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The authors review localization and wave propagation in randomly layered media. They
demonstrate that in addition to discrete spectrum waves a disordered open system can support
quasihomogeneous waves (metastable states). These quasihomogeneous waves are due to the
interference of multiply scattered fields and their existence leads to the appearance of a
fluctuation waveguide that can channel energy along the layers for distances exponentially
greater than the layer thickness. The authors also examine in detail the statistical characteristics
of the field produced in a randomly layered medium by a point source.

1.INTRODUCTION

A consistent treatment of interference by multiply scat-
tered fields is an important current problem in the theory of
wave propagation in random media and in quantum theory
of disordered solids. The concept of localization arose natu-
rally in the course of research into this problem, as localiza-
tion phenomena reflect the most general properties of disor-
dered systems, arising from the wave nature of scattered
fields and the random character of scattering media. Over
thirty years ago, P. Anderson published his seminal paper'
where he argued that all states of a given disordered three-
dimensional system will be localized if the system is suffi-
ciently random. In the subsequent decades the concept of
localization became fundamental in the physics of disor-
dered solids, with the appearance of such concepts as the
Anderson dielectric, the Anderson transition, scaling theory
of localization, and weak localization that now occupy a
place of pride in numerous monographs,”™* textbooks,™*
and physics encyclopedias.”*

In recent years the localization of various types of
waves and excitations in media that are not spatially periodic
or homogeneous has attracted a great deal of interest. Much
research has been devoted to the localization of acoustic
waves in continuous media,” ' electromagnetic waves in
solids and plasmas,'*'® gravitational waves in shallow water
channels with a rough bottom,'”"” third and fourth sounds
in a helium film on a randomly inhomogeneous sub-
strate, 22! surface waves in metals,>*">* and so forth. Studies
of the transmission of short, irregular pulses through homo-
geneous media stimulated much research into the localiza-
tion aspects of the solutions of the Dirac-type equations®**7
that describe the properties of single-particle excitations in
superconductors and semiconductors,’®® as well as wave
transmission through a multilayer structure typical of x-ray
mirrors.*°

In the scientific literature devoted to wave propagation
the term “‘localization” is of more recent origin than in the
theory of disordered solids and has not yet gained the same
acceptance, even though the first studies of localization phe-
nomena in radiophysics appeared as early as the 1950’s.
Those original studies were motivated by the desire to deter-
mine and extend the limits of applicability of the radiation
transfer equation. In the late 1950s, Gertsenshtein and Vasi-
’ev3'3? demonstrated for the first time that the average
transmission coefficient for a plane wave propagating
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through a one-dimensional disordered layer decays expon-
entially with layer thickness. In the years that followed, re-
search into the transmission of waves through a one-dimen-
sional random medium continued and intensified, as
evidenced by several monographs on this topic,*** but the
concept of localization did not come into use in this field
until very recently. This was probably due to the fact that the
main postulates of localization theory had been formulated
and proven for closed systems with self-conjugate boundary
conditions (see, for example, Ref. 4). In radiophysics and
acoustical physics, on the other hand, one usually en-
counters open systems with non-self-conjugate boundary
conditions, such as radiation fields at infinity. This review
will address the spectral properties of such systems, as well
as localization and associated phenomena that arise when
waves propagate in random media whose parameters depend
on a single coordinate (see also Refs. 36, 37).

Layered ‘‘one-dimensional’ structures are frequently
employed in optics, radiophysics, and acoustics as models of
a propagation medium.*® In particular, a theoretical under-
standing of these structures is necessary for the description
of wave propagation in naturally occurring media (atmo-
sphere, ionosphere, the ocean) within the framework of the
two-region model.***® In these problems the spatial spec-
trum of the refraction index # (R) or the permittivity £(R)
can be separated into two statistically independent regions,
whose effects can be treated separately and, to some extent,
independently. One of the two regions, characterized by tur-
bulence and a small length scale, can be treated within the
Markov process approximation as long as the inhomogene-
ities are not too large.** The other region, characterized by a
large length scale, is usually strongly anisotropic (because of
the boundary interface), making it possibie in a number of
cases to neglect its variation in the horizontal x—y plane and
describe it approximately as a function of a single coordinate
z. In this approach solving the one-dimensional problem be-
comes an essential intermediate step in the calculation of the
real spatial dependence £(R).

We shall proceed from the scalar Helmholtz equation

AuteR ZLu=0, (L)
[
in which the permittivity ¢ is of the form
e(R) =g, + 8e(2), R= (o, 2); (1.2)
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where &£(z) is a random function of coordinate z and has
zero average value. Defining

©?
& ?.; = EO!

Fourier-transforming the field in terms of the coordinate p:
u (R) = (2n) | eei(x, 2) dx,
and taking

Ey—w=E, —E%8 —0@), 7,9 =00,

Q
we arrive at the one-dimensional Schrodinger equation

— V() =Ly (1.3)

When v(z) and consequently £(z) are spatially homo-
geneous on average and exhibit decreasing correlation over
large distances, the properties this equation have already
been extensively studied, making it possible to employ the
full range of results obtained in the theory of disordered sol-
ids (see, for example, Ref. 4). The first of these results is the
self-averaging of certain extrinsic physical quantities (den-
sity of states, free energy density, damping coefficient of the
transmissivity of a one-dimensionally disordered random
layer, etc.). The fundamental property of self-averaging
quantities is that their values in a particular realization of an
infinite system will coincide with their mean values system
with unity probability. This endows the calculated mean val-
ues with the physical meaning of real observables.

The reliable identification of self-averaging quantities
with their mean values occurs in the macroscopic limit
V— «. Every self-averaging quantity f,, will have a charac-
teristic volume ¥ 'in some parameter space, beyond which
the distribution of f,, will become Gaussian with a mean
value (f) that is independent of ¥ and a dispersion
{f3) — {fv)>~V,./V.Forsystems smaller than ¥, (but still
significantly larger than microscopic), on the other hand,
the f,, becomes a random quantity dependent on the particu-
lar realization of the system. In this regime the system is
considered mesoscopic and the fluctuations of f,- are known
as mesoscopic fluctuations.*'**

Usually in the theory of wave propagation in random
media we are faced with quantities that are not self-averag-
ing. For these quantities the system is mesoscopic regardless
of volume and the mean values provide no information about
agiven realization. In order toendow these mean values with
some physical meaning and facilitate comparisons with ex-
periments (that are usually performed in a concrete realiza-
tion), both the experiment and analysis of data require spe-
cialized methods. One of these methods involves the
measurement of some observable over a finite time interval
and the comparison of the time-averaged value with the
mean value calculated over the ensemble of realizations. In
real-world radiophysical measurements this procedure
comes naturally, as the required variation of the parameters
is accomplished by the time evolution of a real medium (for
example, the refraction index of the atmosphere [45] or the
surface roughness of the sea.*

Another method of analyzing experimental data can be
employed when the measured result is a function of some
additional parameter (frequency, transmitter and receiver
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design, etc.). In this case one can compare the ensemble
mean value of the observable with the value obtained by
averaging over one or more parameters. The averaging must
be performed over a region that is large compared to the
appropriate correlation radius, and yet sufficiently small for
the ensemble mean not to vary.*’** For instance, in the
study of surface roughness in solids by means of light scatter-
ing, the averaging parameter is the aperture of the beam, i.e.,
the area of the illuminated region. If this area is sufficiently
large, the mean scattering indicatrix can be obtained from a
single sample.*"™?

Still, there exist physical quantities f;- whose relative
fluctuations increase with the volume of the system, render-
ing the above-described methods inapplicable. The mean
values (f,-) of these quantities differ strongly from the val-
ues measured in typical realizations since they are dominat-
ed by improbable representative realizations. As a conse-
quence the mean values (f;-) contain little physical
information. In this case additional information on the be-
havior of the random quantity f;- in typical (most probable)
realizations can be obtained by investigating the dependence
of f,- on other self-averaging quantities. Indeed, if f,- can be
expressed in terms of some self-averaging quantity 3, and
the volume f,- = f(¥,,¥), then in the limit ¥ - «, ¥, tends
to some non-random limit

v = i vy,

Thus, as long as Vis large, the function f(y, V) #f(¥,, V)
describes (at least qualitatively) the behavior of f. in typical
realizations. We shall apply this method below in the analy-
sis of the wave reflection coefficient by a disordered layer
and the transmitted wave intensity (Sec. 2), as well as to the
distribution of energy flux from a point source in a randomly
layered medium (Sec. 4).

Consider the solution ¥(z) of equation (1.3) that satis-
fies the current-free (self-conjugate) boundary condition,
for example at the z = 0 interface:

¥(0) +ay’ (0) =0, Ima=0. (1.4)

The reflection coefficient r_ for a wave with energy £ =k °
incident on such an interface from the right has the form

po—thazl (1.5)
ika -+ 1

and corresponds to total reflection, |r_| = 1. The solution

can be chosen as real and parametrized by

Y (2) = efsing, ' (2) = keScos . (1.6)

In the case when v(z) is spatially homogeneous on average
and exhibits decaying correlation with distance, as z— o the
ratio £(z)/z tends with unity probability to a non-random
limit. In other words, the ratio £(z) /z becomes a self-averag-
ing quantity:

(L7

2 NS TR
hm —L = lim L >0,
‘ Rl N\ 2 7

17— 2

Consequently, it is this ratio that is hereafter taken as the
quantity ¥(z) (with the coordinate z acting as the volume):

v =22

2
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In an infinite disordered system, the limiting value
(1.7) of ¥(2) isrelated to the localization length /(k *) of the
state with energy & * by the simple expression

lim y() = ——

J2l-s00 21 (k%) ° (1.8)

' The state itself is exponentially localized in the vicinity of
some localization center. In the language of propagation the-
ory this means that, for example, if a waveguide consists of
two ideal reflecting planes at z = O and z = L, whenever L is
sufficiently large the random stratification of the permittivi-
ty will lead to a radical change in the spatial distributions of
the field ¢, (2) of the modes along the transverse sections of
the waveguide. In contrast to the one-dimensional case,
where this field undergoes regular oscillations
[¢, ~sin(n7z/L), n being the mode index], in an irregular
waveguide the envelopes of the normal waves decay expon-
entially on both sides of the random localization centers
2|, D+ ¥, (@) ~exp] — (z~2,)/1,].

In the limiting case, when the correlation radius r, of
the potential v(z) is small compared to the wavelength

re<<k, (1.9)
the potential can be treated as 8-correlated:

B@) ={v@v(0))~2D8(3), D~ B(Q)r, (1.10)
and the localization length becomes

1) ~ 2, p>p* (1.11)
If, in addition, the inequality

re<€ D™, (1.12)
is satisfied, then whenever

Bl (1.13)

the potential v(z) becomes Gaussian. The localization
length behaves as follows:

1~ D KE<IY,
~D™* |E|<D™

z%IEI‘”’, D —E<LT, (1.14)
By applying the standard method of averaging over rap-
idly changing variables,*** in the high energy regime

E=Rr> D" (1.15)

one recovers the closed Fokker-Planck equation for the
probability density p(y,z) of the quantity ¥(z), which turns
out to have a Gaussian distribution with the mean value
(1.8) and a dispersion inversely proportional to the “vol-
ume” z. In other words, 7(z) behaves like a typical self-
averaging quantity in the limit of an infinitely large volume.
The mean values of quantities that have the form exp(a¢)
behave as follows:

(e8y = (e=) = exp [“(“T“”i] . (1.16)

i

Clearly, when ac{ — 2,0] the mean value (exp(af)) grows
exponentially despite the exponential decay of the quantity
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exp(aé) in all realizations (i.e., with unity probability).
This behavior is typical of exponential quantities, indicating
that the mean value is dominated by improbable representa-
tive realizations rather than by typical ones. The experimen-
tal observation of this mean value requires an exponentially
extensive ensemble of realizations. Only then will the mean
value contain any physical information. Quantities of the
form exp(af) fluctuate strongly: their relative fluctuations
are proportional to [exp(a®z/41)-1]'? and grow exponen-
tially except for the trivial @ = 0 case.

Some consequences of the exponential growth (1.7) are
well-known in statistical radiophysics. For example, it is re-
sponsible for the phenomenon of the stochastic parametric
resonance (see Refs. 34, 35). Indeed, the formulae (1.21) in
Chap. 6 of the Klyatskin monograph™ indicate that the
mean values of the quadratic combinations of solutions to
equation (1.3) grow exponentially with the increment that
exactly corresponds to formulae (1.11) and (1.16) with
a = 2. Moreover the formulae of Ref. 34 were derived pre-
cisely in the regime (1.12).

All the above-described results retain their validity
when equation (1.3) is derived from the Helmholtz equation
for a three-dimensional randomly layered medium. In this
case the coefficient D in formulae (1.10)-(1.12) is of the
order of magnitude

D~X;‘rc(2—e)2, (1.17)

o
where A, is the wavelength in the fluctuation-free medium
divided by 27, and o is the dispersion of the permittivity
fluctuations 8e(z). In the small fluctuation regime, where
o, L&, the potential can be replaced by Gaussian white
noise as long as r. €A, The region of high energies (short
wavelengths) is bounded by the inequality
-1/3 G, =23

(— , h=£FkL

o

rC

x<x0(%) (1.18)

In the one-dimensional Helmholtz equation the spec-
tral parameter appears in the potential v(z) = — k28e(z)/
£, and we can identify A with A, (k with E /%) in the formu-
lae (1.17), (1.18). Consequently, in the long wavelength
limit A — o (k- 0) the sufficient conditions for replacing the
potential by Gaussian white noise and taking the energy k >
to be high are satisfied automatically. The expression (1.11)
for the localization length then becomes

L) = —2- (-"i)z .

Kro \ & |

Thus we find that in the infinitely long wavelength limit the
states are delocalized (the random function v(z) drops out
of the dynamical equation). Many researchers who investi-
gated similar continuous'’**** or discrete®>*® models have
obtained this result on the basis of other arguments or by
direct computation.

2. WAVE PROPAGATION INA RANDOMLAYER

First, let us recall the well-known results for the one-
dimensional scattering problem for equation (1.3), where a
unity amplitude monochromatic wave with wavevector & is
incident from the right on a disordered segment {0,L] (see
Refs. 4, 34 for details). We shall always consider a sufficient-
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ly long segment with L>/(k*). The transmissivity of the
disordered segment (that is, the squared modulus of the
transmission coefficient) can be written in the form":’

(L) =1—|rL) P =4@4 D 4 501 (o)

where the functions &, (z) and &, (z) are determined by
equations (1.6) and the boundary conditions

¢c (0) =%, 95 (0) =0, E,s=0.

Since in every realization £(z) undergoes mostly a linear
increase (1.7), (1.8), the transmissivity of a typical realiza-
tion falls exponentially with a damping rate corresponding
to the inverse of the localization length:

—L-tIn|{(L) [P ~1", L>I, (2.2)

while the square of the modulus of the reflection coefficient
in a typical realization is close to unity.

It appears reasonable that the average transmissivity of
the segment should also fall exponentially with its length L.
In this particular problem this is indeed the case, even
though a decrease in a typical realization need not imply a
decrease in the average value, as noted in Sec. 1. The average
transmissivity damping rate ¥, does exist™®

yr=—Hm L In{{ (L) |*)
Lo

and does not exceed the decrement in the transmission in a
realization y:

<y =101

(this is physically obvious, since untypical realizations are
improbable and the transmissivity has an upper bound
[t ]°<1). Inthe simplest case of equation (1.3) with potential
(1.10) in the semiclassical regime (1.5), the average trans-
missivity is™

5/2 ~3/2
PP L =
WPy~ (1) exp< 41), (2.3)
and hence”
l —

It is the exponentially improbable realizations with
&.. (L) =0 that contribute to the average transmissivity, be-
cause in these realizations the transmissivity is nearly total
[t(L)]*=1, i.e., they are the representative realizations for
(e ?).

Now suppose that an ideal point source radiating at fre-
quency o is placed at the point z, inside the disordered seg-
ment [0,L] that has an ideal reflecting boundary (r_ = 1)
at z = 0. The field of this point source coincides with the
Green’s function g(z,z,;E) of equation (1.3):

(E-{—j—;-—v(z))g(z, 2p, E) =8(z—2) ,

This field can be expressed in terms of the functions £ (z) and
@(z) of equation (1.6). The radiative flux density j is given
by

j=21Im(g'g) = —rsin® 9 a) -exp—2 (L) —E @)

(2.5)
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In the simplest case with z, = 0,¢, (0) = 7/2,£,(0) =0,
the expression for flux density simplifies:

. 2 =i (L)
This quantity is also of the exp (a£) form with the critical, in
the sense of (1.6), value of @:a = — 2. In other words, in a
typical realization with

_ Lt
y(L) = T

the flux density is exponentially small, j~exp( — L /),
whereas the average flux density is dominated by improbable
realizations with (L) =~ — (2/) ' and equals 2/E'/2.

Even though the average transmissivity falls exponen-
tially with the length of the disordered segment L, other
physical quantities that depend on the integral of transmissi-
vity over the entire spectrum can have an entirely different
dependence on L. An example of such a quantity is the trans-
missivity 7 of the segment for a wave packet with an enve-
lope p(k)

&‘:jlt(L, &) |2 p (k) dk.

If, for example

P (k) = (2n) ™ sech? i——ni ,

then as long as the following inequalities are satisfied

1/3 —
NS

(nDL)llﬂ

OL*>n>L17, 1—{->[ N >
0

(DL)M2

the transmissivity is given by

oy TRVE g e 2k 3 DL“/“]
gy = —| exp|— ——|[—
e 5]

Consequently .7~ exhibits a much slower decrease with L
than the transmissivity (2.3) for a monochromatic wave.*

As we mentioned earlier, the average transmissivity
(2.3) is dominated by the improbable, nearly totally trans-
parent realizations. In order to understand the physical
mechanisms responsible for these realizations, as well as the
properties of the corresponding scattering states, we must
discuss the phenomenon of resonant transmission.

Let R be the reflection coefficient of the disordered seg-
ment. We will define the segment to be resonantly transpar-
entif | — |R |isoftheorder unity (ratherthanexp( — L //),
asin a typical realization). The case of R = O corresponds to
total transmission. The real and imaginary parts, — A and
¢, of the logarithm of the reflection coefficient [R

=exp( — A + ig)] obey the following system of equations

A =9(£-)shA -sing,
(2.7)
¢ =2k —-U(TZ)(I 4+ chA - cos¢)

with the initial condition A(0) = + . Accordingto (2.2),
in a typical realization we have?

A(L) ~ eLh,

Let us divide the disordered segment into two half-seg-
ments, for example [0,2,1 and [z,,L1, and define the reflec-
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tion coefficients of the first half-segment as r,(r_) for a
wave incident from the left (right). The reflections coeffi-
cients for the second half-segment will be defined as r . (»,).
Then the reflection coefficient from the entire disordered
segment for a wave incident from théright (R, ) becomes*®

L~ (rir)
R, =r (2.8)
I —ryr
(The coefficient R _ for a wave incident from the left is ob-

tained by interchanging the indices — — — + and 1 « —=2).

Now let us introduce the moduli p, =exp(— A, )
and phases ¢, of the reflection coefficients r,
=p, exp(ig, ). Wefind -

p_ — ppexpli(o. 5 )]
I —p_p, exnfi (O, o))

(R, |= (2.9)

In a typical realization of the potential, p , = 1 for both half-
segments. If, moreover, ¢ . + ¢ 5%2n, then the numera-
tor and denominator of (2.9) coincide with exponential

accuracy and |R, |=1. If, on the other hand,
¢, +¢d_ =2mwn, then
A —A
|R.|~ ’A+Al. (2.10)

The quantities A, and A _ are both exponentially small
with a probability close to unity. With that same probability
one of them is exponentially larger than the other and once
again |R , | = 1. Finally, if the realization on one of the two
half-segments is improbable, with 1 — |p| ~ 1, it still follows
from (2.9) and (2.8) that |R, |=1.

There are only two p0551ble exceptions to this result.
The first corresponds to the typical case of p , =~ 1, but with
an exponential coincidence of the quantities A , , such that
they are of the same order. The second exception corre-
sponds to the case when both half-segments are resonantly
transparent, i.e., bothmoduli p | are simultaneously not ex-
ponentially close to unity. Both these exceptions lead to res-
onant transmission: 1 — |R | |~ 1. The two mechanisms for
the creation of a resonantly transparent realization are dis-
tinguishable only for a particular choice of z,, since in the
case of the second mechanism it suffices to shift z, slightly
and the realization (evidently still resonantly transparent)
will be described by the first mechanism.

In the case of total transmission R , = 0, the scattering
states within the segment are clearly locallzed (they are still
not quadratically integrable over the entire z-axis because of
the oscillatory tails). This follows from the matching of the
boundary conditions with only the incident wave on one side
of the segment and only the transmitted wave on the other.
As a result, inside the segment the square of the modulus of
this state near each of the boundaries is the sum of the
squares of the moduli of two solutions of the same equation
(1.3). These solutions satisfy boundary conditions of the
type (1.4) and hence grow exponentially as one moves into
the segment (see (1.7), (1.8)).

In their pioneering paper,®' Lifshits and Kirpichenkov
examined resonant transmission through a segment in which
the potential consisted of a sequence of §-function wells on a
constant repulsive (positive) potential background. They
demonstrated that the resonant states in this system were
localized and classified the resonant realizations. These in-
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cluded both the first (a segment with a single potential well)
and the second (a sequential connection of several such seg-
ments) mechanisms discussed above. It was shown subse-
quently® that the transmission probability densities in the
case of one or two wells exhibit integrable singularities at the
point |t |* = 1, corresponding to total transmission.

Let us now qualitatively describe the dependence of in-
tensity /(z) = |¢(z)|" of a wave propagating through a ran-
dom segment [0,L] as a function of coordinate z. The inten-

sity is related to the reflection coefficient r (2)
characterizing the segment [0,z] by the expression™
1(.7.)_1(0)“—1&'~ (2.11)

—|r_{ap

First consider the case when the modulus of the reflec-
tion coefficient forz>» / follows the typicaldependence (2.2):

1 —|r_@|~e=".

Then the intensity 7(z) becomes a quickly oscillating (on the
scale of order & ') function of z whose envelope grows ex-
ponentially from I(0) ~exp( — L /!) toavalue of order uni-
ty in the vicinity of the right-hand boundary at z =1L
(dashed line in Fig. 1). At intermediate points in the [0,L]
interval and exactly at the right-hand boundary the intensity
can be considerably smaller than the exit intensity because of
oscillations. This happens whenever the phase of the reflec-
tion coeflicient at a given point z is close to (2n + 1),
meaning that the incident and reflected waves at z add in
antiphase. This leveling of intensity at the “‘entry” point z
and the exit point z = 0 is not due to intensity enhancement
at the exit, but rather to the destructive interference at the
“entry” (solid line in Fig. 1).

Fluctuations in the modulus of the reflection coefficient
alter the above-described physical picture. It is convenient to
classify the modulus fluctuations into two types. The first
type of fluctuation renders the segment [0,z] significantly
less transparent than in a typical realization

1 —jr @ p<<Cet,

The existence of such a fluctuation in the vicinity of
some point z leads to a sharp increase in the intensity enve-
lope by a factor of exp( — z/1)/(1 — |r (z)|)*. Asaresult
the intensity at the point z can even exceed the exit intensity
(dash-dotted line in Fig. 1). The second type of fluctuation
renders the modulus of the reflection coefficient small in the

I(z) }
n
| :
1
AT
G LA !
i
7 z’ L z

FIG. 1. Schematic plot of intensity as a function of coordinate z for a wave
transmitted through a nonresonant realization of a randomly stratified
layer.
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I(z) 1 n

FIG. 2. Schematic plot of intensity as a function of coordinate z for a wave
in a resonant realization. The dashed curve is the intensity envelope; the
dash-dotted curve is the intensity peak caused by a fluctuation in
lr—(2)].

vicinity of some point z. More precisely, the difference
(1 —|r |) becomes of order unity (rather than exponen-
tially small). Then the intensity envelope at this point will be
of the same order of magnitude as the exit intensity 7(0). If
this point z is located within a localization length from the
entry point,” (L — z) S/, one obtains resonant transmis-
sion: the intensities at the entry and exit points not only be-
come of the same order of magnitude, but also match the
intensity of the incident wave (Fig. 2). As a result
I(0) ~I(L)~1, whereas at intermediate points because of
(2.11) the intensity is exponentially large even if » (z) be-
haves in a typical fashion. Near points corresponding to fluc-
tuations of the first type the intensity becomes larger still.
Such a behavior of intensity in a given realization differs
markedly from the behavior of the intensity moments de-
scribed in Ref. 34 (Fig. 3). Nonetheless we can follow qual-
itatively the formation of these moments. The typical behav-
ior of the reflection coefficient modulus leads to a
“monotonic” exponential decay of the intensity envelope
from the entry point of the segment, where the intensity is of
order unity, to the exit. The improbable resonant realiza-
tions lead to the appearance of exponentially large intensity
peaks inside the layer (see Ref. 61). As a result the behavior
of average intensity deviates from an exponential, while the
higher intensity moments behave nonmonotonically and ex-
hibit maxima whose amplitudes increase with moment num-
ber. Yet the resonant realizations do not exert any signifi-
cant influence on the values of the intensity moments at the

</(Z)>A
<I(L)> i

/

——

4

FIG. 3. Average intensity in the layer (the curve crosses the ordinate axis
at the origin).
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FIG. 4. Numerically computed intensity in the layer. /—wave intensity
I(z) in a layer of thickness L = 4(k*¢2r.) ' and dissipation coefficient
I = Im{8e}(§ = 2T (ko?r,) '; 2—cases when Re{&¢} was replaced by
— Re{8¢e} (taken to be zero) over an interval of order & ' inside the
layer, 3—the case ¢ = 0.

entry and exit points of the segment (since there
I(0) ~I(L)~1). This argument is in agreement with the
results™ shown in Fig. 3.

Numerical studies of plane wave propagation in a ran-
domly stratified layer have also been carried out.®>** In par-
ticular, the embedding method was employed to investigate
the dependence of wave intensity on the coordinate inside
the layer in particular realizations constructed using a ran-
dom number generator. Examples of the calculated depend-
ence of wave intensity on coordinate are shown in Figs. 4, 5.9
(For simplicity only data points separated by distances of
the order of 10 wavelengths are plotted. The full sets of data
points exhibit much greater scatter. ) Since the positions and
amplitudes of individual peaks are determined by the par-
ticulars of a given realization, they cannot be reproduced by
the qualitative analysis cited above. Otherwise, the above-
discussed behavior of intensity in a typical realization is in
good agreement with numerically calculated results.

3.POINT SOURCES IN ARANDOMLY STRATIFIED LAYER

In the preceding section we discussed the transmission
of a plane wave through a stratified layer and the field gener-
ated in such a layer by an infinite radiating plane. Practical
problems, such as the computation of a field generated by a
given current distribution in an antenna, require the calcula-

I(z)

a0
E——

B=008

a 4 &0 z

FIG. 5. Same as Fig. 4, but with L = 10(k %07r,) .
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tion of the field G generated by a point source.

Consider the field G(R,R,,) generated in the randomly
layered medium by a monochromatic source located at
R, = (0,z,) above a perfectly reflecting plane z = 0. (This
situation adequately describes the propagation of ra-
diowaves in the atmosphere above the earth’s surface, for
example). The field G satisfies the equation

8GR, R)+ L e@GR R)=8(R—R), R=p,32,
(3.1)

with the self-conjugate boundary condition at z =0

ore)| -0

z2=0

Ima=0, (3.2)
that corresponds to the total reflection of a plane wave re-
gardless of the angle of incidence and to the existence only of
outgoing waves at infinity.

The Fourier transform G(x,z) of the field G(R,R,) in
terms of the in-plane coordinate p

G (%, 2) = fa(p, 2)e*edp (3.3)
coincides as a function of z with the Green’s function of
equation (1.3) with £ = E, — »°. Since the Green’s function
satisfies the same boundary conditions as G(R,R,), it is nat-
ural to decompose G(R,R,)) in terms of the eigenfunctions of
the one-dimensional problem:

4iG (R, Ry) = 2 Vi (2) ¥ (20) B (0 (Eo — )

S ‘DE (2) Ve (2) H(x) O (Ep— E)l/z) dE
+£ ¥z (2) Ve (20) H (ip (E — EQ™).

(34)

The dependence of the field on the transverse coordinate z is
described by the wavefunctions ¢; (z) and ¢ (z) of the dis-
crete (E; <0) and continuous (E> 0) spectrum respective-
ly. These wavefunctions are bounded at infinity and satisfy
equation (1.3), boundary condition (1.4) at z=0, and the
normalization conditions

g\p (2) Vr () dz = 81,
0

(3.5)
{xp;-()\ps (2)dz=8(E —E),

0

If the permittivity fluctuations of the medium are re-
stricted to a layer of finite thickness L, thene(z) in (1.2) will
have the following form

€(2) =g+ 8e (2),

== E‘))

0<z<L, (3.6)
L <z

We will assume that §c(z) satisfies the previously formulat-
ed conditions of spatial homogeneity on average and a fall in
correlations at infinity over the entire range — o <z < o0.
By virtue of (8¢(z)) = 0 and ¢y, = const no ordinary refrac-
tion takes place in the layer. Itis of interest to determine how
this randomly stratified, homogeneous on average medium
affects the distance over which the wave propagates and, in
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particular, whether the medium has any channeling, wave-
guiding properties.

A characteristic feature of channeled propagation is the
cylindrical divergence of energy density flux

S(R) =21Im(G*(R)YG(R))
at large distances away from the source:

IS (0, D |, _const, ~ p L (3.7)

p—x
In a homogeneous space with §e(z) = O the energy density
flux of a point source falls off as p ~ 2. The divergence of the
energy flux is unambiguously related to the existence of non-
zero flux &, (z') > O through the side of a cylinder with an
infinite radius, bounded by the reflecting plane at z = 0 and
the plane z = z":

27

04 (2') = lim p \ dz { deS, (0, 2) .
D= - b
In a homogeneous space with a spherical flux divergence this
quantity is zero.
The flux @, (z') through the infinite planeatz =z’ > z,

0, (2') = \ S: (P, 2')dp

is related to ¢, (z') by the simple sum rule
B (2) + By (2) = By =—2Im G (R, Ry},

where @, is the total energy flux radiated by the source per
unit time. When z’ <z, ,®. (z') + P, (z’) = 0. Ina homoge-
neous space ¢, (z') is independent of z' and equals P,

By way of standard, albeit cumbersome, calculations
the fluxes ¥, (z) and ®, (z') can be expressed in terms of the
wavefunctions of the one-dimensional problem (which can
be chosen as real)

%@ =53 Vi (VO (3.82)
i 5
P, (z) = —P,(z) whenO<z<z,

=, + —;— > ¥ (20) f PH(£)ds when z, <z
Jj z

(3.8b)
y= Dy (00) = — 30} @), (3.8¢"
!
Ey
®, = O, (00) = ;_ i vE (2,) dE. (3.8d)

These formulae are exact (i.e., valid for all realizations) dy-
namical expressions which provide the framework for study-
ing the flux distribution in a given realization. But if one is to
take into account explicitly the random character of fluctu-
ations 8¢(z), it is convenient to express the continuous spec-
trum wavefunctions in terms of the well-known functions
&(z) and @(2) (1.6) (see Ref. 4). Recall that the quantity
¥(2) = €(z)/z is self-averaging for large z. As a result for-
mula (3.8d) can be recast into the form

O, = ——j' sin? @ (zg) - exp|—2 & (L) — (zom 1/2 . (3.9)
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We note that the integrand in expression (3.9) for the
total flux out of the layer coincides, as expected, with equa-
tion (2.5) for the energy density flux of a plane wave in the
one-dimensional problem.

4. THE FLUCTUATION WAVEGUIDE

Now let us analyze the expressions for the energy fluxes
derived in the preceding section. It follows from (3.8a) and
(3.8¢c) that waveguide propagation [in the sense of (3.7)]
can only take place when the one-dimensional problem
(1.3) with the potential created by (3.6) has a discrete spec-
trum. Indeed, when this is the case ®, (z) #0 and

D) = — 00 @) = — — Sy @) ¥ ) < 0. (4.1)

i

This implies that as one moves away from the source (i.e., as
z increases) the flux through the infinite plane z = const de-
creases precisely because energy is channeled “sideways” by
the waveguide modes of the discrete spectrum E; <0 that
represent ordinary waves propagating along the layers.
When p(E,—E;)""*>1, the dependence of these
modes on z is of the form ~H{"(p(E,—E)"?)
~explip(E, — E;)'"?]. Itisclear from (3.8d) that the ener-
gy of these modes in the z direction is confined within the
layer and hence the waves of the discrete spectrum do not
contribute to the “upward” flux ¢, . In a homogeneous me-
dium the discrete spectrum does not exist and hence ¢, =0,
b, =¢. ' =7 'E?*as discussed above.

In the case of a dielectric waveguide of thickness L> A
with 8£(z) = £, >0 (where A is the wavelength radiated by
the source in a homogeneous medium with € = £, + ¢,), the
number of levels in the discrete spectrum is proportional to
L, while the amplitude of the corresponding wavefunctions
¥, (z) has the same order of magnitude ~L ~'/* everywhere
in the layer. As a result the flux ¢, (z) increases linearly
with z from zero to ¢,(L)~®d,, whereas the total
“sideways” flux ®, depends but weakly on layer thickness
L. This implies that the layer is, on the average, uniformly
“illuminated.” The energy flux out of the layer & (L) ~ &,
is carried by waves belonging to the continuous spectrum
with E€[0,E,] and is also only weakly dependent on L.

Moving on to the randomly layered medium, let us note
that in the one-dimensional case every potential well must
contain at least one discrete level. Those realizations that
contain no wells at all correspond to 8£(z) <0(v(z)>»0) for
all z < L and their proportion falls off exponentially with the
parameter L /r,. Every realization with a thick layer L>r,
contains normal modes with E <0 with a probability expo-
nentially close to unity. Hence a thick layer supports wave-
guided propagation. In a sense the disordered system is
equivalent to a dielectric layer with a higher index of refrac-
tion than the surrounding medium (a finite potential well),
except that in our case the channeling of energy is not caused
by reflection from a specular boundary or ordinary refrac-
tion, but is rather a purely fluctuation-induced effect that
disappears when g = 0.

The spatial dependence of the energy flux radiated by a
point source in a randomly layered medium is clearly the
same as in a dielectric waveguide: far away from the source
the flux falls off as p ~'. Yet the height distribution of the
normal mode fields and energy flux P, (z) in a randomly
stratified layer exhibit a number of specific features.
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Outside the layer, if FE<O0 and z>L,0(z2)
~exp[ — ( — E)'?(z — L)], which permits us to write the
effective boundary condition on ¢ at the point L in the “self-
conjugate” form

Y’ — (/2

Vi, "~ (— E)".

For this reason ¢; have the same properties as the eigenfunc-
tions of closed disordered systems.” In particular, the modu-
li of the wavefunctions ¥; (z) that describe, in the sense of
(3.4), the height distribution of the normal wave fields, de-
viate strongly from zero only within distances of the order of
I, = I(E;) from localization centers z; and decay exponen-
tially thereafter. The characteristic distance between the lo-
calization centers for waves belonging to the discrete spec-
trum is clearly of order .4 ~'(0), where .#(E’) is the
number of states with £ < E ' per unit thickness of the strati-
fied layer.

If conditions (1.9) and (1.15) are fulfilled, the random
function v(z) is characterized by a single length parameter
D' (1.10) and hence..}"(0) ~ D'/ by dimensional anal-
ysis. Consequently,

Az~ D_1/3=7.0[ 7o <&>z}—1/3.

Ko \ &

(4.2)

It follows from the same argument that when |E; | <D ' the
localization radius /; is of that same order. In the opposite
limit, when |E;|> D', we obtain from (1.14)

L~ |E; |

This strongly inhomogeneous dependence of wave fields on
the transverse coordinate distinguishes the randomly
layered medium from a regular dielectric waveguide in
which the height coefficients of normal modes oscillate regu-
larly throughout the layer.

The energy flux ¢, channeled along the layer by dis-
crete spectrum waves is also different in the case of a ran-
domly stratified layer. It is evident from (3.8a) that the jth
state of the discrete spectrum contributes to the flux ¢, (z)
only when (z — z;) >/, because when z < (z;, — ;) the inte-
gral in (3.8a) is exponentially small, whereas when
z> (z; + 1) itis practically equal to unity. The magnitude of
this contribution, which equals ¥7(z,)/2, is noticeably dif-
ferent from zero only when the localization center of this
state lies within a localization radius /; in the z direction, in
which case it is of order / f‘ [see the normalization condi-
tion (3.5)]. Therefore, in a thick layer L>»/ the total
“sideways” flux ¢, (3.8¢) is comprised of a small number of
waves for which |z, — z;| =/;. This flux is of the order

Vg ~ (AZ)7Y (4.3)

where / is the localization radius at |E | ~ 0, 0?/c*Az is the
average separation of neighboring localization centers. The
height distribution of the ““sideways” flux is strongly nonun-
iform: only a thin band |z — z,| €/<L around the point
source is illuminated. In the example (1.10) we find from

(4.2), (4.3)
Og ~ DY?, (4.4)

The “sideways” flux ¢, is not a self-averaging quantity
and hence exhibits a fine structure determined by the partic-
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FIG. 6. The flux &, (z) through the side surface of a cylinder with infinite
radius and height z.

ular realization. This fine structure was essentially described
in the preceding paragraph,; it is schematically illustrated in
Fig. 6. A more convenient quantity for characterizing the
fine structure is the spatial derivative of ®,:

;@) = 5 D @) vi @)
!

which, in addition to the main peak near z, (endowed with
its own fine structure), exhibits numerous weaker peaks at
all localization centers (Fig. 7). These peaks contribute to
the mesoscopic structure of the flux derivative ®; (z) with a
characteristic period of the same order as the separation be-
tween localization centers Az. By varying the position of the
source one can, in principle, determine the coordinates z; of
the localization centers for normal modes (i.e., those regions
of the inhomogeneous layer that are the most “transparent”
in the plane of the layer and hence contribute the most to the
channeling of energy) and the amplitudes of the wavefunc-
tions at these centers ¥, (z; ). The full set of z; and ¥, (z;)
uniquely characterizes a realization and becomes a valid
form of identification [just as the dependence of conductiv-
ity on the magnetic field o(#) in mesoscopic semiconduc-
tors has acquired the colorful label of ‘“‘magnetofinger-
prints”].

The average total “sideways” flux (®, ) agrees in order
of magnitude with its value in a particular realization. In-
deed, after employing (3.8a) to write (P, ) in the alternate
form

@ = 3 | {S8E—E) i) dE,
—% i

we find (see Ref. 4) that if z,, (L — z,) > r. the integral on
the right is the average number of discrete levels per unit
thickness. Consequently

lpé(z)A

z

FIG. 7. The fine structure of the flux derivative ¢/ (z) (the main peak
corresponds to z,).
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(D) ~ %m 0),

and in the particular case (1.10) we obtain once again the
estimate (4.4).

In conclusion, it follows from expressions (4.1) and
(4.2) that in a randomly layered medium all realizations
except for some exponentially improbable ones support
waveguide propagation. The waveguiding is accomplished
by discrete spectrum waves with negative values of the pa-
rameter E. The rest of the energy falls in the continuous
spectrum whose states are delocalized (i.e., the field of these
delocalized states is not confined to the layer but rather radi-
ates outward, demonstrating the “‘openness’ of the system).
However, as we shall show in the next section, the specific
properties of disordered open systems that result in the for-
mation of a continuous spectrum also induce radical changes
in the fields associated with the continuous spectrum. In
particular, there appear quasihomogeneous waves (analo-
gous to metastable quantum mechanical states) which
strongly enhance the waveguiding effects over those ob-
served in regular structures.

5. QUASIHOMOGENEOUS WAVES

The hypothesis that waves belonging to the continuous
spectrum should also be channeled in a randomly stratified
medium arises from the following simple argument. The
field of a point source can always be decomposed into a su-
perposition of plane waves. It follows from (2.2) that these
waves, including the ones propagating perpendicularly to
the layer, will be reflected by a sufficiently thick layer that
has a reflection coefficient whose modulus is exponentially
close to unity. This enhanced reflection should logically lead
to the partial confinement of the radiation in the z direction
and hence to channeling along the layers.

In order to observe this phenomenon, let us analyze the
flux @, radiated out of the layer by continuous spectrum
waves. By defining

p(E) = sin* ¢ (2,) - exp[—2 (E (L) —E(2)] (5.1)
we can rewrite formula (3.9) as
E,
0= | p(E) i . (52) -

The above expression can be understood as the radiated en-
ergy flux per unit interval of the spectral parameter E, i.e.,
the density of the angular distribution (& = arcsin(E/
E)'? 5 dE = E,J7...sin2d d) of the “‘upward” flux.

In nearly all realizations the function £(z) is generally
linearly increasing. It then follows from (5.1) that when
L — z,> [(F) the quantity p( E) is exponentially small in the
overwhelming majority of the realizations. At first glance
this appears to support the qualitative argument cited above.
Yet, as we have seen in Sec. 2, in the example (1.10) with
z,=0and r _ = | the mean valueis {p(E)) = 1 (2.6) [just
asin free space with §¢(z) = 0], because {p(E)) is dominat-
ed by improbable realizations in which p( E) is exponentially
large, p ~exp(2L /1).

There are two alternative schemes for calculating
{p(E)). One makes use of the fact that the integral (5.2) is
exponentially small in the overwhelming majority of realiza-
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tions, while its average value is dominated by improbable
realizations. In this case an arbitrary realization will have a
probability exponentially close to unity of having good
waveguiding properties: only an exponentially small part of
the total flux is radiated out of the layer.

The second scheme is based on the idea that since for a
given value of E the estimate y(L) ~&(L)/L~(21)"" is
valid for an overwhelming majority of, but not all, realiza-
tions, then in every realization there will be such E€[0,E,]
for which the integrand p(E) becomes exponentially large.
Accordingly, in every realization the radiated flux carried
off by the continuous spectrum waves will be of the same
order of magnitude as in a homogeneous medium

(Dc -~ A;l
and thus significantly larger than the “sideways” flux (4.4):

1/3 e Tg 2l
My~ D"~ — < Q..

oo\ Fo

In order to decide which of these alternative schemes is
valid, let us express the density p (E) (5.1) of the flux radiat-
ed out of the layer in terms of the reflection coefficient
r . (E) of asegment on which a plane wave is incident from
the lefi. In the special case z, = 0,r _ = 1, the density p(E)
has the form

=i (B)F
Ey=—"2+—— 5.3

o (E) TPy (5.3)

In the region of sufficiently large E> |v|, the phase
# . (E) = Arg{r, (E)} of the reflection coefficient obeys
the approximate dependence ¢ , (E) = 2LE'/?, as follows
from (2.7). Since in a typical realization
1 —|r, (E)Y|~O(exp( — L /1)), for a given E we find, as a
rule,

p(E) ~ et/ (5.4)

The exceptions to (5.4) consist of those values E,, of the
parameter £ for which

9. (Ey) = 2an. (5.5)
At these points

E, o~ (5.6)
the denominator |1 — r, |?in (5.3) becomes smail

|1 —r (E)))?~ et/ (5.7)
and hence p (E) takes on exponentially large values

P (En) ~ e/ E. (5.8)

In general p(E) is a sharply peaked function shown in Fig, 8.
The separation AE, = E, ,, — E, between the peaks of
p(E), ie., between the roots of equation (5.5), can be ob-
tained from (5.6) as AE, = 2nm?/L 2. The half-width of
these peaks, §E, , produced by the departure of |r, | from
unity, equals

1 ~L/UE )

8Eqnx~ —AE, - ¢

o (5.9)

In calculating the flux @ (5.2) the function p(E) can
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FIG. 8. Effective density of states p(F).

be replaced by a smoothed function p(E) obtained by aver-
aging over the interval AE where E ~'/? = const but still con-
tains a large number of peaks

_ . AEj2
PBy=—25 | p(E+EGE.

~AE/3

Direct computation using relations (5.8) and (5.9) yields

5(15)~2L, (5.10)
¥4

Consequently, in a typical realization the radiated flux
agrees in order of magnitude with its average value (¥, ) and
with the corresponding flux $°’ in a homogeneous medium.
This implies, in particular, that the system is ergodic in some
sense in the parameter E: (p(E)) ~p(E). This property ac-
counts for the aforesaid difference between the behavior of
p(E) in typical realizations and in representative realiza-
tions for the given value of E. Indeed, the probability of the
density p(E) being exponentially small (5.4) in a given real-
ization is the same as the probability of the given value of E
not belonging to the interval E, which is obviously

O 1

1— 2= L

AE 2

~L/KE )

In other words, the proportion of typical realizations for a
given value of E is exponentially close to unity. On the other
hand, in the representative realizations, whose proportion is
exponentially small ~exp( — L /), the density p(E) is ex-
ponentially large (5.8).

In view of (5.2) and (5.10) we find that the second
scheme of defining (p(E)) is the correct one.

1t follows from the preceding arguments, that the total
flux radiated away from the disordered layer has a strongly
inhomogeneous angular distribution: the radiated energy is
concentrated near the angles ©#, = arcsin(E, /E,)'/* that
correspond to the values E, at which p(E) is sharply
peaked. The physical meaning of £, (5.6) becomes clear if
we write the solution of equation (1.3) with the boundary
condition (1.4) at a point outside the layer z> L

W(E, 2) = (1—r, (E)) " (E) exp [— iEY* (2 — L))
+(I—ri(ENt(E)expUEV*z—L)]  (5.11)

where f(E) is the transmission coefficient of the disordered
segment. Evidently, when F is real the solution contains
both incident (from the right) and reflected waves. On the
other hand, when &, = E, — §,, — i§,, is complex and

ry(&n) =1 (5.12)
the coefficient of the incident wave becomes zero and only
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the outgoing wave remains
V(& 2) = (1—ri (&) £ (&) exp i 2 — L)), (5.13)

In quantum mechanics the wavefunction (5.13) de-
scribes a so-called decay state. Because of the temporal de-
pendence ~e~ " = ¢~ "B 1l ~®u the square of its mod-
ulus decays with the characteristic time 7~ (8,,) '.
However, when §,,, €E, — §,, the decay time becomes large
compared to the oscillation period (E, —8,,) ' and the
resulting state is known as metastable. Usually metastable
states appear because of the specific form of the potential
profile v(z) in (1.3) that incorporates a potential well sepa-
rated from the rest of the space by a sufficiently wide poten-
tial barrier that is higher than the energy of the particle
[65,66]. In our case the metastable states appear “‘above the
barrier”: the energy of the particle is higher than the scatter-
ing potential and particle confinement is wave-like in nature,
arising from the wave interference due to multiple scattering
from potential fluctuations. (The individual scattering
events need not be particularly strong.)

For those values of parameter E that correspond to a
localization length /( £) smaller than the layer thickness, the
modulus of the reflection coeflicient is exponentially close to
unity. Consequently equation (5.12) can be written as

;’011 =En“l’(§z,,. (514)

The imaginary part §,,, is smaller by a factor of two than the
half-width of the corresponding peak in p(E) (5.3) and is
exponentially small in the parameter L //:

i ~L/UE )

6211="{l)_6En = AEn - e

;31

(5.15)

(on this scale the shift §,, of the real part E, is indistin-
guishable from zero). In this fashion, the values of E, (5.6)
4t which p(FE) is peaked are the real parts of the complex
values &, (5.14), (5.12) that correspond to metastable
states whose lifetime 7~exp(L //) is exponentially large.
The total flux ¢ radiated out of the layer is formed precisely
from these metastable states.

The wavefunctions #(E,,z) corresponding to E, are
exponentially localized inside the layer (clearly they cannot
be normalizable because of the oscillatory tails (5.11) that
extend outside). This follows from the proportionality be-
tween the eigenfunctions ¥( E, ,z) for z inside the layer with
r_ =1 and the cosine solutions c(E,,z) of equation (1.3)
that increase exponentially from z =0 and satisfy the
boundary conditions ¢(E,,0) = 1,¢'(£,,0) =0, and from
the identity

2 . et _At=r(E) 12- __ LimER
c(En, L) + Ev'cp (Eny L) = TG EJF .
The characteristic localization length scale for the waves
Y(E,,z) is the usual localization length /(E, ) €L rather
than the width of the potential barrier. Therein lies the dif-
ference between metastable states in disordered and regular
systems.

Our understanding of metastable states not only clari-
fies their contribution to the flux &, but also makes it possi-
ble to analyze the dependence of the source field G on the in-
plane coordinate p. We can use the formula
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G(R,R)

(EYe 1 .
= ; ) I—_j—(;;)(:l’—)(z—o) HP (kpsin 8) f,, (%, 2)sin @ d ¥,
(5.16)
P=IP—PQL 2= 2

where I is a certain contour of integration in the complex 8
plane; E }? is the wavenumber for the level of the source;
Sf1.2 (6,z) are the functions that describe the fields in the low-
er (z <z,) and upper (z> z;,) half-spaces when a plane wave
of unit amplitude is incident from the vacuum at an angle 6.
An analysis of the expressions (5.16) indicates that they can
be reduced to the sum of residues corresponding to the poles
of thedenominator and to the integrals along the edges of the
cuts.™

When %, p> 1, the sum of the residues that describes the
field inside the layer can be written in terms of the variable
& = E, — k *sin’6 as

G=DF.(z 2 &) e (5.17)

where %, = (E, — % ,)"?; &, are the roots of the disper-
sion equation

l—r,(20)r-(2,) =0, (5.18)

and r, (z,) are the reflection coefficients of regions
[z, 0 1([0,2,]) for a wave incident from the right (left).

It can be shown that the full set of solutions ¥, of equa-
tion (5.18) does not depend on the choice of point z,,. Conse-
quently, when r__ = 1 this full set of solutions coincides with
the set of solutions of (5.12). We have already shown that
the latter set contains solutions that describe metastable
states. Since in our case time can be identified with the dis-
tance p in the x—y plane between the source and the observa-
tion point, these states correspond to quasihomogeneous
waves that decay over distances greater by exp(L //) than
the distance .77 from the source

LJ‘DH ~ (lm M;1)‘1 ~ Lel‘”. (519)

The eventual decay of these waves is not due to dissipation,
however, but rather to the flux radiated ‘““‘upward” (into the
z> L region). As long as p <%/, the quasihomogeneous
waves are confined inside the layer.

Thus the crucial difference between a randomly strati-
fied layer and an ordinary dielectric waveguide lies in the
specific role played by the continuous spectrum. The flux
produced by this part of the spectrum is carried by quasiho-
mogeneous waves, whose energy is radiated out of the layer
at exponentially greater distances away from the source than
the layer thickness. In the total field of the continuous part of
the spectrum, described by the integrals in (3.4), we can
select a discrete series of metastable states that describe
slowly decaying quasihomogeneous waves. These waves
channel energy along the layer over enormous distances.

In conclusion let us note that the outgoing flux &, (z) is
a consequence of finite layer thickness. In an infinite, ran-
domly stratified medium, all states are exponentially local-
ized in the z direction. As a result, the average value of the
flux ®,(z) decays exponentially as the plane z is taken
further from the source®’
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The mean intensity (/(R,R,)) at the point R also decays
exponentially
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as does the mean field {G(R,R,,)) (the coherent component
of the signal)
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where ¥ is the dimensionless decay coefficient;
p = |p — p,)|; and I(E,) is the extinction length (mean free
path) with respect to forward scattering.

Finally, we note that the above-discussed “one-dimen-
sional” interference effects, such as the formation of the fluc-
tuation waveguide, can play an important role in the long-
range propagation of UHF radiowaves and the channeling of
sound in the ocean. Indeed, it is currently accepted that both
the atmosphere and the ocean contain strongly anisotropic,
quasi-layered fluctuations of the refraction index (see, for
example, Refs. 45, 68~70). If the fluctuation waveguide is to
capture the wave effectively, the localization length at the
appropriate value of parameter E = [(w/c)siny]” (where
is the capture angle) must not exceed the thickness of the
fluctuation layer. In the tropospheric layers adjacent to the
water the characteristic parameters are o, ~3x10~’
~0.3N unitsand 7, ~ 10* cm. For a wave with A = 3 cm and
the capture angle ¢y~ 10 ~ * equation (1.11) yields a localiza-
tion length / of the order of ~ 50 m. If we recall that nonuni-
formities in the permittivity with typical gradients of the
order of tenths of N units/m have been observed in the atmo-
sphere at elevations of 1 km and higher, it appears likely that
the fluctuation waveguide will channel energy even more
efficiently than ordinary refraction, where the capture angle
1 rarely exceeds ~10 7%,

Although no thorough radiophysical and meteorologi-
cal measurements aimed at observing the fluctuation wave-
guide have yet been carried out, there exists a quantity of
indirect evidence in favor of this phenomenon. For example,
researchers have noted the increasing depth of signal extinc-
tion at large distances from the source as the average
strength”' and the propagation path length’® of signal in-
crease. This behavior of the signal amplitude is uncharacter-
istic of the ordinary tropospheric waveguides, but it does
agree with the behavior of intensity in a randomly stratified
layer described in Sec. 2. Another evidence for the existence
of the fluctuation waveguide is the frequently observed cor-
relation of over-the-horizon field intensity with the disper-
sion of the refraction index fluctuations ¢2 in the near-sur-
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face layer. The signal intensity increases with o, even if the
average gradient de/dz is quite small and ordinary wave-
guiding is ineffective.

The authors are grateful to Yu. A. Kravtsov, L. A. Pas-
tur, and V. I. Tatarskii for fruitful discussions.

"In a given realization, the transmission  and reflection r coefficients
depend both on the segment length L and on the spectral parameter E.
In each concrete case, however, we shall explicitly state only the de-
pendence of 7 and r on the dominant of these two parameters.

2) As was demonstrated in Ref. 60, relation (2.4) is valid for a much more
general class of cases than (1.10), (1.15).

Y This result was obtained in collaboration with Yu. S. Kivshar.

4) Clearly, this estimate and the analogous estimates that follow are valid
only with logarithmic accuracy.

%) In the regime of large E = k %, where one can employ perturbation theo-
ry in terms of the small parameter v(2) /k ?, according to (2.7) the phase
@ of the coefficient changes rapidly over distances of the order of the
wavelength k ', whereas the modulus p (i.e. A) changes more slowly
over distances of the order of localization length /.

®) We express our gratitude to V.1. Klyatskin and 1. O. Yaroshchuk who
made these plots available for our publication,
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