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A review of the collisional, collective, and resonance phenomena in planetary rings is presented.
The following questions are examined: the reasons for the existence of planetary rings and the
properties of a typical particle, the collisional breaking of 1oose bodies, and the azimuthal
asymmetry effect for the rings of Saturn. A transfer theory is being developed for differentially
rotating disks of inelastic particles, and the collective instabilities of planetary rings and a
protoplanetary disk are discussed. A model for the resonance origin for the rings of Uranus is
described, which enabled one to predict unknown satellites of Uranus that were later discovered
by “Voyager-2”. The problem of the stability of the rings of Uranus is examined.

1.INTRODUCTION

The rings of Saturn discovered in the seventeenth cen-
tury continually excited the imagination of researchers by
their unique form. Such illustrious astronomers, celestial
mechanicians, and mathematicians as G. Galilei, C. Huygh-
ens, J. D. Cassini, P. S. de Laplace, J. C. Maxwell, and H.
Poincare investigated the rings of Saturn. Kant was the first
one who predicted the existence of fine structure of the rings
of Saturn. By using his model of a protoplanetary cloud, he
imagined a ring in the form of a flat disk of colliding particles
revolving differentially around the planet according to
Kepler’s laws. According to Kant, just such differential re-
volution is the cause for separating the disk into a series of
thin ringlets. Later P. S. de Laplace proved the instability of
a solid wide ring.' Many astronomers in the middle of the
last century (de Vico in Rome, Bond in the U.S.A ., Struvein
Russia, Dawes and Lassell in England) discovered a total of
ten ringlets around Saturn. At this same time, J. C. Maxwell,
who received the Adams Prize for Ref. 2, in which he showed
that such narrow rings are also unstable and will fall onto the
planet, made an outstanding contribution to the investiga-
tion of the stability of the rings of Saturn. One may consider
Maxwell’s paper as the first investigation of the theory of
collective processes carried out at the modern level: the char-
acteristic equation that is now called the dispersion equation
was used in the stability analysis in Ref. 2. And although
Maxwell’s conclusion that a hypothetical solid ice ring
would fall onto the planet was incorrect (such a ring must be
torn to pieces considerably before this; see Ref. 3 and also
Sec. 6.4.4 of this review), the corollary from it, that the rings
of Saturn are of meteoritic structure, turned out to be true.
Thus, towards the end of the nineteenth century, the hypoth-
esis of the meteoritic structure of the rings of Saturn, which
was first expressed by J. D. Cassini, received theoretical and,
in 1895, also observational confirmation in the papers of J.
Keeler and A. A. Belopol’skii, who measured the velocities
of the differential revolution of the rings (see Ref. 4).

A gradual accumulation of new data about planetary
rings occurred in the twentieth century: estimates of the
sizes and concentration of particles in the rings of Saturn
were obtained,* it was determined by spectral analysis that
the rings are ice,*” and the enigmatic phenomenon of the
azimuthal variability of the brightness of the rings of Saturn
was discovered.®’” The measured pace of scientific activity
was changed by the strong rise of general interest in plan-
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etary rings at the end of the 1970s, when the narrow and
widely separated, coal-black rings of Uranus were indepen-
dently discovered on March 10, 1977 by several research
groups. The discovery was made entirely fortuitously when,
in preparing equipment to investigate the parameters of the
atmosphere of Uranus by the stellar occultation method and
after setting the instruments beforehand, the researchers de-
tected short eclipses during the approach of the star to the
planet and as it moved away from the planet. The best trac-
ings were obtained with the telescope of the Kuiper Airborne
Observatory.®

Two years later, on March 4, 1979, the American inter-
planetary spacecraft “Voyager-1” also discovered the trans-
parent stony rings around Jupiter.” The rings of Saturn were
investigated most intensively at the beginning of the 1980s.
A series of American spacecraft operated in their vicinity:
“Pioneer-11 (October 1979), “Voyager-1” (November
1980), and “Voyager-2” (August 1981). *“Voyager-2” in-
vestigated the rings of Uranus in January 1986. In August
1989 this spacecraft encountered Neptune, around which
incomplete rings (or “arcs’) were detected several years ago
by the stellar occultation method'® (*“Voyager-2” improved
on the ground-based observations: the *‘arcs” turned out to
be denser parts of complete rings).

Actually, a new class of solar system objects has been
discovered and studied over the last 12 years. Planetary rings
turned out to be a necessary element and a regular phenome-
non in the satellite systems of the giant (Jovian) planets.
Naturally, an abundance of observational material could not
fail to cause an intensive development of theoretical models
(it is sufficient to cite two voluminous symposia'""'? which
were published in 1984). This is not merely interest in new
astronomical objects. The opinion that planetary rings are
the key to understanding the cosmogony of the entire solar
system is receiving more and more acceptance. For the pres-
ent-day rings are the only representatives accessible for de-
tailed study of differentially revolving disks of inelastic par-
ticles. The investigation of such disk systems is of
fundamental importance for this cosmogony, since this was
the most widespread type of dynamical system (the proto-
planetary nebula, protosatellite disks, and protoplanetary
rings) in the early stage of the solar system. One must also
assign the protoplanetary clouds around other stars (for ex-
ample, around Beta Pictoris), the accretion disks in binary
star systems, and galactic and protogalactic disks, to this
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same class of objects. Thus, planetary rings present a unique
opportunity to obtain very important information about the
collective and other processes which occurred at the stage of
the formation of the planets and satellites of the solar system.

One of the tasks of this review is to attract the attention
of physicists and specialists of related sciences to planetary
rings and to show the importance to physics and astronomy
of studying the dynamics of these objects.

Let us list the main problems of the physics of planetary
rings:

1. Whydo planetary rings exist? Classical models for the
formation of rings assumed that rings are in the realm of the
tidal disruption of large bodies. But it became clear after the
“Voyager” flights that tidal forces are too weak to disrupt
particles of the sizes that are observed ( S 10 m). The ques-
tion about the reasons for the existence of rings turned out to
be directly connected with the mechanical characteristics of
a typical particle.

2. What caused the layering of the rings of Saturn? The
observed hierarchical structure of the rings of Saturn is built
up on the “matrix” principle: broad rings of ~ 1000 km
width consist of a system of narrower rings of ~ 100 km
width, etc. The widely accepted opinion that the layering of
the rings of Saturn is connected only with negative diffusion
instability'*'* contradicts the observations; this instability
can cause the formation of only the narrowest ringlets (hun-
dreds of meters wide) in fairly dense parts of the disk."

3. How were the rings of Uranus formed and why are
they not disrupted? The most popular hypothesis about how
the narrow, elliptical rings of Uranus were formed and main-
tain stability is that this is due to two “shepherd” satellites
along the edges of each ring.'® However, “Voyager-2” in
1986 did not discover the “shepherd” satellites between the
rings of Uranus that are so necessary for this hypothesis.
Here the “Voyager-2” data confirmed the alternative hy-

- pothesis of the resonance nature of the rings of Uranus.'” At
present, there exists in the physics of planetary rings a large
number of models and hypotheses which often mutually ex-
clude each other. Therefore, it is fairly difficult to present a
unified picture for the origin and dynamics of planetary
rings. For example, a number of investigators of the stability
of planetary rings start with a model of a smooth and very
elastic ice particle'® without mentioning here the problem of
the existence of the rings. In turn, cosmogonists consider an
extremely ephemeral formation (ten thousand times less
sturdy than a cluster of the flakiest terrestrial snow) as a
typical ring particle'® without thinking of how such a fragile
particle will ““work” in other theoretical models.

In this review we tried to give the most consistent and
physically complete picture of planetary rings by also criti-
cally investigating alternative solutions to a number of prob-
lems. In studying the physics of rings, one must turn to the
most diverse methods and fields of science: to celestial me-
chanics and the physics of ice and snow, to impact theory
and the kinetic theory of gases, to instability theory and to
plasma physics. Analytical calculations and astronomical
observations, numerical and full-scale experiments are used
here. This is a typical feature of this paper, which is devoted
not to an individual method, phenomenon, or experiment,
but to a complicated natural object whose “activity” is not
subject to the traditional division of the sciences.

The basic, reliably determined observational data are
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described in Sec. 2 of the review. The questions, for the un-
derstanding of which it is sufficient to know the dynamics of
individual particles, are examined in Sec. 3. Sections 4 and §
are devoted to investigating the collective dynamics of plan-
etary ring particles. The rings of Uranus, whose features are
largely determined by the infiuence of resonant satellites, are
examined in Sec. 6. Section 7 reflects the first attempts to use
theoretical models that have been developed in the process of
studying planetary rings for solar system cosmogony.

2.OBSERVATIONAL DATAONPLANETARY RINGS
2.1.General characteristics

2.1.1. Primary and secondary rings

One can divide all ring structures around planets into
two classes: the cosmogonically *“primary’” and **secondary”
classes. Dense rings of fairly large particles (up to tens of
meters sizes) are the first type of structures. The existence
times for such rings is fairly long and is evidently compara-
ble with the cosmogonic time. One can unconditionally as-
sign the classical A, B, and C rings of Saturn and the nine
dense rings of Uranus to the primary structures. The low-
density gas and dust rings, for whose prolonged existence a
constant influx of matter is required, are the second type of
rings: these are the transparent E ring of Saturn (the source
of matter is the satellite Enceladus), the dust rings of Uranus
situated between the dense ringlets and connected with the
sweeping of fine dust out of the ringlets, and the gas torus of
volcanically active I,. The ring of Jupiter is evidently sec-
ondary, but a low-density layer of large particles may be its
source. Data on the rings of Neptune indicate the primary
nature of these rings. A characteristic feature is that if the
secondary rings can be distributed at any distances from the
planet (depending on the arrangement of the “material”
source of matter), then the outer radius of the primary rings
is clearly bounded and is approximately equal to two radii of
“its”” planet: 1.8 radii for Jupiter, 2.3 radii for Saturn, 2.0
radii for Uranus, and 2.5 to 2.6 radii for Neptune (from 1989
data). The satellite zone starts beyond the boundary of pri-
mary rings, but in a narrow ‘‘boundary” zone, the rings and
satellites can be arranged ‘‘helter-skelter.”

2.1.2. The size distribution of particles

Secondary rings consist of particles of micron and sub-
micron sizes. The primary rings of Saturn contain particles
with sizes from a micron up to 10 to 20 meters, and more-
over, meter-size bodies make up the main mass of the rings.
The particle size spectrum in the rings of Saturn has a char-
acteristic “‘cutoff’’ at radii of about ten meters. The lack of
larger size particles is a very important feature of planetary
rings and is also observed in the Uranus system. The optical
thickness of the rings is determined by both meter-sized and
also centimeter-sized particles.?’

2.1.3. Hierarchical layering of rings

The broad rings of Saturn are divided into narrower
ringlets of different scales.”” The small-scale division of the
C and Brings is shown in Figs. 1 and 2. The A ring is more
uniform, but possibly has small-scale layering at hundreds of
meters. The existence of radial structure in the rings of Sat-
urn is evidently connected with internal evolutionary pro-
cesses.
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FIG. 1. The C Ring of Saturn (**Voyager-2" photo). A regular thousand
kilometer-size structure with a small contrast of density is identified in the
central part of the ring. Some narrow ringlets in the outer and inner re-
gions of the C Ring are connected with the resonance action of satellites
(see Fig. 5).

2.1.4. Spiral waves

They are excited by external satellite resonances and
have been discovered in large numbers in the rings of Saturn,
especially in the A ring. The spiral waves are subdivided into

FIG. 2. The outer part of the B ring (a 6000 km section; a *“Voyager-2"
photo). The dark corner at the upper left is the Cassini gap. A hierarchy of
annular structures of different scales (from thousands to tens of kilo-
meters) is easily visible. We note that these structures are not connected
with resonances from satellites.

density waves (Fig. 3) and bending waves, which deflect
particles from the equatorial plane. The most powerful
(with significant amplitude and extent) spiral waves are
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caused by low order resonances (1:2, 2:3, 3:4, 4:5, 5:6, 3:5,
and 5:7), but high order resonances (for example, 32:33,
etc.) also excite small waves (Fig. 4). A wave removes angu-
lar momentum from the particles of a disk, and one asso-
ciates the occurrence of the Cassini gap with the action of a
spiral wave which existed earlier from a 1:2 resonance with
Mimas.?'

2.1.5. Narrow ringlets

The rings of Uranus are a set of narrow (of the order of
10 km width), dense ringlets which often possess noticeable
ellipticities (eccentricities up t0 0.01) and inclinations to the
equatorial plane. The edges of the ringlets are sharp, and the
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FIG. 5. A narrow ringlet in the C ring “‘squeezed”” between the resonances
from 1980 S 26 (2:1) and Mimas (3:1). The figure is from the review in

Ref. 20.
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Janus e

FIG. 4. Spiral waves at the outer edge of the A
ring (this figure is from the review in Ref. 20).
Spiral waves are excited even by high order
resonances. Mimas causes two types of waves;
bending waves (BW), which propagate from
the place of resonance towards Saturn, and
density waves (DW), which propagate away
from the planet. Waves of the first type are
caused by resonance between the frequencies
of satellite revolution and the vertical oscilla-
tions of ring particles, and waves of the second
type are caused by resonances between the sat-
ellite frequency and the frequency of the radial
oscillations of the particles.

Z.

rings precess in the non-spherical field of the planet as a
single body. Many ringlets have variable widths (widest at
apocenter and narrowest at pericenter ).”> Similar rings have
also been discovered near Saturn. The location of narrow,
dense rings near low order resonances from external satel-
lites is a typical feature. One of Saturn’s ringlets is shown in
Fig. 5 with its “own” resonances. The relation between the
resonance positions and the rings of Uranus is analyzed in
Ref. 23. Two narrow rings (the F ring of Saturn and ¢ ring of
Uranus) are located on the boundaries of primary rings and
are circled by “shepherd” satellites.

2.2. Individual ring systems
2.2.1. Therings of Saturn

The geometric characteristics of the rings are shown in
Table I, and their main physical characteristics are in Table
IT (from Ref. 20). The ring particles consist mainly of water
ice, possibly with a small admixture of rocks. Data on the
thermal inertia of the particles,?® and also spectrometric™”
and photopolarimetric*' data indicate that the particles are
covered with a layer of ‘“hoarfrost” or of fine ice dust of
micron dimensions. The albedos of the particles of Saturn’s
rings correspond to the albedo of snow, 0.6, but some ring
structures in the B ring have albedos different from those of
the gaps; the difference can reach 50%, from 0.6 to 0.4, from
the albedo of snow to the reflectivity of rock.”® The
*“spokes”, short-lived dust clouds that are elongated radial-
ly, are also observed in the B ring; they revolve like rigid
bodies, and one associates their origin with the action of the
planet’s magnetic field on charged dust.? One more interest-
ing effect is observed in the A ring: the azimuthal variability
of ring brightness.®’

2.2.2. Therings of Uranus

The characteristics of the rings of Uranus are given in
Table I11.2*® We notice that radial structures of kilometer
scales is detected in the widest £ and «a rings. The region
between the dense rings is filled with fine dust with optical
thicknesses from 0.001 to 0.0001. This fine dust is distribut-
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TABLE I. Geometric characteristics of the rings of Saturn.

, Orbital Radius ‘
Ring Width, 10° km
In Saturn Radii In 10° km i
D 1.11—1.235 66,97—74.51 7.45 ’
C 1.235—1.525 74.51—92.00 17.49 I
B 1.525—1.948 92 .00—117.52 25,52 |
The Cassini Gap 1.948—2.025 117.52—122 17 4.65
A 2.025--2.267 122.17—136.78 14.61
F 2.324 14} .18 0,05
G 2.82 170.10 1
E 3—38 181—483 302

ed nonuniformly and forms a series of ring structures which,
according to our classification, belong to the secondary
rings.”® The significant aerodynamic drag from the upper
layers of our atmosphere of Uranus is the most important
factor which removes dust from the dense rings.*?

The rings of Uranus are very black, their albedo is about
5%, and the infrared spectrum of the rings corresponds best
to carbonaceous chondrites.?

2.2.3. Therings of Jupiter

The characteristics of the rings are shown in Table IV.
The spectrum of the rings corresponds to rock.* Two small
satellites are situated at the outer edge of the main ring. The
amount of light reflected indicates the presence of the large
particles in the main ring, although all the rings of Jupiter
consist mainly of dust.’

2.2.4. Therings of Nepune

A good many reports of observations of ring arcs near
Neptune have accumulated since the mid-1980s.'%?*2" The
latest images from ‘‘Voyager-2” during its recent flyby near
Neptune improved the results from ground-based observa-
tions. The “Voyager-2” data (for 1989) are shown in Table
V. Two dense, complete rings with radii of 52 300 km and
62 900 km, respectively were recorded (the latter ring has
significant azimuthal density variations; it contains three
condensations, each with an extent of 6° to 8°).

TABLE II. Basic physical characteristics of the rings of Saturn.

3.PARTICLE COLLISIONS IN RINGS. THE COSMOGONY OF
RINGS

The question of the properties of a typical particle is the
fundamental question of the physics of planetary rings.
Without a detailed investigation of these properties, it is im-
possible to understand either the origin of rings or the dy-
namics of collective processes. Therefore, we start from a
study of individual ring particles, from the simplest imagina-
ble model, that of a solid sphere.

3.1. Collisions of solid particles

A number of authors of theoretical models of the rings
of Saturn use a smooth icy sphere as a typical ring parti-
cle."®*3=** The restitution coefficient for such a sphere has
even been investigated experimentally in Refs. 18 and 37; in
a vacuum at low temperatures and typical impact velocities
v~0.1to 10 mm/sec. It has been found that the restitution
coefficient g(v) = v'/v (where v is the recoil velocity) is
close to one for velocities v ~0.1 mm/sec and decreases with
increasing collision velocity. This dependence agrees with
the behavior of g(v) for any kind of smooth bodies in the well
investigated range of impact velocities from 1 to 6 m/sec.*®

We investigate a model of hypothetical smooth parti-
clesin this section, and we shall show that, because of mutual
collisions, they are inevitably covered by a loose, snowlike
regolith which qualitatively changes their elastic proper-

"Thickness and optical thickness are measured transversely to the plane of the rings
(parallel to the axis of rotation). The light flux transmitted by the ring is attenuated by a !

factorof 2.7at 7= 1.

210% of the B ring’s surface is completely opaque to observations (7> 2.53).

¥0.8<r<1.2 for the main part of the F ring with a width of 3 km.
“Data are for a nominal density of 1 g/cm” for the particles.
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Ring Thickness" Optical thickness, 7" | Surface density, g/cm?
D ? <01 ?
C 10 m 0.08—0.14 10 to 15
B 10 m 1.06 to 1.89% 60—70
The Cassini division 20 m 0.12 10.40%
A 40—60 m 0.49—0.58 20—69
F <100 m 0.1t00.2Y ?
G 106 km 10~*to 10~° ?
E 7.5—35 10° km 10~ %to10~° ?
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TABLE III. The rings of Uranus.

Optical thickness'

Ring lSemi-major axis, km{ Eccentricity X 1000 | Width, km"
g . 51 156-+5 7.92440.23 %romZO to 96
Ring 4 50 660130 ? 16
1986 UIR 50 030+30 ? 1—2
8 48 30645 (0.0204-0.140) |[From3 to- 9
Y 47 63245 (0.12140.201) [Fromi o 4
4748445 (0.0144-0.25) 0-—-2
3 4566915 (0.4384°0.22)  [From7 o' 12
a 4472745 0.7594-0.26 From7 to 12
4 42 57945 1.0654-0.29 2—3
5 42 243+5 1.900-40.29 2—-3
A 41 84615 1.001-+0.24 From1i to 3
Arc 1 41 760+30 ? 2
Arc 2 41 4704-30 ? 4
Arc 3 38 430450 ? 2
Ring 2 38 280-F50 ? 1
1986 U2R 37—39.5 10’ km — 2500

ness (minimum width and maximum optical thickness at pericenter).

complicated combination of an ellipse and circle.*
3A dust ring.

ties*>*! and makes theoretical models based on the assump-
tion that the particles are smooth unsuitable for rings.

3.1.1. Some relations from the theory of impact of smooth
spheres )

From the theory of Hertz, we obtain the following
expression for the maximum energy of the elastic deforma-

tion of colliding individual smooth spheres (see Ref. 42):

2
Pmax 3

Umax=5,4(1_l-‘?,)—_ C (1)

where

P
RemZ(—pm) = a
is the maximum radius of the elastic contact zone, 1z, = 0.36
is the Poisson coefficient, a is the radius of the sphere,
P... =5-10" to 10° dyn/cm is the rupture (maximum)
stress for ice, and E = 10'"' dyn/cm? is Young’s Modulus.**
By equating the kinetic energy mv?/2 and U,,,,, we find the
critical velocity of collision (at which irreversible deforma-
tion of ice in the contact zone begins)

232 P6/2
UC,QS,QQ—?%‘—~4,5- 1073 to 2.5-107 cm/sec  (2)
o

where p = 0.9 g/cm®. At v>uv,,, the ice undergoes elastic-
brittle fracturing if the rate of deformation de/dt 2 0.01 to
0.001 sec™!, where ¢ is the relative deformation.*® It has

TABLE 1V. The rings of Jupiter.

From{ .2 to. >4
0.1

"From ...to indicates that the ring has (or may have) a variable width and optical thick-

2The & and y rings are best approximated not by an ordinary ellipse, but by a more

01
From 0.3 to 0.4%
From 1.3 t02.3?
0.1—0.4

0.2
From 0.3t0 0.4
0.3
0.5—0.6
From 0.22to 0.3

0.
0.2
0.2

(=]

From 0.001 to 0.0001%

been shown in Ref. 39 that the deformation rate of particles
in the rings is de/dt2 0.1 to 0.01 sec ~ . This indicates that
ice particles in the rings of Saturn will be fractured like brit-
tle bodies upon colliding with characteristic velocities v~ 1
mm/sec, with the formation of a fine dust in-the contact
zone.

3.1.2. Estimates of the fragmentation of ring particles

We estimate the mass of broken ice Am for a single
impact of particles with mass 7 and velocities v~0.1 to 0.6
cm/sec, assuming that the entire energy of impact is used up
in fracturing:

Am
m

~2? 4510 to 1.6-10°%;
2%,

v

(3)

here &, = 107 to 108 erg/cm® is the energy needed to frag-
ment a unit volume of ice.*> Assuming the rate of fracturing
to be constant, we obtain the characteristic time for the com-
plete fragmentation of ice particles:

(4)

tor ~ Xm;tﬁ,\, 2.5.10%t0 7-10°% yearsfor fg = 10 hours
where #; is the free flight time for particles in rings. From
this, one may draw the conclusion that the particles in the

rings of Saturn are most likely balls of finely fragmented ice
or snow. But one may assume that the ice particles cease

Ring Orbit radius, 10° km| Width, 10° km | Thickness, km | OPtical
thickness
The main ring 122,.8—129.2 6.4 <30 3.10-8
The faint ring” ,4—122 .8 51.4 ? 7-10-¢
The halo" 71.4—123 51,6 >104 5.10-
""The faint ring and halo are bounded by dense layers of the atmosphere of Jupiter.
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TABLE V. New satellites and rings of Neptune.

Name (1)(;? lktnl} adius, Orbit Period | Orbital Inclination Diameter, km
Satellites:
1989Ne 1 17.6 26.9 hours >1° 420
1989Ne 2 73.6 13,3 hours >1° 200
1989Ne 3 62.0 9.5 hours >1° 160
1989Ne 4 52.5 8.0 hours >1° 140
1989Ne 5 50.0 7.5 hours >1° 90
1989Ne 6 48.2 7.1 hours >1° 50
Rings:
S9Ne 1 9 A dense ring of 15 km with three arc condensations;
19890 1A 62 the length of each one is ~ 10 000 km.
? 53.9 A low optical density ring
1989Ne 2A 52.3 A high optical density ring
? 4.0 A broad (~2 500 km) low density ring

being fractured after the accumulation on their surfaces of a
thin, loose layer of finely fragmented ice, which absorbs the
energy of impact and protects the single particle from frag-
mentation. The conclusion that at least a surface layer of
loose regolith exists on ring particles is confirmed both by
theoretical arguments*®** and also by observations?®3%3'
(see Sec. 2.2.1). The rate of accretion of micron-sized ice
grains is extremely small at temperatures near 70 K, and one
can neglect the fusion of grains in the contact zone during
impact in connection with the low kinetic energies of the
colliding particles; consequently, the surface regolith is a
granulated medium that is weakly bound by auto-hesion
forces.*® The question arises: how similar are particles cov-
ered by a thin layer of regolith to smooth spheres in their
impact-mechanical properties?

3.1.3. Collision model for particles with regoliths

A three-stage model for the collision of monolithic bod-
ies covered by a thin layer of loose regolith has been suggest-
ed in Ref. 40. We denote the energy that is expended on the
inelastic deformation of the regolith by AE, the energy of
elastic deformation of the single particle by U, and we denote
the critical value of U before fracturing of the single particle
by U,....- We consider how the collision process changes with
increasing particle velocity.

A. The completely inelastic impact stage. The kinetic en-
ergy is used up in irreversible compression of the loose sur-
face regolith:

2’5"1<AE, U=0, q(v)=0. (5)

B. Stage of elastic deformation of the monolithic core.
The part of the kinetic energy of the particles which remains
after compressing the regolith is used up in the reversible
deformation of the monolithic core:

AE<”wT.<AE+Umax, U=’,1;1_’AE1 (6)
_ . 92AE 1/2
q(v) —(1— mv.,) :

C. Stage of fracturing. The impact energy is so large that
inelastic deformation of the single particle or fragmentation
of the regolith grains begins:

BE + Uy <72, U= Unay, )
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U \1/2

s

. mu?

Recoil, the reconversion of the reversible deformation
energy U, . or Uback to kinetic energy, is the next natural
stage ofimpact. The valuesof AE and U,,,,, may depend on v,
but less strongly than on v”. Let us consider the function
U,..x (v) for a smooth particle.

3.1.4. The restitution coefiiclent for a smooth particle

For AE =0, at most two stages of impact, B and C, and
one unknown quantity, U, ., remain. The particles are not
fractured (¢ = 1) for v < v, . Local irreversible deformation
of the contact zone begins for v> v,,. Let us estimate U,
after the start of fracturing by assuming that Eq. (1) is ap-
proximately correct if R, is the radius of the contact zone of
the particles during fracturing. Let a spherical segment with
the base radius R, and height / in the contact zone be frac-
tured; then R, = (2al)'/. Let R, =R, . Then the kinetic en-
ergy of a particle will be used up in fragmenting a segment
with volume ma!?, and for the elastic deformation of the par-
ticle, we have:

(3)

The second term on the right-hand side of Eq. (8) describes
the elastic deformation energy U, , . According to Egs. (7),

max

.= [10-8(1 — B3 P (M)»"Z]"’*

mu2f

P:o
"’-;2— = &umalP 45,4 (1 —p}) T RY

(9)

By eliminating the quantity / from Eqgs. (8) and (9), one can
obtain the following equation for ¢ (v):*'

7+ o2 (i"m — (10)
L ) ’
where
L—93Y — p2)°° Py

pl/sEl/zSg:‘ll/u

One may call the quantity L the “elasticity parameter”:
the larger L is, the higher is the restitution coefficient. From
Eq. (10) we find

g =1 for v—0, (11)
= Lvo% for v L%
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FIG. 6. The dependence of the restitution coeffi-
cient of a metal sphere on impact velocity. A
sphere with a 5 cm diameter falls onto a slab cov-
ered with a thin layer of [oose regolith. (a) A mas-
sive slab of solid (Crimean marble-like) lime-
stone. Fine dry sea sand serves as regolith.
Measurement data for g(v) are shown for 1) a
clean slab, 2) a I mm thick regolith layer, and 3)
for a 3mm thick regolith layer. (b) A concrete
slab of dimensions 7 cm X 48 cm X 48 cm lying on
dense soil. The regolith is dry cement dust. The
data for 1) a clean slab, and for the three values of

I mm, 2 mm, and 3 mm of regolith thickness (the

The relation g(v) cv~ %% indicates that, for v>L*,
U,... < v*'2. The solutions of Eq. (10) agree well with the
experimental data of Ref. 37 for L = 0.7 to 1.0 and the data
of Ref. 18 for L = 0.55; such values of L are obtained for x,
=0.36, p = 0.9 g/cm? E = 10" dyn/cm?, &, = 10 erg/
cm? for the strength of ice, and P, = 10* to 1.5-10® dyn/
cm?and 0.8-10* dyn/cm?, respectively. The solutions of Eq.
(10) with L = 1.25 agree with the approximating expression
q(v) = 0.820 %% (for ice particles with very smooth sur-
faces®’) with an accuracy of $4%.*!

3.1.5. The restitution coefficient of particles covered by a
regolith layer

It is evident from expressions (5) and (6) that, with a
surface regolith present which absorbs part of the impact
energy (AE #0), the collision pattern changes qualitatively:
the restitution coefficient g¢(v) = 0 at low velocities (Stage
A) and, with increasing velocity, g(v) also begins to increase
(Stage B). For a further increase of v, the restitution coeffi-
cient must again decrease (Stage C). An increase of the resti-
tution coefficient with velocity was not observed before in
experiments. In Ref. 45, where a simultaneous increase of
g(v) and v was obtained in a formally engineered discrete
impact model with a parallel combination of an elastic ele-
ment and a dry friction element, it is noted that *“... the model
appears to be doubtful, since... the restitution coefficient in-
creases with increasing velocity, whereas in experiments the
opposite tendency is clearly detected”.

To check the theoretical laws of the type of Egs. (5),
(6), and (7), an experiment was conducted to measure the
restitution coefficient of a steel sphere falling onto a massive
stone slab covered with a thin layer of granulated material.*'
The diameter of the sphere was 5 cm, and its mass 0.5 kg. The
velocity of fall was varied from 1 m/sec to 6 m/sec. See Fig. 6
for the data obtained.

In the case of no regolith, the restitution coefficient of a
sphere is almost independent of velocity. The presence of a
regolith sharply changes the pattern: ¢(v) =0 for v<1 m/
sec, after which g increases sharply. This is found in com-
plete agreement with the first two stages of the model [Eqgs.
(5) and (6)]. The third stage, when the restitution coeffi-
cient again decreases, is also noticed. We show the analytic
expressions for two curves of Fig. 6.

A. A Stone Slab. The regolith layer is 1 mm thick:

g=0 for 0 Cv< 1.5 m/sec (12)
___(1___1%52)1/1 for 1,5 <<uv<5 m/sec (13)

Foadd
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v, m/sec symbols 2, 3, and 4, respectively).

B. A Concrete Slab. The regolith layer is 1 mm thick:

g=0 for 0 <0< 0.8 m/sec (14)

=1L 08 <p<2.5 mrsec (15)
( Uo.zs) e e ©

=0,787v~0> for 2.5 < v<5.5 m/sec - (16)

3.1.6. Discussion of the experiment

All the qualitative features of the model [Egs. (5), (6),
and (7)] were confirmed. We notice that one could expect
theoretically that AE should be proportional to the volume
of the compressed section of regolith, i.e., AE « h 2, where his
the thickness of the regolith layer. The experiment shows
that the dependence AE(h) is weaker and is closer to a linear
one: AE o h. This may be caused by the sweeping out ob-
served in the experiment of part of the regolith from under
the sphere at the moment of impact, which reduces the vol-
ume of the loose material which is deformed. This effect is
probably connected with the air wave which arises during
compression of the regolith.*' The fact of the existence of
such an air wave is also confirmed by Hartmann’s experi-
ments,*® from which it is evident that the scattering of rego-
lith during the impact of a sphere at atmospheric pressure is
three orders of magnitude larger than the ejection of regolith
from the impact zone in a vacuum.

We estimate the thickness of the regolith layer which is
capable of absorbing most of the impact energy. Let the ener-
gy that is used up in deforming the layer be AE = E,7ah?
(E, is the specific energy for deforming the regolith). We
assume here that sweeping out does not occur, and by equat-
ing AE to the kinetic energy (2/3)pma*v?, we obtain
£~(2—")"’u~0.2-10-3 v. (17)

a v/
E, in the experiment reached the significant values of
~5-10" erg/cm’® for cement dust and 2-10® erg/cm> for
sand. These values will evidently be significantly less at low
velocities. For planetary ring particles, assuming p~1 g/
cm?, E, ~ 10° to 10% erg/cm?, and v ~0.1 cm/sec, we obtain
(h/a) ~107* to 103, It follows from this that 10-meter-
size planetary ring particles will become completely inelastic
even for millimeter regolith thicknesses. For a basalt sphere
with p;=~3 g/cm’ and v=5 m/sec falling onto a regolith
with E, ~5-107 erg/cm®, the impact will be practically in-
elastic at (h/a) ~0.1. This agrees with the corresponding
experiment in Ref. 46.

Theoretical consideration and experimental data show
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that smooth particles cannot exist in planetary rings; they
are inevitably covered by finely fragmented material which
was formed during collisions. Here even a thin regolith layer
qualitatively changes the elastic properties of particles: the
restitution coefficient is close to zero at low velocities and
increases with impact velocity.

The energy balance in models for nongravitating parti-
cles that are used in Refs. 18 and 35-38 is stable only for a
decrease of the restitution coefficient with increasing veloc-
ity (see Sec. 5.2) and for a sufficiently large coefficient,
g>0.63, which is difficult to expect with a regolith present.
Therefore, one may draw the conclusion that the smooth
sphere model is unsuitable for planetary ring particles. We
notice that one evidently must also take this conclusion into
account in models for the accretional growth of satellites and
planets, in which the smooth particle approximation is also
used. The effect of a regolith can significantly increase the
efficiency of adhesion of planetesimals and particles in a pro-
tosatellite swarm.

3.2. The collisional destruction of loose particles as a reason
for the existence of rings

In this section, we shall examine theories of the origin of
rings and the limitations which they impose on the mechaui-
cal properties of the particles. The question of the reasons for
the existence of planetary rings is separated into two ques-
tions. 1) Why are the sizes of the particles in rings limited
(or why do rings not gather into individual satellites)? 2) By
what are the outer boundaries of the rings determined?

Below we shall understand “ring” to mean only pri-
mary rings of fairly large particles (see Sec. 2.1.1).

3.2.1. Discussion of the traditional point of view for the region
of primary rings as being in the Roche zone

E. Roche examined the balance of tidal forces and self-
gravitation for a satellite in 1849 and suggested the hypothe-
sis that the rings of Saturn arose as a consequence of the
destruction of a large body by tidal tension near the planet.
H. Jeffreys showed nearly a century later*® that molecular
adhesion is more significant than self-gravitation for small
satellites, and found the additional condition for destruc-
tion:

P, < 1,68 pa2Q®, (18)

where P, is the strength of the material of a satellite with
density p and radius a, and § is the angular velocity of its
orbital revolution. It follows from condition (18) that an icy
body with a strength of 107 dyn/cm? will not be destroyed if
its radius is @ < 200 km. Thus, ring particles having a consid-
erably smaller size cannot be obtained by the tidal destruc-
tion of a large satellite. The catastrophic Roche hypothesis
gave way to the condensation model, according to which the
rings are the remnant of a circumplanetary protosatellite
cloud. Tidal forces began to appear in the role of a factor
which prevented the accretional growth of particles and the
formation of satellites. The balance between the accretional
growth (adhesion) of particles and their destruction by tidal
forces upon reaching a maximum size of ~ 10 m has been
examined in Ref. 19. It is easy to find from condition (18)
that 10-meter-size particles are efficiently destroyed at a ten-
sile rupture strength of the particle material of ~0.01 dyn/
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cm?; this is four to five orders of magnitude lower than the
strength of loose terrestrial snow*® and of granulated lunar
regolith.*® In order to avoid a conclusion about such anoma-
lous mechanical properties for the particles, the hypothesis
is stated in Ref. 19 that particles in rings reach a maximum
size of a kilometer, and observers simply did not detect these
bodies. Then, from condition (18), we obtain a particle
strength of ~ 100 dyn/cm? that is completely natural for
loose snow. But most researchers think that the upper limit
for particle sizes has been reliably determined, and that there
are no hypothetical kilometer-sized satellites in the rings.?

Thus, tidal forces are too weak to destroy even the loos-
est snow particles of Saturn’s rings.

3.2.2. Collisional destruction of particles in tangential
collisions

Let us examine a fundamentally different mechanism
which limits both the sizes of the particles in the rings, and
also the radial region of the existence of the rings themselves.
The collisional destruction of ring particles has been investi-
gated in Refs. 51 and 52. Particle growth will be limited if
there occurs: A) fragmentation of a particle, or B) ejection
of fragmented material beyond the particle’s gravitational
control. Fragmentation of a body is a question of the specific
energy of destruction. Below we shall estimate the value of
&, at which mutual particle collisions are efficient for frag-
menting material. The question is more complicated with
the ejection of material from the particle’s sphere of action.
Large planetesimals collide in a protoplanetary disk with
characteristic velocities v, ~ (Gm/a)'/2.3* These velocities
are very substantial for bodies with sizes of kilometers and
tens of kilometers and lead to strong fragmentation of the
planetesimals right up to catastrophic destruction. Never-
theless, the fragments cannot overcome the gravitation at-
traction of the body; indeed, for this, they must have veloc-
ities larger than the velocity v5, and, notwithstanding the
fragmentation, planetesimals grow during mutual collisions.
Why then can particle collisions in rings limit the accretional
growth of particles? A hypothesis has been suggested in Ref.
51 that two physically different zones exist around a planet:

A. An inner zone of cosmogonically primary rings,
where fragments of particles are ejected into space during a
collision.

B. An outer satellite zone, where destruction is ineffi-
cient; the fragments quickly return to the “mother” parti-
cles. The increased state of destruction of particles in the
rings is connected with the large value of the relative shear
velocities of the particles as a consequence of the differential
revolution of the rings. Here quasi-tangential collisions,
when the semi-major axes of the orbits of the colliding bodies
differ by approximately two particle radii, possess the maxi-
mum velocities. By comparing the shear velocity for the par-
ticles and the escape velocity from their surfaces, we obtain
an expression for the boundary of the rings®'

Qa ~ (G—n}-)l/z;

a
consequently,

R —-a(ﬂ e
< p ’

(19)
here m and M are the masses of the particle and of the planet,
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respectively, and a=1. The Roche zone radius is also de-
scribed by asimilar equation (a = 1.5), which is not surpris-
ing since, in both cases, a balance is considered between the
particle’s self-gravitation and effects connected with the
planet’s gravitation,; tidal forces or shear velocities. Natural-
ly, the numerical coefficients @ must be different.

We now examine the problem of the motions of frag-
ments in a field of colliding particles (and, of course, of the
planet itself) more rigorously, following Ref. 52.

3.2.3. The motion of fragments which are formed during
destruction of particies

We make the following assumptions. 1). Fragments
have negligible mass and do not collide with each other. 2).
After impact, the large particles move in a single plane along
elliptical orbits. 3). The masses of the large particles are
small in comparison with the planet mass. 4). The gravita-
tional fields of the large particles are spherically symmetric.

We write the equations for the dynamics of an individ-
ual fragment in the x,p,z rotating coordinate system, where
the x axis is directed along the radius, the y axis is directed
along the vector of the orbital motion of the particles (see
Fig. 7), and the origin is the center of the planet. We intro-
duce the following units: the unit of length is R, the orbital
radius, the unit of time is 7 /27, where T is the rotation peri-
od of the coordinate system, which coincides with the period
of revolution of a body in an orbit of radius R, and the unit of
mass is the planet mass. The angular velocity of the coordi-
nate system and the gravitational constant are equal to one
in this system of units. The system of equations takes the
form>*

J'c'=2y'+x+a%\p(x, ¥, 2), (20)
y=—2:&+y+%xp(x,y,2), 21
Z"= ‘ai‘lp(xv y’ z)l (22)
4
here
s
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0060000
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FIG. 7. The flying apart of particles which collided in the (x,y,z) rotating
coordinate system at the moment ¢ = 0. The system rotates counterclock-
wise, and the planet is situated down below. a is the radius of a particle,
and 2us-a is the initial distance between the centers of the particles along
the y axis (us = 1 in the figure).
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is the gravitational potential of the planet and of the two
large particles with masses m, and m; r|, r,, and r, are the
distances from a fragment to the planet and the large
particles, which are r, = (x? + 2+ 22)V2, P = (x — x,)?
+ =) +221"% and r=[(x—x)+ (y—p;)?
+ 22]'/2, respectively; x,(¢), y,(¢) and x,(¢), y,(¢) are the
specified coordinates of the centers of the large particles.

We solve the system of Egs. (20), (21), and (22) nu-
merically by means of an implicit second order accuracy
method (see Ref. 55, for example). The difference equations
are available in Ref. 52. An initial uniform network of frag-
ments in the x,y plane is depicted in Fig. 7. The initial veloc-
ity of the fragments corresponds to circular Keplerian mo-
tion. The calculation showed that the trajectories of
individual fragments depend in a very strong way on their
position with respect to the bodies at the initial moment of
time.

The regions of the initial coordinates of fragments that
are captured are shown in Fig. 8.

The different symbols correspond to the different life-
times for a fragment until it contacts the surface of one of the
particles: 1 is up to 1/3 of a revolution, 2 is up to 2/3 of a
revolution, 3 is up to 1 revolution, and 4 is up to 2 revolu-
tions. The first and second symbols refer to fragments that
are captured by the upper particle (the vertical hatching)
and the lower particle (the horizontal hatching), respective-
ly. The following values of the parameter & = R (p/M)'/?
correspond to Figs. 8a through 8f: 0.65, 0.81, 1.05, 1.09,
1.29,and 1.62. Four basic classes of fragments are marked by
the numbers 1,2,3, and 4 in Fig. 8c: rapidly accreting, slowly
accreting, uncaptured leading, and uncaptured lagging, re-
spectively. The initial positions of those fragments which
will again be captured by the large bodies in the course of two
revolutions are marked by the different symbols. The uncap-
tured small particles start their motion from a region where
there are no symbols. The sequence of figures from 8a to 8f
corresponds to decreasing influence of the planet. One may
achieve this by increasing both R, the distance from the plan-
et, and also the mass ratio of the particles to the planet m/M.
One can reduce the dependence on these quantities of the
dynamical pattern of the scattering of fragments to a single
parameter: a = R(p/M)""? see Eq. (19). Figures 8a
through 8f have been obtained for a = 0.65,0.81, 1.05, 1.09,
1.29, and 1.62, respectively. According to the data of Sec.
3.3, a =0.82F 0.05 at the outer boundaries of planetary
rings. The fragments are divided into four classes:

1. Rapidly accreting fragments which returned to the
particles practically at once (in the course of 1/3 of a revolu-
tion), i.e., those which came in contact with their surfaces.
The regions of the initial coordinates of such fragments are
marked by the number 1 in Fig. 8c.

2. Slowly accreting fragments, which are captured by
the particles after more than 1/3 of a revolution. Regions of
such fragments are indicated by the number 2 in Fig. 8c.

3. Uncaptured leading fragments, which entered orbits
with semi-major axes larger than R + a or smaller than
R — a, as a result of which the fragments move away from
the site of the collision faster than the large bodies and are
not captured by them. Circular motion was assumed for the
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large bodies in obtaining Fig. 8. Regions of leading frag-
ments are marked by the number 3 in Fig. 8c.

4. Uncaptured lagging fragments have semi-major axes
of their new orbits in the range from R + a to R — a, and
therefore they lag behind the large particles. The region of
the initial coordinates of these fragments is denoted by the
number 4 in Fig. 8c.

The trajectories of individual fragments are depicted in
Fig. 9a. The initial values of their coordinates have been cho-
sen at the same point in Figs. 8a, 8b, and 8c. Depending on
the parameter a, this test particle successively enters into all
four classes of fragments, from uncaptured lagging to rapid-
ly accreting. The tracks depicted in Fig. 9a are typical for
each class of fragments. The shape of the cloud of fragments
is shown in Fig. 9b over 2/3 of a revolution after the colli-
sion. Later on the cloud will be extended along the orbit.

Let us notice that, besides the four classes of fragments
described, there exists a small number of quasi-periodic
“wanderers”—small particles which, before settling onto
the surfaces of the large bodies, succeed in making several
voyages between the latter, being alternately accelerated
near the faster particle and decelerated near the more distant
and lagging one. The region of the initial coordinates for the
“wanderer” fragments is situated in Fig. 8c on the boundary
between the regions of slowly accreting fragments and un-
captured lagging small particles.

3.2.4. Efiiclency of destroying particles In colllsions

The increase of the percentages of captured fragments
with increasing orbital radius {ora = R (o/M) 131 and time
elapsed after the collision is depicted in Fig. 10. Captures
have practically ceased after two revolutions. By assuming a
conditional criterion of 50% for the efficiency of captures,
one can obtain an upper estimate for the density of large
particles in planetary rings. It is evident from Fig. 10 that,
for a density of 0.9 g/cm?, collisional destruction of particles
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FIG. 9. The motion of fragments in the fields of
the planet and of the particles being destroyed.
(a) Trajectories of an individual fragment at dif-
ferent distances to the planet. The trajectory
numbers 1, 2, 3, and 4 correspond to the values of
the parameter a = 0.81, 1.05, 1.09, and 1.29, re-
spectively. The initial coordinates of the relatively
large bodies are the same. (b) The shape of the
n‘{ = fragment cloud after 2/3 revolution. Parameter
values are @ = 1.05 and us = 1. Leading uncap-

tured particles are marked by “x”’s, and lagging

uncaptured ones by plus signs; the outer symbols
denote fragments that are captued before two rev-
olutions. The dark or light symbols refer to frag-
ments landing on the dark or light particle, re-
spectively.

in the rings of Saturn is inefficient: more than 80% to 90% of
the fragments which are formed are captured in the outer 4
ring. Weshall find for the two distances a and 2a (along the y
axis) between the large particles at the moment when the
scattering of fragments begins that only particles with densi-
ties no more than 0.2 to 0.3 g/cm® are destroyed efficiently.
The results are not changed significantly in a more compli-
cated model, where the fragments move along three-dimen-
sional trajectories; see Figs. 10b and 10d. Allowance for
chaotic velocities (with a magnitude of =0.5Qa) for the
small particles does not significantly increase the capture of
fragments. The efficiency of destruction is increased signifi-
cantly by taking into account changes of the trajectories of
the large particles in the process of collision. The particles
exchange angular momentum during approach and impact
as a consequence of the gravitational and contact interac-
tions. The particle further from the planet, having slower
orbital revolution, is accelerated and goes into a still more
distant orbit (in this lies the meaning of diffusion drifting
apart of planetary rings), and this is accompanied by an in-
crease in the particle’s eccentricity; in the language of trans-
port theory, this means a transfer of energy of orbital revolu-
tion to the energy of chaotic motion. The second particle is
decelerated during approach and its orbital radius is re-
duced. During the exchange of momentum between the par-
ticles, the regions of the captured fragments change in the
original coordinate space approximately the same way as for
a decrease of a or approach to the planet (see Fig. 8).
Thus, a region of intensive collisional destruction of
particles exists near a planet, and the efficiency of such de-
struction decreases sharply as one goes away from the plan-
et; most fragments return to the particles that are destroyed.

3.2.5. The balance between accretional growth and
collislonal destructions?

Destruction during quasi-tangential collisions reduces
the volume of a large particle at the rate
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FIG. 10. The dependence of the percentage of
captured particles on orbital radius and the time
counted. O is the percentage of particles captured
in the first third of a revolution, + is the percen-
tage of particles accreted afier 2/3 of a revolution,
A is the value after one revolution, Xis the value
after 4/3 revolutions, and @ is the percentage ac-
creted after two revolutions. (a) For this variant,
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15 us = 0.5, and the particle densities are 0.9 g/cm’
A 10%°cm and 0.2 g/cm*. This is a two-dimensional case.
4 ol (b) is a three-dimensional variant of the previous

case, and the initial thickness of the cloud of frag-

ments along the z axis equals the radius a of a
body. Only the density of 0.2 g/cm™ is considered,
which corresponds to the lower distance scale.
The values of the dimensionless parameter a are
shown on the upper scale, (¢) us = 1 for this var-
iant, and the particle densities are 0.9 and 0.3 g/
cm’ (the upper and lower curves, respectively).
This is a two-dimensional case. (d) is a three-di-
mensional variant of the previous case for 0.3 g/
cm” density.

4

(/%)_“W‘ﬂc (23)

where 8V is the volume of the layer that is swept off during a
single collision (we assume that a spherical segment with
height H, is swept off; then §¥ = 7aH }), and o, is the tan-
gential collision frequency. For an estimate, we assume

2 30Q 3
2afl 2 = °ﬂ(1+7;), (24)

W0 W, & Wy, @, =

a? a pa
where w, is the total collision frequency, u is the relative
velocity of the particles, o, is the surface density of the disk
of large particles, and v = 2Gm/a. Assuming that a volume
8V =m(Qa)¥/ %, is destroyed in each tangential collision
and allowing for the fact that (d¥ /dt) ~ = 4wa*(da/dt) ",
from Eqgs. (23) and (24) we find

—_ 2
(d—a) z2,331f—€2‘a30a<1+ UZ). (25)
ke

dt u?

\

The large particles increase their radii as a consequence of
adhesions during central collisions and the accretion of

small particles. This process is described by the law*?
2

() ~ jj ( 14 _) , (26)

where o, is the surface density of the layer of accreting parti-
cles. By comparing expressions (25) and (26), we see that
destruction is insignificant for small particles. We write the
balance between accretion and fracturing (da/dt)* = (da/
dt)~ in the form

107 Sov. Phys. Usp. 33 (2), February 1990

15 R, 10°cm

g 2/3
&, =~ 4.4 pQ*a® <—“‘> . (27)
cr

It is easy to notice an analogy between expressions (18)
and (27), especially if one takes into account that (o,/
o, ) ~ 1. It follows from expression (18) that tide destroys a
ten-meter size particle if P,, ~pQ2°a® ~0.01 dyn/cm?; from
expression (27), we find for a ~10 m &, ~pQ’a* ~0.01
erg/cm®. The numbers are similar, but the physics is funda-
mentally different. Condition (27) is considerably “softer”
than condition (19), since the destruction energy depends
on the sizes of the fragments into which a body is broken up
and can be very small, whereas its strength cannot be less
than some minimum value (as a consequence of autohe-
sion). The specific destruction energy for a body that is
broken up into cubic fragments of size r, is written in the
form &, ~ 6y/r,. The free surface energy is y =~ 100 erg/cm”
for monolithic ice; ¥ is several orders of magnitude smaller
for loose snow. Upon fragmentation, monolithic ice pro-
duces many micron-size fragments, which also leads to a
large value for & . If the particles of the rings of Saturn,
which are loose clusters of snow, are fractured into centi-
meter-sized fragments, then the energy &, may be very
small for them. Let us estimate what fraction of their materi-
al particles of different sizes can lose during one collision.
From H, ~(8V /7a)''? and 6V ~m(Qa)*/ &, we find

B ool 2V camti12 —0.16
- (3(7‘,) Ca~ 0,12 —0. for a~3—4m,

~04 for a~10m, (28)
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here &, ~0.01 erg/cm?, and p~0.12 g/cm? is the density of
freshly fallen terrestrial snow.>® It is evident from expres-
sions (28) that ten-meter-size particles are destroyed most
efficiently (for a reduction of &, by several times, H, /a ~ 1,
which indicates simply a catastrophic destruction), whereas
only a part of their material is swept off from smaller parti-
cles. The material of the rings, which is shaken up many
times during continuous fracturings, has, in the process of
billions of years of evolution, evidently attained a state of
maximum looseness. All the same, the existence of sturdier
cores that are protected from fracturing by a thick “snow
cover” is entirely possible.

3.2.6. The size distribution of particies

An unrealistic strength of material is not the only diffi-
culty for the tidal model of ring formation. One also can not
explain the observed spectrum of particle sizes in the frame-
work of this model, in particular, the large number of small
particles. Actually, tidal forces can break up a body into only
two or three parts, which are stable against further destruc-
tion. Just how were the small fragments formed? Also the
tidal model says nothing in connection with a specific law for
the formation of a spectrum of very large particles.

Let us obtain a spectrum of particle sizes in the colli-
sional destruction model. Until now we have actually looked
at the growth and destruction of particles in a two-compo-
nent model, with an accreting medium of surface density o,

and a large particle medium with density o,. Let us now’

assume that the balance (da/dt) * = (da/dt) ~ is fulfilled in
each interval of the distribution of the largest particles. This
means that large particles of approximately a single size ab-
sorb their fraction of accreting particles of all radii, but are
destroyed only in colliding with particles of similar size. It is
difficult for smaller particles to destroy a larger particle,
which effectively controls the parts of space near it (see Fig.
8). It is more likely that the smaller particle will be absorbed
by the larger one. Setting o, ~ (do,/da)Aa in expression
(25) and o, ~ o = const in expression (26), where o is the
total surface density of the rings, and setting expressions
(25) and (26) equal, we obtain the size distribution for the
largest particles [for &, (@) = const]:

do, 5 On g

a xa?, ™ xa®, (29)
where 7 is the surface concentration of particles. This esti-
mate agrees with observations, from which it follows that
dn/da < a—3toa~®inthea > 5 mrange. In the small particle
range (g S 1 m), the ring particle distribution dn/da <a~>?
to @~ >° agrees with the theoretical models of the distribu-
tion of the fragments which are formed as the result of frag-
menting large bodies.>>

Thus, the collisional destruction mechanism limits the

sizes of the particles in planetary rings and determines the
outer boundary of the rings. The model examined above en-
ables one to estimate the mechanical characteristics of the
particles, which are clusters of loose material (of snow in the
case of the rings of Saturn), and also to explain the observed
spectrum of the particle size distribution.

3.3. The azimuthal brightness asymmetry of the rings of
Saturn

Thirty years ago, Camichel® discovered the surprising
phenomenon of azimuthal brightness asymmetry in the A
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ring of Saturn. A number of high-quality observations of
ring asymmetry, both from the earth’ and also from the
“Voyager” interplanetary spacecraft,’” exist at present. To
explain this phenomenon, a number of hypotheses were sug-
gested (see the review in Ref. 34) that are based on assump-
tions of synchronous rotation of particles, of particles with
asymmetric shapes in the form of elongated ellipsoids point-
ed at small angles to their orbits, or of particles with asym-
metric surface albedos. Synchronous rotation of the parti-
cles is unrealistic from the point of view of collisional
dynamics, and a tilted orientation of ellipsoidal bodies is un-
stable. Therefore, the model (see Ref. 57) by which asym-
metry of the rings is connected with spiral waves that are
caused by the gravitational influence of the large particles is
considered the one most preferred. There are no quantitative
estimates of the contribution of this effect to the azimuthal
asymmetry of the rings.

A mechanism for azimuthal brightness asymmetry that
is connected with so fundamental a process for planetary
rings as the collisional fracturing of large loose particles is
considered in Ref. 58. A cloud of fractured material (see Fig.
9b) reflects sunlight well, but large particles diverging after
a collision practically completely obstruct a cloud of small
fragments both from the Sun and from an observer at defi-
nite orbital phase angles (Fig. 11). This is the main factor in
the occurrence of the azimuthal asymmetry of the rings of
Saturn; more dust and fragment clouds are evident in bright
parts of the rings, and there are fewer in their dark parts. Let
us take into account the idea that the collisional breaking up
of large particles is the only source of the small particles and
dust which make the main contribution to ring brightness.
Since the time of the existence of a fragment cloud (up to its
scattering and absorption by large particles) equals a few
hours, as is also the free flight time of a small particle in the
rings, one may assume that most small particles, which de-
termine ring brightness, are grouped in the form of clouds
which were formed in collisions of large bodies.

The azimuthal asymmetry of the rings of Saturn has
been investigated in Ref. 58 for the case when the observer is
on the same line as the Sun. This corresponds well to the case
for terrestrial observations.®” The dispersion of a cloud of
fragments is calculated for a three-dimensional variant, with

FIG. 11. The arrangement of clouds of dust and small particles with re-
spect to the observer and the sun (down below). It is evident that a dust
cloud is obstructed by a large particle (or is projected onto the particle,
which also indicates no contribution to ring brightness) in the regions of
brightness minimum. The occultation of clouds is small in regions of max-
imum brightness.
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allowance for the thickness of the cloud of fragments along
the z axis (see Sec. 3.2).

Since there are clouds at different stages of dispersion
and, consequently, with different contributions to asymme-
try in each region of the rings, we consider several cloud
shapes with times of development from time zero to one re-
volution. The area projected onto a plane perpendicular to
the Saturn-Sun (observer) line is found for each shape of a
cloud of fragments. The plane is divided into squares 40 cm
on a side, which specifies the effective size of a single frag-
ment. The projected area decreases for eclipses of the small
particles by each other and by the large bodies. The project-
ed area of the large particles is not allowed for, since these
bodies create only a symmetric brightness background. The
projections of the clouds at different stages of development
are added up for each value of the angle. The dependences
obtained for the projected area on the orbital azimuthal an-
gle and on the other model parameters are compared with
observations, since the projected area is proportional to opti-
cal thickness and, consequently, it also determines the
brightness of the rings.

Theoretical curves for the projected areas of clouds are
shown in Fig. 12. The form of a curve depends very strongly
on the density of large particles, i.e., on the capability of the
latter to disperse a cloud of small fragments. The curves for
particles with densities about 0.15 g/cm? (for an initial dis-
tance of 2a between the particle centers along the y axis in
Fig. 12) or about 0.1 g/cm® (for a distance of 1.5a between
the particle centers) agree best with the observations.” Here
the cloud thickness along the z axis was assumed equal to a,
the number of fragments in a single cloud was ~ 1500, and
the large particles changed their velocities during the colli-
sion; they received the additional (to circular) velocities
AV, =0.250q and AV, = 0.25Qa (for the more distant
particle; for the nearer one, the additional velocities are neg-
ative).

The theory gives the correct positions of minimum and
maximum brightness (65°and 160°) and the observed differ-
ence of the steepness of the wings (a curve increases from
minimum more steeply in the region of small angles), and
also the presence of a plateau (or minimum ) near 80° to 85°
(see Fig. 12b). It is evident from Fig. 12 that, in summing
the contributions from clouds with a “long lifetime” (of the
order of one revolution), the brightness minimum is shifted

from 60° to 85°. The fact that the observed angles of mini-
mum are close to 60° indicates a lifetime for a cloud of frag-
ments of about half a revolution, after which the cloud is
dispersed or it becomes transparent because of adhesion of
the fragments to each other. The increase of brightness
asymmetry of the rings with decreasing angle of inclination
is among the important observational facts.” Calculation
also gives this dependence of asymmetry on the angle of in-
clination; see Fig. 12, where cases a and b correspond to the
inclination angles 11.5° and 16.5°, and moreover, the asym-
metry is larger in Fig. 12a. It is also shown in Ref. 58 that the
contribution to brightness asymmetry from spiral waves
caused by the gravitational influence of large particles is neg-
ligibly small.

The model of brightness asymmetry considered above
shows how the external integral characteristics of the rings
are determined by the elementary processes of the collisions
of individual particles. A study of azimuthal asymmetry en-
ables one to determine the ring particle density with high
reliability and to calculate the coefficient in Eq. (19) which
connects particle density and the outer radius of planetary
rings: a = 0.77 t0 0.88.

The further development of theoretical models and the
accumulation of ground-based and satellite observations of
the phenomenon of azimuthal brightness asymmetry of the
rings of Saturn can serve as a new, powerful method for the
remote investigation of planetary rings, the study of many
physical characteristics of the particles themselves and of
the processes of their interactions.

4. THE HYDRODYNAMICS OF LARGE PARTICLES IN
PLANETARY RINGS

One can understand the reasons for the formation of
rings and azimuthal brightness variability by examining the
dynamics of individual particles. But the layering of the
rings of Saturn and the occurrence of other spatial structures
of planetary rings are caused by collective processes, which
one naturally studies in the framework of a hydrodynamical
model where the *‘gas™ of colliding large particles is de-
scribed in the same way as an ordinary molecular gas. The
results of Section 3 show that one can take a practically com-
pletely inelastic loose sphere of meter dimensions as a typical
ring particle. Here one must take into account the gravita-
tional fields of such particles, which play an important role
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FIG. 12. Theoretical curves for the projected area of fragment
clouds (in units of cells of the plane of projection).*” Fig. 12a
corresponds to a ring inclination of 11°5, and Fig. 12b to a ring
inclination of 16°5. The large particle density is 0.15 g/cm®. The
times of evolution of the fragment clouds in fractions of a revolu-
tion are indicated near the curves. The small circles and plus
signs correspond to Earth-based observations of the rings of Sat-
urn through different filters.”

120 160 4
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in the processes of collisions and fracturing of large bodies,
and also the motions of the small fragments. The fact that the
particles undergo continuous fragmentation and adhesion
turns out to be insignificant for constructing the hydrody-
namics, since the sum of the masses of particles of all sorts
turns out to be constant.”® One may not talk about the appli-
cability of hydrodynamics to planetary rings without indi-
cating the characteristic scales and times for the processes
being described; these must significantly exceed the free
flight length and time, respectively, for a particle. These in-
equalities are fulfilled for the large-scale processes of interest
to us; this will be shown in Sec. 5.4.

4.1.The transport equations for rotating media

To construct the hydrodynamics for planetary rings,
one must obtain a system of moment equations from the
kinetic equation for inelastic gravitating particles and close
it by means of calculating the transport coefficients (for vis-
cosity and thermal conductivity) by the methods of kinetic
theory.>-* Following Ref. 15, we first construct the hydro-
dynamics of a disk of gravitating elastic particles which ro-
tates like a rigid body, and then we generalize it for the case
of a differentially rotating disk of inelastic particles.

4.1.1. Obtaining the moment equations
The Lagrangian of a particle rotating in a potential field
g has the form®*
L= (v + W) —my, (30)

where w is the velocity of the non-inertial reference system
A, and v is the particle’s velocity with respect to 4. We write
the equation of motion:

dv ow / w?

T—-——(?T-—V(lllg——Q-)—{-[VrOtW]. 1)
Introducing the notations,

ow w?

o=~ — V(v —%). (32)

h=rotw, (33)
we obtain

& et |vh) (34)

o )

The kinetic equation for the system under consideration will
take the form

LivLpet+ vl =g (35)

where ¢ is the collision integral. The kinetic equation (35) is
analogous to the corresponding equation for a charged parti-
cle in an electromagnetic field. This analogy®® enables one to
apply the methods of plasma physics to gravitating me-
dia.®”%* In the usual manner (see Ref. 63), we obtain the
transport equations from Eq. (35) (the chaotic velocity
v, = v — V hasbeen introduced, and T'is measured in energy
units):

on .
o -+ div (nV) =0,

+ (v rotw])' , (36)
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3 _dr . ) v,
—-n— divV = —divq— my, —
9 dt +p vq Tk an »

where g is the thermal flux vector and 7, is the viscous stress

tensor;

d_ 2 emn N
dt_a:+(w)’ q=mni —-vi >,

P ” (37)
T, = mn \vl[vlk — '?l 6ik> s

p=nT, n= S v,

I (. o0 t v 0) (38)
V=—j vi® dv, T=—5m—f‘ dv.
n n 3

All notations are standard; the angular brackets denote aver-
aging over a distribution function.

4.1.2. The integro-differential equation for a non-equiifbrium
correction to a distribution function

We represent the kinetic equation in the form
~ l ~
(Df) = —(KP), (39)

where ¢ is a formal small parameter. We seek a distribution
function in the form

F= O 4 fV 4 g?f® (40)

With allowance for Eq. (40), from Eq. (39) we obtain the
following series of approximations:

Kp® =0, (41)
OnN° = (Rp®

(42)

If Eq. (41) satisfies a Maxwellian distribution function,
then one can construct a transport theory by the Chapman-
Enskog method.**%*%! We go over in Eq. (35) to the chaotic
velocity:*?

_gli + v Vf — [?(;lt +V (1pg— —“2'1) +[rotw, V] + %] Vo f

v, N
—_—— Uy o + [vyrotwl Vo f =C.

Jx, ov,
(43)
We write Eq. (43) in a form analogous to Eq. (39):
(Dfy = € — v, ot w] V. (44)

The right-hand side of Eq. (44) equals zero if f'” is a Max-
wellian distribution:

0 ) T 45)
f( =n (2:17‘) ¢ ’
or
2
1n f© =1nn_%1nj‘_%l+const. (46)

In the zeroth order approximation, the system of equations
has the form

dn

o =T

[\ 1

o = (47
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T~ 27w,
dt 3

Substituting Eq. (45) into the left-hand side of Eq. (44),
with allowance for Eqs. (46) and (47), and after symmetri-
zation, we obtain

2
DH© =f [ (”_;VTL — %) vVinT
m Vf 6 W
+57T Ve — — | W | (48)
where 5
_ Ve 2 .
W = 3%, + ™ ———3—6,,;d1vV (49)

is the shear velocity tensor. We transform the right-hand
side of Eq. (44). We represent a nonequilibrium distribution
function in the form

F=F (1+4),

After linearization, the right-hand side of Eq. (44) will take
the form

C(W) — F v, rot w] Vo, .

P 1L (50)

(51)

The linearity of the equation for the correction and consider-
ations of tensor invariance enable one to seek a solution in
the form

2

b= ¥ (V) 0y + Pir <vnvlk — %‘&w) . (52)
The first vector term corresponds to the perturbing action of
the temperature gradient, and the tensor term is connected
with the shear velocity tensor W,,. The components Vin T
and W, are linearly independent, which enables one to cal-
culate ¥, and ¢, separately. One can find a detailed descrip-
tion of the solution in Refs. 62 and 63, therefore we shall
show only a summary of the results. We notice that, for an
expansion of the integral equations in Sonin polynomials, an
infinite system of algebraic equations is obtained, which we
truncate after the first two terms.

4.1.3. Summary of the resulits

In the general case, viscosity is expressed by a tensor of
the fourth rank which has only five independent compo-
nents.®! We introduce the following tensors (x,y,z—1,2,3;
rot W|z):**

-1 -
Y (Wer + W) 0 0
Wolk = 1 ’
0 5 WatW,) 0
— 0 0 2z__
. =
> (W, — v, W,y 0
Wltk = 1
Wy 7 Wy —Wy) 0
— 0 0 0_
0 0 w,,
W, =1 0 0 W .
alk gz | (53)
WZX WZ ID
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W,y ;(W“—WW) 0
Waik = 1 ,
—2— (Wxx - Wyy) ny 0
_ 0 0 0_
0o 0 —w,
Wdik = 0 0 sz
—W,, W, 0

Then one can write the viscosity tensor in the following
form:

e =— N Woir — 0, Wi — ),.Woi + 0Wos + Wi, (54)

where
My = %nth, =1 (2%), = nTt, ”x2A+ b )
o=y (20), M= Tt L (55)
A=xt+gt+s, x=|rotw]|i,
a =P b =5 But Bubor — B
o= B4+ Wb =,
_ . (56)
g= g—,(ﬁh + 2881B1o + E¥Poo),
$ = 5 Buib— Brbu)®
The thermal flux vector is written in the form
q=— aTt, [—:—:-A“T i a'xZAJ’r b AT x(xZAJ'Fc')‘[hIATIV ,
(57)

where 4, is the unit vector along rot w, and

’ 5 ’ 5 1
7} =—2—U-111 b =?—e—2-022 (anau_ alzam),
c'=é._l_(a2 +ea a ) '—Laz 2 B2y
2 g2 v 22 n%2)y & = > (a2, + 20aya,, + ),
(58)
4 1 , , ,
§ = g G e, A =sp gy, 0=T

The matrix coefficients 8, and ;. depend on the form of
the collision integral. For the Landau integral, if one adopts
the expression

U3

te L

=t (59)
4V 31 AG*m?n

as the definition of free flight time, where A is the Coulomb
logarithm (A ~ 1 for planetary rings), then the matrices 3,
and a,, coincide with the corresponding matrices that have
been calculated in plasma transport theory:%2%3

0 0 0 .-
ap=-L{0 1 31 - i
3\0 3/4 45/16 -

6 (1 34 (60)
Bue = < (3/4 205/48 ) .
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Then, for the numerical coefficients of Eqs. (56) and
(58), we obtain

a=12, b=223,
a’=20, b'=2645,

c=2,38, g=4,05, s=2,33, b/s=0,96,
¢'=4,65 g’=2,T0,

s’=0,677, b’/s"=3,906.

Thereby, we expressed 7, and ¢ in terms of the macroscopic
variables n, ¥, and T and closed the system of transport
equations (36). The system of transport equations that has
been obtained is analogous to the equations for a plasma,®?
and the linear oscillations of rotating disks of elastic parti-
cles are similar to the normal modes of a plasma in an elec-
tromagnetic field.*

4.1.4. The generalization of transport theory to the case of
differentially rotating disks of inelastic particles

We write a kinetic equation for a differentially rotating
medium of inelastic particles (in cylindrical coordinates; see
Refs. 70 and 71)

O 4 O L (% o) O _"@__"__”ﬂ_a_>
R +Q’)av,+< )1

+[20vq,au—"—'—(2:z+ra—r)v, Xf— Cn (o P

(61)
where /C\'N is the collision integral with allowance for inelas-
ticity. Trulsen’? obtained C,, for the case of nongravitating
inelastic spheres, and Shukhman obtained it for spheres
with spin and finite dimensions. We obtain the following
series of approximations to calculate the distribution func-
tion for particles in the case of a medium with an arbitrary
collision frequency; see Egs. (41) and (42):

[29%61 — (29 +r —) v ]f“’) Cy (1, f™ =0,
r (62)
b+ [Qqu,a—v— — (29 +r __) o, - ] f(l)
— C fu) fw))

f(o) f(l)) —

(63)

The solution of Eq. (62) is unknown. It has been shown in
Refs. 35 and 72 that the distribution function corresponding
to the solution of Eq. (62) is anisotropic [in the maximally
anisotropic case, the ratios of the thermal velocity compo-
nents are:>> (v,,,/v,,) =0.5, and (v|,/v,,) = 0.65]. This
poses serious difficulties for the use of the Chapman-Enskog
method.

The Gaussian function is used in Ref. 35 as an aniso-
tropic distribution function. As a result, the scalar energy
equation was transformed into a tensor equation. Closure of
such a system of transport equations is carried out in Ref. 35
by dropping a tensor of the third rank which, in the isotropic
case, corresponds to the thermal flux vector, from the energy
equation. As will be shown below, the thermal flux plays an
important role in the stability of rings; therefore, such a sim-
plification is undesirable. On the other hand, the system of
equations which was obtained remains very cumbersome
and of little use for analyzing collective processes in rings.
For example, the conversion of the scalar energy equation to
a tensor equation increases the number of terms in the dis-
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persion equation by 30 times, and it is already fairly compli-
cated (see Paragraph 4.2.2).

Numerous investigations of the dynamics of
rings''~15:183%:3738 and of a protoplanetary disk*”** have not
revealed a single collective process connected with the an-
isotropy of thermal velocities. The desire arises to obtain a
system of transport equations that is suitable for use by neg-
lecting the anisotropy of the distribution function. Let us
consider the conditions under which one may assume a dis-
tribution function to be isotropic. It is obvious that the resti-
tution coefficient for the snow particles of the rings of Saturn
is close to zero, and the gravitational interactions of the par-
ticles perform the role of elastic collisions. If one does not
take into account the influence of the planet on the gravita-
tional cross sections of the particles, then one can show that
the frequency of gravitational collisions will be several times
higher than the frequency of contact collisions.”"’* Conse-
g\uently, onemay write: C N = ol G + C.and CG >C. , where
Cs is the integral of elastic collisions (gravitational colli-
sions for planetary rings), and C. is the integral of inelastic
interactions (contact ones for the rings).

Two variants are given for an equilibrium Maxwell dis-
tribution function:

I The case of frequent quasielastic collisions. Qt. <1
and C; > C.. A typical example is a gaseous disk with par-
tially inelastic collisions of molecules (protoplanetary or
protosatellite clouds). In this case, Eq. (62) isreduced to the
classical form: C5 = 0.

I The case of slight differential rotation: rQ)’ €2Q). Let
us examine this variant in more detail, since one can also
obtain Case I from it, in the limit Q. €1 by transferring the
first term of Eq. (62) from the zeroth order approximation
to the first order approximation, to Eq. (63), which removes
the limitation on the degree of differential rotation.

Setting rQ}’ €28} and C5 > C., we transfer the terms
which correspond to differential rotation and inelastic colli-
sions from the zeroth order approximation to the first order.
We obtain the following series of approximations:

(zszvq, 2 oqy -2 )f“” o (¥, /) =0 (64)
bfo + (29% 2O oo, ) R (, )
~Cs (f“”, FY=C, (7, F) =0 (65)

A Maxwellian distribution function will be the solution of
Eq. (64) [the first term of Eq. (64) equals zero for any
isotropic functions f(v,%v,)]). We use the Chapman-Ens-
kog method to solve Egs. (64) and (65), allowing for the
fact that energy is not conserved in a collision of inelastic
particles. Therefore a nonzero third moment from the inte-
gral of collisions of inelastic particles appears in the moment
equation for energy:

oF- — ‘- mv?

This same term remains also in the zeroth order approxima-
tion energy equation [see Eq. (47)].

In deriving from Eq. (65) the equation for the correc-
tion to the steady-state distribution function, we shall obtain
not only vector and tensor terms as before [see Eq. (48)],
but also scalar terms because of the appearance in Eq. (65)
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of the term C. (£, £©) and also due to the appearance in
Eq. (47) for the energy of the system of a term with ¢E —.
The general form of the correction to the distribution func-
tion will have the following appearance:

23
Y = Yo + Vo + Yie <quu¢ — %‘M) . (66)
Since the terms in Eq. (66) are linearly independent, then,
for each form of the correction (scalar, vector, or tensor),
we obtain separate equations that are solvable independent-
ly. The vector and tensor corrections are calculated the same
way as before. The integral equation for the scalar correction
is anaiogous to the equation for the correction determined by
the transfer of energy between the components in a nonequi-
librium plasma.®' Just as in plasma theory, it is not necessary
10 solve this equation, since the scalar correction caused by
the inelasticity of the collisions does not affect the expression
for the vector and tensor corrections which determine the
coefficients of viscosity and thermal conductivity. Thus, the
transport coefficients for a differentially rotating disk of
gravitating particles are specific of Eqs. (53) through (60).

4.2. The linear oscillations of differentially rotating disks of
largeinelastic particles

In this section we obtain a general dispersion equation
for the linear oscillations of disk systems with inelastic parti-
cle collisions.

4.2.1. The basic equations

We write in a cylindrical coordinate system a system of
transport equations with the calculated 7, and g.

Of the five viscosity coefficients, only three remain in
the two-dimensional case of interest to us: 7,, 7,, and 7;. We
neglect terms with 7, viscosity coefficients, since, upon per-
turbation, they give terms that are small in comparison with
the ¥, and ¥, terms. The 7, coefficient actually gives
only a factor 4/3 for the term with viscosity 7, in the equa-
tion for the radial velocity component. In connection with
differential rotation, the shear viscosity coefficient in the
equations of motion cannot even be removed from behind
the sign of a space derivative and must undergo perturbation
along with the other terms; this is a consequence of its depen-
dence on the temperature T and density o.

Terms connected with the perturbation of £ ~ and of the
viscosity coefficient in the term E + = v(rQ}')?, which de-
scribes the transfer of energy of orbital revolution to the en-
ergy of chaotic motion, are added to the energy equation.

The system of transport equations for planetary rings
will take the form

—+ ( V)+—‘(0Vw)—N+(° T)—N (o, T), (67)
W, 3 d v, 10 Mg
— 4V, 2y, Ly e o 08
at + or v +vq’r6 r o or or
4 31 9 4 6v0(6vr 1V
+3v6rr6r r+30 or or Zr)
av,
— 2124 w)
30 r or ap
419V, 1 a 1 9V,
4 ———[va(__ i—“’)], (68)
3 O(p re og r dg 0
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(70)

here v = 7,/0, ¥ is the coefficient of thermal conductivity
[see Eq. (57)], 0 = fnmdzis the surface density of the disk,
p=0T=0ov}/3, and 9 is the gravitational potential. The
fact that the density of the disk can change not only during
diffusion motions of disk particles but also during external
(or non-diffusion) flows of material, for example during ac-
cretion of material from a gas and dust cloud at an early
stage, is allowed for in the equation of continuity, i.e., the
possibility of mass exchange with some reservoir of material
is assumed for the disk: the function N * (,T ) describes an
increase and N ~ (0,7 ) a decrease of the mass of the disk.

4.2.2. A dispersion equation for linear oscillations

Let us write for a perturbation of the form exp( — iwt
+ tkr + img) a system of linearized transport equations in
the Wenzel-Kramers-Brillouin approximation (the wave-
length is considerably shorter than the characteristic scales
of the disk: A <€ror kr>1):

e LNV GN=\~ , [Nt ON-\ A
imQ ikoV, = — 2
(v + im) 0 + tkoyV ( a0,  do, ) o+ ( ar, o, 7.

[ 2000 — ket & b 4 vy,
[ 3

(v + imQ) Vy + 2"—; U, = — vk — ikaT — ikBo,

(v + imQ)V, —20V, =

%(\’ 1+ imQ) T 4 ikcV, = — gt —AEo6 — AErT — ikule,
(71)
where
av 1 dvo
= e—_—— Q' y = ——————n — Q, N
@ aT, ( r ) ﬁ Gy 00, ( r )
p=2v(—rQ), AE, = () (7
G \ 9ao da,
dE~ " JE* :
AE; = — = =T,.
=%, " orn, Y o e ‘

The amplitudes of perturbed quantities are marked by “A”.
E™* = E ~ in a steady state, and also dynamic equilibrium
exists along the z (the thickness of the disk A=c/Q) and r
coordinates. By setting the determinant of the system of Eqgs.
(71) equal to zero, we shall obtain the dispersion equation
for the linear oscillations of a differentially rotating disk of
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inelastic particles (without allowance for non-diffusion
flows,i.e, N* =N~ =0):

(o imQF -+ (¢ 4 im@P [ (0 -+ AE)) 4 i)
(o MO [V - 0 vk (ABr k) -+ = o

+ (v + imQ) [vk2 k2c®—2nGagk)

(5
3
+2 ( VRS - @2 (XK + AEr)

° 4 __-22 _32 __"_22 £36.9Q ]
+ S apvk + S}k 2Qa 3 k0, AE, 32 ku-+R%B-2Q0,
+ % [(ovkt 4 VE*AET + Rlop) (k2 — 2nGoyk)

+ Tk (1B-2Q — PBu — AEqv) + #2042Q (AErf — AEs)]=0,

(73)
where

o = 3 k2 — 2nGoyk + %2,

w= k ¢t — 2nGoyk 1 #2.

Aninvestigation of Eq. (73) will be carried out in the follow-
ing section.

5.COLLECTIVE INSTABILITIES AND STRUCTURES INTHE
RINGS OF PLANETS

5.1.The physics of instabllities
5.1.1. Gravitational instabiiity

If one neglects the dissipative effects in ring dynamics,
then the dispersion Eq. (73) is converted to the equation for
Jeans (gravitational) oscillations:*?

wp = %k"’c2 — InGoyk + %2 (74)

Jeans instability sets in for w3 <0. Let us examine the
physics of this instability and the condition for stability. Let
the original disk be infinitely thin. We choose one of the rings
into which we broke up the originally uniform disk of parti-
cles. Let a test particle of unit mass be located at a distance §
from the closest point of the ring with width d, and more-
over, §>d. Then one can consider the ring as an infinitely
thin gravitating filament whose potential is ¢ ~In(1/6), and
the attractive force for the test particle is: d¥/36 ~ 1/6 —
as § 0. Obviously, the last condition can be fulfilled only
for an infinitely narrow ring, d -0, which is, in principle,
allowed by the approximation of an infinitely thin disk.
However, if the disk has the original thickness A, then
(dy/d8) ..x ~ 1/h; the thicker the disk, the larger is the de-
stabilizing force. Consequently, the dimensionless destabi-
lizing factor is r/h, where r is the radius of the disk, and the
dimensionless stabilizing factor is M /m,, where M and m,
are the masses of the central body and of the disk, respective-
ly. The meaning of the stabilizing factor M /m, lies in the
fact that, as it increases, the relative influence of the central
body also increases. When the force of attraction of the parti-
cles towards the central mass exceeds the force of the parti-
cles’ mutual attraction, the system is stable for the same rea-
son which ensures that a point revolving in a central field is
stable (here we do not allow for other interactions besides
gravitational). In other words, a system turns out to be un-
stable if the destabilizing factor exceeds the stabilizing fac-
tor, i.e.,
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The parameter Q is called the Toomre margin coefficient.
The condition of disk instability in the form of expressions
(75) is valid for very short wavelength perturbations with
wavelength 4 ~4. In this case, the disk is broken up into
rings with widths of d~A. But if A ~d > A, then it follows
from our arguments that one must replace / by d in condi-
tion (75); the larger the widths of the rings, the more diffi-
cult it is to fulfill the instability criterion Q(d)
= (M/m,)(d/r) <1. According to the results of process-
ing the “Voyager-2" data, Q=2 for the Bring of Saturn, i.e.,
the B ring is near the limit of gravitational instability. This
result has been obtained by assuming monolithic ring parti-
cles. High porosity of these particles ( ~85%; see Sec. 2) can
make @ significantly larger. Nevertheless, the existence in
the B ring of hyperfine structure as the result of the develop-
ment of gravitational instability is entirely possible. Later on
we shall examine dissipative instabilities of rings that are
stable according to Jeans.

5.1.2. Thermal instability

The chaotic motion of the particles of a ring in a rotat-
ing reference system is analogous to the motion of molecules
in a gas. The chaotic motion of the particles is maintained by
mutual gravitational perturbations; the energy of orbital re-
volution of a viscous, differentially rotating disk is converted
into chaotic, “thermal” energy. The inelasticity of the parti-
cles does not permit the chaotic velocities to increase with-
out limit. The balance between the inflow and outflow of the
energy of chaotic motion can, as for any balance, turn out to
be unstable. For example, if during cooling of a certain sec-
tion of the rings, the energy influx (depending on the tem-
perature of the medium ) increases, then the rings will return
to the original temperature; if the same energy influx de-
creases, then the rings abruptly cool off and will go over to a
lower energy state. We shall examine other dissipative insta-
bilities, assuming that there is no thermal instability of the
disk.

5.1.3. Negative diffusion instability

Let us create a sinusoidal surface density perturbation
in the disk: o ~0, cos kx. Let us examine Region 1 with an
increased density o, (for 0 <x < x,) and Region 2 with de-
creased density o, (x, <x < x,). The density is unchanged on
the boundary at the point x,,. The following amount of mate-
rial flows across a unit length of the boundary separating
Regions 1 and 2: v, — o,v,, where v, and v, are the diffu-
sion velocities, which are proportional to the mean thermal
velocities of the particles in Regions 1 and 2, respectively.
Instability sets in when the particle density in Region 1 is
increased due to migration of particles from Region 2, i.e.,
o0, — 0,0, < 0. Since o, > 05, then the condition for insta-
bility is fulfilled, for example, when v~0o® ~ ', where a <0.
The last condition indicates that the particle velocity must
decrease with increasing density of the disk. This is possible
in the case of inelastic particles when the frequency of colli-
sions increases with increasing density of the medium and
the outflow of kinetic energy increases; the chaotic velocities
of the particles decreases. The boundary between Regions 1
and 2 corresponds to the inflection point x,, of the function
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o(x), ie., at x,, d%0(x)/x* = 0. 3%0/9x* <0 in Region 1,
and d%0/9x*>0 in Region 2. It follows from the diffusion
equation do/dt = D3’0/3x* that if the diffusion coefficient
is negative (D <0) in both regions, the density will increase
in Region 1 (do/d¢ > 0) and will decrease in Region 2 (do,/
dt <0). Now it is understood why the instability examined
above has the name “negative diffusion instability”. By rep-
resenting modulation of the density o in the form of a sinu-
soidal wave with an amplitude that increases exponentially
with time o ~o04e” cos kx, we shall obtain y =k ?|D | from
the diffusion equation, i.e., the instability increment turns
out to be a maximum for short wavelengths.

5.1.4. Accretion instability

The instabilities examined above lead to the growth of
short wavelength waves. The large-scale structure of the
rings can arise as the result of accretion instability connected
with the accretion of “‘external” material, for example, with
the flow of fine dust through the ring system because of aero-
dynamic braking or interaction with solar radiation (the
Poynting-Robertson effect). The mechanism of this instabil-
ity is related to the mechanism for forming sand-hills in the
desert: a flow of particles moving towards the planet (along
the plane of the rings) ““squeezes” into annular fluctuations
with high densities and, consequently, also high absorbing
capability. Accretion instability generates large-scale layer-
ing of the rings, since small-scale fluctuations do not succeed
in gathering into a “sand-hill” as a consequence of rapid
diffusion spreading over a time #~A 2. One may notice an
analogy between accretion instability and Tiiring instability
in diffusion systems with chemical reactions.”

5.1.5. Ellipse instability

All the instabilties listed above generate ring structures
possessing circular symmetry. Ellipse instability arising in a
symmetric disk is an example of the spontaneous disruption
of symmetry. In order to understand the physics of this in-
stability, let us examine an individual test particle in a slight-
ly elliptical orbit in a continuous circular disk. Moving away
from the planet, the particle enters an environment of parti-
cles with large orbital velocities. Interacting with them, the
test particle will be accelerated and tend to move even
further from the planet at apocenter. On the other hand, in
approaching the planet, the test particle will be decelerated
by the slower disk particles and will approach the planet
even more. As a result of such an alternating accelerating,
then decelerating action, the orbit of the particle becomes
more and more elliptical as long as inelastic collisions do not
limit this process.

One more similar example is the classical Laplace-Max-
well problem ' of the stability of an absolute rigid ring re-
volving around a planet. Each element of the ring is balanced
by centrifugal and gravitational forces, but the connection
between the elements of the ring proves to be fatal: the ring is
spontaneously shifted out of its circular orbit which, in a
linear approximation, corresponds to a transition to an ellip-
tical orbit. Why does this occur? In the displacement of the
ring, all its parts continue to revolve with the same velocity.
Therefore, the force of gravity starts to dominate for the
parts of the ring closer to the planet, and centrifugal force
dominates for the distant parts of the ring. The ring is shifted
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more and more, just as is the orbit of the test particle in the
disk, only the elements of the ring are accelerated and decel-
erated not by an external medium but by each other.

A fluctuation in the form of an elliptical ringlet in a disk
of inelastic particles also behaves in a similar manner, in-
creasing its eccentricity. The physics of such ellipse instabil-
ity in planetary rings is clear from what has been described
above; it is easier for a particle to increase its eccentricity not
by itself, but in a group with other particles by creating an
elliptical ring. The elliptical ringlets of Uranus and Saturn
evidently serve as examples of ellipse instability.

5.2. Diffusion and quasi-secular instabilities

Let us examine radial (m = 0) oscillations of a disk
with no external flows of material (N 7T =N~ =0).

5.2.1. Establishment of criteria for energy and dissipative
instabilities

For a disk that is stable according to Jeans and for low
frequency oscillations y ~ vk * €}, we obtain the following
dispersion equation:

w; 9 (33 o) (xk* -+ AE7) + vi? (-2- kBt — QRGOOk\)
4 2 2
+ R0 — = Fo A, — L R — - 2900]
+ % [(kad + VB2 AE 14 krap) (K2 —2nGes k)
0okt (1B -2Q —Pu—ALEsv)
+ K0, -2Q (AEsp — AEqgn) | = 0. (76)

A negative value of the free term in Eq. (76) will be the
general criterion of instability. For long wavelength waves
kh <1, Eq. (76) has two roots which describe the dynamics
of the temperature perturbations, ¥y =~ — (2/3)AE, and the
dynamics of the diffusion oscillations:

v~ — Dg2, (77)
where
AE
D:()’O (ﬁ—a U\ 'ng
\ AET’} n?

here D is the diffusion coefficient. It follows from Refs. 13
and 14 that the disk loses stability when D passes through the
point O and becomes negative. We shall show from the gen-
eral Eq. (76) that this is not so.

3.2.1-1. The case of small positive diffusion. If D—0
then, from Eq. (76), we obtain for kh <1

v =—2 (P — fanGoyh), (78)
where
v 2(rQ)?
= l + T T
f 3T, AE,
F=f+i% L22(—rQ) 2 dvgy ()2
vet o, AE; ¢ B0, AE;
_ 1 6E‘00 . aE+Go
v ( o ) . (79)
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Equation (78) describes a quasi-secular instability with
maximally rapidly increasing wavelengths A,~c*/Go, (if
F~1and f~1). Itis easy to show from Eq. (76) that this
instability sets in for a positive diffusion coefficient when
0<D<v(27Goy/xc)*f*/F.

3.2.1-2. The case of negative diffusion. If D <0, then
diffusion instability sets in, for which the criterion has been
determinedin Refs. 13 and 14in the form d(vo)/do < 0. The
characteristic scale for layering of a disk was not determined
in Refs. 13 and 14. The limit of diffusion instability in a
region of short wavelength waves and the length of maximal-
ly unstable waves were found in Refs. 15. We find from Eq.
(76) that the term k Svi/c? will always be dominant for the
shortest wavelength waves; this stabilizes the diffusion insta-
bility at khA~1 or A~27h."" This is easy to see from the
following estimates:

TvIQ4L2
e

0 - 20k (AErP — AEqat) ~ (30)

From Sec. 4.1, we obtain the Eichen relation in the re-
gion Q. ~1: ¥~5v; from this, the ‘“‘stabilizing” term is
yvc?k © ~512¢*k 6. This term is comparable with the “unsta-
ble” term at k~ (1/h) ~ (§)/c). Stabilization of diffusion
instability at kh ~ 1 indicates that the increment of instabil-
ity is a maximum for the wavelengths A 2 27 or A ~ 1043

5.2.2. The diffusion instabiiity criterion for non-gravitating
smooth particles

We write the energy balance equation for smooth parti-
cles:**

06
1—g T (81)
The criterion of thermal instability takes the form
d(1 — g9 dg .
— >0, or ™ < 0. (82)
Negative diffusion instability sets in if 7> 7_,, where
7 vt 3(l—g9) %
o= [ ] (83)

If one uses the experimental data of Ref. 18 as a basis,
then g« v~ %, and we find 7, =~0.5 from Eq. (83). The
velocity dispersion is determined from the intersection point
of Eq. (81) and the experimental function ¢(v), and is close
to 0.5 mm/sec. The experimental data obtained in Ref. 37
correspond to smaller 7., and considerably larger (clearly
unrealistic) » values. But, as follows from the results of Sec.
3.1, the restitution coefficient for the snow particles of the
rings of Saturn is nearly zero; consequently, Eq. (81) is un-
feasible [Eq. (81) is possible if > 0.63]. Evenif Eq. (81) is
possible (the regolith layer is for some reason very thin),
then dq/dv > 0 and, according to inequalities (82), the equa-
tion is unstable.

5.2.3. Thermal and diffusion instabllity in amodel of
gravitating particles

The chaotic velocity of gravitating inelastic particles in
a differentially revolving disk increases during mutual gravi-
tational close approaches, and decreases during contact
collisions. Let us determine the free flight times with
allowance for the dependence of the three-dimensional con-
centration of particies on disk thickness n ~ o/mh ~oQ}/mv.
1. For contact collisions™’
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1
EQu (1 4 x71)

where 7 = gma*/m, & = 2, x=v*a/Gm.
2. For gravitational interactions®
xﬁ
e (85)
where y~4. We write the shear viscosity coefficient in a
simple form**

v= _Srte , (86)
QI+ 1

tcc

’ (84)

fo=

where S = 0.9 and » = 2. This expression agrees well with
the viscosity coefficient obtained in Sec. 4.1.3.'5 For the
quantities .S and b, the index G will denote viscosity caused
by gravitational interaction, and the index cc is for contact
collision. We denote the corresponding times as f; and £, .
Assuming that 1 — ¢* = 1, we write the energy equation in
the form

So et (= (1 — ) 1 -

{baQt ;)2 + 1 (87)

With the allowance for Eqgs. (85) and (86), expression (87)
will take the form ()’ = 1.5Q)7*

r+rt—ax*t+81t (x+1) =0, (88)
where
3Sap 2
—_——— S . 89
= i—ene P &

We write the stability condition for the energy Eq.

(87)"* thus:
i +axt+2pvixt—3apriai+piri > 0. (90)

If we take into account that E + = v (#Q')?, then from
Eq. (77) we obtain a simpler instability condition for nega-
tive diffusion:

ovoy 9E” v 0E70, -, CIV)

With allowance for Eqs. (85), (86), and (87), from inequal-
ity (91) we obtain the instability condition in the form™

23 +x'—3B12(x+1) <O. (92)

The balance equations (89) has two real roots in the
region0 < 7 < 7., and none in the 7> 7., region. Only one
root, which is a maximum at 7 = 0 and decreases towards
Tmax» IS €nergetically stable.” dx/dr = o at the point 7,,,,,
and the disk will become energetically unstable and will cool
off sharply. But just before this (at a smaller 7), the disk
undergoes diffusion instability.”* One can determine the
point of the onset of instability (x..,7..) by eliminating =
from Eqs. (89) and condition (92):

5x%r + 4xer — 300 = 0, (93)
from this,
Xer=04[ (1+3.75¢) V*—1]. (94)

By substituting the value obtained for x_, in inequality (92),
we find 7. For @ = 0.3 to 0.4, we obtain the fairly small =,
= 0.01 to 0.017. The onset of negative diffusion instability
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corresponds to the maximum value of viscosity as a function
of Qt, (at Qt; =~0.8). The disk, after reaching the point of
maximum velocity, rearranges its structure and breaks up
into ringlets, and this leads to an effective reduction of vis-
cosity. Immediately after their formation, the rings undergo
thermal instability, while the gaps between the rings, on the
other hand, are shifted into a range of stable energy balance.

Let us estimate the dispersion of the large particle ve-
locities. From Eqgs. (89), for a=0.4 and small 7 values we
obtain v = 0.55v5 ~ | mm/sec for a particle witha =35 m
and p = 0.15 g/cm?. This indicates that the centers of the
large particles are distributed in a layer of about 10 m thick-
nesses.

Let us examine the dynamics of small particles, which
always possess a stable energy balance, by increasing their
chaotic velocity upon scattering in the gravitational fields of
the large particles, and by reducing it upon mutual collisions
(we assume here that the optical thickness of the small parti-
cles is significantly greater than the optical thickness of the
large ones). One can write the criterion for diffusion insta-
bility for a layer of small particles in the form (the index 2

indicates small particles)”
+

E
T N1 1

> 0.
E] T,

(95)
We obtain critical thicknesses 7., =1 to /3 for various
mechanisms for transferring energy from large particles to
small ones.®”™* The chaotic velocities of the small particles
can be several times greater than the velocities of the large
particles, as a result of which, the smaller particles form a
thicker layer several tens of meters thick.

We notice that the results of Sec. 5.2.1 have a general
nature and are independent of specific particle properties or
of the type of energy balance. At the same time, the models
examined in Secs. 5.2.3 (not to speak of Sec. 5.2.2) are very
simplified and do not take into account such important
properties of particles as rotation around their own axes and
nonlocal effects, which cause the appearance of nonlocal vis-
cosity. Therefore, it is difficult to estimate reliably the criti-
cal optical thicknesses at which thermal and diffusion insta-
bilities arise. One may speak more confidently about the
characteristic scales of the instabilities: thus, the Jeans and
diffusion instabilities cause layering of the disk into ringlets
with widths of several thicknesses, and the quasi-secular in-
stability breaks up the disk into ringlets of A,=(c%/
Go,) ~0.1 km to 1 km widths (forc~0.1 cm/sec and g,~ 1
to 10 g/cm?). g, could be smaller and the layering on a larger
scale at an early stage. But these instabilities cannot explain
the large-scale (up to 1,000 km) layering of the rings.

5.3. Accretion instability

The large-scale (from 50 to 1,000 km) layering of the
rings of Saturn can be caused by a new type of instability
connected with non-diffusion flows of material in the
rings.”®

5.3.1. The stability of rings with allowance for non-diffusion
flows

The system of Egs. (71) is considerably simplifed
(y~vk?<Q) at the long-wavelength limit (4> /) for radial
oscillations (m = 0):
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We obtain a dispersion equation from Eqs. (96) (retaining
terms with k,,, n<2)

y=—Dk*+Ak+B, (97)
where
D - [aw,, A (OE‘U(, __0E*o, ) (a_E:_ _9E+ )—n 2Q (— rQ"
ds, OT,\ da, da, J\OT,  aT, %2 ’

A= (B WO () e,
or, T, )\dT, T, Q

B L jov _ ovt ) ‘9E"0, _ 0Etg ) ‘9E~  QE* )-1
g, { oT, oT ( 0g, do, (67‘0 aT,
aN- a/v+)
(000 doy )

If D> 0 (the disk is “‘diffusion-stable’’) then, for 4 > 0 and
B> — A?/4D, an instability connected with external flows
of rhaterial develops.

5.3.2. Investigation of the criterion of instability

For the fairly rare collisions of large particles, taking
Sec. 5.2.3 into account, we obtain

OE-e, _ 0E*o, _

9o, Jg,

- + - ne
OE ’_6E zZi: 2v (rQ2) ~0.
T, aT, To Ta

Here d(vo,)/d0,~2v. We find for D, 4, and B

D=6y,
A= <'(‘}N_ oN* )7‘_0 .

(98)

aT,  aT, )3

B=.~("£_‘E
. day dc, |

2aG,

The criterion for the development of accretion instability in
a disk that is far from diffusion instability is written in the
form

aN- ON+

>

T, = oty (99a)
W o (99b)
dao, dc,

Therange — 4 2/4D < B <0, in which instability is also pos-
sible, is not allowed for in inequality (99b). Analysis shows
that conditions (99) are completely realistic. The increment

is a maximum at k,,,, =A /2D, or
N*  2nG
kmax -~ S L .
302 12v

From this, one may obtain an estimate of the layering scales
which are formed:
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A'max -~ ( 100)
Let us estimate the density of the layer of *“non-diffusion”
particles at an early stage (i.e., of the dust particles which are
contained in the gas and dust cloud surrounding the ring and
from which accretion onto the rings occurs). Typical densi-
ties of the protodisks around Jupiter and Saturn were ~ 10°
g/cm?;>® assuming that the fraction of dust suspended in the
disk was 0.01 and 0.001, we obtain (for 44, ~10° cm) pg,
~1077% t0 10~ ¢ g/cm’. From expression (100), we obtain

A~ 22 10%km for: gy~ 107 g/em)
pdu u

~ 50km for py~2-107 g/cm’.

The typical times for the growth of such rings are about 10°
years and 2,500 years, respectively.

5.4. Instability of the ellipse mode

Let us examine the non-axisymmetric modes m 0.
The m = 1 mode is the most interesting one (from the point
of view of dissipative instability). Setting w € and kk <1,
from Eq. (73) we obtain for m = 1777

— 0= 719— (Sk2c? — 2nGook — 2Qa,)

— f% (S’ k22 — 2nGo,k -— 2Quy), (101)

where
_ 5 14¥AEr | Zan 4 O (Ap 8. AF
S=3tsa T3 a3 ea AFF 0%,

S =14 [Q2ac? 4+ 3po,) — g AE; —52%] (AErc)?,

and w,, is the rate of precession because of the non-sphericity
of the gravitational field of the planet:

Q2

~ _3 (R 102
The condition for instability is written in the form
S'E2c? — 2nGopk — 2Qwp > 0. (103)

A5¢*/Goy=1 km (for ¢=0.1 cm/sec and 0,=1 g/cm?)
with the increment ¥ ~vk? are the most unstable wave-
lengths. The typical time of growth is =~ ' 50.1 year. Evi-
dently just this instability of non-axisymmetric perturba-
tions is responsible for the appearance of eccentricity for the
rings of Uranus and of certain rings of Saturn. The modes
with m > 1 differ qualitatively from the mode examined from
the presence of a real part of the frequency with w ~ .

Knowing now the typical scales of the perturbations
and the magnitudes of the increments y for the dissipative
instabilities described above, one can show the validity of the
conditions for the hydrodynamic approximation: y €w,
and I/~ (V/w., ) €A, where w, is the frequency of particle
collisions, v is a typical particle velocity in a revolving sys-
tem, and / is the mean free path for the particles. Allowing
for the fact that ¥ ~vk ? and the frequency w_, ~ ), we ob-
tain from Eq. (87)

£2c? R2c?

o~

® Q

c

A similar condition (kA <1) follows from the inequality

vk?

<Q, or (k)<L
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1 <A, since v~ c. Thus the condition for the suitability of the
hydrodynamical approximation is valid for wavelengths
longer than the disk thickness, i.e., k# <€ 1. This condition is
fulfilled for all the instabilities listed above (only for the
diffusion instability did we use the condition kA~ 1 for the
estimates).

6. THE RESONANCE ORIGIN OF THE RINGS OF URANUS AND
THE PREDICTION OF A SERIES OF UNDISCOVERED
SATELLITES

6.1. The first hypothesis on the nature of the rings of Uranus
6.1.1. The surprising properties of the rings of Uranus

The discovery of the rings of Uranus on March 10, 1977
caused sudden interest among researchers, since the ques-
tions of the origin and stability of the narrow elliptical rings
turned out to be not so simple. First, as a consequence of
exchange of angular momentum colliding particles, a nar-
row ring must be rapidly dispersed (in a matter of decades),
increasing its width and reducing the sharpness of its edges.
Second, the non-sphericity of the gravity field of Uranus
causes precession of the elliptical orbits; its rate depends on
the size of the semi-major axis. Differential precession of
particles at the outer and inner edges of a ring must trans-
form a narrow elliptical ring into a circular and wider one
after several hundred years. Nevertheless, the rings are not
dispersed; they have clearly defined boundaries and precess
as a single body.

Let us list the main problems of the origin and dynamics
of the rings of Uranus:™

1. How were the rings of Uranus formed? What gath-
ered the material near the planet into narrow rings that are
widely separated from each other?

2. How did the eccentricity of the rings arise?

3. Why are the rings not destroyed?

These problems have evoked a large number of different
hypotheses.

6.1.2. Hypotheses about the connection of the rings with the
known five satellites of Uranus

In the paper announcing the discovery of the rings of
Uranus, the idea was stated that the distances between the
rings are explained by resonances with the known five large
satellites of Uranus.® The positions of the five rigns discov-
ered in 1977 and designated by a, 3, ¥, , and £ were com-
pared in a paper by Dermott and Gold®*® with a series of
three-frequency resonances from Ariel-Titania and Ariel-
Oberon (when the frequency £ of the revolution of a ring
satisfies the equation: ¢Q) — (g + p)Q, + p§}; =0, where
), and Q; are the frequencies of the revolutions of the two
satellites, and ¢ and p are integers; this resonance is observed
for three satellites of Jupiter: I,, Europa, and Ganymede,
where ¢ = 1 and p = 2). It was assumed that the particles
are “‘stuck” in resonant orbits in motion towards the planet;
such a capture model was examined by Gold in Ref. 81. Lat-
er Aksnes®? and Goldreich and Nicholson®* showed that the
three-frequency resonances connected with Miranda but not
with Ariel are more significant in the zone of the rings; here
even the strongest three-frequency resonances can control
the motion of particles in only a very narrow zone (in a few
tens of meters), considerably narrower than the widths of
the narrowest rings. But the critics themselves did not give

N. N. Gor’kavyl and A. M. Fridman 118




up the idea of the resonance nature of the rings of Uranus:
Aksnes® states the idea that only definite sorts of resonances
capture material. He also mentions Colombo’s remark about
the approximate resonance relations between the rings
themselves. Goldreich and Tremaine®' state the hypothesis
that the rings of Uranus are strongly nonlinear waves that
are excited by resonances in an optically thin disk. Steig-
man®* modifies the Dermott-Gold hypothesis by connecting
the arrangement of the rings with three-frequency reson-
ances from Miranda-Ariel and of Miranda with an undisco-
vered satellite in an orbit of 105,221 km radius. But four
more rings of Uranus (7,4,5,6) were discovered in 1978, and
it became difficult to compare the positions of all nine rings
with three-frequency resonances from outer satellites. In
combination with critical remarks®>*®, this seriously da-
maged the positions of resonance hypotheses (and the Der-
mott-Gold model among them).

6.1.3. Hypotheses about unknown satellites in the rings and
“shepherd’ satellites

Hypotheses which assume the presence of undiscovered
satellites within the zone of the rings appeared in 1979. It is
assumed in Refs. 85 and 86 that here the rings are either
continuously renewable gaseous “traces” of invisible satel-
lites® or clusters of particles in complicated banana-shaped
orbits near a satellite3®; these are situated in each ring near a
satellite. Goldreich and Tremaine'® assumed that each ring
is sitnated between two ‘“‘shepherd” satellites, which does
not give the ring particles a chance to disperse. The influence
of the “shepherd” satellites could also induce the eccentric-
ity of the rings.®” The stability of the rings against differen-
tial precession was explained well by self-gravitation
forces.®® In Novembr 1980, “Voyager-1” discovered two
“shepherd” satellites (Pandora and Prometheus) beside the
narrow, elliptical F ring of Saturn, after which the idea of
“‘shepherd”-satellites gained very wide acceptance.

6.2. The hypothesis of the resonance nature of the rings of
Uranus and of the existence of a number of undiscovered
satellites beyond the boundary of the rings

6.2.1. The initial premises of the hypothesis

The formation of satellites in the rings is ruled out be-
cause of the intensive collisional fracturing of the parti-
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cles®'®? (see Sec. 3.2). A “helter-skelter” coexistence of
rings and satellites is possible only in a fairly narrow zone
between the regions of the rings and satellites. Models which
assume the existence of from 9 to 18 satellites over the entire
zone of rings plainly contradict this concept of the formation
of rings.

Several narrow rings, sometimes with noticeable eccen-
tricities, that are associated not with “shepherd” satellites,
but with resonances from outer satellites (see Figs. 5 and
13), were discovered in the rings of Saturn at the beginning
of the 1980s. This raises doubt about the need for a shepherd
satellite model even for the rings of Uranus.

Rings and satellites are formed from the condensation
of a single protosatellite disk. Here the material of the proto-
disk is distributed in a continuum. From this point of view,
the immense ( ~80 000 km) empty space between the rings
of Uranus and Miranda raised doubt. A number of small
satellites have been discovered in recent years near the outer
boundaries of the rings of Jupiter and Saturn. It was natural
to assume that unknown satellites also exist beyond the outer
boundary of the rings of Uranus. Might it be that the reso-
nance effect of these satellites also formed the surprising sys-
tem of narrow elliptical rings of Uranus?

6.2.2. Calculation of the orbital radji of hypothetical satellites

As follows from what has been described above, satel-
lites cannot exist within a zone of rings. A hypthesis was
stated by the authors of the present review, according to
which the positions of the rings of Uranus correspond to
lower order Lindblad resonances (1:2, 2:3, and 3:4) with a
number of undiscovered satellites beyond the outer bound-
ary of the rings.'” The zone where the undiscovered satellites
possessing this property are located must be situated
between 50 000 and 82 500 km from the center of Uranus,
and more-over, the maximum number of such satellites can
be about 30. Since significantly fewer satellites are required
to form nine rings, it would be impossible to indicate any
kind of specific orbits except for one remarkable property of
the rings. We discovered that several orbits exist in the indi-
cated zone of the hypothetical new sateilites of Uranus
(from 50 000 to 82 500 km from Uranus), each of which is
simultaneously in resonance with a pair of rings, i.e., the
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FIG. 13. Correlations between narrow ringlets and reson-
ances in the Saturn system. R is a narrow ring, RE is a
narrow ring with eccentricity, DW is a spiral density
wave, and BW is a flexural spiral wave. The optical thick-
ness profile has been taken from Ref. 20.
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resonances from each satellite in all such orbits simulta-
neously determined the positions of two (or more) rings.
There turned out to be five such orbits. The authors deter-
mined one of these orbits to be superfluous in preparing Ref.
17; the data on this orbit were published later*’, since a satel-
lite in such an orbit partly duplicated the effect of another
satellite. Besides this, a “‘shepherd”-satellite was introduced
near its outer edge to explain the features of the outermost,
widest, and most eccentric (&) ring; here the satellite also
determined the position of Ring 4 by the 3:4 resonance. The
overall pattern of hypothetical satellites and their reson-
ances are depicted in Fig. 14. It is evident from Fig. 14 that
the satellite z, ““published” in Ref. 89 duplicates the effect of
the satellite z (this occurs because the orbits of zand z, are in
resonance with each other in the ratio 9:10). An algorithm
for identifying the narrow zones with two resonances by
starting from the structure of the ring system of Uranus is
depicted in Fig. 15. The diameters of the unknown satellites
of Uranus were estimated to be 100 km in Ref. 90; the possi-
bility of detecting these satellites by ground-based telescopes
by using their predicted orbital radii and periods of revolu-
tion of the unknown satellites and the situation of the plane
of the satellite system of Uranus almost perpendicular to the
Earth-Uranus line allowed one to follow the satellites by the
method of superposing photographs taken at the frequencies
of revolution of the satellites; this significantly increased the
signal/noise ratio. The estimates of the stellar magnitudes of
the unknown satelilites enabled one to hope for the possibility
of discovering them by using modern radiation detectors.*

6.3. The discovery of new satellites of Uranus. The
correlation between rings and resonances from satellites

6.3.1. The “Voyager-2’ flyby near Uranus In January 1986

The American spacecraft “Voyager-2* discovered ten
new satellites and thereby led to the first summaries of the
discussion about the nature of the rings. Only the one outer-
most and ‘“‘anomalously” wide £ ring turned out to be sur-
rounded by shepherd satellites; here ‘“Voyager” completely
confirmed the hypothesis of the resonance nature of the
rings of Uranus.*®' The general arrangements of the pre-
dicted and discovered satellite systems are depicted in Fig.
16. A comparison of the orbital radii of the discovered and
predicted satellites is given in Table V1. A comparison of the
points of the hypothesis and of the *“Voyager” observational
data is given in Table VII. We notice that all the satellites
giving two resonances in the ring zone were predicted cor-
rectly. Here the inner “shepherd”-sateilite of the £ ring ful-
fills all its predicted functions and simultaneously deter-
mines the positions of Ring 4, only not by the 3:4, but by the
4:5 resonance.

The coincidence of the orbits of the predicted and dis-
covered satellites is the main evidence for the resonance ori-
gin of the rings of Uranus. Nevertheless, a more detaiied
analysis of the mutual arrangements of the rings and reson-
ances is necessary, since the positions of the rings are dis-
placed with respect to the resonance orbits. As will be shown
below, the last fact has a profound physical basis. Let us
make an analysis following Ref. 23.

biinn 802 B 103 km

|

FIG. 15. An algorithm for identifying zones of
location of unknown satellites of Uranus from
ring positions. (a) The zone of satellite locations
which seem to give one strong (of 1:2, 2:3, or 3:4
type) resonance in the ring zone. (b) The zone of

satellites giving two resonances in the ring zone.
(¢) The zones of satellites giving resonances for
two groups of rings. (d) Zones of the locations of
individual satellites (the selected orbital radii and

marked by dots). (e) Locations of the satellites
discovered by “Voyager-2".
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6.3.2. Distribution of the distances between the rings and
resonances

The nine main (most noticeable, discovered in 1977)
rings of Uranus are situated in a zone between 40 000 and
53000 km from the planet’s center (see Table III).
“Voyager” discovered another series of less noticeable nar-
row ring structures. The total number of rings in the 36 000
to 53 000 km zone has reached 15. Let us compare the rings
of Uranus with low order resonances (1:2, 2:3, 3:4, 4:5, 1:3,
and 3:5); there are 25 of them in the 40 000 to 53 000 km
zone and 31 in the 36 000 to 53 000 km zone. Let us find the
radii R,, of the resonance orbits, neglecting the small influ-
ence of the non-spherical harmonics of the gravitational
field of Uranus on the resonance ratio n{2 = m{},, where
is the frequency of revolution in a resonance orbit and (1, is
the satellite’s frequency of revolution. From this, the radius
of a resonance orbit R, is connectd with the radius of a
satellite orbit R_: R, = (n/m)?*°R, .

Let us calculate the distances A, from each resonance
orbit to all the very close (no further than 1000 km) rings.
Let us examine the magnitude distribution of A, by dividing
1000 km into several interval. Let N be the number of dis-
tances 4, in each interval divided by the number of rings. If

FIG. 16. (a) The general arrangement of previously unknown,
discovered, and predicted satellites in the Uranus system. (b)
Hypothetical (above) satellites and those discovered by
“Voyager-2" (below). The vertical solid lines are the boundar-
ies of the zone of satellites with two resonances in the region of
the rings. The dashed lines are the zones of individual satellites
(see Fig. 15).

N~1 in a certain interval, then this indicates that, on an
average, one distance from this interval fits each ring. Histo-
grams of the distribution have been constructed in Figs. 17a
and 17b for intervals of 125 km and 100 km, respectively, for
the case of 13 rings in the 40 000 to 53 000 km zone. Two
features of the N distribution are clearly evident: a dip in the
first interval and a peak in the second one, i.e., there are
almost no rings near the resonances, for practically every
ring is situated at a distance of 100 to 250 km from a strong
resonance. Let us check the statistical significance of these
features of the distribution. For this, we “throw> (by means
of a random number generator which gives a uniform distri-
bution) a fictitious random system of 13 rings onto the actu-
al set of resonance orbits in the 40 000 to 53 000 km zone. A
total of 5000 such system are generated. Here we calculate
the mean value &V and the value of the error o for each inter-
val. The random distribution of & is shown by the dashed
line in Figs. 17a and 17b. It is evident in Figs. 17a and 17b
that the peaks and dips on the actual distribution significant-
ly exceed the indicated error limits. The amount by which
the dip and peak exceed the error o, and also the correspond-
ing probability that this feature is non-random are indicated
for different cases in Table VIIL. We notice that the peak in

TABLE VI. A comparison of the orbits of the predicted and discovered satellites of Uranus.

Orbital radii for the satellites, r of resonances R
ita] rads tes. km _| Accuracy °}fz oNfutl;;: 12, 23, amd 31 SDa,te“llte
. : i 5 m ,
Predicted, R, Discovered, R AB:";‘::”;:;" h 21‘ ;g(e) ‘:)lr;gz &;’gi “from krlr? eters
86 NoV 0 155
75260 1 (1:2) 60
69 940 1 (1:2) 60
66 450 66 090 -+-360 2 (1:2), 2:3) 110
64350 1 (2:3) 80
62 470 62 680 —210 2 (2:3. 3:4) 60
61 860 61 780 -+ 80 2 (2:3, 3:4) 60
58 600 59 170 —570 2 (2:3, 3:4) 50
55380 53 800 (--1580) 1 (3:4) 30
51 580 49770 (-+-1810) 0 25
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TABLE VIL A comparison of the Gor’kavyi-Fridman hypothesis and *“Voyager-2" observa-

tions.

Hypothesis

Observations

A series of small satellites exists beyond the
outer boundary of the rings of Uranus

Satellites are not formed inside the ring zone
rings)
Ring positions are determined by 1:2, 2:3, and

3:4 type resonances from undiscovered satellite
(situated in the 50 000 to 82 500 km zone)

Each of the five predicted sateilites simulta-
neously determines the positions of two rings

satellites

The features of the outer £ ring are explained
by the presence of “shepherd”-satellites

The satellites diameters are ~ 100 km km

Nine of the ten new satellites of Uranus are
situated beyond the outer boundary of the rings.

Only one very small satellite is situated in the
intermediate zone (near the outer edge of the

Eight of the ten new satellites are situated in
this zone and have resonances of this type in the
region of the rings. The correlation coefficient be-
tween ring positions and the resonances is very
high, =0.84"* [see Sect. 6.3.3 (below))

Four of the ten satellites simultaneously de-
termine the positions of two (or more) rings;
their orbits agree well with the orbits of predicted

The ¢ ring is the only one near which “shep-
herd-satellites have been discovered

The average diameter of the satellites is =70

the 125 to 250 km interval is non-random according to the
most rigorous probabalistic criteria. But why do the rings
prefer to be situated at definite distances from the reso-
nance? A model for the formation of the rings of Uranus,
according to which the rings were formed at the boundaries
of spiral waves that are caused by the rings were formed at
the boundaries of spiral waves that are caused by the reso-
nance perturbations of satellites in a continuous protoring of
Uranus, has been examined in Ref. 89 (see also Sec. 6.4).
The distance between the ring which is being formed and the
resonance is equal to the propagation wavelength. The dis-
tribution of the extent of spiral waves in the rings of Saturn
(the waves from resonances of the order of m + n<135 and
m — n<2 are examined) is shown in Fig. 17c. It is evident
that strong resonances cause waves with propagation
lengths A,, ~ 100 km to 200 km. This fact explains well the
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features of the distribution of the ring-resonance distances in
the Uranus system: the peak of the distribution corresponds
to typical lengths for the propagation of spiral waves, and
the dip is caused by the absence of short-length spiral waves
from strong resonances and by the impossibility of forming
rings inside the perturbed zone of a spiral wave. These typi-
cal features of the distribution of NV are hard observational
evidence for the resonance origin of the rings of Uranus and,
at the same time, they make (because of the displacement of
the rings from the resonances) the correspondence of the
positions of the rings and resonances less obvious.

6.3.3. Correlation between the arrangement of the rings and
resonances

Let us analyze the arrangement of the rings and reson-
ances by another, independent method. The general ar-

FIG. 17. The distribution of radial distances between rings and reson-
ances in the Uranus system. / is the number of ring-resonance dis-
tances from A, to A, + &, divided by the number of rings in the system.
(a) 8 = 125km. (b} § = 100 km. The bar shows the mean square error
of the distribution of ¥ for the rings situated randomly. (c) The distri-
bution of spiral waves in the rings of Saturn caused by lower order
resonances with respect to propagation length A, . n is the number of
spiral waves.
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TABLE VIII. The statistical significance of features of the ring-resonance distance distribution.
Variants Dip in the first interval |  Peak in the second interval
Size of interval 6, km
Number of | Region size,
rings km 6100 ' 0=125 =100 , 8=125
+

9 1000 1 4 430, 1.260, 1.9, 3,050

40 000 t 84.7% 79.2% 95.3% 99,89
13 53000k° 1.950, 1.940, 2310, 3.450,
M 94,99 94.89% 97.9% 99.959
15 36 000 to 1.650, 1.700 2.530 3.520,
53 000 km 90.1% 9M.1Y% 98.9% 99.95%

rangement of the narrow rings of Uranus and of the reson-
ances from the discovered satellites are depicted in Fig. 18b.

If one divides the entire ring zone (36 000 to 53 000
km) into thousand-kilometer interval, then one may notice
that the average number of resonances in an interval con-
taining a ring is more than two times greater than the aver-
age number of resonances in an empty interval [in the zone
of the main rings (40000 to 53 000 km), it is 2.5 times
greater]. The general pattern of resonances in the ring zone
is depicted in Fig. 18a by arrows of the different heights
H, =3/(m + n), and a histogram (the continuous line)
which sums up the heights of the resonance arrows in each
interval and characterizes the spatial distribution of the res-
onance orbits is constructed. The hatched regions form a
histogram of the distribution of rings; each component of the
ring system makes the same contribution to the histogram.
We calculate by a standard procedure®” the correlation coef-
ficient between the heights of the two histograms:
Q=0.727 3 0.114 in the 36 000 to 53 000 km zone, and
Q= 0.782 3 0.108 in the 40 000 to 53 000 km zone. Taking
into account higher order resonance orbits of the type 5:6,
6:7,..., 10:11 and 5:7,..., 9:11 m + n<21, m — n<2) in the
histogram  practically does not change the
result: Q34 53 = 0.704 1= 0.122 and Q44 5; = 0.780 3= 0.109.
We notice that the need to introduce the different weights 3/
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(m + n) for the resonances loses significance in considering
only lower order resonances. Here the correlation coefficient
between the number of rings and the number of lower order
resonances is each interval the impressive value
0.838 3= 0.083. This is one more demonstration of the reso-
nance origin of the rings of Uranus. Let us consider which
satellites exerted the decisive contribution to the correlation
coefficient for each satellite or type of resonance:
AQ, =Q— Q,, where @, is the correlation coefficient
upon excluding given resonances (of one of the types of re-
sonances or of one of the satellites) from the general pattern.
The value of AQ, for each satellite is depicted in Fig. 19a; the
order of the positions of the satellite is depicted in Fig. 19a;
the order of the positions of the satellites corresponds to the
actual one (Uranus is on the left). We compare these data,
which reveal the satellites that are significant in forming the
rings with the predicted satellite system (see Table VI). The
two most distant satellites, 1986US5 and 1985U1 have only
one resonance in the ring zone; therefore their orbits could
not be calculated from the arrangement of the rings with
sufficient reliability. Of the remaining eight satellites, only
the five predicted.satellites make a positive contribution to
the correlation coefficient (for the 40000 to 53 000 km
zone). One satellite accurately corresponds to a satellite pre-
dicted by its function: 1) it is a *‘shepherd”-satellite for the £

FIG. 18. Correlation of the positions of the rings and resonances in
the Uranus system. The open circles, plus sign, *X’s, and arrows
show the positions of low order resonances. (a) The hatched region
is the histogram which characterizes the location of the rings, and
the solid line is a histogram of the resonances. (b) The solid lines
are the main rings (discovered from the Earth, except for 1986U
IR}, and the dashed lines are the rings discovered by “Voyager-2"
1986U 2R is a diffuse dust ring which contains two more dense
features of the ring system. The numbers to the right of the ordinate
axis show the significance of the given resonance. The Lindblad
resonances from each satellite are joined by a dashed line (the year
of discovery, 1986, has been omitted from the names of the satel-
lites). Non-Lindblad resonances are marked by plus signs for the
1:3 type, and by “* X "s for the 3:5 type.
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FIG. 19. Magnitudes of the specific contributions to the correla-
tion coeflicients between the positions of the rings and satellites.
(a) The resonances of individual satellites; the solid line is the
40 000 to 53 000 km zone, and the dashed line is the 36 000 to
53 000 km zone; the numbers under the satellite names are the
number of strong resonances (m + n<9, m — n<2) from the
given satellite in the 40 000 to 53 000 km zone. The satellites are
arranged along the abscissa axis in order of their increasing dis-
tance from Uranus. The year of satellite discovery, 1986, has
been omitted, U1* is the satellite 1985 U1, discovered on De-
cember 31, 1985. b) and c¢) are individual types of resonances
from b) 10 satellites, and c¢) from eight satellites (without 1986
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ring (only not from outer but from the inner side), and 2) it
has a strong resonance near Ring 4 (only it is not 3:4, but
4:5). If one examines not the 3:4 resonance with Ring 4 but
the 4.5 one, then one can “predict” the orbital radius of the
inner shepherd-satellite as 40 410 km, which differs from the
actual radius by at most 360 km. With allowance for this
remark, we find that the mean deviation of the actual orbits
from the orbits that are calculated from the ring positions is
316 km. It is obvious that this deviation is mainly connected
with the physically determined displacements of the rings
from the resonances by approximately 200 kilometers. It is
evident from Fig. 19a that the two satellites 1986U2 and
1986U4 clearly did not take part in formation of the rings
(evidently because of the later formation of these satellites).
The exclusion of the resonances from these two satellites
from the general pattern sharply raises the correlation coef-
ficient:

Q1653 = 0.837 F0.073,

Quos3 =0.921 7 0.042 (for m 4+ n<9, m — n<2),

Q.53 = 0.820 3£ 0.080,

Q.53 =0.899 7 0.053 (for m 4+ n<21, m — n<2).

The contributions of the different types of resonances to
the correlation coefficient (the continuous curve) are shown
in Fig. 19b. A clear regularity is evident; resonances of the
1:2, 2:3, 3:4, 4:5 and 1.3, 3:5 (m 4+ n<9, m — n<2) types
make the main positive contribution to Q. The higher order

resonances have AQ, values that are near zero or negative
(i.e., they are situated randomly). This regularity is main-
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U2and 1986 U4). The dashed line is the nominal contribution of
one resonance of each type. The numbers near the break points
are the numbers of resonances of a given type in the 40 000 to
53 000 km zone. The n/(n + 1) resonances are situated to the
left, and n/(n + 2) resonances are to the right.

12 23 5% 45\ﬁ 7 “‘\‘g’/’g::-‘g 1:3 3:5 5:7 7:9 911 (uim)

tained even if all types of resonances make the same contri-
bution to the histogram [ H, = const(n,m) ]. AQ, is depict-
edin Fig. 19¢ for the case when the two satellites 1986U2 and
1986U4 are omitted (Q = 0.899). The tendency for AQ, to
decrease with increasing resonance order is just as clearly
evident. This regularity is one more demonstration of the
resonance origin of the rings of Uranus.

Thus, the resonance nature of the rings of Uranus is an
authentic fact determined from observational data by two
independent methods.

6.4. The formation and stability of the rings of Uranus

A fairly uniform disk of large particles, and not individ-
ual narrow rings, existed around Uranus at an early stage of
its development. One can estimate its surface density by as-
suming that it is close to the mean density in the neighboring
small satellite zone, 10 to 20 g/cm’. Outer satellites cause a
number of resonance effects in a continuous ring.

6.4.1. The resonance interaction of a satellite with ring
particles

We write a simple system of equations.

&}
— +Wijv=—V 5)s
(a’ -V ) (q7p+¢) (1031)

do .
s -+ div (ov) =0,

where ¥, and ¢, are the gravitational potentials of the planet
and satellite, respectively:
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Let us examine the perturbations v=v,+v, + ..,
o=0y+ 0, + ..., |v1]€|vyl, o)) €lo,]. We linearize the
system of Egs. (103’). Omitting the index 1, we obtain
d d o0
2 LAy, — 90 0, == —
( o + Q P )v, 2Q4vq o
] iR Q 1 0¥ (104)
2o Lp, 0 =L TS
(Ot + % 0q>/)vw g o r 0¢
9 Oige o[l R
(o0 + Qg )o=—"= [ar('v’)+ acp]'

We expand the potential of the satellite in a Fourier series:

¥s(r, @ f) = 2 Y5 (r) exp [im (@ — Q).
By virtue of the linearity of the system of Egs. (104), let us
choose one of the harmonics: ~,,, exp [im(p — Q,#)].
One must look for the perturbed functions v,, v,,, and o in
the same form. As a result, we obtain

O 1) = — [ @ — Q) £ = 2| on 1)
Dom () = ﬁl[pﬂ’"dd’ + 2m? (2, — 0)] Yen(r),  (105)
on (1) = — A [_;_ (rtra) + i

The going to zero of the denominators of these expressions,
Qo(r) —Q, =0 and D(r) = Q3 (r) —m* [Qo(r) — Q1%
determines three types of resonances of the disk with the
satellite:

1) Qy(r..) = Q, is the co-rotational resonance,

2) Qu(r,,) = (m/m — 1), is the inner Lindblad reso-
nance, and

3) Qo(r.y) = (m/m + 1)Q, is the outer Lindblad res-
onance.
Let L be the angular momentum that is transferred from the
satellite to the entire disk:

L=L®+LM+
ra 27
aP ,
Lo = Y gy (r) rdr r aq; do
ry 0

rs

= — YGO (r) rdr (s (200) — e (0)).

T

We write the perturbed angular momentum that is trans-
ferred to the entire disk:

Im(7/2;)
Im z Ve
«
il
‘5}\3. r=Rex, 17 T=Rex
a @ b ¢
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I 2

LY = — fr drg‘ o (r, )

r 0

Mg (r, @) ,
—‘—a—qu——— dq" .
In the vicinity of a resonance (7 = r,, ), we find for the Four-
ier harmonic L '

2nma,A? I f dx
_—m N
rrLD“-" (r:/i) ‘ x

-€

(1)
Lm =

where

aM,

)
=g

Alrn)=— (me + 5%’:’_) Rl N

Tm T

"—’m

b

i

a
2 cos me'dg’ oD
’ D.
7 J (1 -+ 2 — 2f cos ")/ or
0

We redefine x in the following manner:

x=1im (x 4 ia).
ax—0

Then (Fig. 20)

£ d 4
. ! x . ?
lim Im — = —lima !
a0 x4 fa .
-2 —&

dx

pryp = —nsgna.

Finally,
4n%0,A2 (r,,)

L) = —
39 () Q

sgna. (106)

It is shown in Ref. 93 that a > 0. Here spiral waves
which damp out with distance (because of viscosity) diverge
on both sides from the inner Lindblad resonance. As a rule,
the spiral density wave which moves outwards from the
planet is more powerful.®® The angular momentum that is
transferred from the satellite to the disk plays an important
role in the dynamics of the ring particles.

6.4.2. Spiral waves and the formation of rings

According to tra ditional ideas of celestial mechanics,
the zone of the resonance influence of an outer satellite is
very narrow; the natural width of a resonance is?'

M. \1/2
AL ~Rp ( Mb j ~ 30 km for Saturn’s satellite Mimas,
p

~4 km for a satellite of Uranus with g, = 50 km;

(107)

here R, is the resonance radius, a, is the radius of the satel-
lite, and M, /M, is the ratio of the masses of the satellite and
planet. However, the ideas about the local nature of the reso-

FIG. 20. (a) The contour of integration. (b) The dependence of
1/a on x in the resonance region.
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nance effect of a satellite are not true for a medium of large
particles with collective properties (pressure, self-gravita-
tion, etc.). A resonance perturbation in such media is propa-
gated over many hundreds of kilometers from the point of
resonance. For example, the Cassini gap, which was formed
at the site of a resonance spiral wave from Mimas, extends
for 4 500 km, which is two orders of magnitude larger than
the resonance width from Eq. (107). In removing angular
momentum from the disk particles, a spiral wave causes drift
of particles toward the planet and the formation of a gap for a
satellite mass greater than the critical mass:**
My 1 ¢ ( T )1/2;

M, T n QR P+

(108)

here ¢ are the chaotic velocities of the disk particles, 7 is the
optical thickness of the disk, and 7 is the resonance charac-
teristic {#/(n — 1)). The mass of Mimas is sufficient to form
gaps. The new satellites of Uranus with radii of up to 80 km
formed spiral waves in the protoring which do not cause
divisions; because of particle diffusion, they were closed fast-
er than particles were removed by resonance sweeping. The
characteristics of a spiral wave depend not only on the satel-
lite, but also on the parameters of the disk. We illustrate this
dependence by means of the simplest system of equations,
following Ref. 93 (allowance for viscosity is especially sim-
plified: « = f# = 0):

a
('5 +VV)V
= —V (B + b + pd—— Vo + AV + TV (W),

do . dp
— 4+ diviov) =0, -=—=ct,
at + () do

(109)
@, & AV
(Ez? ++ Tz"?.pz) 0y = 4nGd () 3,
Dy = e-Heip,.

Similarly to Sec. 6.4.1, by linearizing this system of equa-
tions, we reduce it to a single equation for the Fourier har-
monic v,,, which, near the inner Lindblad resonance, has the
form

d%y do
3 o 2 tm .
—a— - — X0 = (110)
where
. Qr,)A
3 ___ 3 3 o m
Ay =10p —f—av, Cn = — -—'EDT- Y
= 111
P 3mriQy (r,) 9 (111)
a: = 7 v , ok = 2n0,G ]
9 mrkQ 3mr, Q.Q, (r,.)
We examine some exact solutions of Eq. (110).
a) Let |ag |, |, | €|a, |, therefore
r: alks
Ve (X) = Cm S.exp[i hx— 2 j]dk. (112)
p .

By virtue of the definition of ; in Egs. (111), we find that
k <0, i.e., an acoustic wave propagates from the resonance
towards the planet. v,, can be represented in the form of
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FIG. 21. Graphs of the exact solutions of the equations for spiral waves in
the limiting cases when (a) the speed of sound, (b) viscosity, and (c) self-
gravitation of the disk are dominant.

combinations of Airy type functions (Fig. 21a):

1;_:nclu . X e ‘ X .
U = Aj +sz( : (113)
foep {opd fepl
b) Let |ag |, |a, | <|a.[; then (Fig. 21b)
bt ' @dgs —
U, (%) = Cp ( exp (ikx— l“; )dk: ’ﬁHi( : ); (114)
Y . . %y NadY ’

v

c) If |a, |, |a,| €]ag|, then we find (Fig. 21¢)

- : 262\
Urm (x) =Cn j exp [L (kx —_ a(;e )J d&
Y .

_ Va "__ x R '__ x 3
" Tagl [g(\ Vﬁlaol>+‘f( Vﬂm)}'
(115)

where g and f are Fresnel integrals. Thus, spiral waves can
propagate on both sides of a resonance. The gravitational
field of a wave causes periodic motion of particles (Fig. 22)
and can capture and transfer dusty material, “unloading” it
beyond the spiral wave zone. But this is not the only mecha-
nism for the growth of rings.

Uy

FIG. 22. The phase trajectories of particles moving in the field of a wave.
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6.4.3. The role of accretional dust flow

Such a material transport factor as a strong flow of dust
towards the planet exists near Uranus. Aerodynamic drag
alone leads to the sweeping out of micron-sized particles
after 100 to 1000 years.>* How did this strong planetocentric
dust flow interact with the spiral waves in the protoring of
Uranus? If a spiral density wave moving outwards from the
planet brakes the radial planetocentric dust flow, then a con-
densation is formed at the encounter site of the wave and
dust flow, a ring (see Fig. 23). Such a condensation is accre-
tionally unstable (if the diffusion of particles from it is sup-
pressed; see Sec. 6.4.5) and it grows by holding back the
inflowing dust. The bent spiral waves, whose heights above
the ring plane reach several hundred meters, and the acous-
tic waves propagate towards the planet and can, on the other
hand, accelerate the dust motion, which will also lead to the
formation of a ring at the edge of the wave propagation zone.

We estimate the time for the growth of rings in the plan-
etocentric dust flow. Let the protodisk from which the rings
were formed occupy the region (7,, 7,). The amount of dust
which accreted onto the planet over the time of the existence
of the protodisk ¢, is 27r,o,v,t, , where o, is the surface
density of dust and v, is its radial velocity in the region of the
inner radius r, of the disk. Obviously, this amount of dust
cannot be less than the protodisk mass o,7(r; — 1) ~o,r;
(g, is the mean surface density of the protodisk) since, be-
sides the material of the inner protodisk {from which the
rings, whose masses we neglect, were formed), part of the
material from the outer regions of the protodisk where the
satellites are formed, and also interplanetary material, can
also accrete onto Uranus. Thus, one can write the inequality:
27ro,v,t »o,rrs; from this, o,v, 20,5 /2r t;, . We esti-
mate the maximum time ?,,, over which the flow of dust
towards Uranus o, v, will be able to create a ring with den-
sity contrast Ao and width Ar. Using the equation
2rrArAo = 27m,0,t,,, , We obtain

ArAo

U0

ArA
LH ;’ 21t = A A_otL 2 2000 to 10° years
a 2 r2 Oy

tmax =

(116)

the following values were used here: Ao/o =1, Ar=~10 km,
r, = 50000 km, r, = 26 000 km, and ¢, = 10 to 10 years.

If the formation of a narrow isolated ringlet is the result
of the external resonance effect of satellites, then the further
evolution of such a ringlet and its acquiring a stable, ellipti-
cal form evidently proceeds practically independently.

Fm v

FIG. 23. Formation of a condensation at the edge of a spiral wave.
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6.4.4. Eccentricity of the rings and self-development

Let us examine in more detail the classical Laplace-
Maxwell problem of the stability of a continuous ring around
a planet.”> We write an equation for an elastic, absolutely
flexible filament in the gravity field of a central body:'%

0%r GM 1 9 2 Or ! \
T 1ocE — (11— K
012 r U, da Oa ( |or/oal

(117)

here r is the radius vector of a section of ring with the La-
grangian coordinate a, i1, is the linear density of the ring, and
the squares of the velocities of longitudinal elastic oscilla-
tions are c; = E /u, (Eis Young’s modulus). We obtain the
dispersion equation by the usual method of perturbation the-
oryIOG

(02 — 0m2QE) {02 + 3Q4 4- (1 — m®) QF — Q)

— (20,0 + m (8QF + QD12 =0, (118)

where fis the tension (=R /4 > 1), A and R are the unper-
turbed and perturbed radii of the ring, T=E(6— 1),
1 =py/0, T and u are the stress and linear density, respec-
tively, of the ring Qi=ci/R*% i =T/u, and
Q% = cZ/R 2 Maxwell’s dispersion equation is obtained
from Eq. (118) in the absolutely rigid body limit,> from
which it follows that such a ring is unstable with respect to
m = 1 perturbations; the ring is displaced and falls onto the
planet. But if one allows for the finite strength of a real
ring,'"” then Maxwell’s conclusion turns out to be incorrect;
the ring doesn’t fall onto the planet, but is torn to pieces
during a very small displacement.’

As was evident from the results of Secs. 5.1 and 5.4, an
analog of such an instability is also observed in a disk of
inelastic particles: the ellipse instability of a non-axisymmet-
ric (m = 1) perturbation of a circular ringlet. Evidently just
this dissipative instability caused the appearance of eccen-
tricity for the narrow rings of Uranus and Saturn. We notice
that resonance perturbations from satellites are too small
and cannot be responsible for the observed eccentricities of
the rings. It is evident from Sec. 5.4 that ring perturbations
of the most different widths can be unstable for a suitable
density. But one must consider that the time for differential
precession to destroy eccentricity for wide rings is shorter
than the time for the growth of eccentricity with ellipse in-
stability present. Therefore, only the densest (and narrow-
est, no more than a few tens of kilometers in width) ringlets,
in which self-gravitation stabilizes the differential preces-
sion, can maintain their eccentricities.*® The following un-
solved problem remains:

6.4.5. Why do rings not disperse because of diffusion? Why
arering edges sharp?

The main reason for diffusion stability of rings is in their
non-circular form. A circular ring disperses by the drift of
particles into neighboring quasi-circular orbits which do not
intersect the main ring. In the dispersion of an elliptical ring,
the closest orbits also will be elliptical with similar eccentric-
ities. In a non-spherical field, a ring precesses with a rate
different from the precession rate of the orbit of a particle
which broke away from it {because of the difference in the
semi-major axes). As a consequence of this, the orbit of the
particle inevitably intersects the ring, and the particle, after
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using up the energy of its relative motion in inelastic colli-
sions, is again squeezed into the main mass of particles. We
estimate how far a ring “allows” particles to get before re-
capturing them. This distance will also be an estimate of the
sharpness of the edge of a ring. We examine two embedded
non-intersecting ellipses (with coinciding foci and almost
coinciding apocenter directions) with the semi-major axes a
and a + da and eccentricities e and e + e (Sa<a and
dege). We find the angle Ag,,,, the minimum angle
between the lines of apsides at which the ellipses are in con-
tact:

Oa abe " 8a abe \
AQmin & arccos | — [— 4 — || —arceos [ — - — | .
Pmin { (Qae + da )] S( 2ae _} 8a )

(119)

Taking into account that Se is associated with collisions and
is comparable with thermal eccentricities (e~ h /a), we ob-
tain the condition for “catching up”: b < 8a £ 2ae. For the
strong inequality h<da<2ae, A@.,, ~(ba/2ae) + (abe/
éa). The edge of the ring catches up to a particle because of
the differential precession Aw,, after the characteristic time

t ~ APrmin __ (8a/2ae) 4 (abe/Ba)

Ao,  (21/4) 1@ (Ry/a)6a/a

(120)

Comparing Eq. (120) and the diffusion dispersion time for
the edge ¢,—(8a)?/v, we find the equilibrium Sa. For exam-
ple, the sharpness of the edge of the £ ring da is 400 to 750
meters for a particle free flight time 731/ to 10/€). This
edge sharpness agrees well with the observational data. We
notice that even a very small eccentricity (e~ 10"°to 107°)
must sharply increase the diffusion stability of the edge of
the ring. A variable ring width can also play an important
role in the diffusion stability of elliptical rings, i.e., an in-
creased eccentricity of the outer edge in relation to the inner
edge. Such an eccentricity gradient leads to a situation where
the outer ring layers move faster than the inner ones near the
pericenter and transfer their angular momentum to the inner
layers.

6.4.6. Therings of Uranus and aerodynamic drag

The stability problems examined above are common to
the elliptical rings of both Uranus and Saturn. But one more
strong disruptive factor, discovered by “Voyager-2", acts on
the rings in the Uranus system: aerodynamic drag on the
particles by the upper layers of the very distended atmo-
sphere of Uranus. Micron-size particles fall onto Uranus
after a few hundred years,’* and the lifetimes of the rings
themselves are a few million years.?® As is shown in Ref. 95,
only the massive ¢ ring, situated furthest of all from Uranus
and surrounded by the two shepherd-satellites Cordelia and
Ophelia, is stable. The stability of the other rings was incom-
prehensible. Furthermore, even if one assumes the existence
of shepherd-satellites with radii about ten kilometers near
the inner rings (larger satellites would have been discovered
by “Voyager-2"), then, all the same, one cannot ‘‘save’ the
rings; the angular momentum flux from the satellites is two
orders of magnitude less than that needed to neutralize the
aerodynamic drag.”®

Following Ref. 96, we examine a fundamentally differ-
ent stabilization mechanism. A trail of fine dust which
stretched towards Uranus from the inner edge of the £ ring
was visible on “Voyager-2” images.”” The optical thickness
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of the dust layer is 7 $0.001. The origin of this trail is con-
nected with such factors as aerodynamic drag, braking on
magnetic lines (for charged dust particles), and pulveriza-
tion of £ ring material by micro-meteorites and fluxes of
magnetosphere particles. In moving towards Uranus, the
dust flow from the ¢ ring is captured and is again emitted by
the other rings of Uranus. It is shown in Ref. 96 that the
stability of the rings of Uranus is connected with their ability
to extract from the dusty planetocentric flux the angular
momentum necessary for their own stability. Actually, the
velocities of dust particles in a circular orbit exceed the orbi-
tal velocities V), of the particles of an elliptical ring with
eccentricity e near apocenter by the amount AV = Ve, or
AV = QRe. If the dust particles themselves move along el-
liptical orbits, then the relative velocity between the dust at
pericenter and the ring particles at apocenter reaches the
value AV = QR(e + ¢, ), where ¢4, is the eccentricity of
the dust particle orbits. The momentum which is imparted to
the ring by the dust flow can neutralize the effect of aerody-
namic drag. We introduce a self-stabilization coefficient for
the rings.

S—= 2AVam/ot .

V.M. Q

m

(121)

here dm/dt is the rate of absorption of dust by a ring with
mass M, and angular velocity €}, and V,, is the radial drift
velocity of the ring itself, which is mainly determined by the
aerodynamic drag. If the coefficient S= 1, then the ring is
stable. If S=0, then the self-stabilization effect is small. We
examine the following factors of ring stability.

6.4.7. The absorption of dust moving towards a planet under
the influence of aerodynamic drag

Then dm/ot = 27RV 4, 04,, where ¥, is the drift ve-
locity of a dust layer with surface density o,,. The ratio of
the drift velocities of the dust and ring equals (V4,/V,,)
= 30/4p7,, a4,; hereay, isthesize of a dust particle, ¢is the
surface density of a ring with optical thickness ., and width
Ar. As a result, we obtain a simple expression for § (r,,
=304, /4pay,)

S 2R(e + edu)_Td_u .
Ar Tm

(122)

We notice that the stability of a ring ceases to depend on the
amount of aerodynamic drag, since the drag acts on both the
ring and the dust flow. We examine e + e,,, the sum of the
eccentricities of the ring and dust. The eccentricity of neu-
tral dust that is swept out of an elliptical ring by aerodynam-
ic drag depends on two factors. First, the dust retains the
eccentricity of the ring itself. This is connected with the fact
that uniform drag reduces the eccentricity by Ae and the
semi-major axis by AR, maintaining the proportion AR /
R ~ Ae/e. Consequently, if one talks about dust particle dis-
placements by AR ~ 1000 km (to the next ring), then AR /
r~Ae/e~0.02, which one can neglect. Second, the eccen-
tricity of collision-free dust can increase during resonance
interaction with the non-axisymmetric gravitational poten-
tial of an elliptical ring. Without allowing for the last factor,
let us estimate the self-stabilization coefficient for the near-
est circular ring to the £ ring with R = 50 660 km, Ar = 16
km, 7, = 0.1, and e,, =0.008, i.e., equal to the eccentricity
of the £ ring. We find $~0.5. Consequently, this ring is close
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to a stable state. S decrease rapidly for the rings further in
due to the fact that the dust loses its original significant ec-
centricity acquired by it upon leaving the ¢ ring. § again
increases for the inner Rings 4,5, and 6, reaching values from
0.25 to 0.75 for Ring 6 (R =42 000 km, Ar=1 to 3 km,
T =0.2t00.3, ¢=~0.001, and e,, =0.002). We notice that
we did not allow for charged dust, which drifts towards the
planet faster than neutral dust and can acquire significant
orbital eccentricity by the action of the magnetic field (espe-
cially at places of resonance between the frequencies of mag-
netic field rotation and orbital revolution of the dust).” This
difficult to estimate factor can significantly increase the sta-
bility of rings. Micrometeorites are one more source of a
stabilizing dust flow.

6.4.8. Micrometeorite erosion of the outer ¢ ring

We recall that the width of the £ ring exceeds the total
width of the other dense rings by approximately a factor of
two. Micrometeorites and fast magnetosphere particles cre-
ate, in pulverizing the material of the ¢ ring, flows of broken
material with significant eccentricities. The apocenters of
these flows will be distributed outside the ¢ ring, and their
pericenters will be inside the ¢ ring orbit, in the zone of the
remaining rings. The absorption by the inner ring of the
flows of broken material from the ¢ rings is a significant
source of angular momentum. We estimate the dust absorp-
tion rate for a ring with width Ar,, and optical thickness 7,
in the following manner: dm/dt = 2rRAra,, Q7r,,,, where
g4, is the surface density of the dust cloud created by micro-
meteorite pulverization of the £ ring. Let us calculate o4, by
equating the rate of mass loss by the £ ring to the rate of
capture of this mass by the inner rings. We obtain

O Ar,
14sQ }' Tira BFin

i

(123)

Gy =

where o, is the decrease of the surface density of the £ ring
with its width Ar, over its entire lifetime ¢, and 27, Ar,
is the sum of the products of the widths of the inner rings
times their optical thicknesses. With allowance for Eq.
(123), we obtain the self-stabilization coefficients of the
rings

S— 2Re,, M, (124)

Vru lSS EAZ '

where M, is the mass of material lost by the £ ring over its
entire lifetime, and TM,, is the total mass of the inner rings.
Not only the mass of the material ejected from the ¢ ring, but
also that from the outer satellites is also included in M,.. For
R=4510° cm, e, ~0.11002, tys~10°years, and
V. ~10"%cm/sec,> we find §~03 to 06 for
M_/EM,, ~10. If one assumes that the mass of the £ ring
equals 6.1-10'® g, and the total mass of the two widest of the
inner rings, the & and B rings (see Table III), is 8-10'° g
(from Ref. 95), then such a ratio appears to be completely
realistic. The quoted estimates show that the action of all the
above-listed factors for forming dust flows provides stability
for the inner rings of Uranus, which turn out to be “train-
bearers” “‘holding on” to the dust train of the most massive
and stable ¢ ring. The stabilizing action of the dust flow sig-
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nificantly exceeds the action of the hypothetical shepherd-
satellites whose existence had to be assumed in Ref. 95. We
note that the stability of the rings is also the result of natural
evolutionary selection; rings with unstable forms or insuffi-
cient influx of angular momentum have already been de-
stroyed.

7.DISSIPATIVE STRUCTURES INAPROTOPLANETARY DISK

7.1. Dissipative instabilities and the planetary distance
relation

7.1.1. Introduction

The planetary distance relation has a history of many
centuries. The possibility of explaining the planetary dis-
tance relation on the basis of the idea of gravitational insta-
bility in the protoplanetary cloud is investigated in Ref. 98.
Gravitational instability of the solar protoplanetary disk is
improbable according to modern cosmogonic ideas.* Fol-
lowing Ref. 100, we examine dissipative instabilities of the
protodisk as the cause of the origin of the regular arrange-
ment of the planets.

If the planets were formed from annular perturbations
which grew as a result of the action of an instability, then the
distance between planets is the wavelength of the most un-
stable perturbations at a given point of the disk.” Since the
lengths of the most unstable waves are connected with the
characteristics of the disk then, from the change of wave-
length with orbital radius, it is easy to calculate the depen-
dence of the disk characteristics on radius.®® Comparison of
the dependences obtained with those hypothesized from
modern cosmogonic models®® will allow one to estimate the
reality of a scenario that is discussed for the formation of the
regular structure of the Solar System.

The stability of a differentially rotating viscous disk is
investigated in Refs. 13, 14, 15, 67, 68, 76, 77, 78, 79, 101,
102, and 108 (see Secs. 4 and 5). We apply the results of this
analysis to the protoplanetary disk. We note that transport
equations of the type of Egs. (67) through (70) can describe
both a laminar and also a turbulent disk.'®"-'°* In the case of
turbulent gas, the velocities ¥, and ¥, will refer to the large-
scale motions of the gas, and T will characterize not the
thermal, but the turbulent velocities. The meaning of energy
sources and sinks, and the expressions for transport coeffi-
cients are changed correspondingly. But the general form of
the transport equations is maintained, and an analysis of
them will give the same instabilities that are characteristic of
a differentially rotating viscous medium. The dissipative in-
stabilities that have been examined in Sec. S lead to two char-
acteristic scales of layering of the disk that are comparable
with the observed distances between the planets: A,~274
(diffusion instability) and A, = ¢?/Go, (quasi-secular in-
stability).'® The characteristic time for the development of
the instabilities is ¥ ~ vk > It is easy to show that, in the case
of molecular viscosity, the time for the growth of even the
shortest [0.3 astronomical units (a.u.) ] waves is longer than
the cosmogonic time. Thus, annular perturbations with
Ao~ 1 a.u. can be formed sufficiently rapidly only for turbu-
lent viscosity of the disk. From estimates of the turbulent
dispersion of the protodisk,®® one may adopt v ~ 10'? cm?/
sec for turbulent viscosity, which gives the following charac-
teristic times of growth ¢, ~2-10* years for 4,~0.3 a.u,,
and t,, ~2-107 years for A,~ 10 a.u. The basic time in the
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existence of the protodisk, when it could be in a stable state
and “‘awaiting” the onset of conditions for instability, could
occur only in a definite, fairly short period of this evolution.

7.1.2. The hypothetical characteristics of the protodisk

The Bode-Titius relation essentially describes a simple
fact: the distance between planets increases proportionally
to the distance from the Sun, R, =04+ 0.3-2" a.u.
(n=0,1,...,6). If One writes the interplanetary distance re-
lation in the form

A= 2(R—0.4), (125)

where A=R, ., —R,,andR=4(R, , + R,), then Eq.
(125) corresponds to the Bode-Titius relation for all the in-
terplanetary distances except the interval between Mercury
and Venus. Let us examine the instability with the wave-
length A, = ¢’/Ga,, where c is the velocity of turbulent gas
motions. One can obtain the observed interplanetary dis-
tances only by assuming that the turbulent motions are an
order of magnitude slower than the speed of sound. By using
Eq. (125), one can obtain a hypothetical dependence of ¢ on
R, but this dependence is difficult to verify, both because of
the simultaneous presence of the two parameters ¢ and oy,
and because of the lack of detailed models for turbulence in
the protodisk. The situation is considerably simpler with dif-
fusion instability, whose scale depends only on the thickness
of the disk and, consequently, on the molecular temperature
of the gas.

According to the calculations of Safronov,** the tem-
perature in the central plane of the gas and dust disk can be
described by the equation 7= 100/R '2K (R is in a.u.). If
the arrangement of the planets corresponds to the subdivi-
sion of the protoplanetary disk into rings as the result of the
action of diffusion instability (with the characteristic layer-
ing scale 27h) then, setting A, equal to the distance between
the planets, one can calculate from A, the thickness of the
disk and, consequently, also its temperature

kg is the Boltzmann constant, here T is the temperature in
degrees Kelvin, m is the mass of a hydrogen molecule (as-
suming a predominantly hydrogen composition for the pro-
todisk), M is the mass of the Sun, and the coefficient
a. = Ay/h determines the exact scale of the layering. We
assume that the thickness of the disk is determined by the gas
temperature, since the turbulent motions evidently have
subsonic velocities.>® The results of solving this inverse
problem are shown in Fig. 24, when the temperature of the
protodisk is calculated over the actual distances between the
planets at the moment of ring formation in a given region of
the disk. It is evident from Fig. 24 that the values obtained
for the temperature agree well with the temperature profile
calculated in Ref. 53 (also see Ref. 99). The regions from
Mercury to Venus and from Mars to the asteroids are excep-
tions. The heating of the regions of the disk closest to the Sun
to almost the highest possible temperature values is natural,
whereas the more distant regions of the gas disk are shielded
and are heated only by the tangential solar radiation. We
note that the temperature values calculated from Eq. (126)
do not provide a picture at one given moment of time, since
ring formation did not occur simultaneously. For example,
due only to the increase of 4, the characteristic time for the
formation of rings in the zone from Mars to the asteroids is
seven times longer than that in the zone from the Earth to
Mars, and is 21 times longer than that in the zone from Ve-
nus to the Earth. One must add to this that, according to the
estimates of Refs. 53 and 103, the time for the accretional
growth of a planet increases sharply with orbital radius from
Venus to Mars. Thus, the mutual accretion of dust near the
moment of the formation of the Martian ring and other fac-
tors could have increased the transparency of the zone of the
Earth, and this is what led to an increased heating of the zone
of Mars. In this way a temperature increase from the zone
from Venus to the Earth to the zone from Mars to the aster-
oids can be explained. The data of Fig. 24 can serve as an
important source of information about temperature and oth-
er conditions in the protocloud. One can draw the conclu-

2032 2 . . . .
- mh?Q? _ mGM ﬂ . (126) sion from the results of this section, that the regularity of the
2 ’ . .
8kg kg R arrangement of the planets in the Solar System is connected
K
Q
\
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with a smooth change of the thickness of the protodisk as a
function of radius and with the action of diffusion instability.

7.2. Self-organization of the solar system and prospects for
investigations in planetary physics

The process examined in the previous section of self-
organization of dissipative annular structures in the proto-
planetary disk, which formed a regular series of planets,
shows the degree of the possible influence of instabilities on
cosmogony. Allowance for all the self-organizing factors
(the development of the diffusion, quasi-secular, accretion,
and ellipse instabilities, and the generation of spiral waves
and of other structures) in modern cosmogonic theories will
enable one to approximate closely a detailed model for the
formation and evolution of our planetary system. Such a
model can give valuable information about terrestrial pro-
cesses on planet-wide scales and will further the formulation
of a process for exploring the solar system on a scientific
basis, with allowance for the prediction of the future evolu-
tion of the planetary system under conditions of a) natural
development, b) technogenic loading, and c) guided evolu-
tion.

The wealth of self-organization processes in the solar

system is determined by the following features:'®*

1. The presence of long-lasting energy sources;
solar radiation (thermonuclear reactions);
radioactive heating of large bodies (nuclear decay reac-
tions);
gravitational compression of planets (especially of the
giant planets);
the energy of orbital revolution and rotation;
impact heating (by meteorites and planetesimals); and
the gravitational effect of neighboring bodies (tides and
resonances).
2. A variety of distributed media in which collective

self-organization processes can proceed:

the solid media of terrestrial type planets, satellites,
comets, etc.;
the liquid material of the terrestrial oceans, and the en-
velopes of satellites and planets;
gaseous media of different densities, the atmospheres of
the planets, satellites, and comets;
the interplanetary and solar plasmas;
the gas and dust media of protosatellite and protoplane-
tary clouds; and the large particle media of planetary
rings, protosatellite swarms, and disks of planetesimals.

TABLE IX. 1) Investigations of planets and satellites by means of automatic interplanetary

stations.
L. At 1 . " Gt ") ey gl d
Number of automatic interplanetary Automatic |nlerpl‘|||e.t.lry station names an )
Planet stations which investigated the planet the years they investigated a planet (USSR; USA)
USSR USA
Mercury —_— 1 “Mariner-10", 1974 and 1975
15 * *“Venera-4 through Venera-16" and “Vega-1 and -2"";
Venus 3 *(1967 through 1985); **Muriner-2, -3,
and - 10, “"Pioneer-Venus-1 and -2 (1962 through 1968)
Mars 6 6 “Mars-2, -3, -4, -5, and -6” (1971 through 1974), and
“Fobos-2" (1989): “Mariner-4, -6, -7,
and -9", and “*Viking-1, and -2" (1965 through 1976)
Jupiter — 4* **Pioneer-10 and -11" and “*Voyager-1 and -2
(1973 through 1979)
Saturn — 3 “Pioneer-11" and “Voyager-1 and -2"* {1979 through 1981)
Uranus — 1 “Voyager-2" (1986)
Neptune — 1 “Voyager-2" (1989)
Pluto — —
2) Summary.
{  Efforts and results USSR USA Comments
1
Number of automatic 8 No automatic interplanetary stations have
interplanetary 30 L been launched in the USA since 1978*
stations launched .
Number of automatic 21 15 12 failed automatic interplanetary stations
interplanetary stations (loss of radio communication, unsuccessful
which transmitted launches) were launched to investigate Mars and Venus ]
information !
Number of planet 21 21 A “Planel encounter” is an investigation
encounters with results of one planet by one spacecraft Earth )
- Neptune is the seventh planet (not counting the Eart! :
Numbt?r of planets 2 ! mvestigated by American Automatic i
studied _ Interplanetary Stations ) :
Number of satellites — 48 American Automatic Interplanetary-Stations discovered?
studied 27 satellites and obtained photo- - {
graphs of the surfaces of 23 large satellites of planets. f

(1989).

*Launches made r.ecent]y: towards Venus, the “Magellan” Automatic Interplanetary Station
(1989) and “Galileo” Automatic Interplanetary Station (1989); Towards Jupiter, “Galileo™
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3. Two types of structure formation:

the origin of structures that are ordered in space and
time in the protoplanetary and protosatellite disks; and
the appearance of individual subsystems (planets, satel-
lites, comets, etc).

The subsystems are a consequence of structures which self-
organize and themselves generate the structures of a new
order.

Thus, modern cosmogonic theory must consider the so-
lar system as a complicated hierarchy of subsystems which
self-organize, are saturated with energy sources, and possess
a surprising wealth of collective processes.

The role of the cosmogonic approach in investigating
the solar system is now growing strongly. This is connected
with the completion of the epoch of ‘“‘great geographic dis-
coveries” out to the known limits of the solar system (eight
of the nine planets of the solar system had been investigated
“close-up”, by means of spacecraft by the end of 1989), and
by the accumulation of a gigantic volume of observational
and theoretical information. A transition to systematic in-
vestigations of the solar system, which requires a prelimi-
nary estimate of the effectiveness of space projects, and the
development of observations and experiments which give
key information to solve fundamental problems of planetary
physics, is inevitable. The consideration of modern theoreti-
cal models of the evolution of the solar system, which will
indicate the most promising objects for investigation and ex-
periments, is important here. In our opinion, among the lat-
ter is Project “Kronos” that is proposed in Ref. 105 and
which proposes the building of a long-lasting satellite of Sat-
urn and direct probing of its rings (a flyby investigation of
the Jupiter system and of one of the asteroids can also be
planned in this connection). An investigation of planetary
rings can give unique information on collective processes in
disks of many particles and can play the role of a catalyst for
the development of cosmogonic models. It seems that Pro-
ject “Kronos” could compensate to a small degree for the lag
of the USSR in the field of investigating the outer planets
(see Table IX from Ref. 105). We note that the building of
orbital probes for both Jupiter (Project ““Galileo™) and for
Saturn (Project “Cassini”) is being planned in the USA.

8.CONCLUSION

The investigation of the physics of planetary rings dur-
ing the last 10 to 12 years has led to very important results
and has revealed a number of previously unknown processes
and effects. The reason for the very existence of rings has
been determined, and we have succeeded for the first time in
determining the density of particles of the rings of Saturn
and in studying the process of collisional destruction of the
loose bodies of which planetary rings consist by means of the
theory of the azimuthal brightness asymmetry effect. Papers
on collective processes in rings turned out to be very fruitful:
the diffusion, quasi-secular, thermal and accretion instabili-
ties have been discovered, and also the ellipse-mode instabil-
ity, which is responsible for the eccentricity of the narrow
rings of Uranus. Apparently this is still not a complete list of
the possible structure-forming instabilities in differentially
rotating disks of inelastic particles. The dynamics of such
uniquely stable objects as the rings of Uranus, which arose
due to the resonance action of its outer satellites, became
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better understood. Already the first application of the mod-
els developed to the entire solar system enabled one to evalu-
ate in a new way the reasons for the regularity of the plan-
etary orbits, which are subject to some planetary distance
relation.

Planetary rings have turned out to be unique sanctuar-
ies for natural processes of self-organization, which play a
fundamental role in the cosmogony of the solar system.
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