REVIEWS OF TOPICAL PROBLEMS

Ocean eddies
A.S. Moninand G. M. Zhikharev

P. P. Shirshov Institute of Oceanography of the Academy of Sciences of the USSR

Usp. Fiz. Nauk 160, 1-47 (May 1990)

The theory and empirical data for three classes of ocean eddies are summarized: 1) gigantic
anticyclonic gyres; 2) meanders, rings, and synoptic eddies in the open ocean; and, 3) mesoscale
eddies (lenses of foreign waters and rotating cells of forced convection). A number of new results
obtained in the last few years are reported: linear and nonlinear instability of gigantic gyres, the
Hamiltonian formalism for Rossby-Blinova waves, an eddy-resolving model of global ocean
circulation, the discovery of deep mesoscale lenses of foreign waters, and the general prevalence of
rotating cells of forced convection in the upper layer of the ocean.

INTRODUCTION

The theory of vortices in liquids and gases dates back to
the work of H. Helmholtz in 1958,' in which he studied the
equation for the curl } = V X v of the velocity field v in an
ideal homogeneous liquid

helmszE‘.‘d‘t’__(m)erQdivv:o, (1)

where helm is the helmholtzian, linear (tensor) hydrody-
namic operator, introduced by A. A. Fridman? (the equality
helm A = 0 means that the vector field A4 is frozen-in in a
moving liquid: Each vector line of the field always consists of
one and the same particles of liquid and the intensities of the
vector tubes do not change with time; according to Ref. 3 all
frozen-in fields with a fixed velocity field v form a Lie algebra
with the commutator [A A, ] = (A, V)A, — (A, V)A)).
The classical problem is to solve Helmholtz’s equation (1)
for an incompressible liquid (div v = 0) with the boundary
condition that solid walls are impermeable to the liquid
(9-V)S§ = 0 (where S = Ois the equation of the wall, and the
caret denotes the boundary value). There is an extensive
literature on the hydrodynamic theory of vortices.

Ocean eddies have specific properties which are usually
neglected in the general theory. The three most important
neglected properties are probably the effect of the rotation of
the planet, the stratification of the ocean, and the frictional
stress of the wind on the ocean surface. Rotation with angu-
lar velocity w is a transport motion with vorticity 2o, so that
the absolute vorticity in Eq. (1) is equal to Q + 2w, where
now (and below) £ = VX u is the curl of the velocity u of
relative motion (relative to the rotating frame of reference).

Stratification is engendered by gravity and, naturally, it
has a distinguished direction—the vertical. For this reason
large- and mesoscale eddies have quasivertical axes (at least
in a thin layer such as an ocean whose thickness A is much
less than the radius of the planet; it also determines the large
scales L> H and the mesoscales L * H). They are described
primarily by the vertical component of the curl of the veloc-
ity Q, + f, where 2, = Ay (¢ is the stream function of hori-
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zontal motion and A is the horizontal Laplacian), and
f= 2w, is the inertial frequency (or the Coriolis parameter;
27/~ 'is the pendulum day). On earth the typical values of
the Kibel number Ki = |Q,|f ~' (in the equatorial zone the
Kibel number must be set equal to Ki = Q(2w) ~') on large
scales are small (owing to the fact that the pressure field in
large eddies adjusts to the motion so that the action of hori-
zontal pressure drops balances the Coriolis force; then the
motion is said to be geostrophic). The smallness of Ki makes
it possible to simplify substantially the equations describing
large-scale ocean eddies.

In the case of stable stratification of the medium (suffi-
ciently rapid increase in the density p of the medium with
depth) for vertically adiabatically displaced liquid particles
with density anomalies the buoyancy force is a restoring
force, and there arises the possibility of development of free
vertical oscillations with the Brunt-Vaisala frequency
N=(—gp 'dp,/dz)'"* (where z is the height, g is the ac-
celeration of gravity, and p,, is the potential density, i.e., the
density adiabatically reduced to the standard pressure). The
propagation of such oscillations in the horizontal direction
engenders internal gravity waves with frequencies o lying in
the interval f < 0 < max N(z). The scale L, = HNf ' (the
so-called Rossby radius of deformation) is the typical hori-
zontal scale of internal (*‘baroclinic,”” bounded by stratifica-
tion) large-scale eddies—cyclones and anticyclones, which
generate weather in the atmosphere and in the ocean. For
f~10"*s~' in the atmosphere (H~10 km,
max N~2-1072 s~ ') L, ~2000 km and in the ocean
(H~5km, N~10"% s~ ") L, ~50 km.

The so-called potential vorticity, which combines rota-
tion and stratification, is given by

0= (24 20)p™Vn~ @+ Np7 3L, 2)

where 7 is the entropy, so that ) is, to within a normaliza-
tion constant, the component of the absolute vorticity in the
direction of the ““thermodynamic vertical” (the gradient of
the entropy V#; in the ocean, where the salinity s also has an
effect, it is better to use the pseudoentropy n*, i.e., the en-
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tropy reduced adiabatically and isopycnically to some stan-
dard salinity s*). It is not difficult to prove (see, for example,
Ref. 4) that in the case of adiabatic motions the potential
vorticity, like the entropy, is conserved in liquid particles,
i.e., it satisfies the equation dw,, /dt = 0 or, as they say, it is
the adiabatic Lagrangian invariant of the motion.

It turns out that in the description of large- and meso-
scale ocean eddies the equation d{},/dt=0 is the basic
equation. It can be simplified by taking into account the facts
that 1) the indicated eddies are quasisolenoidal, i.e., in them
the divergence of the velocity .is small compared with the
curl (so that neglecting, to a first approximation, the diver-
gence, in particular, the factor p~' in Eq. (2) can be
dropped); 2) owing to quasihorizontality the field % (and
other thermodynamic fields) can be divided into the main
quasistatic part 7,, which depends only on the depth, and a
small deviation from it ' = % — 7,, which also depends on
the horizontal coordinates and the time; and, 3) because of
quasihydrostaticity (0/3z) ~ '’ = (pyN?*) ~'9p’/0z.
From the fact that 7 and £, are conserved there follows” the
approximate conservation law

d - ’

@+ + 5T =0, 3
where d, 4 /dt = d4 /9t + J(¢,4) is the individual deriva-
tive relative to the solenoidal horizontal motion, and J(/,4)
is a determinant of the derivatives of 1 and 4 with respect to
the horizontal coordinates (Jacobian). In this case p’ and ¢
are related by the so-called equation of balance, i.e., the cor-
respondingly simplified equation for the horizontal diver-
gence of the velocity (see, for example, Ref. 6). This quasiso-
lenoidal approximation is applicable even for mesoscale
eddies. However for large-scale eddies outside the equatorial
zone an even stronger simplification is applicable—the qua-
sigeostrophic approximation, in which p'=p.f¥, and Eq.
(3) is reduced to the elegant form

3 _ - —Ayp 20
at'l'-’(\l’,‘i’)—q)- q—f‘i‘g\l’» Q—A+ 3z Lﬁ&z'
4)

where .# 1 is the simplified relative potential vorticity (.7 is
the analog of the three-dimensional Laplacian); here, the
right side ®, engendered by nonadiabatic factors ( primarily
turbulent viscosity), is included for generality. To this accu-
racy the potential vorticity is transported just like the usual
vorticity in two-dimensional hydrodynamics.

The largest eddies in the ocean are generated by the
friction stress of the wind on the ocean surface. The anticy-
clonic shear between the trade winds in the tropical zone,
which blow westward, and the west-east transport at moder-
ate latitudes creates gigantic ocean gyres around the
“centers of action”—subtropical atmospheric anticyclones
in the Azores and St. Helen’s Island in the Atlantic, the Ha-
waiian Islands and Easter Island in the Pacific Ocean, and
Mauritius in the Indian Ocean; the Antarctic Circumpolar
Current (ACPC) is also generated by wind (the calculations
in Ref. 7, according to which all these currents are generated
predominantly not by the wind, but rather by heating and
cooling of waters, are apparently a misinterpretation—ac-
cording to them in an ocean of incompressible liquid none of
the observed currents would exist).
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The basic experimental data and theoretical informa-
tion about large-scale ocean eddies are given in Ref. 9 and in
Chapters 7 and 8 of Ref. 8. During the last few years a num-
ber of promising new results, deserving the attention and
support of physicists, concerning ocean eddies have been ob-
tained. In Refs. 10 and 11 it was established that gigantic
gyres are unstable, and disturbances of these gyres are sub-
Ject to triadic interactions of decompositional and even ex-
plosive type. It has been found that synoptic eddies are gen-
erated not only by the baroclinic instability of large-scale
flows but also by the Helmholtz instability in zones of a tan-
gential discontinuity between large eddies of the same
type.'> A Hamiltonian formalism has been constructed for
Rossby-Blinova waves.'”"'* The first eddy-resolving global
ocean model has been constructed.'® Deep mesoscale lenses
of foreign waters have been discovered.'”'* Finally, mesos-
cale structures of the type of jets of forced convection, appar-
ently engendered by ‘“‘Ekman pumping” in the field of the
curl of the wind stress on the surface of the ocean, have been
discovered in many regions. "’

.OCEANGYRES
1.FACTUAL DATA

The general notions about the average quasistationary
global ocean surface circulation were formed based on obser-
vations of floating bottles, drifting of vessels, and direct mea-
surements of the velocity of currents on float-type stations.
The most noticeable currents are the gigantic subtropical
anticyclonic gyres mentioned in the introduction as well as
the cyclonic ACPC. Northward of the subtropical gyres
there lie systems of cyclonic motion of waters underneath
the corresponding quasistationary atmospheric cyclones: in
the Atlantic the cyclonic gyre beneath the Icelandic pressure
minimum and beneath the Aleutian minimum in the Pacific
Ocean. In the Arctic there is an anticyclonic gyre in the
Amerasian Basin. The periods of revolution are equal to
about five years for the anticyclonic gyres, nine years for the
ACPC, and four years in the Arctic.

As an example Fig. 1 shows the pattern of the currents
in the northern half of the Atlantic with the Azores anticy-
clonic gyre and, northward of 60° N.L., with the Icelandic
cyclonic gyre (separated by the polar front from the Labra-
dor and North-Atlantic currents). In particular, the north-
ern continuation of the Gulf Stream, which is especially im-
portant for warming Europe, is shown.

Comparison with charts of sea-level winds®* shows that
surface circulations (they actually can be traced to depths of
the order of 1500 m) are predominantly wind-generated.
Theoretical studies of wind-driven circulation have made it
possible to explain the basic properties of ocean gyres ob-
served in the actual data.

A characteristic feature of large-scale ocean gyres is
their meridional asymmetry. In western boundary layers the
meridional sections of the gyres acquire the character of nar-
row streams, in which the velocity often reaches values of 1
m/s. The typical examples of such stream flows is the Gulf
Stream in the North Atlantic and the Kuroshio current in
the Northern Pacific Ocean. In the eastern sections of the
gyres, however, there are no such stream flows, and relative-
1y slow southward motions of waters are observed. In Sec. 2
we shall show that this asymmetry is the result of the rota-
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FIG. 1. The Gulf Stream warms Europe.

tion and sphericity of the earth (latitude variation of the
Coriolis parameter).

2. WESTWARD INTENSIFICATION

A qualitative explanation of the west-east asymmetry of
large-scale ocean gyres was given by H. Stommel in 1948
(see, for example, Ref. 20, Sec. 15 of Ref. 21, and Sec. 46 of
Ref. 41). For a qualitative explanation it is sufficient to ex-
amine a simplified problem with an ocean of constant depth
H, integrated over its entire thickness 0>z> — H (the
stream function ¢ so integrated is called the total stream
function), and including in the right side ® of the equation
for the potential vorticity (4) only the effect of “vertical”
turbulent viscosity %~ d2Ay/dz* (viscosity cannot be ne-
glected, since in the case of stationary flow the integral of the
left side of Eq. (4) over any closed horizontal contour is
equal to 0, so that the integral of the wind stress contribution
must be balanced by the integral of the viscosity contribu-
tion). Then for a stationary flow the linearized Eq. (4) inte-
grated over the thickness has the form

_[_E_ - gi:: ) :—1—
3 Ay + ﬁax fos, we o VX7, (5

where x and y are local Cartesian coordinates (the x-axis is
oriented eastward and the y-axis is oriented northward);
E=Q¥*/NHV?H ~' is the Ekman number (the relative
thickness of the “‘Ekman’ upper layer of the ocean; its abso-
tute thickness (2.%7/f) /2 with %" ~200 cm®/s is of the or-
der of 20 m); the quantity 3 = df/dy is engendered by the
rotation and sphericity of the earth (and determines the so-
called beta effect); wy is the vertical rate of “Ekman pump-
ing” (1 is the wind stress on the surface of the ocean). Ne-
glecting the first term on the left side of Eq. (5) gives the
equation of H. Sverdrup (1947), showing that the scale of ¢
is 7/pf (and the length scaleis f /2f3). In these scales Eq. (5)
assumes the form EAy 4 dv/dx = @, where the right side ¢
may be assumed to be given. We shall solve this equationina
square basin O<x and p<1 with impermeable shores 3 = 0.
We shall represent the functions ¢ and ¢ in the form of
series @, E " and Iy, £ in powers of the small parameter
E; we note, however, that the functions ¢, , v, /dx, oy, /dy
cannot be regarded as being of the order of unity, for then we
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would obtain for ¢, the first-order equation
o,/0x = ¢ — Ay, _,,and it would be impossible to satis-
fy the two boundary conditions at x = 0 and x = 1. For this
reason it is necessary to introduce boundary layers with
“fast”  transverse  coordinates x'=xE ~' and
x" = (I -~ x)E ~'along the western and eastern shores and
the solution must be sought in the form
¥, (x,p) + ¥, (x'p) + ¥ (x",p), where ¢,,¢, and ¢ differ
significantly from zero, respectively, in the open ocean and
in the western and eastern boundary layers. The last two
requirements mean that the functions ¢, must decay rapidly
as-x’ increases while ¥’ must decay as x” increases, For [
we obtain the equation 9y, /9x'* + di; /dx' = 0 which has
the decaying solution ¥ = ce ™ ~, so that a western bound-
ary layer is formed.

Thus there exists a west-east asymmetry of the gyre
with the gyre being intensified in the western section owing
to the second term on the left side of Eq. (5), i.e.,, the £
effect.?

In an ocean with variable depth the isolines
JH ~ ! = const play the role of circles of latitude f = const.
Let ds be oriented northward along the tangent to the shore-
line. Then a western boundary flow is formed only in the case
B'=03(fH ~')/3s>0, while an eastern boundary flow is
formed if B'<0. If, however, the isoline fH ~' = const
touches the shore at some point, then at that location the sign
of #’ changes, i.e., under the influence of the bottom relief
the boundary flow detaches from the shore.

For a more complete calculation the effect
(fE,/2)AAy of the “horizontal” turbulent viscosity %"},
where E, = (2%, /)"’ L ~" is the “horizontal” Ekman
number, must be included in Eq. (4). Here it can be shown
that in the general case the structure of the boundary layers
is the same as in the particular case E, ~ E. Namely,

1) in the open ocean all three components of the veloc-
ity 4, v, and w and the variations & of the level of the ocean are
of the order of E;

2) a surface “Ekman” boundary layer with relative
thickness O(E) (i.e., of the order of E), in which 4,0 = O(1)
and w = O(E) forms;

3) a boundary layer of thickness O(E), in which
uv = O0(E), w= O(E?), forms at the bottom;

4) a boundary layer of thickness O(E*?) in which the
flow is intensified and in which &= O(F),
v=0(E""),w=0(E*")and { = O(E).

5) within this layer, just as at the eastern shore, sub-
layers of thickness O(E) in which upwelling occurs near the
shore and in which u,v = O(E) and £ = O(E?), are small
while w = O(1) is not small, form; and

6) boundary layers also form at the northern and south-
ern shores.

So far we have ignored inertial effects, described in Eq.
(4) by the nonlinear numbers J(,A¢). They transform the
boundary layers into inertial-viscous layers. The theory of
these effects was constructed by A. M. II'in and V. M. Ka-
menkovich?® and D. Mur** (see also Refs. 4, 8, and 20). In
this theory the inertial terms in the dimensionless vorticity
equation have the small factor Ki, while the viscous terms
have the factor Ki*’Re "', where Re = UL;/%", is the
Reynolds number  of the  boundary layer,
U=1/(pBLH), and L, = (U/B)"*. The solution is
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sought analogously to the manner described above in the
form of a series, but in powers of Ki'/? and not E. As a result
it turns out that for large Re in the southern half of the
western shore, where d 27/dy” > 0, this layer already vanish-
es for Re>10 (it apparently becomes detached from the
shore). For small Re, however, the inertial effects are insig-
nificant.

3. HOMOGENIZATION OF THE POTENTIAL VORTICITY

A volume of fluid in a gigantic gyre can undergo several
revolutions before it is carried outside the gyre or ap-
proaches the surface of the ocean, where it is subjected to
atmospheric action. If the circulation time is sufficiently
long, then turbulent mixing tends to homogenize the poten-
tial vorticity in the horizontal direction. The condition for
such homogenization is the existence of closed contours
2, = const {or ¢ = const).

Homogenization of the relative curl of the velocity
within stationary closed contours was first proposed by L.
Prandtl and was proved in 1956 by G. Batchelor.”> P.
Rhines and W. Young?® extended the Prandtl-Batchelor
theorem to large-scale flows on a rotating sphere. They
proved this theorem approximately, showing based on em-
pirical data that in Eq. (4) outside viscous boundary layers
the effects of transport and dissipation ¢ by small-scale tur-
bulence and buoyancy are small compared with the action of
synoptic eddies (i.e., transport of ¢ downwards along the
gradient Vg; see the numerical experiments of P. Rhines and
W.Holland?” ), and it, in its turn, is small compared with the
transport of ¢ by large-scale flows. The latter estimate means
that to a first approximation the contours ¢ = const are
closed, so that the values of # can serve as a “radial” hori-
zontal coordinate (measured from the center of the gyre),
and the assertion of the theorem assumes the form
dq/9y=0.

Rhines and Young employed this theorem to construct
gigantic gyres in a three-layer ocean and in a continuously
stratified ocean. We shall confine ourselves here to the sec-
ond case; in addition, exploiting the smalilness of Kibel’s
number, we shall neglect in the expression for ¢ the relative

vorticity Ay compared with the planetary vorticity

f=/,, + By. We shall scale the horizontal lengths, the hori-
zontal velocities, the depth, the vertical velocity, the Brunt-
Viisala frequency, and the potential vorticity as L,
Uy, = (woNo)Z/a,B =3, H = fy(BNy) ~*wy, wy, Ny and
BL, respectively. Then according to the Prandti-Batchelor
theorem

a - .
q(x, , Z)i‘ey+§N’%=qo(Z). (6)

where g, (z) is an arbitrary function. We shall seek the
solution # in the bowl-shaped region 0>z> — D(x,y)
where z = 0 corresponds to the lower boundary of the “Ek-
man”layer while at the lower boundary of thebowlz = — D
there is no motion or variation of the density, i.e,
¥ = dY/3z = 0. To simplify the analysis we shall confine
ourselves to the example of an exponentially stratified ocean
(i.e., N = const, in the dimensionless form N=1) and the
particular case g, = 1. Then the solution of Eq. (6) is easily
found in the form

\p=—;—(l~y)(Z+D)2, %)
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and the function D(x,y) must be determined from the condi-
tionw = — J(¢,0¢/dz) = wy atz = 0. With the help of Eq.
(7) it can be put into the form 3D */dx = 6(1 — y) ~'wg, so
that D? = 6(1 — y)tg, where ¢, is determined based on wg
from Sverdrup’s equation. After this the horizontal veloc-
ities in the gyre are easily determined: U= — Jd¢¥/dy and
V = d¢/3x. Thus the Prandtl-Batchelor theorem about the
homogenization of the potential vorticity makes it possible
to establish the form of a gigantic ocean gyre outside the
viscous boundary layers.

McDowell e al.?® calculated the changes in the poten-
tial vorticity of large-scale flows ¢=p, 'f, (dp, /0z)
(wherep,, is the potential density ) on meridional sections in
the North Atlantic. They employed hydrological data on
intermediate water masses, bounded by the isopycnic sur-
faces o, =26.5 and o, = 27.0. A region with an almost
constant value of g(y), corresponding approximately to the
region inside a subtropical anticyclone, was discovered on
the sections they constructed. Changes in g(y) were ob-
tained in the numerical model of the circulation of the North
Atlantic by P. Rhines and W. Holland;?” here they also ob-
served a region with constant potential vorticity.

4.INSTABILITY OF OCEAN GYRES

For 40 years theoretical oceanographers have been in-
terested in stationary gigantic gyres, studying their west-east
asymmetry and the boundary layer surrounding them. But
the question of the possible instability (and, therefore, un-
realizability in nature) of stationary gyres was raised only in
the last few years in the works of Mirabel’ and Monin.'®>"!
This time lag can be explained by the fact that the only re-
cently introduced concept of homogenization of the poten-
tial vorticity gave a sufficiently simple basis for studying
analytically the behavior of disturbances superposed on gi-
gantic gyres. In Ref. 10 such a study was performed for a
three-layer ocean and in Ref. 11 it was performed for a con-
tinuously stratified ocean. The qualitative results were iden-
tical, so that here we shall present only the second case.

So, we superpose on the gyre of Eq. (7) synoptic distur-
bances with horizontal scales L ( =¢L;e<1), vertical
scales H, horizontal velocities of the order of U, = yU,,
where y is the ratio of the typical values of the velocity of the
Sverdrup drift flow w,f, (BH) ~' and the phase velocity of
the Rossby-Blinova waves SL &; in order for a gyre, i.c.,
closed streamlines, to exist ¥ must not be small, i.e., the con-
tribution of the wind action to the potential vorticity should
not be small compared with the contribution of the /3 effect.
In what follows, for simplicity we shall confine ourselves to
the particular case y = 1, which is adequate for the existence
of a gyre, for example, with ¥y = 1 — X — Y7, vertical ve-
locity of the order of HL ; 'Ug Kiand the timescale L, U g '
In the corresponding dimensionless variables the equation
for the perturbation of the stream function ¢’ will have the
form

d

L ‘g =0, L..9
dt +J(¢|q)_0' dt - at+U(X1Y)Z)V’ (8)

where ¢’ = Ay’ + d*'/dz% is the perturbation of the poten-
tial vorticity, and the operators J, V, and A operate with
respect to the “fast” variables (x,y), and the capital letters
denote “slow” variables (X,Y,T) = £(x,y,t). Here we shall
not introduce disturbances of the boundary region D, since
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the boundary conditions will have the form w' =0atz =0,
— D. Wesshall seek the solution of Eq. (8) in the form of the
series ' = ¥, + £°¢, + ..., and in addition the first ap-
proximation will give the solution of the problem of linear
instability. It is obtained from the linear equation
dg,/dt=0 with the boundary conditions
(d/dt)dv, /0z = UVy, at z=0, — D and has the form
¥, =AX,Y,T)B(z)e" +c.c., where 6 = k-x — wt is the
“fast” phase, k is the wave vector, and w is the frequency.
Because the coefficients in Eq. (8) are variable the calcula-
tion of the amplitude function B(z) and the dispersion rela-
tion @ = w(k) is somewhat unwieldy, and we present here
only the main results. The dispersion relation is obtained by
setting to zero the average Lagrangian:
_ 9O kashy + a7 (—D)ch x

= ’ =0, (9)
o, (0) ko chy + o (—D)sh g,

where y =k&D and w,(2) = — w,(2z), and in addition
op = k'U(z) is the Doppler shift of the frequency. For a
normalized zonal phase velocity of the disturbances
c=wk, 'D ? Eq. (9) is a quadratic algebraic equation,
and the condition that it have complex roots (i.e., linear
instability of the main gyre) reduces to the form

3 (% X\ /X 4 ! 2

cD(?— th ?) (? ——cth;) + 4 esch?y <0, (10)
where ¢, is the normalized value of the Doppler shift of the
phase velocity at z = 0. Except for the last term this condi-
tion is identical to the well-known criterion of the baroclinic
instability of stratified flow in the model of E. Eady,”® in
which Uis proportional tozand ¥ = 0 (here wedo not study
disturbances with a continuous spectrum, since, according
to J. Pedlosky,* by analogy to the model of Eady, they do
not destroy the stability of the gyre). The region (10) of
linear instability in the Injcy’|, y plane is shown in Fig. 2
(broken line).

We calculated examples of the dispersion curves
© = w(k,) of linearly stable waves with k,D = 10" for
¢, = — landc¢y, = — 1/2. From the form of these curves it
may be concluded that such waves are capable of triadic
resonance interactions. The so-called adiabatic invariant
JA/dw changes sign on the curves withc, = — 1,sothat, as
is well known, waves with such dispersion curves can form
resonance triads with explosive interactions (in such triads
the amplitudes A4, of the waves forming them can become
infinite over a finite time, which results in “‘point collapse,”
i.e., formation of a singularity at some point in space). On

l

|

5 tnley Ml

FIG. 2. Diagram of the instability of a gigantic gyre in an exponentially
stratified ocean. I, [I—regions with decaying and explosive triadic inter-
actions, [IT—region of linear instabiliry.
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the curves with ¢, = — 1/2 the sign of the adiabatic invar-
iant does not change, so that the corresponding waves can
form triads with disintegrating interactions.

To construct the equations for the amplitudes
A, (X,Y,T) of waves in a resonance triad

b= AB, (9 e +x. ¢,

n=1

where the phases satisfy the resonance condition
8, + 0, = 6,, we shall seek the second approximation in an
analogous form

3 o
P = SClX, Y, T, 29" +x. .

n=i

Equating in the equations of the second approximation the
coeflicients of like harmonics we obtain for C,, C,, and C,
inhomogeneous equations with inhomogeneous boundary
conditions. The conditions of solvability must hold for these
inhomogeneous equations; these conditions reduce to the
following canonical form:

DA, =TIJ'AA, DA, = TI7 A Ay, DAy = — T AA,,
(1)

where D, are differentiation operators with respect to the
“slow” variables 3 /3T — I,] '[ (AA/3K), V., (IA/dk),],
and c,, = —1, '(dA/dk), are the group velocities,
I, = (JA/0w), are the values of the adiabatic invariant,
and I is the three-wave interaction constant, given by the
formula

I = (Rykyy — ki) [("Jn(o) "J;ﬂ (0} — @ (0) (0:1 )

x TT 072.(0) B, (0) — (@72 (— D) — w0, (— D))

=1

1] o7 B, (—D)] :

n=1

(12)

Methods for solving Egs. (11) analytically have been devel-
oped by V. E. Zakharov."

Observational data show that the instability described
here apparently does not destroy gigantic gyres (or, at Jeast,
their western intensified sections), but rather it results in
quasiperiodic (with periods of the order of several months)
transfer of an appreciable fraction of the energy (accessible
potential energy) of the gyres into the kinetic energy of **bar-
oclinic” synoptic eddies. This creates autooscillations of the
intensity of the gyres and the antiphase collection of synoptic
eddies of a relaxational character (since energy is always
being pumped in from the outside—from the wind) genera-
ted by them. In nature these autooscillations are superposed
on quasiregular seasonal oscillations of the general circula-
tion of the atmosphere and ocean (which we neglected here
in the theory), which together engender on the gyres with
their long (many-year) periods quasirandom sequences of
intensified and weakened sections.

As an example Fig. 3 presents graphs (taken from Ref.
9) of oscillations of the kinetic energy density of synoptic
eddies at four depths during a 13-month observational ex-
periment POLYMODE in the Atlantic south of the Gulf
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Stream (see below). We note that the sharp energy minima
in the upper layers of the ocean in the periods November—
December 1977 and July—August 1978 are clearly unrelated
with the phase of the seasonal oscillations; the fact that these
minima coincide with the periods of homogenization of en-
ergy along the vertical (“‘barotropization”) apparently indi-
cates that the baroclinic instability of large-scale flows plays
an important role in the generation of synoptic disturbances.

1. SYNOPTIC EDDIES
5.MEANDERS, RINGS, AND EDDIES

Stream flows meander in the ocean, like rivers do on
land. The meandering of the Gulf Stream was the first to be
studied and in greatest detail (P. Church (1937);see also the
famous book by H. Stommel*? ). This current, which carries
warm waters from the Straits of Florida to the southern tip
of the Grand Banks of Newfoundland, is 70-90 km wide and
extends almost to the bottom; its velocity reaches 3.5 m/s at
the ocean surface and decreases rapidly with depth (to 10-
20 m/s at depths of 1000-1500 m); the total flow rate is of
the order of 0.1 km*/s. It separates the cold and somewhat
fresher water in the north and the warm salty water from the
Sargasso Sea in the south (see the temperature section in Fig.
4):at adepth of 300 m the temperature drops across the flow
from south to north from 17-18 to 8-9 °C, especially sharply
in the north (the “cold wall” of the Gulf Stream). As it
passes by Cape Hatteras (35° N.L.) the Gulf Stream moves
away from the continental shelf into the open ocean and
starts to meander (Fig. 5).

The meanders of the Gulf Stream are 300-400 km long
and the swings reach 500 km; they move downstream with
speeds of 6-10 cm/s. The Kuroshio current, the ACPC, and
other currents meander in an analogous manner. The mean-
dering is caused primarily by baroclinic instability of stream
flows and the effect of the bottom relief. With the bottom
relief z= — H + Sy and flow with velocity U(z) along the
isobaths y = const, the linearized equation (4) for the trans-
verse wave U ~exp[i/(kx — wt) ] gives the following disper-
sion equation:

w? 4 (ﬁ—mﬂ) o - KTR—
kH
where the overbar denotes averaging over the depth and the
subscript & denotes the value at the bottom. From here we
can see that

fSU,
T-O, (13)
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FIG. 3. The kinetic energy of synoptic flows at the levels 100 (1), 400
(2),700 (3), and 1400 (4) m, averaged over the POLYMODE survey
area, as a function of time. The straight lines correspond to the average
values of the kinetic energy at four levels.

1) stationary ‘‘topographic” meanders (w = 0) with
wave number k = (fSU, /HU 2)"/? are possible;

2) for U = const (“barotropic” flow) all frequencies @
are real, i.e., all meanders are stable; and,

3) for U #const (‘“baroclinic” flow) and sufficiently
small fS/H the frequencies w are complex, i.e., the meanders
are unstable.

Expanded meanders can separate from the main flow,
which in the process reconnects along the shortest path. The
detached meanders of rivers on dry land are called oxbows;
the flow in them stops, and they gradually become over-
grown. The detached meanders of stream flows in the ocean
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FIG. 4. The temperature distribution (in °C) on the section along
64° 30' W. L. in April 1960. The section intersects the Gulf Stream
and the cyclonic eddy generated by it.
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behave completely differently: their ends connect and form
so-called rings—ring flows, which contain nearly immobile
water trapped from the other side of the main flow. Thus
cyclonic rings (with counterclockwise flow) containing
northern (cold) water form southward of the Gulf Stream
and, conversely, anticyclonic rings (with clockwise flow)
containing southern (warm) water form northward of the
Gulf Stream.

A cold cyclonic ring (latitude of about 36°), which can
be traced to depths exceeding 3500 m, can be seen in the
temperature section of Fig. 4 to the right of the Gulf Stream
(located here at a latitude of about 39°). Four warm and
somewhat cold rings of the Gulf Stream can be seen in the

" map in Fig. 5.

Gulf Stream rings were described by F. Fuglister and L.
Worthington (see Ref. 33). Young cyclonic rings have di-
ameters of the order of 200 km, horizontal temperature dif-
ferences of up to 10-12 °C (which corresponds to differen-
tials of the depths of the isothermal surfaces in the interval
6-17 °C of up to 600-700 m), and orbital velocities of up to 3
m/s in the upper layers of the ocean and of the order of 10
cm/s at depths of 1-2 km, so that spiralling occurs in them.
To a lesser extent they penetrate to depths of 3 km and,
possibly, even to the bottom. They move westward or south-
westward with speeds of the order of 3 cm/s in the upper
700-100 m layer of the ocean, carrying water with them (and
serving as unique “incubators” for plankton and organisms
of higher trophic levels); at large depths they possibly move
through the water in a wave-like fashion (this question re-
quires further study). Their average lifetimes are two to
three years (they are absorbed by the Florida current or de-
cay completely), and since five to six such rings are formed
every year, in the Sargasso Sea ten to 12 rings can be ob-
served at the same time.

The anticyclonic rings of the Gulf Stream are somewhat
smaller (their diameters are equal to 150-200 km ), the hori-
zontal temperature differences in them are equal to 9-10°
(the differentials of the depths of the isothermal surfaces are
400-500 m), the orbital velocities in their upper layers can
exceed 1 m/s, they move westward or southwestward with
speeds of the order of 5 cm/s, and they vanish, being ab-

319 Sov. Phys. Usp. 33 (5), May 1990

sorbed by the Gulf Stream near Cape Hatteras. Their life-
times are of the order of six months, so that two to four such
rings can be observed simultaneously (we note that all
young rings can be clearly seen in infrared satellite photo-
graphs). The rings of the Kuroshio and other currents have
an analogous character (see Ref. 9), but the statistical sam-
ple accumulated for them, and especially for the ACPC, is
much smaller.

Rising of deep waters (upwelling) should occur along
the axes of cyclonic rings (C) and sinking of surface waters
(downwelling) should occur in anticyclonic rings (A), so
that compensational poloidal circulation should occur in the
meridional sections of the rings; see Fig. 6 from Ref. 34.
Thus the hydrodynamic model of rings is quite complicated.

Meanders on currents and rings are synoptic distur-
bances of frontal origin (western boundary flows). It turned
out that disturbances on such scales also arise in the open
ocean not far from some currents and that such synoptic
eddies in the open ocean are quite common and contain a
large relative fraction of the kinetic energy of ocean currents.
Their discovery was an enormous event in the hydrodyna-
mics of the ocean during the postwar years. They were pre-
dicted by the Soviet oceanographer V. B. Shtokman based on
analysis of measurements of currents of long periods of time
in 1935 in the Caspian Sea, and continued in 1956 in the
Black Sea and in 1958 in the North Atlantic.

Indications of intense synoptic variability of currents in
the open ocean appeared in the works of other authors also.

FIG. 6. Poloidal circulation in rings.™
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FIG. 7. Geostrophic flows at a depth of 150 m accord-
ing to data from the first (a; January 21-February 7,

12 1967) and second (b; March 20-April 6, 1967) hydro-
logical surveys in Poligon-67.

10

Studies performed by the English oceanographer J. Swallow
struck a resonant chord.** In 1959-1960 he deployed in the
region southwestward of the Bermuda islands neutral-buoy-
ancy floats at depths of 2 and 4 km, and he discovered in-
stead of a weak constant transport of deep waters southward
a strong nonstationary oscillatory flow with a period of
about 20 days and a wavelength of about 100 km. Analogous
results were obtained from flow and temperature measure-
ments by American oceanographers in 19541969 in the
same region of the Bermuda islands as well as in 1965-1967
northward of the Gulf Stream. K. Wyrtki*® described tem-
perature oscillations with a wavelength of about 500 km on
44 meridional sections across the North Equatorial Current
in the region southwestward of the Hawaiian Islands in the
Pacific Ocean in 1964—1965.

To study systematically synoptic flows in the ocean V.
B. Shtokman proposed a method for performing long-time
measurements over bounded areas of the ocean—so-called
survey areas. In addition to hydrological surveys, autono-
mous floating stations ( AFSs) are employed in these survey
areas to measure directly the velocities of flows at different
levels. In 1967 the Institute of Oceanography of the Acade-
my of Sciences of the USSR organized with the participation
of V. B. Shtokman, the first expedition of this kind (‘“‘Poli-
gon-67") in the Arabian Sea.’” The results of calculations of
flows based on data from two hydrological surveys, present-
ed in Fig. 7, made it possible to identify for the first time
synoptic eddies in the open ocean. The distance a from the
center of the eddies to the region with the highest flow veloc-
ity was of the order of 100 km, which agrees well with the
Rossby radius of deformation L , equal to approximately 70
km on the survey area (if @ is interpreted as one-fourth the
wavelength in the velocity field of the flow, then the wave-
length of the disturbance divided by 27 is close to Ly ). Esti-
mates of the average (over the survey area) rate of transfor-
mation of available potential energy (APE) of a large-scale
flow into APE of eddies indicated a stable maximum at
depths of 500-600 m.>® This suggested that the synoptic ed-
dies formed primariiy owing to the baroclinic instability of a
large-scale flow. However the time interval between two sur-
veys (about two months) was too long for tracing the evolu-
tion of the eddies, and in addition the maps of the flows were
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constructed based on indirect data only.

Poligon-70, conducted by the Institute of Oceanogra-
phy of the Academy of Sciences of the USSR in February-
September 1970 on the southern periphery of the Northern
Equatorial Current in the Atlantic Ocean, became an impor-
tant supplement to Poligon-67.*> The main observations
were conducted on 17 AFSs, in whose region several hydro-
logical surveys were made. The main result of the expedition
was the discovery of an anticyclonic eddy, passing directly
through the center of the survey area in the direction west-
southwest with a speed of about 5 cm/s over a period from
the beginning of April to the beginning of July 1970 (Fig. 8).
Aside from it, a warm part of one other anticyclone and the
frontal region of a cyclone, which drifted immediately be-
hind the first anticyclone, were recorded. The nonstationary
velocity field of synoptic eddies was significantly greater in
magnitude than the velocity of the weak Northern Equator-
ial Current. The eddy observed in the survey area had an
elliptical shape with a minor semiaxis of about 100 km,
which agrees fairly well with the Rossby radius Ly -65 km.*°
Aside from the good agreement of these scales the fact that
the eddy was the result of a baroclinic instability was also
indicated by the inclination of the axis of the eddy with
depth.*!

American scientists obtained the same results (on a
smaller scale) during the MODE (Mid-Ocean Dynamics

FIG. 8. Map of synoptic flows at a depth of 300 m in the Poligon-70 for
May 24, 1970 (according to Yu. M. Grachev and M. N. Koshlyakov).
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Experiment) experiment in the Sargasso Sea in March-June
1973. The flows were measured on 21 ABSs, and hydrologi-
cal surveys were performed in parallel. An important no-
velty was the observation of a change in the flows, made with
the help of neutral-buoyancy floats deployed at a depth of
1500 m. Just like in Poligon-70, in the MODE experiment an
anticyclonic eddy was discovered in the upper half of the
ocean. Its horizontal extent was about 80 km—somewhat
smaller than on Poligon-70 (owing to the shorter Rossby
radius, namely, L, = 50 km in the region of MODE and
Ly =65 km in Poligon-70). The eddy drifted westward
with an average speed of about 3 cm/s; its orbital velocity
was approximately one and a half times higher than for the
anticyclone of Poligon-70. The dynamics of the flows turned
out to be substantially nonlinear. According to the estimates
made by McWilliams** vertical stretching of the flux lines
and local change in the vorticity made the main contribution
to the balance of the potential vorticity, while the beta effect
was relatively small. Calculations of the frequency spectra of
oscillations of the water temperature revealed a maximum at
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FIG. 9. Frequency spectra of the kinetic energy of
flows at the 100, 400, 700, and 1400 m levels according
to measurements of flows on the POLYMODE float
system.” The circular frequency is plotted along the
horizontal axis and the product of the spectral density
and the frequency is plotted along the vertical axis.
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a period of about 140 days, which agrees with the estimated
size of the MODE eddy and its westward drift speed, given’
above.

More detailed measurements of synoptic vortices in the
open ocean were performed in the Soviet-American experi-
ment POLYMODE in the Sargasso Sea from July 1977 to
September 1978. American Lagrangian measurements were
performed with the help of neutrally buoyant Sofar floats at
depths of 700 and 1300 m in parallel with Soviet Eulerian
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FIG. 10. Velocity vectors and streamlines of synoptic flows at the 100, 400, 700, and 1400 m levels in the POLYMODE region on April 28, 1978.
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FIG. 11. Megapoligon.

measurements of the velocity field at 19 AFSs with 76 flow-
meters (at depths of 100, 400, 700, and 1400 m). Figure 9
shows the frequency spectra of the kinetic energy on the sur-
vey area as an average over all AFSs (according to Ref. 43).
Aside from the two narrow peaks at periods of 12.4 h (semi-
diurnal tide) and 24 h (diurnal tide and inertial oscillations)
these spectra have a wide maximum at synoptic periods
ranging from 30to 170 days. A total of 13 synoptic eddies, of
which six anticyclones had sizes corresponding to a Rossby
radius Ly = 50 km, were recorded in the survey area over
the period of the observations.

The eddies turned out to be closely spaced (complete
data of this type were recently published in the atlas of Yu.
M. Grachev et al.**) and in most cases were substantially
baroclinic, i.e., they changed appreciably with depth (see,
for example, Fig. 10). Synoptic charts of the temperature
and salinity, constructed from hydrological data, on the
whole agreed quite well with eddies in the velocity field of
the flow: regions of elevated temperature and salinity corre-
sponded to the central parts of strong anticyclones while
regions with low values corresponded to the central parts of
cyclones; this is apparently connected with the vertical mo-
tions in synoptic eddies. All eddies move predominantly

20.

P

0 KM T 5403 519 km
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westward with an average speed ranging from 2 to 7 cm/sec.
Calculations showed that the kinetic energy of the eddies in
the survey area fluctuated significantly (Fig. 3 and its dis-
cussion). An extensive summary of the observational data
was published in 1986 in the Soviet-American Atlas POLY-
MODE.**

An observational experiment on an even larger spatial
scale was organized by the Institute of Oceanography of the
Academy of Sciences of the USSR in the interagency expedi-
tion Megapoligon (June-November 1987). The main prob-
lem addressed by this expedition was to study the field of
synoptic eddies and its evolution over a large area. For this a
region with a completely different hydrodynamic environ-
ment than in the POLYMODE experiment was selected: an
area of about 500 500 km? in the Pacific Ocean east of
Japan and north of the Kuroshio current and centered at
45°53' N.L., 154°34' E.L. near the point of bifurcation of the
sub-Arctic flow (Fig. 11).

The main work which, until recently, distinguished So-
viet oceanography in general and the Institute of Oceanogra-
phy of the Academy of Sciences of the USSR in particular
was direct measurements of currents. For this about 180
AFSs with 440 flowmeters (these are record high numbers
for international oceanography ), deployed at depths of 120
and 1200 m and in some of the AFSs at depths of 400 and
4500 m also, were distributed over the Megapoligon survey
area. Measurements on the network of AFSs were per-
formed primarily in the period from August 10 to October
13, 1987. In addition, in the period from June 14 to Novem-
ber 2, 1987 six hydrological surveys were performed on the
Megapoligon survey area using CTD probes to a depth of
1500 m with distances of 20 miles between the stations, and
46 three-day facsimile maps of the temperature of the ocean
surface (TOS) were received by radio from Tokyo.

The field of ocean eddies on the Megapoligon survey
area turned out to be substantially different'? from that in
the POLYMODE region. As an example Fig. 12 shows a
map of isolines of the stream function and velocity vectors of
the flows at a depth of 120 m for October 1, 1987; regions
with cyclonic vorticity are marked by dots. Six cyclonic and

FIG. 12. The velocity field at a depth of 120 m on the Megapoligon
survey area on October 1, 1987.
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seven anticyclonic eddies can be seen in this map. According
to the most detailed measurements performed in the period
from August 10 to October 13, 1987 not all of these eddies
showed a tendency to move westward. The three largest ed-
dies in Fig. 12—cyclonic northwestern and northeastern and
anticyclonic southwestern—are quasistationary. The so-
called northern sub-Arctic front, passing between the two
named quasistationary cyclonic eddies—northwestern and
northeastern—exhibited the main dynamic activity.

The frontal zone between the two eddies of the same
sign is essentially a somewhat diffuse zone of the tangential
discontinuity of the velocity. It is hydrodynamically unsta-
ble (this feature is called the Helmholtz instability), and
when it becomes unstable a chain of eddies with opposite
sign forms (in Fig. 12—a chain of small anticyclones). Sec-
ond-order frontal zones form between them; chains of third-
order eddies with the same sign form in them; etc. Asaresult
a well-known cascade process whereby vorticity is trans-
ferred along the spectrum of scales from large to small scales
forms. Of course, only the first cascade of this process—with
first- and second-order eddies—can be traced in the Mega-
poligon network of AFSs.

Over the above-indicated period of measurements on
the Megapoligon survey area the chain of anticyclonic sec-
ond-order eddies seen in Fig. 12 broke down twice (with the
formation of a cyclonic bridge, interrupting the northern
sub-Arctic front, but restoring the southern sub-Arctic front
along its southern periphery, between the cyclonic first-or-
der eddies; the entire flow field weakened in the process) and
was restored twice (interrupting the southern sub-Arctic
front, but restoring the northern front, with a general inten-
sification of the flows).

It is important to note that the maps of the TOS are in
satisfactory agreement with the maps of synoptic flow at a
depth of 120 m: regions with cyclonic vorticity and especial-
ly cyclonic eddies, as a rule, correspond to low TOS while
anticyclonic regions correspond to high TOS. This can be
explained by the fact that upwelling, which carries cold deep
waters to the surface, occurs in cyclonic eddies (while in
anticyclonic eddies, conversely, downwelling occurs). As an
example Fig. 13 shows maps of the stream function ¢ (ac-
cording to Ref. 46; the zero point was chosen so that the
isoline 1 = 0O separates best the cyclonic and anticyclonic
regions) and the TOS for October 1, 1987. The correlation
coefficient between these maps is equal to 0.72. The linear
regression equations have the form

$p=05+5,07(T—19,9), T=19,9+0,103(p—0,5).
The good agreement between the anomalies of the TOS and
the values of the vorticity Ay indicates that the other factors
involved in the formation of the TOS (i.e., heat and moisture
transfer between the ocean and the atmosphere) are weaker.

If this last result is true not only in this region and dur-
ing this season, for which there is hope, then it could give a
scientific basis for employing the data from the Razrezy pro-
gram (conducted in the last five years) for long-range
weather forecasting. Long-range forecasting requires pre-
diction of the TOS, which is in principle possible on oceanic
synoptic time scales—weeks and months—according to the
following scheme: the initial TOS field is measured by aero-
cosmic methods; the initial field of synoptic flows in the up-
per layer of the ocean is reconstructed from this field, for
example, by means of regression equations; the synoptic flow
field is extrapolated into the future with the help of eddy-
resolving models; then the forecasted TOS fields are con-
structed using regression equations. This scheme can be im-
proved in two ways. First, the simplest improvement is to
add a three-dimensional construction of the TOS fields,
measured in real time by aerocosmic methods, in the coordi-
nates (x,y,t). The second and profound improvement is to
combine the described scheme with long-range weather fore-
casting taking into account feedback-—the action of the at-
mosphere on the ocean via wind stress as well as heat and
moisture transfer.

Another important result of Megapoligon was the dis-
covery of quite strong synoptic flows, at times and in some
places reaching 40-50 cm/s, at a depth of 1200 m with signif-
icantly larger eddies than in the upper layer of the ocean (in
which the meanders of the fronts do not penetrate to large
depths, since the T,S curves of the waters separated by the
fronts rapidly approach one another as the depth increases).
These currents have a tendency to drift westward and exhibit
a quite strong (sometimes even rapid) variability in time. In
contradistinction to the upper layer the deep circulation of-
ten turned out to be cyclonic in the southern half and anticy-
clonic in the northern half of the Megapoligon survey area.
This happened, for example, on September 19, 1987, when
the entire Megapoligon area was occupied by a gigantic wave
ona westward current with a deep cyclonic trough, penetrat-
ing from south to north at the center of Megapoligon, and
anticyclonic crests, oriented from north to south, along the
edges (Fig. 14). The overall impression is that the deep cur-
rent, on the average flowing westward, is a compensating

FIG. 13. The correlation between the maps of the
stream function ¢ and the surface temperature of the
ocean 7 on the Megapoligon survey area in the period
from September 29 to October 2, 1987.

2%
12

323 Sov. Phys. Usp. 33 (5), May 1990 A. S. Monin and G. M. Zhikharev 323



<

S

~

3
L

{LJ:LJ

TR Y T S N T R |

017 X

lﬁll;Jl_lllIlLlllL

qkm o

countercurrent for the total eastward flow in the upper layer.
This is apparently a manifestation of the characteristic ten-
dency of ocean currents to compensate locally the water flow
rates.

We note that the configuration of the synoptic flows at a
depth of 4500 m, measured on a 350X 210 km” rectangle in
the southeastern part of the Megapoligon survey area in the
period from September 15 to October 13, 1987, corre-
sponded well to the flows at a depth of 1200 m, and these
flows turned out to be strong: up to 20-30 cm/s. In the
southern half and the north of the indicated rectangle they
were directed westward, and in the strip between them a
chain of anticyclonic eddies, drifting slowly westward, was
observed (see for example, Fig. 15). The synoptic compo-
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FIG. 15. The velocity field at a depth of 4500 m on the Megapoligon
survey area on October 13, 1987.
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FIG. 14. The velocity field at a depth of 1200 m on the Megapoligon
survey area on September 19, 1987.

5570 km

nent of these flows probably consists of Rossby waves, gener-
ated by the 3 effect and, possibly, the bottom relief.

Observational experiments of the Megapoligon type
should definitely be continued.

Synoptic eddies in the ocean are formed as a result of
baroclinic and barotropic instabilities of large-scale flows as
well as atmospheric actions and the effects of flow over irre-
gularities of the bottom relief. This diversity of mechanisms
of generation explains the observed prevalence of synoptic
eddies. To discuss the conditions of instability of flows
whose stream function ¥ satisfies Eq. (4) we shall study
their total (specific) energy (which is, of course, an adiaba-
tic invariant):

2
0

_ 1 fo (op \2 10 e
*# “EE”'V"’H’F(E) ]dxdde-l—;jkol\Pl’dxdy,
(14)

where k2 = f3/gH. The first term here corresponds to the
kinetic energy K, and the second and third terms correspond
to the available (i.e., capable of transforming adiabatically
into K) potential energy P (the second term P, is the baro-
clinic term and the third term P, is the barotropic term). For
flows with horizontal scale L their ratios are
K:P,:P, = 1:(L/Ly)*(L/L,)*, where L, =k '. In the
ocean Ly ~50 km (and L, > Ly, so that P, €P,), and for
large-scale flows with L ~ 1000 km P~ 400K is of the order
of 7% 10 J/m* according to the empirical estimate made by
1. A. Bulis and A. S. Monin,*’” while for synoptic flows with
L~Ly P'~K’is of the order of 20 J/m” according to the
empirical estimate made in Ref. 48, i.e., the kinetic energy of
the synoptic eddies K’ is on the average an order of magni-
tude higher than the value of K for large-scale flows, but
K' + P’isan order of magnitude lower than 7; this last fact
means that the generation of eddies has virtually no effect on
the large-scale inclinations of the isentropic surfaces.

With the help of the equations of hydrodynamics it can
be proved that in baroclinically unstable disturbances of
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zonal flow U(p,z) the particles of liquid must move along
trajectories that are sloping relative to the horizon in the
meridional plane w'/v’ ~ (UH /L)/f, L, so that their slope
is bounded by the slope of the isentrope f, U/N *H, whence
(Ly /L)?*<1, i.e. the scales L of baroclinically unstable dis-
turbances cannot be much less than Ly . J. Pedlosky*® estab-
lished that the increment of growth of unstable disturbances
decreases as L increases, so that it can be expected that even
for developed disturbances L ~ L. A number of necessary
conditions for instabilities can be formulated in terms of a
meridional gradient of the potential vorticity of zonal flow
B=pB—0°U/dy*— (3/32)1(f5/N?)3U /dz; 1) either B
is a sign alternating or somewhere (dU /dz)._ _, has the
same sign as B, or somewhere the sign of (U /dz),_, is
opposite to that of B; 2) either somewhere UB > 0 or some-
where (U3U /3z),_ , <0, or somewhere (UdU /3z) ,_,
>0.

In the two-layer model it is possible to give the neces-
sary and sufficient condition:*’ the values of U, ~U, must lie
outside the interval (— FH,,FH,), where
F=8f;’8(p, —p)p ', and the index 1 corresponds to
the upper layer while the index 2 corresponds to the bottom
layer. G. M. Zhikharev*® studied in such a model the stabil-
ity of the simplest nonzonal flow U, = const, U, = 0 above
a wavy bottom relief H = H,, sin(k-x) (see also J. Charney
and G. Flierl,”! A. Buzzi et al.,* and J. Pedlosky*’ ). He
proved for the examples calculated that with fixed |k | an
increase of the shear | U, | results first in orographic and then
baroclinic instability, i.e., the former is a kind of catalyst for
the latter.

The effects of flow over irregularities /' of the bottom
relief z= — H + H' become comparable to the S effect
when H'/H~L /R, (where R, is the earth’s radius), and
the critical value H' = HL /R, in the ocean is ten times
smaller than in the atmosphere, which is why topographic
eddies are much more common in the ocean. Because of the
smallness of H'/H they satisfy the boundary condition
w= — (fi/NH)I*W/0z0t =J(Y,H') atz= — H. Weshall
confine ourselves for the time being to barotropic distur-
bances. For them we have now instead of Eq. (4) (see Sec. 39
of Ref. 4) the law of conservation of the quantity
g=(f+AY—klY)H ;' where Hy =¢+ H— H' is the
total thickness of the ocean (z = ¢ is the disturbed level of
the ocean, which we shall neglect in what follows). In linear-
ized form it is expressed by the equation

m ai ’ =
B+ (b, H) =0, (15)

which shows that the irregularities H'(x) play a role analo-
gous to the S effect. If their horizontal scale L, > L,then the
bottom is said to be sloping, and VH' can be regarded as
locally constant. For wave disturbances in this case the fre-
quenciesw = (F .k, — F,k )k ~?,whereF =8y + (f,H'/
H) are obtained. If L, <L, then the bottom is said to be
rough. For acylindrical relief H'(y) (Ref. 53) the dispersion
relation is
©? + ofkk®—f LA =0

X — 1o k F =y, (16)
so that small-scale roughness of the bottom can engender
large-scale waves (and this paradox is intensified by the fact
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that the energies of the large- and small-scale motions here
are comparable, so that smoothing of the bottom relief in
calculations of large-scale flows can produce significant er-
rors).

For L, « L the bottom is said to be wavy. It is capable
of both partially reflecting waves and engendering trapped
modes.***¢ We shall examine the last effect for the example
of baroclinic flow past an isolated mountain, following H.
Huppert and K. Bryan.”’

Because the potential vorticity is conserved (for 8=0
and N = const) under conditions of upwelling of cold waters
along the slope — dp'/dz increases and the relative vorticity
Ay decreases, while under conditions of downwelling Ay
increases. As a result, a cold anticyclonic eddy forms above
the mountain and a warm cyclonic eddy forms downstream
from the mountain. The anticyclonic eddy always remains
above the top of the mountain. The cyclonic eddy with small
NH’/U~1 is carried by the flow downstream (eddies are
more intense in this case), while for NH ' /U ~ 10 it remains
““tied” near the anticyclonic eddy (and the eddies are not as
strong—this case is apparently typical for the real ocean);
examples of a numerical calculation are shown in Fig. 16.

J. Verron®® made this problem more complicated: he
studied a flow that varied periodically with time
U= U, (1 — cos wt). His calculations show that both in the
barotropic case (with the potential vorticity
Ay + (fy H'/H) and in the baroclinic case with small U an
anticyclone and a cyclone form above the mountain. But
when U exceeds some critical value (and the period 27/w is
less than the typical advection time L /U,, where L is the
diameter of the mountain), then not only the cyclonic eddy
but also the entire cyclone-anticyclone pair can become de-
tached. In the process a chain of pairs of eddies is formed
beyond the mountain (according to Verron’s calculations
the S effect cannot change this picture qualitatively). Such
flow past Corner Rice sea mounts possibly explained the
looping trajectories of four buoys in the region of the return
flow of the Gulf Stream.>’

Synoptic eddies can also be generated by direct atmo-
spheric actions—wind stress, nonuniformities of the atmo-
spheric pressure, and flows of heat and salt (engendering a
“flow of buoyancy’). Empirical data on the space-time
spectra of these fields on the scales of synoptic motions have
been studied by L. Magaard,®® J. Willebrand,®' and in espe-
cially great detail by C. Frankignoul and P. Muller® (see
Sec. 3.3 of Ref. 9 or Sec. 42 of Ref. 4 for the details). These
studies showed that of the factors mentioned above the wind
stress plays the main role. At moderate latitudes the spectra
of the atmospheric actions have maxima at periods of several
days and wavelengths of 3-6 thousand kilometers, charac-
teristic of atmospheric synoptic processes, but they contain
significant energy both at lower frequencies and smaller spa-
tial scales. At periods exceeding 10-20 days the temporal
spectra become weakly frequency dependent, and at wave-
lengths less 3 km the spatial spectra approach isotropic spec-
tra. The empirical model F, = F k%S,, F,=10"H"
(M*TII) ~ ' where S, is the spatial spectrum normalized to
unity and is proportional to k&~ at wavelengths less than 5
km, is applicable for the space-time spectrum of a wind-
stress eddy at low frequencies. Here the westward motions of
the atmospheric disturbances, capable of exciting in a reso-
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nant fashion Rossby-Blinova waves in an ocean with a flat
bottom, are also taken into account. The corresponding
fluxes of energy (in the wavelength range from 4 to 50 km)
into the barotropic mode of the total and kinetic energies
turned out to be equal t02.9X 10~ * and 2.85X 10~ * W/m?,
i.e., almost the entire flux goes into increasing the kinetic
energy of waves with long wavelengths. The analogous
fluxes into the baroclinic mode are equal to 1.5X 10~ * and
0.5x 10~ *W/m? i.e., the flux goes primarily into increas-
ing the available potential energy. The total flux of
0.44 <10 ~* W/m? is comparable to the space-averaged esti-
mate 10~ * W/m? of the flux from the baroclinic instabil-
ity,® but in the zones of stream flows that latter is much
larger. Thus direct atmospheric action can engender baro-
tropic synoptic disturbances in the open ocean. If the ocean
bottom is uneven, then resonance generation is also possible
due to atmospheric disturbances moving eastward.

6.EDDY-RESOLVING MODELS

Mathematical modeling of the ocean circulation con-
sists of calculating the basic hydrodynamic fields (flow ve-
locities, surface level, temperature, salinity and density of
the water) for given external actions ( primarily atmospheric
action).

This obvious formulation is presented here because
there are publications (summarized in Ref. 7 and in publica-
tions preceding it®* ), in which a different, so-called diagnos-
tic, problem is proposed—calculation of the velocity field of
large-scale flows based on given water temperature and sa-
linity fields and the wind action. However, within the frame-
work of hydrodynamics, the density (temperature and salin-
ity) fields and the external action fields cannot be specified
independently of one another—the former are functionals of
the latter. In Refs. 7 and 64 diagnostic calculations were
performed using an arbitrarily simplified equation (the de-
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FIG. 16. Distribution of isopeaks at a depth of 3720 m with time inter-
vals from the moment of development of the flow of 4.6 days (a), 9.3
days (b), and 23.1 days (c).”

pendences of the density on the pressure, lateral mixing, etc.,
were ignored). In many regions their results contradicted
the measurements (for example, the computed counterflow
underneath the Gulf Stream is not observed in nature).

Returning to hydrodynamics, we mention mathemat-
ical models of the large-scale circulation of the atmosphere
in which lateral mixing engendered by synoptic eddies was
“parametrized” as an effect of “horizontal” turbulent vis-
cosity with a large positive constant coefficient
K, ~10" — 10* em?/s (brief reviews of such models are
given in, for example, Refs. 4 and 21). Among the most de-
tailed models of this type we mention the 12-level model of
Ref. 65, employed in Ref. 66 to calculate the state of the
ocean with fixed atmospheric actions with a seasonal trend
(on a grid with a horizontal step of 500 km). We note that
according to this calculation the temperature in the deep
layers of the ocean did not reach a steady value even after
1200 model years (but rather it continued to increase at a
rate of about 0.1 °C/100 yr, which corresponds to a heat flux
from the atmosphere of less than 0.25% of the solar con-
stant): The deep ocean adjusts to atmospheric actions very
slowly.

However specifying positive values of %", precludes
any action of “negative viscosity,” i.e., the inherent capabili-
ty of an ensemble of synoptic eddies to transport a statistical-
ly averaged momentum from regions of space where this
density is low to regions where it is high, and thereby form
the observed narrowness of the main oceanic currents (for
example, the Gulf Stream is only 70-90 km wide).

Negative viscosity in ensembles of synoptic eddies is an
important phenomenon of nature. Apparently this phenom-
enon explains the differential rotation in the earth’s atmo-
sphere (subtropical currents), on the surfaces of large plan-
ets, and on the sun (equatorial acceleration) with formation
of toroidal magnetic fields from poloidal fields, i.e., half the
cycle of a hydromagnetic dynamo; all this could be a univer-
sal property of spherical, rotating, electrically-conducting,
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gaseous bodies.®’

Negative viscosity in the ocean was discovered by F.
Webster,®® V. Starr,’® R. V. Ozmidov er al.,”° and A. S.
Monin and D. G. Seidov.”" Its *“‘parametrization” for the
ocean was not yet developed (while for zonal models of the
atmosphere, for example, G. Williams and D. Davis’ pro-
posed a formula), but it may be possible to take it into ac-
count completely by describing individually all the synoptic
eddies engendering it. Such an eddy-resolving model of ocean
circulation must be constructed on a spatial grid with a hori-
zontal step size not greater than the Rossby radius of defor-
mation Ly, i.e., not more than several tens of kilometers.

The first eddy-resolving model was constructed in 1975
by W. Holland and L. Lin.”* This was a two-layer model
with the complete equations on a grid consisting of 51 X 51
points in a 1000 1000 km? ocean of constant depth with
wind excitation engendering an anticyclonic gyre. Barotro-
pic synoptic eddies appeared in its northern section as well as
in the return flow in the eastern and southern regions. Some-
times, baroclinic synoptic eddies also appeared in the return
flow. The quasigeostrophic two-layer model developed by
W. Holland gave analogous results.”

The numerical experiments performed by P. Rhines
with single-layer’® and two-layer’® eddy-resolving models
played an important role in understanding the statistical dy-
namics of synoptic flows described by Eq. (4). These calcu-
lations establish that, on the average, synoptic eddies evolve
in time as follows:

1) they grow in size;

2) they acquire a tendency to drift westward and be-
come anisotropic, approaching zonal flows; and,

3) they become barotropic, i.e., they become vertically
homogeneous.

The first two of these characteristics can be understood
with the help of the simplest barotropic model (with viscos-
ity v). In this model the total kinetic energy
E=(1/2){|V¥|?) degenerates according to the law
OE /3t = — 2vQ), where Q) = (1/2)((Ay)?) istheenstrophy
(1/2 the total squared vorticity ). For small v the quantity E
will be approximately constant, and the energy spectrum in
the energy-carrying interval of wavelengths k will have the
self-similar form E *2tf(E'’*kt) (G. Batchelor’”). Then

YA
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the equation dk | '/dt = cU is obtained for the wave num-
ber k, averaged over the spectrum; here (1/2)U? = E and
¢ is a positive number, so that the average scale of the eddies
L = 2wk ! increases with time.

Equation (4), owing to the term J(¢f) = Sdy/3x (the
f3 effect), describes not only eddies (carrying water with
them), but also Rossby-Blinova waves (traveling along the
water) engendered by the S effect. Their relative role
J(f)JJ (¢, Atp) isequal to ¢, /U, where ¢, = 3/(2k ?) is the
phase velocity of the waves, so that eddies predominate for
k>k, = (8/2U)"? and waves predominate for k < k. In
Ref. 75 afield of closely spaced eddies with a narrow spectral
peak for k, > k; was chosen for the starting field, and the
scale of the eddies L, increased with time in the manner
indicated above with the coefficient c~3x 10~ 2, but after
the scale L, = 2wk ; ' was reached this growth continued
slowly with the coefficient c~6x 10 ~°,

Waves grow more slowly, since their interactions re-
quire that three waves add in space and that the wave fre-
quencies and vector be in resonance, and such interactions
tend to transfer energy to the wave whose frequency
w= — Bk .k ~?is lowest and whose direction of propaga-
tion k is closest to the zonal direction (anisotropization,
whose limit is striped zonal circulation, like on large plan-
ets). The transformation of eddies into waves ( primarily the
appearance of a tendency to drift westward) can be seen
clearly in Fig. 17 (taken from Ref. 75).

In the baroclinic model in Ref. 4 the two terms in the
relative  vorticity ¢ must be compared. For
k> kg =27L 7' theterm Ay predominates and vertical in-
teractions between different layers of the liquid play a small
role, so that the flows in these layers evolve approximately
independently of one another (baroclinic eddies ). Converse-
ly, fork < k interaction along the vertical between different
layers predominates, and the layers evolve as a single layer
(barotropic eddies). In the two-layer model’® for k, > kg as
k, increased to the value kg barotropization was complete
and occurred very rapidly (see Sec. 3.5.7 of Ref. 9 for a more
detailed discussion). In the ocean, asarule, Ly > L, ,so that
evolution proceeds in the sequence baroclinic eddies — baro-
tropic eddies— barotropic waves (and linear baroclinic
waves can arise primarily only as a result of external ac-

FIG. 17. The evolution of the stream function field in time-longitude
coordinates according to Rhines.’®
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tions—due to the atmosphere, the bottom, and the shores).

Multilayer eddy-resolving models were also construct-
ed immediately. In the USSR the first eddy-resolving model
was D. G. Seidov’s five-level model™ of the circulation in a
basin with the dimensions 960x 1440x 5 km*. The flows
were divided into deep-averaged and quasigeostrophic shear
flows, the zonal wind action generated near the middle lati-
tude an eastward current, and a vertical heat flux propor-
tional to the temperature difference between the water and
the air was given on the surface of the basin. The model was
integrated on a spatial grid with 2537 X5 nodes over a
time period of ten years with a time step of 6 h (other var-
iants were also calculated).

The numerical experiments with this model led to the
following conclusions:

1) nonlinear (inertial) effects were important for syn-
optic eddies (in contradistinction to large-scafe gyres);

2) eddies engendered “tunneling” transfer of heat
through zonal currents as well as concentration of heat in the
flows at the western boundary; i

3) the energy transformations turned out to be sharply
spatially nonuniform, and in the zones of stream flows nega-
tive viscosity played an important role—the volume-aver-
aged energy cycle had the form K—P—-K'— K (in addition,
feedback was weak only when averaged over the volume, and
in the zones of stream flows it played a decisive role);

4) the energy cycle in the system full flows—shear flows
had the form K ' — (P,K), and in addition significantly more
energy was transferred to P and K from K’ (i.e., owing to
barotropization) than from external sources; and,

5) relaxational oscillations with periods of accumula-
tion and shedding of energy, qualitatively similar to those
actually observed (Fig. 3), arose in the circulation.

D. G. Seidov, A. D. Marushkevich, and D. A. Ne-
chaev” soon constructed the first eddy-resolving model of
the entire ocean with real shoreline contours and bottom
relief—of the North Atlantic in the range 13-61° N.L. The
model contained seven working levels 0, 200, 500, 800, 1200,
2000, and 3000 m and a horizontal grid of 40 X 40, and it was
integrated using time steps of 12 h over a period of 5 yr. The
calculations demonstrated active eddy formation in the zone
of the Gulf Stream and the Labrador Current as well as ac-
companying current flow over the mid-Atlantic ridge. The
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eddies intensified the Gulf Stream by a factor of 1.5-2 and
the Labrador Current by a factor of three, and they main- )
tained in these regions high horizontal temperature gradi-
ents. A scheme for realizing this experiment for eddy-resolv-
ing modeling of the entire ocean was proposed in Ref. 4.
However this work was delayed at the Institute of Oceanog-
raphy of the Academy of Sciences of the USSR.

The first eddy-resolving global model of the ocean
(without the Arctic basin) was constructed in 1988 by A.
Semtner and R. Chervin.'® In this model an even more de-
tailed, than in Ref. 79, spatial grid is employed: 20 levels
along the vertical (of these ten are in the upper 710m) and a
30’ step along the horizontal direction were employed. Inte-
gration (on a Cray X-MP/48 computer) of the equations of
motion and the heat and salt budgets was performed over a
period of 20 yr (and required 250 h of machine time) with
average yearly wind forcing. During the last ten model years
the model was in a statistically steady-state regime (during
the last two model years, in order to intensify the synoptic
processes generated by the model the harmonic dissipative
operators %", A were replaced by the biharmonic operators
% ,L?AA). The computed hydrophysical fields agreed
with observational data. We note first the nonstationary
western boundary flows, during the meandering of which
warm and cold rings were engendered. Aside from the Gulf
Stream and the Kuoroshio and Oyashio currents, such ed-
dies appeared as a result of the development of instability
and other flows, such as the east-Australian, Brazilian, and
Falkland currents; eddy activity was also found in some
frontal zones of the ACPC.

The most surprising result was the *“Indian Ocean ex-
press”—the flow of warm thermohaline waters from the tro-
pics of the Pacific Ocean through the Indian Ocean and then
into the Atlantic around the southern tip of Africa (with the
oppositely directed flow of cold deep abyssal waters from the
North Atlantic, already suspected a long time ago by V. N.
Stepanov at the Institute of Oceanography of the Academy
of Sciences of the USSR and capable of explaining the signifi-
cant difference in the concentrations of biogenic elements in
the three oceans); see the schematic summary of the corre-
sponding factual data in Fig. 18.

The authors of the model'® feel that an eddy-resolving
model of the ocean with 40 working levels and a horizontal

@— Up flow
®— Down flow

FIG. 18. Diagram of the interocean exchange of deep waters and ther-
mocline waters according to Gordon (see Ref. 16). 1-——deep water
flow, 2—*"cold” water transfer into the Atlantic Ocean, 3—‘war-
m”upper layer flow.
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step of 7.5 can be realistically constructed by 1993; in addi-
tion, the calculation over a decade will require not more than
500 h of computer time. Compared with Ref. 16 the book of
Ref. 7, which was published at the same time, is clearly late.

7.HAMILTONIAN FORMALISM

Equation (4) for the stream function # of synoptic
flows in the adiabatic case ®=0 can be put into a Hamilto-
nian form, so that all the results of the general theory of
Hamiltonian systems can be extended to it also (V. E. Zak-
harov and E. A. Kuznetsov®® and A. Veinstein®' ). Namely,
denoting by Q1 = .’y the relative potential vorticity (for
barotropic flows ) = Ay — k j¢f, where k| = f3/gH), Eq.
(4) can be written in the form 90/t = {Q,%°}, where ¥ is
the Hamiltonian, and the braces are the so-called Poisson
brackets, which according to Refs. 80 and 81 are defined in
this case for any two functions F{{1] and G{{}] by the for-
mula

OF

{F, c}=§<o+ﬁy>.r(—

8G
50’ 55) dx dy dz.

(17)
for B = 0 the bracket {F,G}, with a variable coefficient (2,
specifying the Hamiltonian structure of the two-dimension-
al hydrodynamics of an incompressible fluid (in mathemat-
ics it is known as the Lie bracket for the group of area-pre-
serving diffeomorphisms of the plane) is obtained, and the
bracket {F,G}, = {F,G} — {F,G}, is the well-known
Gardner bracket from the theory of integrable systems. In
order to apply the general theory the so-called normal ca-
nonical variables, which **diagonalize” the Poisson bracket,
must be introduced into the Hamiltonian system, but there is
no general recipe for doing this.

For Eq. (4) this problem was solved by V. E. Zakharov,
A. S. Monin, and L. I. Piterbarg (see Refs. 13-15) with the
help of the functional transformation Q (x,y,z) = p{x,w(x,
»,z),z], where w =y + 8 ~ '§. Equation (4) is put into the
form dn/8t = B(3 /3x)87 /57, and in the barotropic case,
to which we shall confine ourselves here in order to simplify
the presentation, the normal canonical variables are ob-
tained in the form ¢, = ( — 28k, ) '’n,, where 7, are the
Fourier coefficients of the function n(x,y). The standard
Hamiltonian equations da, /3t = — 6% /6af are already
obtained in these variables. Expanding # in a functional
power series in a, and af we obtain the frequencies
o, = — Bk (k?+k}) ' as coefficients in the quadratic
term (it turns out that three-wave resonance interactions are
possible), three-wave interaction coefficients are obtained in
the cubic terms, etc.

In the approximation of weak nonlinearity (when the
small parameter ¢ is introduced in the nonlinear term in Eq.
(4), the stream function is sought in the form
e, + %), + ..., and the slow time T = £°¢ is introduced) it
is sufficient to truncate the analysis at the cubic Hamilto-
nian, and the following kinetic equation can be derived for
the spatial spectral energy density F,, defined by the relation
a(avat) = F.é6
gi—k = 8n 51 (DueFx.Fis + DivFuFr, + Dk FxFy,)

x (k2 -+ ki)‘l (ki -+ kg)_l (ké -+ kﬁ)—l‘skﬂ.szackmkﬁ szdkxdk‘).-
(18)
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where D, , = (1/2)(k] —k3})(k, k,, —k,k,.) (this
equation was derived by making an expansion in terms of £
by K. Kenyon for &, = 0,* M. Longuet-Higgins and A. Gill
for k, #0,* and in greater detail by G.M. Reznik;* see also
the paper by G. M. Reznik and T. E. Soomere,** and Ref. 15
for a Hamiltonian derivation).

Equation (18), like the exact equation, conserves the
total energy and the potential enstrophy. The latter is equiv-
alent to the conservation of the zonal momentum
§ k,F, o0, 'dk. The meridional momentum § k,F, 0, 'dk is
also conserved. The rate of change of the total entropy
§ In F, dk is equal to some weighted integral of the square of
the quantity 4 =0, F, '+ 0, F '+o0, F ' For this
reason the thermodynamically equilibrium spectra are solu-
tions of the equation 4 =0 on the “resonance line”
k+k, + k, =0, + 0, + o, =0. The only differentiable
solution is the isotropic spectrum (a + bk %) ~ !, wherea and
b are constants (‘‘temperatures’), like in the case of two-
dimensional turbulence.

Unlike two-dimensional turbulence, however, singular
spectra of arbitrary zonal flows 6(k, )@ (k, ), as well as their
sums with the above-indicated isotropic spectrum are also
solutions. True, for arbitrary initial data they are, generally
speaking, unattainable, since on the &, axis the spectrum F,
does not change with time at all. But the numerical experi-
ments of Refs. 84 and 85 showed that arbitrary initial spectra
have a tendency to evolve into one of the above-indicated
thermodynamically equilibrium spectra.

In the process the energy is distributed anisotrop-
ically—almost all of the energy is concentrated near the k&,
axis, i.e., in the zonal flow (the phenomenon of negative
viscosity, created by the nonlinearity and the beta effect),
while the remaining energy and almost all of the entropy are
distributed over the region |k,|>&>0 of the wave space
uniformly over all orientations of the wave vectors in accor-
dance with the spectrum F, = (a + bk *) ~' (isotropization
of the entropy). These arguments explain the results of nu-
merical experiments, presented in Sec. 6, with eddy-resolv-
ing models. The circulations on all four large planets, so
clearly represented on the pictures obtained in the superb
Voyager observational experiments, can apparently serve as
natural analogs.

8.ROSSBY SOLITONS

The dispersion present in the wave solutions ¢ of the
equation of transport of the potential vorticity (4) and de-
scribed by the nonlinear terms 3. /3t + B3Y/dx can com-
pensate the nonlinearity J(2¢,.7"¢). As a result there can
exist steady-state solutions which evolve only by means of
transfer of the field ¢ without a change of form and with a
constant velocity, say with the velocity ¢ in the direction x,
so that ¥ = ¢(x — ct,p,z). Therefore they satisfy the equa-
tion J(¥+ cy,g) =0, which has the general solution
q = F(y + ¢y), where Fis an arbitrary function.

The boundary condition on the free surface, replaced by
itsequilibrium level z = Q, should reduce to the fact that on it
1/3z + N /g must be an arbitrary function F, (¢ + cy),
and in the “solid cover” approximation this refers only to
dY/dz; analogously, the boundary condition at the bottom,
which should be cylindrical here, i.e., it is given by the equa-
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tionz = — H + H'(y), and which is replaced by its average
level z= — H, should reduce to the fact that there
oY/dz+ H'N?/f must be an arbitrary function
F,, (¥ + ¢p), and in the case of a flat bottom this refers only
to Y/ dz.

The nonlinearity J(#,q) decomposes into a ‘‘scalar”
nonlinearity J(¢,.2¢ — A¢) and a “vector” nonlinearity
J(,Ay)—in the terminology of M. V. Nezlin; see Nezlin’s
review Ref. 86 and the works cited there, especially those of
Nezlin’s group. In the barotropic model with a free surface
&L — A= —k}= — f?/gH, and the “scalar” nonlinearity
has the form — (dy/Ix) X Ak 2 /Ay, which is the same as in
the well-known Korteweig-de Vries equation (in the ‘“‘solid
cover” approximation it vanishes; in the baroclinic model H
must be replaced by the ‘“equivalent depth”
g "(NH /mr)?, where m is the number of the baroclinic
mode).

Asin the Korteweig-de Vries case, on “shallow water”
this nonlinearity engenders steady-state solitary waves—
“scalar” solitons of upwelling with O < £ € H, in our case an-
ticyclonic; see the papers by L. Redecopp,’” D. Anderson
and P. Killworth,®® J. Charney and G. Flierle,*! and T. Mat-
suura and T. Yamagata,”' G. Williams and T. Yamagata,
G. Williams,” and others. Quantitatively somewhat differ-
ent “scalar solitons”’—with fluid trapped in their central
parts (owing to which their amplitude is not related with the
diameter) and, unlike the preceding solitons, with a possible
relative upwelling £(H + £) ~ ' that is not small—were ob-
tained by G. G. Sutyrin and I. G. Yushina;** in Ref. 86 they
are regarded as a more general case, but in our opinion these
are no longer solitons (solitary waves traveling along the
water), but rather solitary eddies carrying *‘their own” wa-
ter.

They are all anticyclonic, because with a different sign
the “‘scalar’” nonlinearity cannot compensate the dispersion.
Their reality is confirmed by the theoretical proof of their
stability in the “beta plane”®® and the fact that they have
been reproduced in laboratory experiments in a layer of shal-
low water in a rotating paraboloid (z= pr’,p~ 2*/2g) by M.
V. Nezlin’s group®® (with quite shallow water and therefore
short viscous decay time of the vortices v~ 'H ) and by the
group directed by V.1, Petviashvili®® at the Abastumani Ob-
servatory (in Nezlin’s opinion,* with a paraboloid that is
too flat).

In Ref. 86 both small and large paraboloids were em-
ployed. In the case of the small paraboloid the diameter
D = 28 cm, the rotational period 27/} = 0.58 s, the thick-
ness of the layer of liquid H = 0.3~1.2 cm, and the dispersion
spreading time of a circular packet of Rossby waves
T28(SLg) ~'=7.6s. For the large paraboloid D = 70 cm,
27/ = 0.84 s, H = 1-5 cm, and 7=~ 6.6 s. The eddies were
generated by switching on a “pumping disk” for a short time
and they drifted in a direction opposite to the flow; the anti-
cyclones with diameters of the order of 2.5L; formed as
attractors and were observed for amuch longer time 7 (up to
v~ 'H?), and with {(H +£) ~'20.15, they transported
“their own”” water. Their collisions were inelastic. Cyclones
(in the large paraboloid) were formed with difficulty and
decayed over a time 7. All this appears to confirm our opin-
ion that here solitary Rossby eddies are formed rather than
solitons.

Experiments on the generation of eddies in a zonal flow
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with shear, created by differential rotations of two zones of
the bottom of the paraboloid, are also described in Ref. 86. In
the case of a sharp shear—anticylonic or cyclonic—chains of
steady eddies—anticyclones or cyclones (Helmholtz insta-
bility ) —were produced equally successfully. But in the case
of a smooth shear the beta effect is also manifested, and only
anticyclones could form from large vortices of size L > Ly;
in the case of an incoming shear a solitary “autosoliton”
with a diameter of about 3.5L; and an upwelling { = H,
modeling the Great Red Spot ( GRS) of Jupiter, as proposed
by G. S. Golitsyn®’; formed

According to astronomical data the GRS, which has
now been observed for 300 yr, is an anticyclone with a char-
acteristic rotation period of about one week; it has a size of
13 x 26 thousand kilometers, it is located near 22°S.L. in an
approximately isothermal, extremely cold layer of clouds
with an effective thickness H ~20 km, and it is drifting west-
ward with a speed of about 3 m/s (according to Ref. 86 the
first baroclinic mode of “scalar”” Rossby eddies on a zonal
flow with anticyclonic shear corresponds satisfactorily to
these parameters). The anticyclonic white ovals of Jupiter in
the zone near 34° S.L. can be explained analogously, while
the brown ovals (*“‘barges”) at 14° N.L. on Jupiter are east-
ward drifting cyclones in a zone with a sharp cyclonic shear.
The importance of all these arguments was strengthened
after the discovery of eddies by the Voyager space probes on
other large planets also, including the analog of the GRS on
Neptune.

We shall now discuss solitons generated by the *“vector”
nonlinearity (see the review by A. L. Berestov and A. S.
Monin,® Sec. 2.3 of Ref. 9, and Sec. 40 of Ref. 4). For sim-
plicity we shall first study the barotropic model in the *“solid
cover” approximation, so that for the steady-state solution
Eq. (4) will have the form J(¢ + ¢y, A¢¥ + By) =0 (how-
ever, a free surface and an inclined bottom can be retained,
replacing Bby 8 + (foc/gH) + (f,/H)3H '/dy). Hereit is
convenient to transform to polar coordinates, setting
x =rcos 6, y=rsin 6. We shall confine our attention to
solutions of the form ¢ = W(r)sin 8. Then our equation will
assume the form

&Z—;‘—n=0. E= ¥ () +or, (19)
n= (gt r ) b (20)

The solution can be constructed following the example with
B=0 given in Sec. 165 of H. Lamb’s book:*

c W =2J,(kr)/kJ, (kry —r for r<a, and c¢7*¥
= —a’r~!for r>a, where J,(ka) = 0 and c is arbitrary;
here ¥, 8¥/3dr and d°¥/Jr* are continuous at » = a. The
extension to the case 8 #0 but ¢ = 0 was obtained by M.

Stern,'® who set 5= —k? for £<O0, whence
W = A4J, (kr) — Bk ~?r, and a is chosen so that W (a) =0,
after which k is chosen so that W' (a) = 0. For this ka must
be a zero of the function J, (2), and the condition ¥ <O for
r < a, which is necessary here in order that  depend only on
£, and not on & and r (Stern did not point this out), is satis-
fied only for the first of these zeroes. For r>a Stern set
WV = 0, which for r = a ensured that ¥ and J¥/dr but not
d*W/3r* are continuous (discontinuity of the vorticity).
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The extension to the case 8 £ 0 and ¢ #0, i.e., a drifting
Rossby soliton, was obtained by V. D. Larichev and G. M.
Reznik.'”" To demonstrate their solution we shall set
n= —k’& for £ <Oand = /€ for £> 0. It turns out that
in order for W to decay exponentially as 7 — oo it is necessary
that /= (8/c)'?, and in addition it is necessary that
B /c >0, for which ¢ must lie outside the interval

[__(Hzo_aﬂ'_)g_ﬂ_,o]

H oy f%

(for ¢ > 0 the soliton drifts eastward; the velocities of period-
ic Rossby waves lie in the interval itself). The solutions of
Eq. (20) are cylindrical functions, and the integration con-
stants are chosen so that the functions ¥ and d¥/dr are con-
tinuous at r = a; the latter gives the dispersion relation
c=c(ka) in the form — (ka) ~'J,(ka)/J, (ka)
= (la) ~ 'K, (ka)/K, (ka) (in addition, in order that the
conditions £ < 0 and r < 0 coincide the quantity ke must fall
between the first zero and the second minimum of the func-
tion (kr) ~ 'J, (kr); see, for example, Ref. 98). We note that
here d *¥/d* is continuous at » = g, but @ *¥/3r* is discon-
tinuous. Because of the factor sin @ the soliton is, of course, a
dipole.

The stability of the shape of solitons of the indicated
type (*‘modons™) was proved analytically by V. A. Gordin
and V. 1. Petviashvili.'® The solitons were obtained in labo-
ratory experiments by R. Davis and A. Acrivos,'? as well as
in Refs. 86 and 96. In Ref. 86 they were obtained (though
they were not sufficiently long-lived) only on the deepest
water (H 2 4cm) in the large paraboloid—the pumping disk
generated a cyclonic disturbance. It decayed into two cy-
clones, each of which formed of itself an anticyclonic neigh-
bor, and the dipole with the external cyclone drifted west-
ward while the cyclone with an external anticyclone drifted
eastward. These dipoles carried “their own’ water, i.e., they
were more like eddies than waves (i.e., in them the “vector”
nonlinearity was stronger than the beta effect).

The interactions of dipoles were studied in the numeri-
cal experiments of V. D. Larichev and G. M. Reznik'™ and
M. Makino, T. Kamimura, and T. Taniuti'®® (in the exam-
ple shown in Fig. 19 the large soliton overtakes the small
soliton). In Ref. 105 it was established also that when the
axis of the dipole is initially tilted with respect to the x axis
the trajectory of the dipole oscillates in a wave-like fashion
around this axis, and the intensities of the eddy pair oscillate
in an alternating fashion.

In Refs. 106 and 107 it is shown that the soliton of Lari-
chev and Reznik V¥, (r) =M, J, (kr) — M, for r<a and
k, (Ir) for r> a with definite values of the constants M, and
M, can be added to the stream function ¢ = W (r)sin 8 (but
in so doing a discontinuity appearsin d *¥/9r*). A. L. Beres-
tov'® pointed out a three-zone soliton with different W (r)
with r < a, a <r < b, and 7> b and with continuous vorticity
d%1h/9r%; here a function ¥, (7) can also be added to #.

In Ref. 107 a family of dipole solitons in a two-layer
ocean is constructed. In Ref. 108 a three-dimensional soliton
is constructed; in spherical coordinates x = rsin @ cos A,
y=rsinfsinAd, z=f,N "*rcos @ with ¢y =V¥(r)sinA
the equation for the potential vorticity is put into the form of
Eq. (20) with &= (¥, (r) +¢r)siné and yp= .7 V¥

+ Brsin 6, and a piecewise-linear solution 7(£) is sought.
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FIG. 19. Passage of one barotropic soliton S, through another barotro-
pic soliton S, according to the results of numerical experiments by
Makino et al.'"

The result is shown in Fig. 20. A three-zone three-dimen-
sional soliton is also constructed in Ref. 108. (it is also
shown that, generally speaking, it is impossible to create
more than three zones). In three-dimensional solitons some
purely radial terms can be added to ¥ (but in this case
8%y/3r*. becomes discontinuous).

According to Z. I. Kizner'**>'*° the bottom halves of all
these three-dimensional solitons satisfy on the surface of the
ocean the “solid cover” condition and therefore they can be
regarded as autonomous solitons. In these works other
three-dimensional  solitons are also constructed:
Y =1,(r,8) + ®(r)F(z), where ¥, is a “modon,” F(z) is
the solution of a Sturm-Liouville problem for the amplitudes
of the internal waves, and ®(r) are determined differently
for r<a and r>a. Finally, we mention the solitons

$+ey=0

FIG. 20. Three-dimensional soliton of A. L. Berestov.'™®
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“trapped” by features of the bottom relief or other localized
disturbances of the stream function; such solitons were stud-
ied, for example, by A. Patoine and T. Warn,'"" T. Warn and
B. Brasnet,''? and R. Pierrehumbert and P. Malguzzi.'"?

. MESOSCALE EDDIES
9. “MEZOPOLIGON"

Mesoscale ocean eddies, by definition, have horizontal
dimensions L R H, i.e., from kilometers to tens of kilometers,
and periods (Eulerian) from many hours to many days (see
Ref. 17). Such eddies were observed during the POLY-
MODE experiment and in other expeditions, but only occa-
sionally, creating the impression that they are relatively rare
formations. To shed light on this question it was necessary to
perform a special observational experiment with a tighter
network of AFSs.

Such an experiment was performed in the Mezopoligon
expedition of the Institute of Oceanography of the Academy
of Sciences of the USSR in April-June 1985 in the trade-
wind zone of the North Atlantic,!” where 76 AFSs with 215
flowmeters were deployed over an area 60 X 80 square miles,
and four hydrological surveys were made over a period of 35
days. As a result, both synoptic and mesoscale eddies with
diameters ranging from 30 to 50 miles, in which flow veloc-
ities reached 20-25 cm/s and which occasionally appeared
in zones of tangential velocity shear between neighboring
sometimes synoptic eddies of the same sign (apparently aris-
ing owing to the Helmholtz instability ), were observed. But
the main observation was a formation which was dubbed
Linza. This formation was traced for three months in eight
hydrological surveys, an additional meso-survey area con-
sisting of 16 AFSs, and numerous soundings. This was a
lenticular volume of anomalously warm and saline waterina
layer between the depths 800 and 1300 m.

In the plane Linza had an oval form with an average
diameter of about 30 km and a volume of the order of 10°
km?®. The well-mixed core of Linza, located in the layer from
960 to 1060 m, was feund to contain maximum, for this re-
gion of the ocean, anomalies of the temperature and salinity,
equal to 4.5 °C and 0.87%. The temperature distribution on
the zonal section through the center of Linza is presented in
Fig. 21. A region of high hydrostatic stability immediately

Distance, nautical miles

700 4

// ///411

T

TSRS WU U S T W N AU N TS N S N

72 1€ 16 18 20 22 24 28
June, 1985

FIG. 22. Vector hodograph of flows at a depth of 1000 m (according to
AFS data).

above the core was separated in the density distribution; be-
low this region lay a region of small vertical gradients and
above it lay a secondary “superstructure” of mixed waters,
which also had small vertical gradients. Six to seven qua-
siuniform layers separated by secondary pycnoclines can be
seen. With time the layers, separated from one another by
jumps of the density, through which the waters do not mix
readily, probably become increasingly more independent of
one another. Thus the aging of Linza is manifested as decom-
position into quasiautonomous layers. Based on thisit can be
conjectured that this Linza is quite old.

The characteristic feature of the density distribution in
Linza corresponds completely to anticyclonic eddy motion
of waters in it (measured with the help of AFBs), the veloc-
ity of which reached 29 cm/s at a depth of 1000 m (Fig. 22).
The background large-scale flow transported Linza to the
northwest with an average speed of about 2.4 km/day. One
can attempt to establish the origin of Linza based on its
(T,S) curve, i.e., a graph with the coordinates 7 and S on
which points corresponding to increasing depths are system-
atically plotted. These (T,S) curves are very different in dif-
ferent regions of the ocean. In Fig. 23 one can see that in the
layer 800-1300 m the ( 7',S) curve in the region of Linza has a
very sharp anomaly, making this curve look more like the
(7,S) curve for the Mediterranean Sea.'"* This also pertains
to the concentration of oxygen, nitrates, phosphorus, and
silicon, the pH, and the alkalinity measured in Linza. The
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FIG. 21. Temperature distribution in a section through the center of the Mezopoligon lens.
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FIG. 23. T, S-curve at the center of the lens. Station No. 1297 (20° to
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large distance of Linza from the region where it was engen-
dered to the west of the Strait of Gibraltar (about 2500 km)
together with the large temperature and salinity anomalies
in its core indicate that such eddies are highly stable and they
can exist in the ocean for many months and possibly years
and traverse distances of thousands of kilometers.

The water flowing out of the Mediterranean Sea is ap-
parently one of the main sources of lenticular formations in
the North Atlantic. However the mechanism of lens forma-
tion has not yet been established unequivocally. Itis possible
that lenses arise as a result of instability of a front of intrusive
waters analogously to the manner in which meanders of
stream flows form and are cut off. Because of their large
volume ( ~ 10° km?, i.e., of the order of the discharge from
the Mediterranean Sea through the Strait of Gibraltar over a
period of one month) it seems less likely that the lenses
formed as discrete portions of water flowing from the Medi-
terranean Sea under the action of variable wind and/or tides.
But lenses could form in the open ocean as a result of isopyc-
nic intrusion of anomalous waters formed on the oceanic
shelf.”'*

The discovery of Linza on the ‘“Mezopoligon™ once
again focused attention on earlier observations of lenses.
Lenses were apparently first observed in nature by Soviet
oceanographers in the Arctic Basin in the 1930s."'® Later
they were observed in all oceans, but the most detailed stud-
ies were performed in the North Atlantic, evidently because
of the large number of different scientific expeditions made
in this region of the oceans in the 1970s and 1980s. We shall
describe several of the most interesting results. Interest in
lenses increased significantly after a solitary baroclinic eddy
was observed and described in the southwestern part of the
Sargasso Sea during the POLYMODE experiment.''” The
lens was concentrated in a layer from 200 to 1400 m and had
a diameter of about 100 km. The rotational speed of the wa-
ter in it reached 20-30 cm/s at a depth of 500-600 m, and
neutrally buoyant floats deployed in its core,showed that it
drifted over a period of 30 days southwestward with a speed
of about 6 cm/sec. In addition, it turned out that the core
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consisted of water whose hydrophysical characteristics dif-
fered markedly from the surrounding waters of the Sargasso
Sea and which was similar to waters originating in the Medi-
terranean Sea. This result suggested that the Mediterranean
Seais a constant source of lenses for the North Atlantic. This
hypothesis was later confirmed by the results of more de-
tailed studies performed by L. Armi and W. Zenk.''® Based
on hydrological data, they observed a cluster of three lenses
in the region southwestward of the Strait of Gibraltar (the
northern part of the Canary Basin). These lenses had well-
mixed cores and were separated by distances of 250-500 km
from one another. They had diameters of about 100 km and
they were concentrated in a layer from 700 to 1500 m. The
speed of anticyclonic rotation in them reached 25-30 cm/s.
The depth of these lenses as well as the temperature
(11.65 °C, the salinity 36.2%), and the density (o, =27.69
g/cm’) of the mixed waters indicated that these eddies were
formed in the region of the Gulf of Cadiz at the outer edge of
the layer of waters intruding from the Mediterranean Sea.
The saline and warm waters (11-12°C, 36.3-36.6%,
0,~27.75-17.85 g/cm?), intruding from the Strait of Gi-
braltar, dropped to a depth of 500-1600 and at first moved
westward and then spread out primarily northward. In the
opinion of Armi and Zenk these waters are the source for the
formation of the lenses, which cover up to 8% of the area of
the Canary Basin.

In the seas of the Arctic Basin and in the north Arctic
Ocean one of the possible mechanisms of formation of lenses
is connected with the intrusion of warm saline waters from
the Pacific Ocean through the Bering Strait and from the
Atlantic through the Frama Strait (between Greenland and
Sptizbergen). Two expeditions in the Frama Strait discov-
ered three lenses with positive temperature and salinity
anomalies; these lenses were apparently generated as a result
of baroclinic instability of the polar front (T. Manly et
al.''®). Most of the lenses in the Arctic were discovered in
the Amerasia Basin. P. N. Belyakov and V. A. Volkov'*®
analyzed measurements of the flow velocities at the stations
“Severnyi polyus’ in the Chukot-Alaska sector of the Arctic
and recorded 350 local increases of the flow velocity at inter-
mediate levels. In many cases they were also able to observe
the eddy structure of the circulation. It turned out that the
saturation of the ocean with eddies (as with most of the
lenses already described) is especially high in the region of
high values of the vertical gradient of the water density at the
top of the main pycnocline. Results close to those described
above were obtained by J. Newton ef al.'*' and K. Hun-
kins'?* based on observations with three drifting ice stations
in the spring of 1972 in the Beaufort Sea. Measurements of
the temperature, salinity, and flow velocity made it possible
to record three anticyclonic eddies and one cyclonic eddy,
which had a diameter of 15-30 km, and which were concen-
trated in a layer 30-350 m, and had an orbital velocity of up
to 30 cm/s at a depth of about 150 m. Observations over a
longer period of time were performed at approximately the
same location from four ice stations in the period from April
1975 to April 1976.'*" As a result, a total of 128 lenses, 95 of
which were anticyclones, were recorded. Their movements
over the area of the sea were determined primarily by large-
scale geostrophic flows and their velocities were equal to
about 2 cm/s. T. Manly and K. Hunkins'** conjecture that
these eddies are formed as a result of baroclinic instability of
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a large-scale eastward flow along the edge of the shelf of the
northern coast of Alaska and carrying in its upper part water
originating in the Pacific Ocean.

The waters of the Red Sea in the Indian Ocean and oth-
er anomalous water masses of regional formation, penetrat-
ing into definite layers of the ocean through straits or from
shelves, should behave analogously. Because of the weak-
ness and intermittency of small-scale oceanic turbulence all
these waters can be regarded as poorly intermixing liquids,
whose breakup should engender in each region a mesoscale
spottiness which is specific to that region and which can be
important for a number of theoretical and practical prob-
lems. It is obvious that an extensive program of expeditions
opens up here.

We already pointed out in the introduction that the
quasigeostrophic approximation may not be sufficient to de-
scribe adequately mesoscale eddies. At the same time it is
well known that the quasisolenoidal approximation, which
takes into account terms of a higher order in K7 than does the
quasigeostrophic approximation, is sufficient. In the quasi-
solenoidal approximation the divergence of the velocity of
horizontal flow is small—of the order of (Ki)’>—compared
with the vertical component of the velocity relative to the
eddy, and the equation of the potential vorticity assumes the
form (3). To determine the relationship between the stream
function field and the pressure field we shall employ the
equation for the divergence of the horizontal velocity, in
which we retain only terms of order (Ki)?f2. As a result we
obtain the equation of balance for ¢

Ve + 20 (G )= g, (1)

ox Oy

which is an equation of the Monge-Ampere type well-known
in mathematics. In the geostrophic approximation the sec-
ond term on the left side is small. The equations of the quasi-
solenoidal approximation (3) and (21) describe slow (with
a typical time scale L /U) motions on synoptic scales and
mesoscales not only at middle and high latitudes but also in
the equatorial region, where the Coriolis parameter f be-
comes negligibly small (see Refs. 6, 124, and 127 for a more
detailed discussion).

10. CTD SCANNING

Aside from lenses in the ocean, an entire spectrum of
mesoscale eddies, whose vertical dimensions are many tens
and several hundreds of meters and which are concentrated
primarily in the main thermocline, is observed in the ocean.
These eddies transport water, but the contrasts between the
water in their central part (core) and the water mass sur-
rounding the eddy are not as large as in lenses. At the same
time, like in the case of lenses, the beta effect in them is weak
(owing to the small horizontal scales) and the geostrophic
equilibrium between the pressure gradient and the Coriolis
force can break down (so that only the quasisolenoidal ap-
proximation can be used to describe them).

An entire class of such eddies was discovered in 1986-
1987 with the help of CTD scanning,'?*'*’ i.e., continuous
lowerings and raisings of a CTD probe (C,T, and D are,
respectively, the electronic conductivity of sea water, the
temperature, and the depth) in a layer with depths ranging,
say, from O to 500-600 m from a vessel moving with a speed
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of, say, 6 knots. With the probe raised and lowered at a rate
of about 1-1.5 m/s the total scanning cycle is completed in
1.5-2 miles (0.2 miles if the scanned layer lies at a depth of
100 m). This increases the horizontal resolution by an order
of magnitude over the resolution achievable with the stan-
dard hydrological stations deployed every 10-20 miles, and
compared with the measurements performed with a towed
device at a fixed depth it gives a complete though not com-
pletely synchronous (x,z) section of the hydrophysical fields
of the ocean.

In Ref. 129 a Mark-111 CTD probe manufactured by the
Niel Brown Company was employed. The probe measured
the electrical conductivity of the water with an accuracy of
5% 10~* mS/cm, the temperature with an accuracy of
5% 10~ * °C, and the pressure with an accuracy of 0.5%, and
in addition the gauges were queried with a frequency of 31
s~ ', which gave a vertical resolution of several cm. The sa-
linity s, the density p, and the vertical velocity of the probe
were calculated from the CTD signals and isolines were plot-
ted on 7,5, p|,, and T, S|, graphs (the latter eliminate
oscillations of the T and S isolines caused by linear internal
waves: in such oscillations 5T and &s are proportional to 8p).

We shall present a number of results of CTD scanning,
obtained on the 13th cruise of the R/V Akademik Mstislav
Keldysh of the Academy of Sciences of the USSR in Jan-
uary-April 1987 in the Atlantic. These results were pub-
lished in a series of papers by A. S. Monin, R. V. Ozmidov,
and V. T. Paka."

In the zone of the Canary upwelling near the northwest-
ern coast of Africa the prevailing winds blowing along the
coastline generate drift flows which are deflected from the
coast by the Coriolis force and carry off the surface waters.
This results in a rise at their locations of deep colder and
fresher waters, which are separated from the surrounding
surface waters by a frontal zone approximately following the

FIG. 24. Canary upwelling. The temperature section through the
front.
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coastline. The differentials of the temperature and salinity
across the frontal region reach 1.3 °C and 0.33%, respective-
ly (V. 1. Voitov and V. M Zhurbas'*®). Data on the meso-
structure of this zone of upwelling have been obtained with
the help of CTD scanning. Figure 24 shows a section of the
temperature field through a front of upwelling along the par-
allel 21° N.L. and Fig. 25 shows a section along the coastline
in the upwelling waters. The most prominent feature of these
sections are sharp oscillations of isothermal surfaces, which
trace out “‘domes” of cold water and “‘wells” of warm water
with diameters ranging from 7-8 to 30~35 km, predominant-
ly at depths of 100-350 m, the total swings of the isothermals
reach 100 m and the slope reaches 0.1-0.3. The horizontal
temperature gradients in the “walls” of these “domes™ and
“wells” were of the order of 1 °C/km.

The section along the coastline (Fig. 25) also contained
“domes” and “wells,” and it was observed that their depth
increased from south to north. These nonuniformities of the
temperature field in both sections have a quasi-isotropic
character and are probably not related with topographical
effects, since they were observed primarily in the layer of the
upper thermocline. The isohalines in these sections had a
completely analogous form, i.e., “domes™ and “‘wells” of rel-
atively fresher and saline waters, respectively, could be seen
in them. The fact that the isothermal and isohaline surfaces
have approximately the same form the same signs of varia-
tions in the temperature and salinity (increase in the “wells”
and decrease in the “*domes™) mainly compensates density
variations through the front of upwelling, but on the section
along the coast they remained noticeable in the density field
also. The largest “well” had a diameter of about 6 km and a
depth of about 100 m (marked by an arrow in Fig. 25). The
density on its axis was (0.12-0.15)0, lower than in the sur-
rounding waters. The formation of such ‘“‘domes” and
“wells’ is apparently not connected with internal waves. In-
deed, the temperature and salinity fields in the sections
shown in Figs. 24 and 25 were recalculated using the density
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FIG. 25. Canary upwelling. Temperature section along the shore.
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ot as the vertical coordinate. The sharp oscillations of the
temperature and salinity remained almost unchanged.

These nonuniformities could be caused by the vertical
motions w, generated by the nonuniform and nonstationary
Ekman “pumping” in the field of the curl V X 7 of the tan-
gential wind stress on the ocean surface; see formula (5) in
Sec. 2. The hypothesis of forced convection is supported by
the asymmetry of the ascending and descending motions: the
ascending streams (“domes”) are wider and weaker than
the descending streams (*‘wells”). To generate such Ekman
pumping the wind-stress field must contain quite developed
mesoscale disturbances. They could be ‘““coherent struc-
tures” (i.e., least unstable large-scale disturbances), having
horizontal dimensions of the order of kilometers, in the at-
mospheric boundary layer.

An analogous mesostructure was observed in the Medi-
terranean Sea southward of the Golfe du Lion. The results of
sounding are presented in Fig. 26 in the form of a section in
the temperature field of the upper 490-m layer. During the
observations winter-spring convection, which is quite rare
during this season and which extended to depths of 2-2.5 km
(to the bottom), occurred; this convection destroyed the
mesostructure of the upper layer and resulted in the forma-
tion of mixed waters with a temperature of about 12.8 °C,
salinity of 38.45%, and nominal density of 29.11, situated on
the left side of the section. However behind the convection
front, across which the temperature differentials equaled
about 0.3 °C and the salinity differentials equaled about
0.05%, the mesostructure remained (the right side of the
section). It had the same shape of “domes,” *“wells,” and
“‘drops” of relatively cold and warm waters in the layer from
the surface to depths of 300-350 m.
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FIG. 26. Convection in the Mediterranean Sea.
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A well-resolved mesostructure was discovered in the
region of the underwater mountain Ampere, located approx-
imately 400 miles west of the Strait of Gibraltar and rising
above the surrounding bottom to a height of 2.5 km (the
summit lies at a depth of 65 m). On meridional sections west
of the summit the mesostructure in the layer 20-200 m in-
cluded alternation of relatively wide “domes” of cold and
fresher water and “‘wells” of warm and saline water. The
variations of the temperature and salinity did not compen-
sate one another, and analogous fluctuations were observed
in the density field (repeated sounding every 4.5 h gave the
same mesostructure). Measurements on AFSs revealed a
general flow from the northwest to the southeast with a
strong semidiurnal tidal component superposed on it. A ho-
dograph of the flow velocities showed that over a period of
about two days the flow revolved around the mountain four
times; in addition, the flow weakened to the northwest and
intensified to the southwest (the quasistationary general
flow was added to the nonstationary tidal flow). It is obvious
that the wake of the flow past the mountain should revolve
around the mountain in the same manner; this should intro-
duce a nonstationary periodic component into the usual me-
sostructure of the main thermocline.

The wake behind the mountain was observed in the
CTD section to the southwest of the mountain. The observa-
tions at depths of 30-80 m are presented in Fig. 27. One can
see in the temperature section of Fig. 27 that the wake is
manifested against the background of the irregular meso-
structure in the form of a cold *‘dome”” above a warm “well”
with almost vertical sharp walls. The **hyperbolic point™ se-
parating these disturbances was located at a depth of 65 m,
i.e., at the level of the summit; in Fig. 27 this point lies on the
axis of the wake. In the section of the salinity field the wake
had an analogous form with respect to the fresh water
“‘dome” above the saline “well,” *‘squeezed” between two
wider “domes.” The variations of the salinity and tempera-
ture did not compensate one another, and the wake was also
clearly manifested in the water-density field. In the section
of the nominal density field the wake had the form of a sharp
“*dome” of dense water above a “‘well” of moderate density,
separated by an isopycnal near o, = 26.585 and squeezed
between two wide “wells” of low-density waters.

This section shows clearly that the wake is formed as a
result of the rising of dense deep waters on the windward
slope of the mountain, which is compensated by sinking on
both sides of the wake. This sinking can apparently engender
two cylindrical or “roll” eddies whose horizontal axes are
quasiparallel to the wake; judging from Fig. 27, underneath
these eddies there are apparently eddies with the opposite
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FIG. 28. Equatorial mesostructure. Section of the salinity field.

rotation, possibly induced by the upper eddies—then these
induced eddies explain the “well” below the ‘“hyperbolic
point.” Recalculation of the temperature and salinity sec-
tions using o, as the vertical coordinate made it possible to
eliminate the effect of internal gravity waves and separate
some features of the mesostructure of the fields of the upper
layer. Such a section of the temperature field shows that the
mesostructure in the region of Mt. Ampere is not caused by
linear internal waves. Two wide “domes” of cold, fresher,
deep waters, separated by the warm and saline “wells,” as
well as finer details (owing to some “‘stretching” of the iso-
lines in the new frame of reference) can be seen on them. We
note that instead of the ““dome” of deep water lying above the
“hyperbolic point” in Fig. 27 between the warm and saline
“wells” the opposite, compensational picture was observed
in the coordinate o,. The “well,” however, did not corre-
spond completely to the wake, whose axis lay on the left
slope of the “‘well”; it is possible that this asymmetry is con-
nected with the nonstationary nature of the wake—clock-
wise rotation together with the tidal flow.

Since the wake, described above, behind the mountain
is obviously not formed by internal waves, but, apparently,
rotates, it seems that it can be approximately regarded as
resulting primarily from the transport of quasigeostropic
baroclinic potential vorticity above the mountain in the f-
plane approximation. Such dynamics, together with the su-
perposed tidal flow, greatly complicates the overall meso-
scale pattern of the flows. This pattern could have a
nonperiodic character and requires both additional field
data and mathematical and laboratory modeling for a more
detailed study.

FIG. 27. Water area around Mt. Ampere. Section of the temperature
field.
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The unique layered mesostructure of the upper layer of
the ocean was discovered in two other regions of the ocean.
In the first case we are talking about data obtained on the
meridional section through the equator in the Atlantic
Ocean along 35° W.L. from 2° N.L. t0 0° 26’ S.L. An interest-
ing object in the section was the equatorial subsurface cur-
rent, in the Atlantic called the Lomonosov current, which is
best separated in the salinity data. For this reason a section
in the salinity field was employed to analyze the mesostruc-
ture. In the section presented in Fig. 28 the salinity almost
everywhere decreases with depth—on the average from val-
ues of about 36.4% at the surface of the ocean to 34.7% at a

depth of 400 m. The section demonstrates an unusual pat-
tern of three haloclines: the top halocline lies at depths of
about 100-150 n, the middle halocline occurs only in the
right half of the section at depths of 200-230 m, and the
bottom halocline lies on the average at depths of 280-310 m
and its southern part is substantially expanded. The overall
pattern of the stretchings, compressions, and inclinations of
the isohalines is reminiscent of the bellows of an accordion
and suggests that internal waves played a significant role in
its formation. The section in the temperature field has an
analogous appearance, the only difference being that the Lo-
monosov current is not distinguished (in Fig. 28 it is bound-
ed by the 36.5% isohaline).

Figure 29 shows the salinity section in the vertical coor-
dinate o,. A new nonisopycnal mesostructure of the upper
layer appears in it. This is, first of all, the Lomonosov cur-
rent and, second, a very sharp salinity front at 1°4" N.L. with
a horizontal salinity differential from 35.5-35.9 to 36.1%.

In conclusion we shall present data obtained on sections
through the polar front in the North Atlantic during the
48th cruise of the R/V of the Academy of Sciences of the
USSR Akademik Kurchatovin March 1988 (N. N. Golenko
etal.””" ). The survey area was located in the Newfoundland
zone (see inset in Fig. 30). The front passed from the south-
west to the northeast, separating the warm and saline waters
of the North Atlantic current and the cold and slightly
fresher Labrador waters. One can see from Fig. 30 that the
front meanders strongly, forming warm meanders with axes
directed northward (“‘crests’ in the field of the surface tem-
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perature of the ocean ), and cold meanders (“troughs”). The
section in the temperature field was made through the warm
meander approximately along its axis. The front is inclined
from north to south with an angle of inclination of about
0.5°, and in addition its thickness and intensity decrease with
depth. The temperature differentials across the front are
partially compensated by opposite differentials of the salin-
ity, and the nominal density increases comparatively
smoothly from 26.5 at small depths in the southern waters to
27.5 at great depths in the northern waters; in addition, the
front, more precisely, the cold subfrontal waters, correspond
to the interval of nominal density 27.2-27.3 (see Fig. 30,
where the circles depict the isopycnics).

The slope of the frontal surface and the general arrange-
ment of the warm masses above the cold masses are the same
as in the case of atmospheric fronts. However the oceanic
front is distinguished by two features: first, the arrangement
of the cold waters themselves (temperatures of 3.5-4.5 °C)
with the lowest salinity (34.2-32.49%) directly beneath the
frontal zone and above the slightly warmer and saline waters
(5-6 °C, 34.6-34.9% ) and, second, the splitting of the fron-
tal zone along the vertical into quasiuniform layers 50-100 m
thick, separated by thin vertical interlayers with large verti-
cal temperature gradients, where the temperature either in-
creases or decreases with depth. Such microthermoclines are
indicated in Fig. 30 by arrows, oriented to the right when the
temperature in them decreases and to the left when the tem-
perature increases. In the latter case temperature intervals
occurred, the most significant of which were located at
depths of 260280 m.

The first feature is apparently connected with the iso-
pycnic intrusion of cold and dense (o, = 27.2-27.3) Labra-
dor surface waters into the mass of inflowing warm and sa-
line waters of the North-Atlantic current. The second
feature—splitting, on the average, of the inclined frontal
zone—indicates its unique instability, a tendency of the
warm waters to move northward in comparatively thick
quasiuniform and sometimes even temperature-inverted lay-
ers along thin quasiisopycnic interlayers. The stratification
also encompasses the subfrontal cold intrusion, seemingly
dividing it into separate portions; however, this impression
is weakened somewhat if the density is employed as the verti-
cal coordinate instead of the depth. These two features ap-
parently represent the same dynamical process of intrusion
of water masses into the ocean, which is accompanied by
formation of layered mesoscale structures with vertical sizes
of up to 100-150 m. In addition, instabilities and eddy struc-
tures can develop. The portions of intrusion of Labrador
waters, which in Fig. 30 form “drops” in the bottom half of
the subfrontal layer, could be such structures.

The data, presented in this section, on the mesoscale
nonuniformities in the ocean are the first results obtained
with the help of CTD scanning. Continuation of these stud-
ies in ocean expeditions could lead to new discoveries.
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