
spins,/} 2 = (Ao>2 + B2)/4,B fixes the nonsecular part of the
spin-spin interaction,

#„ = <B^SU + (OBSK + ASvSv + B (SWS« +
AG> = U>A — MB,

W> . / I B \i/>

Aco2 sin (2co^ sin q>)
^z o) -- ̂  -~- ~~~ — — ~~ '

2 sin <p

and a), is the amplitude of the microwave field.
As t->0 the intensities of all lines approach zero, since

the initial state of the radical pair is a singlet state. An inter-
esting result is obtained for comparatively small co,t

). In this case

Aco*

m
All lines have the same intensity. Here the first factor is the
probability that the radical pair passes into the triplet state
and o>,ns the angle of nutation. This result could have been
expected, since the microwave field acts only on the triplet
states of the radical pair.

For reaction centers with different orientation the
quantities A<u, B, and hence R also are different. For this
reason for r> <A/? 2 >~ 1 / 2 we can set (cos(2Rt)) ~0. Then

and
y'j^OD Acoa sin (2<0it cos (p)

~ * 16#a 2 cos 9

The intensities of all lines depend on a>l and the time, and
two lines ~/ while the two other lines ~J'.

Norris, Turnauer, and others have proposed an expla-
nation for the fact that the intensities of the lines in the EPR
spectrum of a reaction center are equal. Their explanation
depends on the populations of the levels of the radical pair
and the scheme of transitions between the levels. In the re-
port it is shown that the approach in the linear-response lim-
it is justified, if there is enough time for the coherence of the
states of the radical pair to be destroyed owing to the spread
in the values of R. The necessary condition for this is

I thank D. Shtelik and J. Norris for a discussion of this
problem.

The book: K. M. Salikhov, Yu. N. Molin, R. Z. Sag-
deev, and A. L. Buchachenko, Spin Polarization and Mag-
netic Effects in Radical Reactions, Elsevier, Amsterdam
1984 deals with material relevant to the subject of this re-
port.

I. S. Aranson, K. A. Gorshkov, A. S. Lomov, and M. I.
Rabinovich. Nonlinear dynamics of the localized states of
multidimensional fields. Well-known examples of the two-
and three-dimensional localized states (particle-like struc-
tures) of nonlinear fields or media are vortices in the atmo-
sphere, rings in the ocean, different types of defects in crys-
tals and regular wave lattices, localized waves of charge
density, plasma streams in controlled fusion installations,
localized spirals in liquid crystals, etc. It is possible that ele-
mentary particles correspond to localized "singularity-free"
solutions of nonlinear multidimensional field equations.

The spatial characteristics of localized states are uni-
versal. They are independent of the physical nature of the
field (medium) under study, and they also do not depend on
whether we are talking about dissipative nonequilibrium
media (for example, convective flows), Hamiltonian fields
("particles"), or statistical systems (crystalline lattices).
This universality is explained by the fact that in all these
situations the localized states result from spontaneous
breaking of the symmetry of the system and for this reason
they satisfy general topological laws.

The physics of nonequilibrium media is concerned pri-
marily with the dynamics of localized states (charge trans-
fer, interaction of "particles" in field theory, interaction of
vortices in turbulence, etc.). The main problem here is to
construct basic models of the theory such that stable local-
ized states of multidimensional fields, for example, stable
three-dimensional solitons, would exist. It is well known,
however, that the traditional models give us examples only
of unstable stationary "particles" (the one-dimensional case
is a lucky exception). Models in which stable multidimen-
sional "particles" exist were recently proposed by Rabino-

vich et al.' This report is concerned with a discussion of these
models and the construction, based on them, of a theory of
interaction of localized states, encompassing the formation
of lattices, "planetary systems," the creation of dynamical
space-time chaos, etc.

In the analysis of stationary localized states it is natural
to study simultaneously the equations describing dissipative
nonequilibrium media and Hamiltonian fields. It is conven-
ient to do this for the example of potential fields, whose sta-
tionary states satisfy the equation 8F/8u = 0, where u is a
physical variable and for a Hamiltonian field F is the La-
grangian (the potential energy, etc.) and for a dissipative
nonequilibrium medium Fis the free energy. A stable local-
ized structure can be found by setting to zero the first vari-
ation, 8F = 0, and requiring the second variation to be posi-
tive, <52/*>0 (this corresponds to a minimum of the
potential). The dynamic equations have the following form

— &F f "> ( l )
dt 6u

for a dissipative medium and

dfl a«
(2)

for a Hamiltonian field. The stationary structures of the
fields (1) and (2) are obviously identical. The number of
such structures can be arbitrarily large (multistability). On
the basis of the gradient model (1) the stationary states are
established spontaneously in the limit t -» oo as a result of the
evolution of the system. In the case of the Hamiltonian mod-
el (2), however, they must be guessed outright (which is
unlikely) or based on the system (1)_.
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To expand the right sides of Eq. (1) or (2) we shall
expand the energy density

in powers of the field and the gradient of the field near the
point where the trivial uniform state is unstable:

"̂i = au? -j- p«s 4- Y«* + £ (Vu)2 + £ (V2tf)2 + .. . (3)

As a result we obtain an equation which can be naturally
termed the generalized Swift-Hohenberg equation (the coef-
ficients are omitted)

Direct computer experiments show that in this model there
do indeed exist stable localized states with different topology
(they correspond to different local minima of F). These are a
"sphere," "torus," and "baseball"—a structure similar to
the figure on a tennis ball (Fig. 1). The fundamental differ-
ence between these "particles" and the traditional solitons is
the character of the decay of the field at the periphery of the
structure—in our case the field decays expqnentially and
oscillates. Because of this, such structures can form extreme-
ly diverse stable bound states—chains, lattices, planetary
systems with a discrete (infinite) set of orbits, etc. (this is
confirmed by computer experiments).

All these stationary states also exist and are stable in the
Hamiltonian analog of the model (4)

In the gradient model (4) all limiting (in the limit t-> oo)
states of the field (medium) are static. In the system (5),
however, mutual rotation of the "particles," formation of
(periodically, quasiperiodically, and chaotically) oscillat-
ing clusters, propagation of waves in lattices, etc. are possi-
ble. Assuming that the interaction of the particles is weak an
asymptotic theory can be constructed to describe their dy-
namics (the small parameter here is the ratio of the field

onthe "tail" of one particle to the field at the maximum of
the other particles).

For example, for the coordinates of the centers of mass
of the interacting spheres we obtain a system of equations
similar to the equations of Newtonian mechanics:

dt
dv.- exp (ik | roi — r0/1

l ro i - ro / l
(* = *'+ Of),

(6)

which differs from the classical equations only by the char-
acter of the potential. This system can be employed to de-
scribe the mutual rotations (periodic and quasiperiodic) of
localized states, observed in direct computer experiments
with Eq. (5) , as well as the formation of diverse bound
states.

It is remarkable that on the basis of models of the type
(5) it is possible to understand the mechanisms of creation
of spatial-temporal disorder in purely dynamical models of a
field. One of the main such mechanisms is the appearance of
localized states and their random wandering in space (as a
result of interaction with other "particles" or regular fields).
Thus under certain initial conditions the dynamics of the
system

•5- + (*S + V2)2 u + «(1 —pa + a2) + TO = 0,

+ v --= 0 (7)

can be regarded as the interaction of one "particle" with a
periodically nonuniform field v. In particular, for a two-di-
mensional space Eq. (6) assumes the form

at*
= {X, Y}, (8)

where X and Y are the coordinates of the center of mass of
the localized state. It is well-known2 that systems such as
(8) describe the random walk of a particle in iheX, Y space.
Such random walks have also been observed in direct experi-
ments with the system (7) (Fig. 2).

An analysis similar to that presented here for real scalar
fields can also be performed for complex fields. In this case,
analogously to Eq. (3), we have

^1 = «|u|t + P I « l * + -yl«| '+|(*54.V«)tt |»+ ... (9)

FIG. 1.
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(here the fact that the energy is independent of the phase of
the field — gauge in variance — is taken into account). Corre-
spondingly, the equation has the form

(10)

The case K = 0 corresponds to a gradient system (dissipative
system) and the case v = 0 corresponds to a Hamiltonian
system.

The model (10) has made it possible to observe local-
ized two- and three-dimensional spirals ( in the 3D case the
spirals are toroidal whorls), to study their bound states, and
to describe random walks.

Unsolved problems of particular interest include, first

of all, the study of strong interactions of "particles," in
which some structures are transformed into other struc-
tures, some structures are annihilated, etc. With the help of
models similar to those studied above it is apparently possi-
ble to transfer systematically from dynamical systems to the
systems of statistical mechanics.

'A. S. Lomov and M. I. Rabinovich, Pis'ma Zh. Eksp. Teor. Fiz. 48, 598
(1988) [JETPLett.48,648 (1988)];K. A.Gorshkov, A.S.Lomov,and
M. I. Rabinovich, Phys. Lett. A 137, 250 (1989); I. S. Aranson, K. A.
Gorshkov, and M. I. Rabinovich, Phys. Rev. Lett. (1990).

2M. Heron and C. Heiles, Astron. J. 60,73 (1964). A. J. Liehtenberg and
M. A. Lieberman, Regular and Stochastic Motion Springer Verlag, Ber-
lin, 1983 [Russ. transl., Mir, M., 1984].

Translated by M. E. Alferieff
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