 leads to strongly
lowered values of (P2) and especially of (P4). As an illustra-
tion Fig. 5 shows the experimental values of (P24) for the
liquid crystal 4-ethoxy-4'-octyltolan (208T) obtained from
Raman data for the stretching vibration of the CsC bond
with the uniaxial tensor or' and/? = 0. Neglect of the anisot-
ropy of/ leads to negative values of (P4) near 7"c, just as for
the liquid crystal 5CB. I3° In the latter case taking account of
the anisotropy of/also considerably elevates {P4) and nar-
rows the interval of negative values of (P4) near Tc .

S]
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0.6

0,4

0.2

FIG. 5. Temperature dependences of the order parameters (P2t) in the
nematic phase of 208T 4* obtained by the Raman-scattering method while
taking account (/) or not (2) of the anisotropy of the local field. The
dashed lines correspond to the values of (P, 4} in the Maier-Saupe theo-
ry.5

By using the normalized correlation functions
(a'ik (Q)a-k (t) ) obtained by Fourier analysis of the contours
of the polarized components JJk (a) of a Raman line,131'132

one can determine the values of (P2A }. In this case the cor-
rections for the local field are eliminated by normalization.
For the liquid crystal 208T this method yields values of
(P2A ) 132 that coincide with those shown in Fig. 5, and which
take account of the anisotropy of/ Within the framework of
the model of ( 1.32)-( 1.34) for a broad set of objects, one
can reconcile the values of (P2) measured by methods of
absorption spectroscopy and Raman scattering with one an-
other and with the results of nonoptical measure-
ments.44^'7'8'''133 The important role of taking account of the
anisotropy of the local field in determining the parameters
(/\4 ) is shown within the framework of the methods of po-
larized luminescence50 and two-photon absorption.5 ' In the
former of these the isotropic approximation leads to lower-
ing of both parameters (P2A), and in the latter to strong
elevation and a nonphysical temperature dependence of

3. DETERMINATION OF THE PARAMETERS OF THE LOCAL
FIELD IN LIQUID CRYSTALS FROM EXPERIMENTAL DATA

Within the framework of each optical or spectral meth-
od of studying LCs, there are such structural or molecular
characteristics whose determination from the experimental
data in the approximation A/= 0 leads to nonphysical con-
sequences if actually the studied object and conditions of
performing the experiment (temperature, spectral range,
etc. ) correspond to A/^0. Examples of such characteristics
are: the magnitude of the parameter 2 of (2.19) as deter-
mined from various dichroic ratios Nk in (2.18), (one-pho-
ton absorption2'29); the magnitude and temperature depen-
dence of the parameter (P4) (two-photon absorption5 ' ) ; the
dispersion of the transverse component y, of the molecular
polarizability (refractometry40). All the methods known
and realized up to now of experimental determination of the
parameters of the local field2'29'40 that satisfy the require-
ments of Sec. 1.5 are based on detecting and eliminating the
noted nonphysical consequences from experiment. How-
ever, the choice of the structural or molecular characteris-
tics needed for analysis within the framework of a previously
assigned method is not trivial, as is explained by the current-
ly restricted number of methods of experimental study of the
local field in liquid crystals. The expansion of these potenti-
alities directly involves the theoretical study of the influence
of the anisotropy of the local field on the broader set of struc-
tural and molecular parameters of LCs that can be deter-
mined within the framework of molecular optics. Thus all
three aspects of the problem of the local field in liquid crys-
tals noted at the end of Sec. 1.5 are closely interrelated.

3.1 . The spherical-probe method

This method2 is based on measuring the dichroism Nk

in (2.18) of the absorption of a dopant probe molecule that
satisfies a number of requirements: symmetry no lower than
tetrahedral with S = G = 0; absence of distortions of the
shape of the molecule in the anisotropic molecular environ-
ment of the matrix; absence of specific intermolecular do-
pant-matrix interactions of the type of complex formation,
appearance of hydrogen and other quasichemical bonds; ex-
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istence of intense isolated vibrational or electronic absorp-
tion bands of the dopant in a region of transparency of the
matrix; good solubility of the dopant in the matrix, and mini-
mal distortions of the structure of the matrix by the dopant
molecules. In this case the dichroism of the dopant absorp-
tion is fully determined by the anisotropy of the local field at
the dopant, and we have gk = \/Nk (2.21). This method
was first realized26 with the rigid spherically symmetric ions
(PMo,2O40)3~ in nematic mixtures near an intrinsic ab-
sorption band of the matrix in a region of large values of An
and strong dispersion of n ^ L ( A ) . The obtained value
/i//il ~ 1 corresponds to the expected isotropization of the
tensor/in the ultraviolet region of the spectrum (see Sec.
1.2). Subsequently"3 this method was applied to studying
the local field at octahedral molecules of Mo(CO)6 in
stretched polyethylene films with An ;= 0.02. The obtained
value /i//j| = 1 corresponds to the isotropization expected
on the basis of (1.29) and (1.30) of the tensors/and L in an
anisotropic molecular medium having small A«.

The second of the requirements on the probe noted
above is difficult to control. This introduces an uncertainty
into the interpretation of the measured dichroism of the do-
pant molecules, which are highly symmetric in the gas phase
or in an isotropic solvent. The distortion of tetrahedral
probes has been studied in detail by the NMR method with
the examples of tetramethy Isilane Si (CH3) 4 and neopentane
C (CH3) 4 in nematic'34 and smetic'35 matrices, and also with
a large number of other molecules and ions in thermotropic
and lyotropic liquid crystals.58 In a uniaxial environment of
a liquid crystal the symmetry of molecules T, Td, and Th is
lowered to C3u or Did. Neglect of the resulting onset of S > 0
and dichroism Nt > 1 leads to a factitious positive increment
to the true value of A/and correspondingly to a lowering of
the determined anisotropy of the tensor £.58'136'137 At the
same time, for a liquid crystal having a small magnitude of
An and A/, one can use the observed dichroism of highly
symmetric dopant molecules to study the character of the
distortions.138'139

The use of dopant molecules of symmetry
0, Of,, T, Td, or T,, is Raman spectroscopy to determine
the parameters of the local field is complicated by the fact
that, even when they are not distorted in the matrix when
(P2) = 0, such molecules have </>

4) ̂ 0, while small distor-
tions of the dopant and its partial orientation lead to a sub-
stantial change in the observed degrees of depolarization Rk

of the Raman bands of the dopant.58

3.2. The spectral method

To determine the effective parameters Z- and / when
using Eqs. (2.18)-(2.22), only the macroscopic parameters
of the liquid crystal are needed. This gives rise to the follow-
ing advantages of this method: mutually coordinated deter-
mination of the true parameters L and/and of the values of
1. corresponding to them; independence of the method of the
form and chemical structure of the molecules and of the
form of the normal vibration; the possibility of determining
the parameters of the local field for the intrinsic and the
dopant molecules, and for various molecular fragments;
and the use of electronic or vibrational transitions in differ-
ent spectral regions to study the dispersion f ( A ) . The sole
restriction is the independence of the oscillator strength of

the transition being studied of the phase state of the liquid
crystal. In the vibrational spectrum of molecules, absorption
bands always exist that satisfy this condition, and the use of
infrared spectroscopy is preferable in the experimental study
of the features of the local field in a liquid crystal. Moreover,
when A/< 0 the corrections to 2 are maximal in the infrared
region, which increases the accuracy of determining the pa-
rameters!, and/

Convenient objects for verifying the correctness of the
method under study are the liquid crystals 4-n-alkyl and 4-n-
alkoxy-4'-cyanobiphenyls (n-CB and n-OCB) (8OCB),
which have been studied in detail by nonoptical methods140

and by the Raman-scattering method in the stretching vibra-
tion of the C = N bond in the isotropic-local-field approxi-
mation. The isolated infrared absorption band (A^ = 4.5
yum) corresponding to this vibration satisfies the spectral
requirements for realizing the discussed method of deter-
mining L, with /? = 0 and 2=5'. Figures 6 and 7 show the
temperature dependences of 5 and LL for the objects being
studied, as found by (2.18)-(2.22). For 7CB the value of
5, = S2 fully agrees with the results of the magnetic mea-
surements140 throughout the region of the nematic phase.
The values of S{ obtained by the Raman-scattering meth-
od141 are substantially lower than those found from the in-
frared dichroism. For the studied type of vibrations one can
take account of the correction for the anisotropy of the local
field to the Raman scattering by the formula89

S= S i — 2 -
12R [,R;,+ 8R;,. f

(3.1)

Here Rk, is the degree of depolarization in (2.28) when
fL =/!. The use of the parameters S{ and R 'k, given in Ref.
141 and the experimental values of L± shown in Fig. 6 in
calculating 5" by (3.1) leads to agreement of the results of the
three independent methods, of which the two spectral meth-
ods pertain to different (visible and infrared) regions of the

a -T
o —2

-- 4 0,60

0,52.

14 12 10 8 S 4 2
re-r,°c

FIG. 6. a—Temperature dependences of the order parameter S1 in the
nematic phase of 7CB obtained by different methods: /—from infrared
dichroism by (2.22) with account taken of the anisotropy of the local
field; from Raman scattering without taking account14' (2); and with
account taken (3) of the anisotropy of the local field by (3.1);4—interpo-
lation of the results of magnetic measurements.14" b—Temperature de-
pendences of the experimental values and the theoretical values calculated
by (1,32) and (1.36) (3) and those by (1.37) (6) o f L L .
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FIG. 1. Temperature dependences of the order parameters (a) and of the
component Z,, (b) of the Lorentz tensor in the mesophase of 8OCB. The
symbols are the same as in Fig. 6. The arrows indicate the N-SA transition
temperature.

spectrum. For 8OCB the deviation of the quantities S\ = S2

from the parameter S( measured by the Raman-scattering
method141 is also eliminated when one takes account of the
correction for the local field according to (3.1).

The parameters Li calculated by Eqs. (1.3), (1.33),
and (1.34) agree with those found by experiment. The mod-
els of (1.39) and (1.38) correspond to lowered values of LA

and a nonmonotonic behavior of L^(\T}. The nematic-
smectic A (N-SA ) phase transition in 8OCB has practically
no effect on the variation of the parameter LL, which de-
pends mainly on the orientational order of the molecules.

Study of the cyanophenyl ester of heptylcinnamic
acid12 (CPEHCA) having a broad interval of the nematic
phase and variation of S confirmed the relationship (1.28)
throughout the nematic phase, apart from a narrow tem-
perature interval near Tc.

In the cyanophenyl ester of hexyloxybenzoic acid142

(CPEHOBA), which is isomorphous with the molecules of
the mixture26 studied by the spherical-probe method, the
values of Z,j for the intrinsic molecules of the LC coincided
with the same for the dopant molecule of the probe. This
contradicts the statement6 that the anisotropy of the local
field at the dopant in a nematic phase involves the anisotropy
of the shape of the dopant molecule, and it supports the con-
clusion13 that the local field at the dopant is determined
mainly by the properties of the matrix.

Study of the local field at the CsN end fragments of
flexible chains of molecules in a nematic mixture of two ho-
mologs (LC-1) showed107 that, despite the weak orienta-
tional order of these fragments as compared with the order
of the molecular skeletons (Fig. 8), the found values of Ll

agree well in magnitude and in the dependence LL (Af) at
fixed S0 with the data of analogous measurements on LC-1
with the marker CsN in the molecular skeleton. This im-
plies that the same effective local field acts on the different
fragments of molecules in nematic liquid crystals.

In studying the isomorphous nematic mesogens29'44'"7

(5BCO), which differ substantially in the electronic struc-
ture of the molecular skeleton, the anisotropy of the polariz-
ability ty, and the magnitude of An, an isotropization of the
tensors L and / was found in going from 5CB to 5BCO,
which is accompanied by a decrease in Af and A«. Here the
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FIG. 8. Temperature dependences of the orientational order parameters
of the rigid molecular skeletons Su ( / ) and of the end fragments of the
flexible chains of the molecules Sc (2), as well as of the component L, (3)
of the Lorentz tensor in the nematic phase of the mixture LC-l.

values of 5 for these liquid crystals differ insignificantly. An
effect of isotropization of L and/was found also in probing a
nematic mixture of trans-alkylcyclohexanecarboxylic acids
(CHCAs) having a small value of Art with disk-shaped do-
pant molecules of derivatives of azulene.'' This also con-
firms the conclusion of the determining role of the matrix in
the formation of the local field at the dopant and the inde-
pendence of the local field of the shape and character of the
orientational order of the dopant molecules. ^

At fixed S and A the dependence of the tensors L and/
on the electronic structure of the molecules must be mani-
fested in their dependence on the magnitude of Ae. Such a
dependence for pure and doped liquid crystals is shown in
Fig. 9. Within the limits of experimental error it has a linear
character, which agrees with (1.30). For values m = 3-6
typical of mesogenic molecules, the model of (1.33) and
(1.35) with S = 0.5 functions in the interval A£ = 0.45-0.8,
which explains its successful use for LCs with large birefrin-
gence.42"47'123'133 We see in Fig. 9 a need to take account of
the electronic structure of the molecules in the theory of the
local field in anisotropic molecular media.

0,2 0.4 Je

FIG. 9. Correlation of the experimental components L, (open symbols)
and those calculated by (1.32) and (1.36) (solid symbols) oftheLorentz
tensor with the corresponding values A£ = n\-n] forS = 0.5 and A = 589
nm for different LCs: 1—mixture CHCA," 2— 5BFO,2" "7 3—
NFOOB,'29 4—CPEHOBA,'42 5—7CB, 6—8OCB,44 7—CPEHCA,'2

8— 5CB,44 P—mixture LC - I"11 10— PAA.27 Solid line—interpolation
of values of L{ corresponding to the approximation A/= 0; the dot-dash
lines enclose the interval of values of L, calculated by (1.32) and (1.36)
for m = 3-6.
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3.3. The retractometric method

The spectral method is governed by the effective param-
eters L and/ for the fragment of the molecule associated with
the band of the electronic or vibrational transition under
study. The refractometric method (Sec. 2.1)40'43 yields the
same parameters averaged over the molecular volume. A
comparison of (1.26) and (1.27) with (2.6) shows that the
increment to y, depends weakly on the temperature. There-
fore, owing to the weak dispersion of y,, to a possible depen-
dence of y, on the phase state, or to insufficient accuracy of
measuring the parameters S and e^L, one may not observe an
intersection of the graphs of f , (A,Tj) at a single point (see
Fig. 4). In this case the appearance of a maximum of A, and
of a region of anomalous dispersion of /, for A < A, indicates
the closeness of /I, to A0; for an estimate one can take
r (AD=r k ( / l 1 , AD.

Figure 10 shows the /, (A) dependence for 5CB and the
presented objects43 8CB, C-4, and MBBA having quite simi-
lar anisotropies of molecular shape, yet differing in the elec-
tronic structure of the aromatic skeleton. For all the f , (A)
dependences one observes maximum points of A., and anom-
alous-dispersion regions for A. < A,, which indicates the dis-
persion of the quantity A/and a spectral sign inversion. The
estimate T = rk (A,) yields a magnitude of LL for 5CB that
agrees with that found by the spectral method.44 For 8CB
the position of A, does not change upon the N-SA transition,
which correlates with the data of the spectral method for
8OCB. For MBBA the value/1//], = 1.03 for AJ = 17° and
A = 589 nm agrees with calculation by Eq. (1.29).40 The
smallness of the anisotropy A/ for MBBA lends clarity to the
discussion53 of the need to take account of the anisotropy of
the local field in a given liquid crystal in determining the
parameters (P24) by the method of generating a third opti-
cal harmonic. For C-4, which has a small birefringence
throughout the interval of the nematic phase, we have
-Lx z; 1/3 and A/~0, which corresponds to isotropization of

y,, w 2*c/i3
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FIG. 10. Dispersion relationships of the transverse components f , (/t) of
the effective polarizability of the molecules in the mesophase of 5CB (/,
7>r= 8°), 8CB (2,4°; 3,1 D, and MBBA (4,2°; 5, IT), and C-4 (6,2°).

the tensors L and/in going from CPEHOBA to C-4 with
decreasing Ay. All the general properties of the tensors L
and/established by the refractometric method agree with
those found by the independent spectral methods.

CONCLUSION

In this review we have tried to demonstrate the impor-
tance of taking account of the effects of the local field in the
qualitative and quantitative interpretation of the optical and
spectral properties of liquid crystals. The need to take ac-
count of these effects becomes evident also in analyzing mul-
tiquantum and nonlinear processes in LCs, for which the
magnitude of the corrections for the local field rapidly in-
creases and their dispersion and anisotropy become more
important.5'-145'146 Of course, taking a global account of the
effects of the local field in all these cases is possible only
under the condition of detailed theoretical description. In
this regard we apparently stand at the onset of a transition
stage. On the one hand, the appearance of a relatively consis-
tent theory of the high-frequency permittivity of liquid crys-
tals presented in Sec. 2 amounts to substantial progress as
compared with the set of mutually contradictory semiphen-
omenological models that had previously been discussed in
the literature. The statistical theory made it possible to un-
derstand more deeply and to systematize the fundamental
qualitative properties of the local field in liquid crystals, to
establish analogies with the molecular optics of crystals, to
determine the role of different intermolecular correlations,
and to develop a procedure for obtaining approximate ex-
pressions for the refractive indices, the Lorentz tensor, and
other quantities, both for one-component LCs and for mix-
tures of them.The general theory could also be used to reveal
the approximations that certain of the semiphenomenologi-
cal approaches are actually based on. At the same time, the
essential theory remains highly schematic, since it pertains
to a system of idealized molecules whose polarizability is
invariant and concentrated at the center of mass. We note
that analogous simplifications are characteristic also of the
existing theory of the permittivity of isotropic liquids. At
present, however, sufficient experimental data have been
amassed that indicate the need for taking account of the dis-
tribution of polarizability through the molecular vol-
ume,143'144 and also, perhaps, of the contribution of the high-
er multipoles and the influence of random fields created by
adjacent molecules on the dispersion of the molecular polar-
izability. The latter can be especially important in studying
phenomena near molecular resonances. A hindering factor
in the development of the theory is also the lack of enough
information on the character of the short-range correlations
in LCs that substantially affect the parameters of the local
field. The noted limitations of the theory do not allow a com-
plete quantitative description of the local field in liquid crys-
tals. At present many important problems can be solved only
by comparison with experiment, as was noted in Sec. 3. Here
an important linking element are the concepts of the effec-
tive local field and the effective Lorentz tensor in the liquid
crystal, which have been used implicitly in a number of ex-
perimental studies, and which have been formulated rigor-
ously within the framework of the statistical theory.

In the field of experimental studies of the effects of the
local field in liquid crystals in recent years, a qualitative
jump has also occurred involving rather effective and rela-
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tively simple methods of experimental determination of the
parameters of the effective local field. The use of these meth-
ods within the framework of ultraviolet and infrared absorp-
tion spectroscopy, Raman spectroscopy, refractometry, etc.,
for a large number of liquid crystals of different structures
has enabled obtaining the values of the effective molecular
parameters and the order parameters, which agree among
themselves and with the results of independent measure-
ments. At the same time, the boundaries of applicability of
these new methods described in Sec. 2 remain unclear, since
they are based on a set of approximate expressions whose
accuracy is hard to establish at this stage of development of
the theory. At present these methods have already been used
to obtain a large amount of experimental data for different
phases of LCs, and, with small changes, analogous methods
already today can be used in studying the local field in mono-
and multimolecular films of surface-active substances and
the specially prepared structures of Langmuir-Blodgett
films.147"149 These objects, along with liquid crystals, are ex-
amples of partially ordered molecular media that are prom-
ising for use as the elementary basis of molecular electronics.
At the same time, the development of studies, not broadly
but deeply, will demand a considerably more developed the-
ory, in which the various effects mentioned above are taken
into account, albeit partially.
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